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ABSTRACT 

THE SELF STRESS field and self energy are estimated for a planar 3D dislocation loop emanating from a half- 
plane crack tip. While the problem is of greatest interest for analysis of shear loops nucleating from the 
crack tip in the concentrated stress field there due to applied loadings, it is addressed here in the interest 
of tractability for 3D prismatic loops lying in the same plane as the crack. Exact elastic calculations for 
that case are based on recent developments of 3D crack weight function theory and specific results are 
given for induced stress fields, intensity factors and energy of semicircular and rectangular prismatic 
dislocation loops. Also, self stresses and energy expressions are derived for the 2D case of a line dislocation 
lying parallel to the crack for arbitrary Burgers vector type and general orientation of the dislocated plane 
relative to the crack plane, and those results are used together with the 3D prismatic loop results to estimate 
approximately the self energy for 3D shear dislocation loops emanating from the tip on planes inclined to 
the crack plane. Energy results are given in terms of a correction factor m to the usual estimate of energy 
for an emergent crack tip loop as half the energy of a full loop (identified as the emergent loop and its 
image relative to the crack tip) in an untracked solid. That is, if the energy of a full circular loop of radius 
Y in an untracked solid is 2arA, In (Sr/e*rJ, with r,, = core cut-off and A,, = energy factor, then the energy 
of a semicircular loop of radius r emerging from the crack tip is shown to take the form nrAO In 
@mr/e’r,) and the constant m is calculated here as 2.2 for a prismatic loop ahead of a crack and estimated 
approximately to range from about 1.2 to 1.9 for representative shear loops inclined to the crack plane. 
The self energy exceeds the half-full-loop value, corresponding to m = 1, and it is observed that this effect 
increases by fi the predicted loads to nucleate a dislocation loop of the assumed shape from a crack tip. 

1. INTRODUCTION 

WE PRESENT here calculations of the stress field and self energy for a dislocation loop 
emerging from a crack tip. The problem is of interest mainly for shear dislocations, 
in estimating when they may be nucleated from the tip by the concentration of an 
applied stress field there, and arises also in the study of whether a solid may be 
regarded as intrinsically cleavable (e.g., RICE and THOMSON, 1974 ; MASON, 1979 ; 
OHR, 1985 ; LIN and THOMSON, 1986 ; ANDERSON, 1986 ; ANDERSON, and RICE, 1986). 
However an exact calculation, within continuum elastic dislocation theory, of the 
stress field and self energy of a 3D loop at a crack tip has not previously appeared. 
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the problem is difficult in general but a reasonably tractable version of it is in the 
form of a prismatic (opening) dislocation loop emerging from the crack tip and lying 
on the same plane as the crack. That case is analyzed here and detailed results are 
given for the special cases of semicircular and rectangular loops. 

To understand the nature of a principal result, let us recall that the elastic self 
energy of a full circular dislocation loop of radius r in an infinite untracked solid has 
the form (HIRTH and LOTHE, 1968) 

Ufu”‘“Op = 2nrA,, In (8r/e2ro), (1.1) 

where rn is the core cut-off radius and, for a prismatic loop of opening Burgers 
displacement b in an isotropic solid, 

A0 = pb’/4n(l -v) (1.2) 

(p = shear modulus, v = Poisson ratio). As SCATTERGOOD (I 980) and BACON et al. 
(1979) show, the same form as in equation (1.1) holds for a circular loop of arbitrary 
Burgers vector and with general elastic anisotropy, with A 0 being the average around 
the circle of the quantity b,A,,b, in equation (2.3) to follow. By comparison, we show 
here (Section 5) that the self energy of a semi-circular prismatic loop gf radius r 

emerging from the crack tip on the same plane as the crack has the form 

U = nrAO In (8mr/e2ro), (1.3) 

where the constant m z 2.2. RICE and THOMSON (1974) approximated the energy U 
of a general semicircular loop emerging from the crack tip by the above form with 
m = 1, i.e. by estimating U as half the energy of a full circular loop, motivated by 
their exact 2D result for the force on a near tip dislocation as we discuss subsequently. 
When the prismatic dislocation loop ahead of the crack is highly elongated in the 
direction along the crack front, so that its stress field effectively reduces to the 2D 
field of a straight prismatic dislocation lying parallel to the tip, we find here that the 
analogously defined m = 2. In fact, the 2D crack-dislocation problem can be analyzed 
for arbitrary Burgers vectors and arbitrary orientation angle 4 of the dislocated 
surface relative to the tip using well-known elastic solutions as summarized recently 
by LIN and THOMSON (1986). In this way we show (Section 6) for the 2D problem 
that when the dislocated surface lies in the plane of the crack, 4 = 0, the analogously 
defined m = 2 independent of the Burgers vector type, but that m decreases with 4 
according to a relation that is different for each of the cases of prismatic, edge-type 
shear and screw-type shear Burgers vectors. 

