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Nearly Circular Connections of 
Elastic Half Spaces 
In this paper we solve the elasticity problem of two elastic half spaces that are joined 
together over a region that does not differ much from a circle, i.e., the problem of 
an external planar crack leaving a nearly circular uncracked connection. The method 
we use is based on the perturbation technique developed by Rice (1985) for solving 
the elastic field of a crack whose front deviates slightly from some reference 
geometry. Quantities such as crack opening displacement and stress intensity factor 
are derived in detail to the first order of accuracy in the deviation of the shape of the 
connection from a circle. In addition, some results such as the crack face weight 
functions and Green's functions for a perfectly circular connection are also dis
cussed under various boundary conditions at infinity. The formulae derived are used 
to study the configurational stability problem for quasistatic growth of an external 
circular crack. The results, derived when the crack front is perturbed from circular 
in a harmonic waveform and is subjected to axisymmetric loading, suggest that a 
perturbation of wavenumber higher than one is configurationally stable under all 
boundary conditions at infinity. The perturbation with wavenumber equal to one, 
which corresponds to a translational shift of the geometric center of the circular con
nection, turns out to be configurationally stable if any rotation in the remote field is 
suppressed and configurationally unstable if there is no such restraint. 

Introduction 
Rice (1985) developed a method of solving the elasticity pro

blem of a planar crack whose front differs slightly in location 
from that of some reference geometry. It has been applied to 
cases such as semi-infinite planar cracks with slightly 
nonstraight fronts (Rice, 1985; Gao and Rice, 1986) and inter
nal somewhat circular cracks (Gao and Rice, 1987). The latter 
work (Gao and Rice, 1987) has shown that the perturbation 
method is not only convenient but also remarkably accurate in 
determining crack opening displacement and stress intensity 
factors for crack configurations that differ moderately from a 
circular reference geometry. The internal circular crack pro
blem was addressed much earlier in a perturbation sense by 
Panasyuk (1962), and Gao and Rice (1987) compare their ap
proach to his. Rice's perturbation method can be carried out 
immediately for a tensile crack if the solution for the stress in
tensity factor distribution is known along the reference crack 
front due to a pair of concentrated wedging forces acting to 
open the crack at an arbitrary location on its surfaces. Such a 
point force solution, sometimes called the crack face weight 
function after Bueckner (1970, 1973) and Rice (1972), was 
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derived by Stallybrass (1981) for an external circular crack, 
i.e., a circular connection between elastic half-spaces under a 
traction free boundary condition at infinity. Following 
Stallybrass's work we are also able to clarify ambiguities in 
some previously proposed solutions in the literature (e.g., 
Kassir and Sih, 1975; Tada et al., 1973). 

In this paper we therefore solve for the crack opening 
displacement and tensile mode stress intensity factor for a 
slightly noncircular connection. The notation 8 (F) is used in 
what follows to denote the variation in some field variable F 
from its form for the reference circular crack to that for the 
perturbed crack shape. 

Consider two isotropic, homogeneous three-dimensional 
elastic semi-infinite solids joined over some slightly noncir
cular connection of bounding contour c. A Cartesian coor
dinate system x, y, z is attached so that the joining planes lie 
on y = 0 and the origin of the coordinate system is assumed to 
coincide with the center of some convenient reference circle. 
This configuration forms an external crack with its front c 
described by some function a{s) where a(s) is the distance 
from the origin of the coordinate system to the position s 
along the crack front; a(s) is nearly constant, and is constant 
on the reference circle. The crack system is subjected to some 
distribution of fixed forces that induce "Mode 1" tension 
along the crack front. We may note that in this case when the 
crack grows into the connecting ligament, a(s) decreases. 
Therefore, we represent the crack growth from the reference 
circular shape to the actual shape by -8a(s). In this cir
cumstance it can be shown, following Rice (1985), that the 
variation in opening displacement Au(x,z) between upper and 
lower crack surfaces at location x, z, when the crack front is 
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altered from the reference circular front b y - &a{s) in presence 
of the fixed load system, is 

2(1 -v2) C 
5[Au(x,z)] = - <P K°(s)k(s;x,z)8a(s)ds (1) 

E • Jc 

to first order in 5a(s). Here K° (s) is the Mode 1 intensity fac
tor induced along the reference crack front by the fixed load 
system and k{s;x,z) is the intensity factor that would be in
duced at arc length position 5 along the reference front by a 
pair of unit wedging forces opening the crack at location at 
x, z\ k(s; x, z) can be called the Mode 1 crack face weight 
function. This weight function is discussed in detail in Appen
dix A. Here the intensity factor K is defined so that K/^2%e is 
the asymptotic form of the tensile stress at small perpendicular 
distance e from the crack front on the prolongation of the 
crack plane within the connection. 

Crack Opening Displacement 

We choose the reference crack as a perfectly circular con
nection of radius a and adopt polar coordinates for conve
nience so that s = ad' in equation (1). Here the polar coor
dinate angle 8' is measured from the positive x axis, increasing 
towards the positive z axis. To emphasize dependence on the 
reference circular radius a, we introduce the notations 
K°(s) =K°[6;a] and k(s; x, z) = k(8'\ r, 8; a) for the intensity 
factors induced at 8' along the reference crack front, respec
tively, by the given load system and by a pair of unit wedging 
point forces at polar position r, 6. Then equation (1) becomes 

2(1 -v2) f2* 
5[Au(r,6)]= —~-

E Jo 
xK°[6'; a]k(d'\ r, 6; a) a 8a(d') dd' (2) 

where 8a(8') = a(8')-a. Also, we introduce the notation 
AM (r, 6) = Aw° [r, 8; a) to describe the opening of a perfectly 
circular connection of radius a under the given loadings. 

We can also derive K° [8'; a] by the law of superposition 
when some distributed load p(r; 8) is acting on the external 
crack faces 

] e p(p,<t>)k(8';p,<l>;a)pdpd<l> (3) 

The problem of general tensile loading can also be described in 
this way whenp(r, 6) is equated to the tensile stress which the 
general loading would induce at r, 8 in the absence of the ex
ternal crack. 

To find the opening displacement field for a perfectly cir
cular connection, we impose a uniform crack growth, i.e., 
5a(8') = 8a in equation (2). Then dividing both sides of equa
tion (2) by 8a and lettering 5a — 0, we get 

dAu°[r, 8;a]_ (1 -y 2 ) f2* 

da ~ E Jo 

xK°[d';a]k(8';r,8;a)ad8' (4) 

Noting that A«° [r, 8; a] = 0 when a > r (only crack faces 
open), we integrate over the crack size variable a' and get 

(l-v2) f2* f A U o [ r , 9 ; f l ] = 2 ^ j o I 
xK°[8'; a'] k(8'\ r, 8; a') a' da' dd' (5) 

Substituting equation (3) into (5), we get the following 
general crack opening displacement for external circular 
cracks, 

Au°[r, 8;a] = 2K k(8'; p, <t>; a') 
k, J0 Ja JO Jo' 

xk(8'\ r, 8; a') a'p(p, $) pdpd<t> da'dd' (6) 

If we switch the order of integration with respect to a', 8' and 
p, (/>, we therefore could rewrite equation (6) as 

Au° [r, 8; a] = \J j ' D(r, 8; p, <j>) p(p, <f>) pdPd<f> (7) 

where 

D(r, 8; p, <j>) = 2K 

E Jo Jo 
xk{8'\ p, (j>; a') k(8'\ r, 8; a') a' dd' da' (8) 

is clearly identified as the crack face Green's function for an 
external circular crack, and it is further discussed in detail in 
Appendix B and also in Appendix D. 

Equation (6), or equation (7) combined with equation (8), 
gives us the formula to determine the crack opening displace
ment for a perfectly circular connection. The integrals in those 
equations can be carried out once the loading system p(r, 8) 
and the crack face weight function k(8'; r, 6; a) is known. 
The function k(8'\ r, 8; a) is discussed in Appendix A and 
presented under various boundary conditions at infinity. The 
most general form of k(8'\ r, 8; a) is given by equation (A-9) 
of Appendix A under traction free, completely unrestrained 
displacement conditions at infinity. For convenience we pre
sent it here too: 

a^lr2-^2 "I 

a2 + r2 -2ar cos (8' -8)1 

+ 3 F — cos"1 ( — ) + ( l — — ^ ] cos (5'-(9)] (9) 

When the shape of the connection is slightly noncircular, it 
is convenient for purposes of calculating the opening Au (r, 8) 
along the ray at any particular angle 8 to take the radius of the 
reference circular crack front to be a circle of radius equal to 
a(8). We then are able to let r approach simultaneously both 
the reference front and the actual perturbed front. This pro
cedure, as described in earlier papers (Rice, 1985, Gao and 
Rice, 1986, 1987), is necessary to retain the correct asymptotic 
behavior near the crack front as is crucial for the calculation 
of the stress intensity factor along the perturbed crack front. 
Then equation (2) becomes, 

5 [Au(r, 8)] = 2 ^ [ * K°[8'; a(8)] k(8'\ r, 8; a(8)) 
E Jo 
X la(d)-a(6')] a(8) dd' (10) 

Equation (10) plus equation (6) then gives the total opening 
displacement as 

Au(r, 8) = Au°[r, 8; a{8)} + & [Au(r, 8)] 

( l - v 2 ) f2lr (fr 

= 2- - \ K°[8';a']k(8';r,8;a')a'da' 
E Jo (J<7(9) 

+ K°[B'; a(d)}k(d'\ r, 8; a(9)) [a(8)-a(.d')]a(8)] d8' 

= 2
(1~y2) [ 2 T 

E JO )a(fi') 

x K°[8'; a'] k(8'; r, 8; a') a' da' dd' (H) 

where the last = means equal to first order of accuracy in 
a(8') - a(8). Equation (11) can be used to evaluate the open
ing displacement for a slightly noncircular connection if one is 
given the shape of that connection (i.e., the function a(8')). 
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Stress Intensity Factors 

Stress intensity factors can be extracted from the near tip 
behavior of the crack opening displacement, as indicated by 
equation (5-13) of Appendix B. The same relation holds be
tween 5 [Au(r, 0)] and 5K(8), the first order variation of inten
sity factor as 