By combining our 3D results for prismatic dislocations on 4 = 0 and 2D results 
for arbitrary Burgers vector and arbitrary 4, we propose (Section 7) an approximate 
estimate of the energy correction factor m for general 3D shear dislocation loops of 
semicircular shape emanating from a crack tip and find that for representative cases 
of tensile loaded cracks in f.c.c. crystals and bicrystals m lies between approximately 
1.2 and 1.9. As may be seen from equation (I .3), the insertion of the factor m into 
the self energy is the equivalent of altering the core size from r. to ro/m in the type of 
loop nucleation calculations done by MASON (1979) and ANDERSON and RICE (1986). 
Since m > 1, this is equivalent to a decrease of the effective core size (i.e. to an increase 
of core energy) and shows up as an increase in the predicted load to nucleate a 
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FIG. 1. (a) Prismatic dislocation over area A ahead of crack with tip at x = a (negative CI is shown). 
(b) Prismatic loop emanating from crack tip at x = 0. 

dislocation by comparison to the case when the m effect is disregarded and U is 
approximated as half the full loop energy. The redicted crack tip stress intensity 
factor necessary for nucleation is increased by P m, i.e. by 10 to 40% in typical cases. 
Such effects are discussed by ANDERSON (1986). 

2. BACKGROUND FOR 3D CRACK-DISLOCATION CALCULATIONS 

The background for our 3D calculations of Sections 3 to 5, to follow, is given in 
two recent papers by RICE (1985a, b) on 3D weight function theory. To examine this 
formulation for a half-plane crack in an infinite elastic solid, let the crack lie on the 
plane y = 0 with tip parallel to the z-axis along the line x = a, such that the region 
x < a is cracked (e.g. Fig. la, where the a shown is negative). 

Let us first recall that general external loadings induce a singularity at the crack tip 
such that stress components (Tij (indices i, j, k, I range over Cartesian directions x, y, 
z here) ahead of the tip on y = 0 vary as 

[a,,, ~,.X, ~,zl - K,, Kz, &l/,/2710. (2.1) 
The stress intensity factors K, (indices CI, j? range over 1, 2, 3) so defined may vary 
with position z along the crack front and appear also in the expression 

G = Ka&Kp (2.2) 

for the crack tip energy release rate. Following anisotropic elastic crack theory (STROH, 

1958; BARNETT and ASARO, 1972), the coefficients AnS = (l/grc)A,&’ where A$’ is the 
inverse of the prelogarithmic energy factor matrix A,, appearing in the expression 
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l? = b,A,,b, In (r,/uJ (2.3) 

(Y, = outer cut-off radius) for the energy per unit length of a straight dislocation line 
lying parallel to the z-axis in an untracked solid; here, when the dislocated plane 
adjoining the dislocation line is of type y = constant, b, = b, is the prismatic opening, 
b2 = b, is the in-plane or edge-type shear, and b, = 6, is the anti-plane or screw-type 
shear component of Burgers vector. For the isotropic solid, A,, is diagonal with 

A,, = A22 = (1 -v)/21*, A3) = 1/2p. (2.4) 

RICE (1985a) showed that three vector “weight functions” 

h, = h,(x-a, y, z-z’), ct = 1, 2, 3, 

associated with the three crack tip stress intensity modes and having Cartesian com- 
ponents hai, may be defined for the cracked configuration and have the following 
properties. First, when the cracked solid is loaded by arbitrary body force components 
J;(x, y, z) per unit volume, the intensity factors induced at location z’ along the crack 
front are given by 

lqz’) = sss h&x- a, y, z-z’)f;(x, y, z) dx dy dz, (2.5) 

where the integral extends over all loaded regions. Second, when in the presence of a 
fixed system of applied loads the crack front position is changed from the straight 
line x = a to the curved position x = a+&g(z), the initial rate of change with E of the 

displacement field U, = ui(x, y, z; E) is 

s 

+ m 

[a&(x, Y, z ; &)/a& = 0 = 2A,, /&,(x-a, y, z-z’)K,(z’)g(z’) dz’. (2.6) 
mX_ 

where J+(z) is the intensity factor distribution induced by the fixed set of applied 
loads. Note that when g(z) = 1, equation (2.6) gives &L,(x, y, z; a)/&~ RICE (1985a, 
equations (58)-(60)) derived the half-plane crack weight function field h, for an 
isotropic solid, by using equation (2.6) as its defining property, and gave expressions 
for h2 and h, as some formidable and as yet unevaluated double integrals. The function 
h, can also be obtained by further analysis of results by BUECKNER (1977) for tensile 
mode fields that vary as cos (nz) along the crack front, and BUECKNER (1987) inde- 
pendently derived closed-form results for all three h,, again for the isotropic solid. 

The above concepts were applied by RICE (1985b) to represent the self stress fields 
and stress intensity factor distributions induced by general 3D dislocation loops in 
unbounded solids with half-plane cracks. He observed that the mechanical effects of 
arbitrary distributions of Eshelby transformation strain can be represented as the 
response to an appropriate field of body force A in equation (2.5), and noted that a 
general Somigliana displacement discontinuity Au = u+ -n on surface A, having 
normal N pointing from the (-) to (+) sides of A, can be represented as a trans- 
formation strain distribution which is Dirac singular on A (e.g. Fig. la for the 
prismatic loop case). In this way RICE (1985b) derived the result 
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haj,i(x-a, Y, z-z’)CijklNk(x, Y, z)Adx, Y, z) dA(x, Y, z) (2.7) 

for the intensity factor distributions induced by the dislocation. Here C’,, is the 
modulus tensor with the usual symmetries and Au and N are defined for points (x, y, 
z) on A. While not mentioned explicitly by RICE as a limitation, it has been noted by 
T. L. SHAM (private communication, 1986) that the integral in equation (2.7) is not 
well defined when the crack tip lies in or along the border of the dislocated surface 
A. Unfortunately, such is the case of interest for an emergent loop at the crack tip, 
and we show how to deal with that situation in the next section for the specific case 
of a prismatic loop ahead of the crack tip. 