8{Au(r, 8}]=^^1 

x [&K(fi) - \ P ^ - + ° [(«(0)-/-)3/2]] (12) 

where again the variations are from the reference circular 
front, of radius equal to a(6), to the perturbed front. 
Substituting crack face weight function (9) into equation (10) 
and letting r — a(B), we get the following asymptotic formula 

&[Au(r,8)]=-
•KE 

2(1 -v2) \r-a(8) [2* 

-wa(d) 

a(8)^2a(8) 

i(0) ' a(0)24sin2 [ (0-0 ' ) /2] 

6V2cos ( 0 ' - 0 ^ 
- j [a(8)-a(8')] dB' (13) 

Comparing equation (13) with (12), we see immediately that 
the variation in stress intensity factor is 

5K(8) = K(B)-K°{8; a(8)] 

= ~PV \ * K»[6'; a(8)} U-a(8')/a(8)] 
27T JO 

[ x 1+-
1 

4 sin2 [ (0 ' -0) /2] 
+ 6 cos ( 0 ' - 0 ) ] dB' (14) 

Here PV denotes principal value. Equation (14) gives the for
mula to evaluate the stress intensity factor when the shape of 
the connection, i.e., a(8'), and the loading configuration, i.e., 
K° [0'; a(0)], are known. 

In fact, equation (14) is correct only when we do not have a 
displacement-restraint type of boundary condition at infinity, 
i.e., when the crack system is subjected only to fixed forces. 
Similar to the discussion in Appendix A, we treat some typical 
displacement boundary conditions at infinity in the following. 

(0 "Clamped" at Infinity, i.e., Fixed Against Any Displace
ment. In this case, the crack face weight function should be 
kd(B'\ r, 0; a) of equation (.4-6) of Appendix A. Following 
the similar steps leading to equation (14), we have 

5K(8) = ~PV 
07T 

K°[B'\ a(0)]l-a(0')/a(0)] 
sin2[(0'-0)/2] 

dB' (15) 

07) Free Vertical Motion But Fixed Against Rotation. In 
this case, the crack face weight function should be 
k„(8'; r,B;a) of equation (,4-7) of Appendix A. Similarly we 
have 

l r2ir 

5K(8) = PV K° [0';«(0)] [l-a(0')/«(0)l 
2-7T JO 

4 % s i n W - 0 ) / 2 > ' (16) 

(Hi) Free Rotation But Fixed Against Vertical Displacement 
Along y Axis. In this case, the crack face weight function 
should be kr(8'; r, 0; a) of equation (.4-8). Therefore, 

5K(d) = —-PV \ *K° [B';a(8)] [l-a(8')/a(8)} 
2ir Jo 

1 
-+6 cos (0' -t dB' (17) 

U s i n 2 [ ( 0 ' - 0 ) / 2 ] 

From now on, for conciseness we will refer to the above dif
ferent cases of boundary conditions at infinity by their case 
number, e.g., case (i) represents fixed displacement at infinity, 
and the case of equations (9), (13) and (14), for which there is 
no restraint against displacement at infinity, will be called case 
(iv). 

Growth Mode of an External Circular Crack 

The previous elastic analysis of somewhat circular connec
tions may be used to study the configurational stability of the 
fracturing process of a bonded circular area between two large 
elastic solids, at least when this occurs quasistatically (e.g., by 
fatigue load cycling or sustained load corrosion) under elastic 
fracture mechanics conditions. We study the configurational 
stability of the mode of growth as a concentric circle of 
diminishing radius for an external, initially circular, crack 
under some spatially fixed axisymmetric loading system. Since 
any somewhat noncircular crack growth profile could be 
represented in terms of a Fourier series, it will be sufficient to 
consider the following perturbation of the front in a harmonic 
wave form: 

a(6) = a0-Re [AeM] (18) 

where a0 is a real constant, n is an integer, A is a constant 
(possibly complex) and \A\/a0 << 1. We assume that the 
quasistatic growth rate of the crack increases with the intensity 
factor at the same location along the front. Then a small har
monic perturbation of wave number n can be said to be con
figurationally unstable (increase in amplitude \A |) during sub-
critical crack growth if the intensity factor K(8) is decreased 
from K°[6; a0] when a(B) exceeds aQ and increased when a(8) is 
less than a0, and configurationally stable if the opposite is 
true. That is, crack growth is likely to amplify the forms of 
those unstable wave configurations, if any exist. Of course, 
the growth or decay of the harmonic perturbations is 
understood to be superposed on the uniform axially symmetric 
diminuation of a0 in describing the total crack growth. 

Since the applied loading is now considered axially sym
metric relative to the reference crack center, K°[B'; a] = 
K°[a], i.e., it is independent of angle. Substituting equation 
(18) into equations (14), (15), (16), and (17), carrying out the 
integrations, and expanding K°[a] to the linear term in a 
Taylor series about a0, we have to the first order in \A\, 

K(8)=K°la0] - i ^ A + Jh_ ^ [ f f j "j Re [AeM] (i9) 
C da0 2a0 J 

where for case (/), n^ = n\ for case (if), nl = n + 2; for case 
(«0, 

- 5 n=\ 

n otherwise 

and for case (iv), 

- 3 

n + 2 

n = \ 

otherwise 
(20) 

Clearly if the sum within the curly brackets in equation (19) is 
positive, any perturbation from circular of the corresponding 
wavenumber would be diminishing, i.e., configurationally 
stable since K attains the smallest value at the places where the 
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crack has grown most, i.e., where Ae'"e = \A\. For conve
nience we name this sum by //(«]) to emphasize its dependence 
on the number «, (which further relates to wave number ri) so 
that the critical, neutrally stable situation can be said to be 
reached at a number n\ (riot necessarily integer) satisfying 
H{nc{) = 0. It is easy to see that when nl > nc

{ the quantity 
within the curly bracket in equation (19) becomes positive and 
it becomes negative if the opposite is true. Therefore, «, < n\ 
must be satisfied for a configurationally unstable wavy mode 
perturbation. It can also be noticed that the translational shift 
mode, i.e., n = 1 is most likely to be unstable for cases (Hi) 
and (iv) since nx < 0 in those cases, and higher modes (n > 1) 
are more likely to be unstable for cases (i) and (Hi) since «, = 
n in those cases. Hence it might be suitable to conclude here 
that case (ii) when points at infinity can only move freely in the 
vertical direction and are fixed against rotation is the most 
stable crack system while case (Hi) when points at infinity can 
only rotate freely about a fixed point on the central axis y is 
the most unstable system, especially for the translational mode 
n = 1. 

Remotely Applied Centered Force; Imposed Remote 
Displacement 

Consider, for example, that a remotely applied tensile force 
F is transmitted across a circular connection with no net mo
ment about the center of the connection. The case (iv) for
mulae of the last section apply here and 

dK° «, ^ . , « , - 3 
//(«,) = " K° K° (21) 

da0 2a0 2a0 

By equations (20), we know that « 1 = « + 2 f o r « > l . 
Therefore, H > 0 for n > 1 so that all perturbations of 
wavenumber greater than one are configurationally stable. 
For the translational mode, i.e., when n = l a n d « , = - 3, it 
is obvious that H < 0 so that this mode is configurationally 
unstable. In fact, equation (19) becomes when n = 1, 

K = K° [1 + 3 Re(Aeie)/a0] (22) 

We get the same relation by applying equation (B-8) of Appen
dix B, for a connection under remotely applied force and mo
ment, as in this case the center of the connection has simply 
been shifted by an amount \A I so as to generate a net moment 
equal to F\A\ about the 6 = 90° - arg (A) axis (here arg (̂ 4) is 
the phase angle of A). Therefore, equation (22) is valid even 
for a shift of any finite amount. This suggests that transla
tional shift is very likely to occur when the crack system is sub
jected only to a centered force. It should be noted that the 
shape the crack will take after finite amount of growth is hard 
to predict because once the translational shift occurs the net 
moment thus generated has to be considered. The stress inten
sity factor will become nonuniform along the shifted circle, 
and thus it will not remain circular. 

A case is studied in Appendix C for which the crack system 
is subjected to a fixed vertical displacement of amount equal 
to c at infinity and the stress intensity factor and crack open
ing displacement thus induced are also derived there. Under 
this displacement boundary condition, the crack face weight 
function should be kd (9';r,d;a) of equation (A-6). Hence by 
equation (C-4) of Appendix C, we have 

Ec 
K°[6;a]=- — = , (23) 

( l - y 2 ) V ™ 
Therefore, 

H, = -
dK° 

da0 2cn 

•K°: 
(n - 1 ) Ec 

2(1-
->0 (24) 

for n > 1. Equation (34) indicates that the translational mode 
is neutrally stable while perturbations of higher modes are 
stable. Growth in a circular shape should occur in this case. 

The above results suggest that in a displacement controlled 
tensile test where we fix the amount of remote vertical 
displacement of a specimen which is constrained against rota
tion, growth in a circular shape should occur. In the load con
trolled tensile tests where a fixed, originally centered load is 
applied to the specimen (weight load, for example), a 
nonuniformity of growth which begins as an amplification of 
any initial nonuniformity in the translational shift mode is 
likely to take place, so that the crack could hardly grow in a 
uniform manner. 
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A P E N D I X A 

Crack Face Weight Function for an External Circular 
Crack 

From equation (6) to (8) of the text it is clear that the for
mulae for the crack face opening displacement all require the 
knowledge of crack face weight function k(6';r,d;a), i.e., the 
stress intensity factor induced at 6' along the reference cir
cular front by a pair of unit wedging forces at r, 8 on the crack 
faces outside the circular connection. As pointed out by 
Stallybrass (1981), this weight function solution depends on 
the boundary condition at infinity. Examples of such boun
dary conditions at infinity could be vanishing displacements or 
traction free conditions. In the following we follow Stallybrass 
(1981) and categorize the forms of crack face weight function 
under different boundary conditions at infinity. 
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The normal stress distribution within the circular connec
tion on the prolongation of the crack plane due to a unit point 
wedging force pair acting to open the crack faces at location r, 
8 is the same as the stress field induced within a circular punch 
area due to an externally applied unit concentrated force on 
the surface of the half space at the corresponding location. 
That stress distribution was derived by Galin (1953) using 
potential theory and later by Stallybrass (1981) using an in
tegral equation approach and, for the case when the solid is 
restrained against displacement at infinity, the stress at loca
tion p, 4> in the connection is 