Equation (2.7) defines K,(z), which is now also to be recognized as a function of 
crack tip position a. To acknowledge such we write it as K,(z, a) in the next equation. 
By setting g = 1 in property (2.6) above for the weight functions and then integrating 
on a from a = - cc to a = 0, we obtain 

0 

ul(x, y,z) = ui(x,y,z)-uu"(x,y,z) = 2A,, 
ss 

+03 

h,, (x - a, y, z - z’)Ko(z’, a) dz’ da 
-lx -rn 

(2.8) 

for the displacement. Here u is the displacement field induced by the dislocation loop 
in presence of the half-plane crack with tip at x = 0, as in Fig. lb and u” is the 
displacement field induced by the same loop in an infinite untracked solid. From the 
last result and stress-strain relations we may evaluate the stress components in the 
form ai, 3 oij(x, y, z)-~[(x, y, z), where nij is the dislocation self stress field in the 
presence of the crack and 0; is the same for the untracked solid. 

This synopsis shows how to evaluate the field of an arbitrary 3D dislocation loop 
near a crack and, at least for the isotropic solid, all the requisite weight functions are 
now available. The calculations are most readily addressed for the prismatic loop 
ahead of the crack since that requires knowledge only of h, (x, y, z) which is of simpler 
form than h, and h,. 

3. PRISMATIC DISLOCATION DISTRIBUTION AT A CRACK TIP 

As shown in Fig. lb, the prismatic loop lies in the crack plane, y = 0, and is 
described by an arbitrary distribution of displacement discontinuity, Au,(x, z) = 

Qx, Of, z)-z.+(x, O-, z) normal to the crack plane. Here the dislocation displace- 
ment Au,(x, z) is assumed to remain nonzero, in general, as x approaches the crack 
tip (i.e. that Au,(O+, z) is nonzero). 

The self stress distribution, g,,Jx, 0, z), is expressed as an addition u;, to the self 
stress field r$ for the same loop in an untracked body, so that 

aJIv (x, 0, 2) = c,“, (x, 0, z) + &(x, 0, z), (3.1) 

where (RICE, 1986b, equation (54)) 
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D = J(x-a)2+(Z-F)2. 
It is noted that the integrand in equation (3.2) is bounded for values (2, 2) which 
approach (x, z) when x > 0. Also, cjY produced by the prismatic loop in an infinite, 
untracked body with same coordinates is (e.g., RICE, 1986b, equation (59)) 

(3.3) 
- - 

with the understanding that Au,(x, z) may be nonzero only for X 3 0 (and hence that 
I%,(%, F)/LJZ will be Dirac singular at X = 0 when Au,(O+, 2) # 0). Each of the 
expressions I&,, CR have singularities which behave as 1 /x in distance from the crack 
front. However, those contributions from the terms cancel when their sum is taken. 
A square root singularity, l/J x, remains in oYu(x, 0, Z) and defines K,(z) as discussed. 

The means by which the l/x singularity terms are isolated and combined is first to 
show that r+(x, 0, Z) = 0 for the case of a prismatic dislocation of uniform Burgers 
vector b situated on the plane y = 0 ahead of the crack and over the area 
- cc < z < + M, 0 < x < + a. This simply describes a uniform jacking up of the 
ligament ahead of the crack, so that CJ,~(X, 0, z) = 0 is expected, yet o&(x, 0, Z) and 
C&(X, 0, z) will individually contain l/x singularities. In particular, this geometry 
describes a straight dislocation line situated on the z-axis, and C&(X, 0, z) is then 
known from elementary dislocation theory and may be calculated from equation (3.3) 
as 

(3.4) 

The corresponding value of a;,Jx, 0, z) for the case of a uniform displacement 
discontinuity b ahead of the crack is evaluated by setting Au,(x, 0, 2) = h in equation 
(3.2), in which case it may be shown that 

(3.5) 

Thus, in anticipation of combining l/x singularities as just observed, but for the 
general case, equation (3.2) for C&(X, 0, z) is rearranged by separating out a term due 
to a uniform displacement, Au,($ _?), analogous to the form in equation (3.5), so that 

[Au,(X, 2) - Au,(.?, e)] dx d?. 