<>Go,0;r,0) = 
1 VT^V 

TT2VT^V P2 - 2rp cos«> - 8) + r1 (4-1) 

Equation 04-1) enables us to calculate the net force and 
moments hence generated on each horizontal plane (planes 
parallel to the crack plane), i.e., 

P(r) = - j o " j f l * < W ; r , 0 ) pdPd<t>+l 

C O S ' (•f) 04-2) 

The net moment generated about the 6 + 90° axis is 

{ a /» 27r 

o ] o pcos(<l>-6)o$(p,cl>;r,6)pdpd(l> + r 

"T^h" (-f)^1-^-)"2] ir>a) {A-3) 

where we also explicitly emphasized the dependence of P and 
M on position variable r, where the unit point force acts. 

Since the stress distribution 04-1) represents the case when 
all displacements vanish at infinity, the above calculated net 
force P in 04-2) and net moment M in 04-3) are balanced by 
"reaction" force and moment from the restraint at infinity. In 
the situation when we have traction free boundary condition 
at infinity, i.e., when there is no restraint against displacement 
there, the "reaction" force and moment should be taken off 
by superposing equal, oppositely sensed force and moment at 
infinity to achieve such boundary conditions. Therefore, two 
auxiliary problems should be discussed prior to the full presen
tation of crack face weight functions, namely, the circular 
connection subjected to remote net centered force P and net 
moment M about the 9 + 90° axis at infinity. Fortunately the 
stress distribution induced within the circular connection due 
to these loadings have been derived by Sneddon (1951) as 

<> (p,4>;r,0) = . P!^-^ (r>a,p<a) (4-4) 

and 

<WM\r,V)--

2wa^~a2 - p1 

3M(/-)pcos(<£-0) 

2iraNa2-p2 
(r>a,p<a) 04-5) 

Equation 04-4) and 04-5) represents the stress distribution in
duced within the circular connection by net tensile force P(r) 
and net moment M(r) about 8 + 90° axis at infinity. By the 
rule of superposition discussed before, the total stress distribu
tion within the circular connection area would be (j) equation 
04-1) if infinity is "clamped", i.e., with no displacements; (ii) 
equations (A-l) plus 04-4) if the solid is allowed only to move 
freely in the y direction (or vertically) but is fixed against rota
tion at infinity; (Hi) equations 04-1) plus 04-5) if the solid 
could only rotate freely without displacement of points lying 
along the y axis at infinity; (iv) equations 04-1) plus 04-4) plus 
04-5) if the solid is free to move without any restraint against 
displacement at infinity. 

Assembling all the discussion made so far, we list the crack 
face weight function at the following typical boundary condi
tions at infinity: 

(i) "Clamped" at Infinity, i.e., Fixed Against Any 
Displacements. In this case, the crack face weight function is 
simply 

kd(8'\r,6;a) = lim sp2Ma-p~)<^ (p,8';r,8) 
P-a 

(4-6) 

a1+r2-2arcos(8' -6) 

Former discussion shows that the difference between solution 
under this condition and the solution under the condition of 
traction free, unrestrained displacement conditions at infinity 
lies only in terms representing the effect of a net force P as in 
04-2) and a net moment M a s in 04-3). Therefore, in solving 
the elasticity problems of a circular connection, in the first 
step we use above kd as crack face weight function and in the 
second step we study separately the effect of the remote tensile 
forces and/or or moments and combine the results with those 
of the first step. An example of this way of thinking will be 
shown in Appendix B in deriving the crack face Green's 
function. 

Solution 04-6) matches the point force solution proposed by 
Kassir and Sih (1975), although they failed to specify the 
limitation of the boundary condition at infinity on their 
solution. 

(ii) Free Vertical Motion But Fixed Against Rotation at In
finity. In this case, the remote tensile centered force P of 
equation 04-2) should be superposed. Therefore, the crack 
face weight function is 

kv(d';r,d;a) = um ^Ma^) [<r<"> (p,6';r,8) 

+ o$(p,0'irM=-
(TTfl)3 

X [--'(-f)-
aVr 

! + r2-2arcos(6'-d)\ 

Note that this equation 04-7) coincides with the solution pro
posed by Tada et al. (1973), although they also did not specify 
the condition under which their solution would be valid. 