(3.6) 
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For present purposes, we regard the choice of (2, 2) as arbitrary, although we will 

shortly wish to choose it as (Of, z). 
To factor out the l/x singularity in the expression for c$,(x, 0, z), the contribution 

to the integral in f between OP and O+ is evaluated, noting that over this “strip”, 
&,(X, ?)/~?a = Au,(O+, F&j(X). The result is given as 

CY(x, ‘, ‘) = - 4&,) 
s 

+ca xAu,(O+, Y) d.? 
_~ [x’+(z_$]3/2 

.cx a 
PP+---- 
D3 a2 

Au,@, 2) dx d5. (3.7) 

The first integral contains the l/x contribution to c$(x, 0, z). For example, if 
Az+,(x, z) = b for x > 0 and -cc < z < cc is chosen as discussed earlier, the first 
integral in equation (3.7) provides the only contribution, equal to that given in 
equation (3.4), by noting 

x dz 2 
[x2+(z_-y~3/? =-. 

X 
(3.8) 

Equations (3.6) and (3.7), which represent a;,(~, 0, z) and a&(x, 0, z), are added 
to form a,,,(~, 0, z). The first two terms of both equations each provide l/x contri- 
butions, which are combined by choosing (a, i) = (Of, z) in equation (3.6). In 
addition, equation (3.8) is used so that 

~,,(X, 0, z) = - 
PX 

s 

+m Au,(O+, Z)-Au,(O+, z) dz 

47c(l-v) Pm [x2+(z-_)2]3’2 

P 
+oC +m 

SS( 

R-~ a 

+471(1-v) Pm o+ 
----++- 
D3 ax 

AZ&Z, 5) dx dP. (3.9) 

This result provides the stress induced for arbitrary opening Au,(x, z). The choice 
(2, 2) = (O+, Z) assures that the first integral remains finite as x approaches zero, at 
least at values of z for which Au,(O’, z) is suitably continuous. The term in the second 
integral which behaves as 1/2D2c xx now provides the only singular contribution as 
x approaches zero, and behaves as - l/G. The mode 1 stress intensity factor is now 
obtained in a straightforward manner from equations (2.1) and (3.9) as 

K, (z) = lim & CT,,(X, 0, Z) 
.x-o+ 

+s 02 

= (2&l-v) _m s s A&C ~~-A~,@+, z) dx dz. 

0 &x’+(&zy] 
(3.10) 
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region A,: CC > 0, 
-oo<z<+w, 

2 
- 

FIG. 2. Integration path and coordinates for an arbitrarily shaped prismatic loop. 

This corresponds to equation (34) of RICE (1986b), as a special case of equation (2.7) 
above, except that now an additional term Au,(O+, z) appears in the integrand, allowing 
consideration of opening dislocations for which Au,(O+, z) # 0, and the integral 

- - 
extends even over points (X, 0,5) ahead of the crack where Au,(x, z) = 0. The integral 
without that additional term is divergent, as suggested in the discussion following 
equation (2.7). When A in equation (2.7) is planar and the crack tip lies in A or along 
one of its borders, it is evident from consideration of the null self stress of a uniformly 
dislocated half-plane emanating from the crack tip that a similar fix-up can be applied 
in general to equation (2.7) : we can calculate the induced intensity factors by replacing 
Au(x, y, z) in equation (2.7) by Au(x, y, z) - Au(a, 0, z) and extending the integration 
over the entire half-plane (or pair of half-planes, when the tip divides A into two 
parts) in which A resides. 

4. RESULTS FOR K, INDUCED BY UNIFORM BURGERS VECTOR IN PRISMATIC LOOP 

Here, equation (3.10) is applied to obtain K,(z) induced along a straight crack front 
by an arbitrarily shaped prismatic loop with uniform Burgers vector b, situated directly 
ahead of and in the plane of the crack. The results are then specialized for semicircular 
and rectangular shapes. Figure 2 shows the relevant geometry for the arbitrarily 
shaped loop, in which A denotes the area of the loop and A,. denotes the region of the 
crack plane x > 0, - cc < z < + co, but excluding A. 
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Different expressions for K,(z) result when the observation point z is inside or 
outside A. In the case where the observation position lies inside the loop, as denoted 
by point P in Fig. 2, Au,(Z, F)-Au,(O, z) is zero in the loop area A and equals -b in 
the area A, outside of it. If the observation point lies outside of the loop, as denoted 
by point Q, then AuJZ, Z)-Au,(O, z) = b inside the loop and is zero outside. Thus, 
equation (3.10) is restated for the particular cases as 

Pb 
i 

d2 dP ~__..___ 
K1(z) = - (2n)3’2(1-v) A, J~[~‘_+(z_~))21 

(z inside A), 

pb 

= (27$3’2(1 -v) R 3 [x’2+ +$I f 

d? df -.-_ (z outside A). 

(4.1) 

The area integrals can be expressed in polar coordinates centered about the obser- 
vation point z, and arc depicted in Fig. 2 as (p, $) for a point P inside the loop, and 
as (p, 4) for a point Q outside the loop. After integration in p the results take on a 
rather simple form, 

1 
K,(P)= _-EL.._ ~ ’ d$ 

s ,/zIT(l-v) ?r 0 Ji@j 
(zp inside A), (4.2) 

&& - & d+ (ZQ outside A). (4.3) 

Here, l($), E,(4), Z,(4) are the perpendicular distances from the crack front to 
integration points along the perimeter of the dislocation loop, as shown in Fig. 2. It 
is seen here for positive b that Kj is negative along the crack front inside the loop 
(e.g. at point P), but it is positive elsewhere along the crack front (e.g. at point Q). 

The integral expression for K,(P) in equation (4.2) is simply the average of 

ll%/%i over the loop perimeter; in the case of a straight dislocation line, we obtain 
the 2D result, 

GD = - -jzb, (4.4) 

as derived by RICE and THOMSON (1974). This observation suggests an approximation 
for the general 3D case which is exact for the loop geometry discussed here, namely 
that at a point P inside the loop, the mode a stress intensity factor is 

KzD(P) = ; 
s 

o* KiD($) W, (4.5) 

where Ki” in equation (4.5) is the factor for a 2D straight dislocation line of the same 
Burgers vector sitting at distance I($) from the crack front. 
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crack frf, z 
-W 0 P w 

crack 

FIG. 3. Geometries for (a) rectangular and (b) semicircular loops, showing coordinates and angles used to 
evaluate equation (4.2) for K,(z). 

K,(z) may be determined for a point P inside a rectangular shaped loop of dimension 
2~ by r shown in Fig. 3a. Equation (4.2) is applied by defining I($) as shown in Fig. 
3a, and integrating around the perimeter of the loop, to obtain 

K,(z) = - -_____ ” $&!!!?+;[‘&j$!jd,+/, 

(1 -Y)& 

1 (z inside rect. loop), (4.6) 

where $, and $* describe the position of the observation point z along the crack front 
according to tan I/J, = r/(w+z), tan (TC-$~) v/(w-z). 

In a similar manner, equation (4.2) is specialized to the case of a semicircular loop 
of radius Y, defining 1($) as shown in Fig. 3b, 

1” K,(z) p/l s 11 + (z/r) cos 41 = - 

(l-V)&+ 0 
-= dd 

[ 1+ 2(z/r) cos 4 + (z/ryl&b 
(z inside semicircular loop). (4.7) 

Presented in Figs. 4 and 5 are the values of K,(z) induced by rectangular and 
semicircular prismatic loops, respectively. In the former, several values of aspect ratio, 
r/w, are chosen to examine the effect of loop geometry on K,. A comparison of the 
result for r/w = 1 to that for the semicircle shows very good agreement, with the 
magnitude of K, marginally higher in the latter case. Near the corners of the loop 
along the crack front, K,(z) behaves as the inverse square root of distance from the 
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(a) 6 
_K1 4 x (l-w= 0 w @ 

r/e = 4 

2 

FIG. 4. Values of K, inside rectangular loops, (a) as a function of aspect ratio r/w and position z/w along 
the crack front and (b) at the center of the crack front as a function of r/w. 

8 
(1 -I+/& 

[ -K1x pb 

-1.0 -0.5 0.0 0. 5 1.0 r 
FIG. 5. Values of K, for semicircular loops as a function of position z/r along the crack front. 

corner. As the aspect ratio of the loop is increased, these corner effects penetrate 
toward the center and elevate Ki along the entire crack front. It is seen for the case 
of r/w = l/50 that corner effects are negligible over most of the crack front, and 
K, = - pLb/( 1 - v)@, the known value for a straight dislocation line. Also shown 
in Fig. 4 is K, at the center of the rectangular loop as a function of the aspect ratio. 
-K,(z/w = 0) increases continuously with r/w. For dislocation loop aspect ratios 
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less than 1 (i.e. less than that of a semicircle), -K, ranges between 1 and 1.6 x 
ph/(l -- v)JL. 

The effects of shielding the crack tip from applied load are predicted to be higher 
along the entire crack front in the 3D loop geometry as compared to the 2D case. The 
level of shielding in the loop shapes considered here is minimum at the center, and 
increases steadily as one moves toward a corner of the loop. Given that the crack 
front is uniform, without stress concentrators or different levels of crack tip blunting 
within the loop, the most likely location in the loop for future dislocation nucleation 
or crack extension would appear to be at the loop center, where the shielding is a 
minimum. Irregularly shaped loops which deviate from a semicircular or rectangular 
shape would favor a location which is most “distant” from the loop perimeter, in the 
sense of averaging l/I(~) around the Ioop, as shown in equation (4.2). 

5. THE STRESS DISTRIBUTION AND SELF ENERGY OF A CRACK TIP PRISMATIC 
DISLOCATION Loop 

We now calculate the energy to introduce an arbitrarily shaped prismatic dislocation 
loop into an unloaded, but cracked body. As in Section 4, the dislocation loop is 
situated on the crack plane and has ends at the crack front. The energy is expressed 
in terms of one-half the self energy of the corresponding “full loop” in an infinite, 
untracked body, plus a correction term which we identify here. The full loop is 
constructed as the crack tip loop, plus a reflected image about the crack front. Thus, 
the full loop representation of the dislocation depicted in Fig. 2 is given by the loop 
enclosed by contours C and c. The energy difference represented by the correction 
will be seen to be independent of an elastic core cutoff parameter used in dislocation 
theory. 