(Hi) Free Rotation But Fixed Against Vertical Displacement 
Along y Axis at Infinity. In this case, there is an additional 
contribution from the superposed net moment only. 
Therefore, 

kr(d';r,8;a) = \[m_ V2ir(a-p) \<M (p,8';r,8) 

+ W ^'^=1^ L2
 + /^(8'-8) 

+ 3 [ — c o s - 1 ( — ) + ( 1 — V ) ] c o s ( 0 ' - 0 ) ] 04-8) 

(iv) Traction Free at Infinity. In this case, contributions 
from both net force and net moment should count, and we 
have the following solution by Stallybrass (1981) 

k„(8' ;r,8;a) = lim V2ir(«-~p) [<T<"> (p,8' ;r,0) 

+ < » (p,e';r,ff) + o%> (p,8';r,8)]=-
(iray 

a\/r2 — a2 

x j cos-1 ( )+—5 5—-
U. V r / aL + r - 2ar cos( -e) M-f 

(4-9) 
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A P P E N D I X B 

Crack Face Green's Function; Opening Displacement 
for Circular Connection under Remotely Applied Force 
and Moment 

Equat ion (9) of the text gives the expression for the crack 
face Green's function as 

D{rfi;p,4>) = 2-
\-v2 m\n{r,p) p 2TT 

E r s 
x k(6';p,4>;a')k(6';r,6;a')a'da'dd' (5-1) 

Temporarily let us impose the condition that all the 
displacements vanish at infinity. In this case, we could replace 
crack face weight function k in equation (5-1) by kd in equa
tion 04-6). Therefore, replacing k by kd and D by Dd in equa
tion (5-1), we have 

Dd(r,9;p,4>) = 2-
5V3 1min(r,p) r "t 

a JO 

\(r/a',e-6')\(p/a',<t>-6') , 
x , —, dd da (5-2) 

V r 2 - a ' 2 s/p2-a'2 

where 

x \(k,4>) = (1 - k2)/(\ - 2kcos<j> + k2) (5-3) 

has been introduced for conciseness of the formulae, follow
ing Sankar and Fabrikant (1982). 

Now consider the following t ransformat ion 

r* = l/r, p* = \/p\ a* = \/a; x=\/a' (5-4) 

It may be shown that equation (5-2) becomes, 

Dd(r,6;p,<i>) = 2 
\-v2 i a* f> lit 

max(r*,p*) JO 
EirTp 

\(x/r* ,6-6')\(x/p* ,<t>-6') 

Vx2 - r*2 *Jx2 — p*2 
dd'dx (5-5) 

The integral in equation (5-5) has been studied by Gao and 
Rice (1987). They pointed out that above integral can be 
reduced to a pseudo-elliptic integral, and by a standard 
transformation they proved 

I" f 
Jmax(r*,p*) JO 

2- \(x/r*,8-6')\(x/p*,4>-6') 

Vx2 - r * 2 V ^ - p * 2 
dd'dx 

2TT (4W1 

arctan I 
d* \ 

2)(a*2-p*2)^ 

a*d* 
(5-6) 

where d* = -Jr*2 -2r*p*cos(6 — (j>)^f>*2. Us ing equa t ions 
(5-4) again to transform back to the original variables, we 
finally have, 

Dd(r,d;p,4>) = 4-
1 
,E7r2tf arctan 

•yf(rr- a2)(p2-a2)^ 

ad 
(5-7) 

where d = *Jr2 - 2rp cos(0 — <t>) + p2is the distance between r, 6 
and p, <j>. Equation (5-7) matches the corresponding formulae 
given by Galin (1953) and Stallybrass (1981). It is discussed 
also in Appendix D. The above result looks very similar to the 
crack face Green's function for internal circular cracks given 
by Gao and Rice (1987), which is not unexpected because of 
the similarity of crack face weight functions in this case. 

Recall that equation (5-7) represents the crack face Green's 
function when the condition of vanishing displacement field at 
infinity is imposed. This has been called case (f). We know 
from Appendix A that by superposing a net force P of equa

tion 04-2) and net moment Mof equation 04-3) about 6 + 90° 
axis, we can get rid of the restriction on the displacement field 
at infinity and achieve the traction free boundary condition 
there with no restraint against displacement, case (iv), and can 
similarly deal with cases (ii) and (Hi). Therefore, to calculate 
the crack face Green's function for cases (if), (iif), and (iv) we 
need to study two auxiliary problems, namely, crack opening 
displacement under remote applied centered for F and mo
ment M, where the moment Mis now assumed to be about the 
90° axis for convenience. 

Consider that the described external circular crack system is 
subjected to a remotely applied tensile force F with a net mo
ment Mabout the 6 = 90° axis. In this case, if0 [d';a] is given 
by Tada et a. (1973) (also, see Neuber, 1937, and Sneddon, 
1951) as 

K° [d';a]--
aF+3Mcos6' 

(5-8) 
2a24Va 

Substituting equation (5-8) into equations (5), (6), and using 
04-8), one may easily find 

dA°u[r,6;a] (\-v2) c 2 ' 

da E(Tta)"' 1 27T 

o {F 
+ 3Mcos d'/a) 

([cos"(-f)+^T 
a\frsr- a'-

+ 3[~f cos-'(-^) + (l-^)1/2]cos(0'-0)]^' 

r2 - 2ar cos(6 -

2 \ 1/2 -i 

n\ 

(\-v2) CF 

•KE th^-f)^! 
3 M cos 6 

. " ^ C 0 S " ' ( T " ) 
3r 

2sfr i2 2r4r2 — a2 } 
(5-9) 

Now we integrate over the radius of the connection between a 
and r, as in going from equation (5) to (6), and find that 

(\-v2) (F 
Au°[r,d;a] = 2 

3 M cos 6 

•KE £~-(-f) 
[-f»-(T-M'--£-n} * -10) 