The development begins with calculation of the difference in stress, 
rr.VY(.~, 0, z) - ~~“OOP(x, 0, z). The difference in energy will then be calculated by inte- 
gration of this stress difference times the work conjugate b over the area of the loop. 
Note that CT_&~“~*~, the stress induced by the full loop in an infinite untracked body, is 
not the same as q:Y ; the latter corresponds to the stress induced by the half on n > 0 
of what we now call the full loop. Also, the stress cryY for the prismatic loop is 
unbounded as inverse distance from the perimeter of the loop, and as inverse square 
root of distance from the crack front. In integrating over the loop to obtain elastic 
strain energy, the presence of the former singularity requires an elastic core cutoff for 
the dislocation to be chosen so as to keep energy bounded. Here, the choice of a core 
cutoff is avoided by calculating the difference in stress, o,,,.(.x, 0, z) - a_~‘“““(~, 0, z), 
between the exact elastic result and that for the full dislocation loop in an infinite 
body. Using equation (3.3), ovY(x, 0, z) for a full prismatic dislocation loop of uniform 
b in an infinite body is written as 

s i (..f-x) di- (Z-Z) dx 1 D3 ’ (5.1) 
C+C 

where the contours C and C define the perimeter of the loop and its image about the 
crack front, in a clockwise sense as shown in Fig. 2. 
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The segment oft from 
I, to zt in B with 

direction reversed 

FIG. 6. Integration contour t used in the evaluation of equation (5.2). 

The difference in stress, q,(x, 0, z) - o~loOP (x, O,z), at a point within the loop 
is obtained by evaluating equation (3.9) for g,,(x, 0, z), and setting Au,(x, z) = b 
within the loop area A. The integrand of the first term does not contribute when 

Au,(O+, 2) = Au,(O+, z), or equivalently, when the location Z is within the loop. 
For similar reasons, the second term contributes only in the area domain A,, and 
the third term equals the contribution to o~‘~“~ (x, 0, z) in equation (5.1) from the 
path C. Thus, the third term is written as G~“~“P(x, 0, z) minus the integral over C 
in equation (5. I), to obtain 

[cJ,,fx, 0, z)-o$“‘“yx, 0, z)] = 4n;;cv) 

dz @ 
x [x2+(Z-z)2]3/2 + 4a(l -v) c s 

(R-x) dZ- (Z-z) dx 

D3 

n D 

> 

dZ dZ -“~ 
2& - arctan 

-. (5.2) 
2JZ D3 

Here, z1 and z2 are the boundaries of the uniform prismatic loop along the crack 
front, and A, is defined as earlier (see Fig. 2). 

The first two integrals in equation (5.2) reduce to a line integral over the contour 
L shown in Fig. 6, of the quantity da/D, where cu is the angular coordinate (in the 
form of rotation about the y-axis) and D the distance from the observation point to 
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the integration point along E. The result for a uniform prismatic loop of arbitrary 
shape is given as 

[CJJX, 0, z) -oyooyx, 0, z)] = &yyj [ 
1 -(z-z,)/JW -~ 

X 

+ 

X 

D dx dz- 
-arctan _ 

1 1 ~ , 
2Jxx D3 

(5.3) 

where the first two terms represent contributions from the parts of the contour L from 

(_ 

cc to z, and z2 to co, respectively. These terms are not singular along the z-axis 
I.e., when x = 0), except when z approaches z1 or z2 as well. In the vicinity of the 

corners, (g, - CJ~!“~~~) - l/(distance from the corner), but this singularity provides a 
finite contribution to the energy difference to be calculated. Along the crack front, 
the first term in the integral over A, provides an inverse square root dependence of 
cr,,(x, 0, z) - Or’oop (x, 0, z) on x, representing the K, that is induced at the crack tip 
by the prismatic loop, and again providing only a finite contribution to the energy 
difference. 

5.1. Specialization to semicircular geometry and stress distribution on dislocated surface 

For the case of a semicircular loop of radius r, equation (5.3) may be stated as 

l-(z+r)/J?TF# 1-(r-z)/Jmr-z)2 

xlr xlr 

-s x [l + (x sin 4 +z cos 4)/r] d4 
(5.4) 

O [1+2(x sin 4+z cos qb)/r+(x2+z2)/r2]3’2’ 

where 

* = A 1--2q(x cos B+z cos f3)/r+~2(x2+z2)/r2 1’2 

2 [ q(x/r) cos 8 -1 
and 

M= l+$ 
[ 

x2 +z2 
r-211 

x cos 19+z sin 0 3’2 

r r 1 . 
Figures 7 and 8 present the circumferential and radial plots, respectively, of 

[0,(x, 0, z) - a;“oop (x, 0, z)] in units of [ - ,ub/471(1- v)r]. The stresses associated with 
a prismatic opening loop are compressive, and the figures show that higher com- 
pressive stresses arise in the crack tip prismatic loop than in the full loop in an infinite, 
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\ 4 2 

8. 

p, 
-0 

FIG. 7. Circumferential plot of a,,,(~, 0, z) - @&“‘Oop (x, 0, z) for semicircular prismatic loop of radius I as a 
function of radial distance p and angle 8. 

FIG. 8. Radial plot of vvv(x, 0, z) - (r~‘aop (x, 0, z) for semicircular prismatic loop of radius r as a function 
of radial distance p and angle 8. 
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FIG. 9. Radial plot of w~;“‘~~~ (x, 0, z) for circular prismatic loop of radius r as a function of radial distance 
p from loop center. 

untracked body. Compared to the full loop case where G,(x, 0, z) is uniform along 
a circumferential path, c).~ along the circumferential paths shown in Fig. 7 is made 
nonuniform at least in part by the inverse square root dependence on distance from 
the crack tip. Thus, along such a path, the smallest compressive stresses are situated 
at 6’ = 0” and increase monotonically as 0 approaches 90”. 

In studies of dislocation nucleation, the radial “force” acting on each segment of 
the dislocation is obtained from the Peach-Koehler relation, and in the present case 
is a “climb” force. Thus, the equilibrium position is given from summing contributions 
from the K-field, due to applied loadings, that due to the self field of the full loop in 
an untracked solid, and that represented here in Figs. 7 and 8 as rrJY - o~~!“““~. 

The stress ~~“‘OOp(x,O,z) f or a prismatic circular loop in an infinite, untracked 
body is presented in Fig. 9. The total stress field of the crack tip prismatic loop is 

given by the sum of [a,,(~, 0, z) - c$;!“~~~ (x, 0, z)] presented in Figs. 7 and 8 with 
CJ&!““~~(X, 0, z). The latter has an inverse distance dependence as p/r approaches 1, 
which is of opposite sign and stronger than the inverse distance dependence of 
[cYY(x, 0, z) - o~J”‘~~~(x, 0, z)] at the loop corners near the crack. Thus, rrYY(x, 0, z) is 
negative with inverse distance dependence from the dislocation loop corners. This 
agrees with dependence of K, on the inverse square root of distance from the crack 
tip (see Fig. 5). 

5.2. Energy and correction factor m for a semicircular shape 

The difference in elastic energy between the crack tip prismatic dislocation loop 
and one half that of the corresponding full loop in an infinite, untracked body is 
calculated by integrating - (b/2)[a,(x, 0, z) - c$,“““‘~ (x, 0, z)] over the entire crack tip 

loop on x > 0. Although the stress difference is unbounded along the crack front, the 
energy difference is bounded, and this is independent of a (small) dislocation core 
cutoff parameter. This feature allows the energy for the semicircular loop to be 
expressed in terms of one-half the corresponding full loop energy (see equation (1.1)) 
plus a correction term used to define quantity In m, 
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U = rcrAO In 8r +rcrAO In m = nrA,, In 8mr 
e2r0 e2rO’ 
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(5.5) 

Thus, m is defined by 

- ; A [a,,(x, 0, z)-~yoop s (x, 0, z)] dA = zrAO In m. (5.6) 

Evaluation of the integral in equation (5.6) for the semicircular prismatic dislocation 
loop of Burgers vector b, lying on the crack plane in an isotropic material yields 
m z 2.21. As will be seen in Section 6, this value is somewhat higher than an anal- 
ogously defined m calculated for a 2D crack-dislocation line geometry, which ranges 
from 2 for when the crack and loop plane are coplanar as in the geometry here, to 
between 1.1 and 1.4 for when the loop and crack plane are perpendicular. The latter 
range is given since m in general depends on the dislocation character (except when 
the crack and slip planes are coplanar) as well as the orientation of the crack and slip 
planes. 

5.3. Stressjield, energy and correction factor m for rectangular shape 

Similarly, one may determine the difference in stress, [crYY(x, 0, z) - c$!“~~~(x, 0, z)], 
for a rectangular, prismatic loop of dimension 2w parallel to and r perpendicular to 
the crack front (see Fig. 3). Using equation (5.3), and setting z, = -w, z2 = + w, 

CJYY (x, 0, z) - aE’oop (x, 0, z) = &(x, 0, z) 

D D df dz 
~ -arctan ~ 
2& > 1 ~ 3 

2JZ D3 
(5.7) 

where D and A, are defined as earlier, and where & is the contribution from the first 
three terms in equation (5.3) which represent the integration over contour Z-, and may 
be expressed as (for simplicity, the notation x’ = x/r and z’ = z/w is used here) 

&x[4r(:;v)r]=: (l-J(x,r,;):;(l+z,)) 

rlw 
+- 

l+z’ i, 

(1 +x’)r/w x’rlw 

((l+x’)r/w)‘+(l+~‘)~ -J(x’r/w)2+(1+z’)2 

I 
+-- (J 1 +z’ z’-- 1 

1+x’ ((1+x’)r/w)2+(1+z’)2 J((1+x’)r/w)2+(z’-l)2 > 

r/w 
+ (z’- 1) !J x’r/w (1 +x’)r/w 

(x’r/w)2+(z’-l)2 - j((l+~')r/w)~+(z'-1)2 ) 

+; (J e-1) +1 

(x’r/w)2 + (z’- 1)2 >- 
(5.8) 
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6 (%Y - af$looP) x [ _ 47r(y; G] 

4 - 

(uw _ &$a hP 4n(l- v)w 

) ’ [- I.Lb 1 

FIG. IO. Profiles of the difference in stress, c,,> (x, 0, z) - c$!““~~ (x, O,z), for a rectangular prismatic dislocation 
loop of aspect ratio r/w = I, where r and 2~ denote the loop dimensions perpendicular and parallel, 
respectively, to the crack front (see Fig. 3a). Results shown for (a) constant x/r = 0.1, 0.5, 0.9, and 

(b) constant Z/W = 0, 0.5, 0.9. 