If we replace F by P(p) of equation 04-2) a n d M b y M(p) (also 
the axis of the moment is changed to </> + 90°) of equation 
04-3) of Appendix A , we therefore could rewrite equation 
(5-10) as 

U-"2) C 
\P(r)P(p) 

Au°[r,6;a] = 4-
ir2Ea 

3M(r)M(p) 
H ^ ^ cos 2a2 (0-0)] (5-11) 

If we combine equation (5-11) and equation (5-7), we have, 
for case (iv) 

1 - v2 C a / 
D(r,d;p,4>) = 4 — - a r c t a n (• 

E-KLa L d \ 

V(/-2-a2)(p2-a2)N 

ad 

s 3M(r)M(p) -) 
+ P(r)P(p) + ' ^ cos«>-0)J (5-12) 

where P(r), M(r) are given by equations 04-2) and 04-3). We 
also observe that the symmetry is indeed preserved in equation 
(5-12). The M terms are deleted in (5-12) to give D for case 
(if), and the P terms are deleted to give D for case (Hi). 

In going from equation (5-8) to equation (5-10), we have 
just shown an example of how to calculate the crack opening 

632/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Downloaded 21 May 2012 to 128.103.149.52. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



displacement from the knowledge of the distribution of stress 
intensity factor along the crack front. It is, of course, also 
possible to go in the reverse direction, i.e., to extract the in
tensity factor distribution from the near front behavior of the 
opening displacement. When r — a+, cos~[(a/r) -~ 
<2{r-d)Ta and {\~a2/r2)xn - V~2(r-
tion (.6-10) shows 

g + , cos" 
-a)/a , so that equa-

Au°[r,d;a] = $ d-"2) F 

>-2a~4-Ka 

2a2 

3Mcos « \ \r — a 

(1 

E 2TT 

2TT 

K°[e;a] + 0[(r-a)1/2] (5-13) 

The latter version of equation (.6-13) represents the known 
asymptotic behavior of crack opening displacement near the 
crack front for any tensile crack. 

When r — oo, cos~' (a/r) — ir/2, 

Au°[r,6;a]-
(1 v2) F 1M r cos 0~; 

t o 2«2 (5-14) 

Equation (5-14) shows that the crack faces far from the front 
would tend to be linear flat planes (free of stress) with slopes 
about 6 = 90° of ± 3 M ( l - e 2 ) / ( 2 a 3 £ ) . These planes would 
ultimately contact when M ^ 0, invalidating the present solu
tion, if the jointed solids are truly unbounded half spaces, 
although this need not be a problem in practice for finite 
joined bodies, especially if the mathematically planar crack 
represents a shallow notch cut-out. 

A P P E N D I X C 

Stress Intensity Factor of an External Circular Crack 
with Fixed Displacement at Infinity 

Assume that the elastic solid is subjected to a fixed amount 
of vertical displacement at infinity as following 

u±a, = (c + ax)sgn(y) (C-l) 

where sgn(j>) = y/\y\ for y ^ 0, and the same coordinate 
system as used in the text is adopted and x = r cos 6. We solve 
here for the stress intensity factor induced by this displace
ment in equation (C-l) and the crack opening displacement 
function. 

Referring to equation (5-14) of Appendix B, we know that 
under remotely applied centered force and moment the crack 
faces far from the crack front would tend to become linear flat 
planes (free of stress). We also observe that under the imposed 
remote dispalcement field (C-l), crack faces far from the front 
should approach the same displacement field at infinity 
because the stresses approach zero there. Therefore imposing 
a fixed displacement field at infinity (y — ± oo) is equivalent 
to imposing a net tensile force and a net moment at infinity for 
an external circular crack. Now consider a crack system sub
ject only to a tensile force F and a net moment M at infinity 
but otherwise traction free. From Appendix B, we know crack 
opening displacement far from the crack front is 

Au°[r,e;a] 
(1 -v2) (F 3M r cos i 

2a1 

Now let 

Au°[r,6;a] = u + oa-u_ (C-2) 

Comparing both sides of equation (C-2), we find the following 
relations 

F = -
2Eac 

M=-
4Ea\ 

(C-3) 
3(1 -v2) 

Therefore by equation (5-8) and (5-10) the stress intensity 
factor induced is 

c + 2aa cos 
K°[d;a]=- r = (C-4) 

and the crack opening displacement is 

Au°[r,d;a]= — jc cos^1 ( — ) 

+ aa cos 6 [~ cos ~' (~) + ( l - ~ ) ' " ] ] (C-5) 

A P P E N D I X D 

General Displacement Green's Function and Stress 
Field for Internal and External Circular Cracks 

When a three-dimensional crack system is subjected to ten
sile loading that is symmetric relative to the crack plane, it is 
known that the elasticity equations and boundary conditions 
can be satisfied if the displacement and stress field are written 
as (Galin, 1953; Green and Zerna, 1954; Meade and Keer, 
1984) 

uy = - 2[(1 - p2)/E] Y+ [(1 + v) /E]yd Y/dy 

ux = [(1 + v)/E]d{F+yY)/dx 

uz = [{\ + v)/E\d(F+yY)/dz 

{D-D 

where F and Y are harmonic functions related by dF/dy = 
(1 - 2c) Y. The coordinates are set up in the same manner as in 
the text with the crack on the y = 0 plane. The stress com
ponents that enter crack surface boundary conditions are 
calculated from stress-strain relations as 

Gyy=-dY/dy+yd2Y/dy2 

on = yd2 Y/dydx, ayz = yd2 Y/dydz (D-2) 

It is seen from equations (D-2) that there is no shear traction 
on y = 0. Thus the problem of loading on the crack face is one 
of finding a function Y satisfying V 2 F = 0 , vanishing at infini
ty (at least for case (0), and generating stress a(x, z) and open
ing gap Au (x, z) on y = 0 given by 

<j(x,z) = -dY/dy\y=0 and Aw= - [ 4 ( 1 - v2)/E]Y\y=0+ (D-3) 

(a) Internal Circular Cracks. Now we consider the 
elasticity problem of a three-dimensional elastic solid with an 
internal circular crack of radius equal to a subjected to a point 
force pair in the ±y directions acting at f, r; on the crack 
faces. According to equations (D-\), {D-2), and (D-3), we for
mulate following problem, 

V 2 7 = 0 

7 = 0 when x2+z2>a; y = 0 

dY/dy=-S(x~£)S(z—o) when x2+z2<a; y = 0 {D-4) 

7 = 0 at oo 

Let us denote the solution to equation {D-4) as Y = H(x, y, z; 
£, rf). It is known (Galin, 1953) that 

H(x,y,z;£,-o) = r r arctan 
•K2d 

-•J(a2-£2-r,2){a2-x2-y2-z2+R)~ 
V2arf 

(D-5) 
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where 

d2 = (x-^)2 + (z—n)2+y2 

R2 = (a2-x2-y2~ z2)2 + 4a2 y2 (D-6) 

Replacing Y by H in equations (£-1) and (D-2), we then get 
the displacement Green's function and stress field at an ar
bitrary location in space. Specifically, the crack face Green's 
function is seen to be 

4(1 -v1) 

E 

4(1 -v2) rVT^F^ 2)(G 2-x 2- / ) 
= —j——arctan (D-l) 

ir2Ed I. ad 

If expressed in polar coordinates, equation (D-l) becomes, 

£(/-,0;p,0) =—5——arctan (£-8) 
wiEd t ad J 

where d reduced to V/-2 - 2rp cos(0 — </>)+ P2 • Equation (£-8) 
coincides with the solution derived through the perturbation 
analysis by Gao and Rice (1987, Appendix A). 

(b) External Circular Cracks. Now we consider a similar 
crack system but with an external circular crack, or a circular 
connection of radius equal to a subjected to a point force pair 
in the ±y directions acting at if, -q on the crack faces with zero 
displacement at infinity. In an analogous way we formulate 
the problem as solving 

V 2 F = 0 

y = 0 when x2+z2<a; y = 0 

dY/dy=-5(x-£)5(z-r)) when x2 + z2>a; y = 0 (D-9) 

7 = 0 at 00 

Note that in this formulation we imply that there is no 
displacements at infinity and hence the solution thus generated 
can only be applied to case (i) of the text. The solution to 

equation (D-9), dentoed here as Y =L (x, y, z\ £, 17), was given 
also by Galin (1953) as 

L(x,y,z;£,y) = yy arctan 
w2d 

^ (H2 +n
2 -a2)(x2 +y2 +z2 -a2 +R)^ 

I V2ad J ( U) 

where d and R are given by equations (D-6). Similarly if we 
replace Y by L in equations (D-\) and (D-2) the displacement 
Green's function and stress field at an arbitrary location in an 
elastic solid with an external crack are generated. Specifically 
the crack face Green's function can be extracted and expressed 
in polar coordinates as 

n / « ,> 4 ( 1 - , 2 ) f - V ^ - ^ K / - 2 - ? ) - ) 
Dd(rfi;p,4>)=—r——arctan (£-11) 

•w'-Ed (. ad J 

Equation (£-11) coincides with (5-7) of Appendix B, where 
the crack face Green's function is derived by the perturbation 
formalism. 

Let us note that by using the solutions of equations (£-5) 
and (£-10) for Y in equations (£-1), we can compute the 
displacements uz, uy, and uz at (x, y, z) due to unit opening 
point forces acting on the crack faces at (£, ?;, 0), for the 
respective internal and external circular crack cases. By the 
elastic reciprocal theorem, those very same results for uz, uy, 
and uz also represent the opening gaps Aw on the crack faces 
induced at (£, rj, 0) by unit point forces at (x, y, z) in the 
respective x, y, and z directions. But from the knowledge of 
that opening gap Aw in the vicinity of the crack front, one may 
also calculate (e.g., equation (5-13)) the tensile mode stress in
tensity factors induced by the unit point forces at (x, y, z) in 
the respective x, y, and z directions. These stress intensity fac
tor defined the x, y, and z components of the tensile mode vec
tor weight function h as introduced by Rice (1972, 1985). 
Hence, although we do not further pursue the details here, the 
results of this Appendix allow calculation of the vector tensile 
mode weight function at general field points for internal and 
external circular cracks. 
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