All terms in the expression for a;? are bounded w-ithin the rectangular loop, except 
at the corners along the crack front, where C& -l/distance from the corner. 
The integral over A, in equation (5.7) is bounded throughout the loop, except 
along the crack front, where cYY - l/fi. Figure 10 presents for YJW = 1 profiles 

of (0Y.Y -fl,,* r”“iOOp) for either constant x or z within the loop. The constant x profiles 
display the l/distance singularity at the corner x = 0, z = W. The field is symmetry 
in z, so that G.Jx, z) = r~,~Jx, -z)_ The constant z profiles clearly display the 1 /,,/x 
singularity, and show the bounded nature of the stress field as x --t r. 

The difference in elastic energy of the crack tip loop and one-half that of the 
corresponding full loop is expressed similarly in terms of the factor m. Thus, the self 
energy of a rectangular loop of dimension r perpendicular to the crack front, by 2~ 
along the crack front is given as 

U = 2(w+r)A0 
[ 

2Fnfi 
In --___ r” +.f(+4 3 1 (5.9) 

where 

+2 [l +(r/w)2]“2 , 

1-t (r/w) ’ 

so that setting m = 1 produces one-half the energy of a full rectangular prismatic loop 
of dimension 2r by 2w in an infinite untracked body. Thus, m is evaluated according 
to 
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FIG. Il. m for a rectangular prismatic dislocation loop versus aspect ratio, measured as (r/w) or (w/r), 
where r and 2w denote the loop dimensions ~~endicular and parallel, respectively, to the crack front (see 
Fig. 3a). Symbols (i-f ( x ) indicate discrete points at which equation (5.10) was integrated and from which 

the curves were constructed. 

r ss +w 

2(w+r)_4, In m = 
0 --w 

- ; b[a,(x, 0, z)- ,$“lO”P(x, 0, z)] dz dx. (5.10) 

Care must be taken to properly integrate equation (5.10) numerically, as there are 
integrable singularities involved in what is in principle an integration over four vari- 

ables. 
The results for m as a function of aspect ratio are presented in Fig. 11. Two different 

branches for m are shown, one corresponding to m for r/w > 1 and the other for 
w/r >, 1. Two limits are clearly shown : for the case where w/r --t co, m + 2 and 
r/w -+ GO, m --f 1. The former limit corresponds to the 2D geometry of a straight 
dislocation line oriented parallel to the crack front, which is analyzed in the following 
section. The latter limit corresponds to a rectangular loop of infinitely long dimension 
perpendicular to the crack front. It is only in this limit that m = 1, so that the elastic 
energy of the crack tip loop is given exactly by half that for the full loop representation. 
Although m = 2 rather than 1 for the 2D limit, RICE and THOMSON (1974) have shown 
that the full loop representation, which in this case is two infinitely long parallel 
dislocations of opposite sign separated by distance 2r in an untracked infinite body, 
exactly produces the force acting in the x direction on the crack tip dislocation. 

Certain features of Fig. 11 appear to be artifacts of the particular definition of m 
stated in equation (5.10). One such feature is the maximum for m which exists at 
approximately w/r = 4. The difference in energy, 2(w + r)A o ln m, between that for the 
crack tip dislocation loop and half that of the corresponding full loop representation is 
found instead to be a monotonically increasing function of w/r for loops of constant 
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in plane shear loop. 
out of plane shear loop. 

FIG. 12. (a) 2D crack-dislocation line geometry, and (b) full loop construction 

area 2~. Another feature is the difference in m M 2.21 for a semicircular loop com- 

pared to m x 1.92 for a rectangular loop with Y = w. In fact, the difference in energies, 

m-A0 In m defined in equation (5.6) for the semicircular geometry and 4rA0 In m 

defined in equation (5.4) for the rectangular case Y = W, are within 5% of one another. 

6. CALCULATIONS OF CORRECTION FACTOR m FOR 2D CRACK GEOMETRIES 

3D calculations for shear dislocations and arbitrary orientations are complicated, 
and in order to cast the m values obtained for the prismatic loop into proper perspec- 
tive, m is calculated here for a 2D crack tip dislocation line geometry as shown in Fig. 
12a. The slip plane is oriented at angle 4 to the crack plane, and components of b are 
oriented either (i) perpendicular to the slip plane (prismatic), or in a shear loop mode 
for which components of b may be (ii) perpendicular (edge, or in-plane, shear) or (iii) 
parallel (screw, or antiplane, shear) to the crack front. 

Analytic function solutions as summarized by LIN and THOMSON (1986) for such 
2D problems allow dete~ination of the stress field nii(x, z) for the crack tip dislocation 
geometry shown in Fig. 12a, in which a straight dislocation line is parallel to and 
positioned at distance Y from the crack front. The “full loop” geometry (now the 
loops are infinitely long in the z direction) is depicted in Fig. 12b as two straight 
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parallel dislocations of opposite sign to one another and separated by distance 2r. In 
a manner similar to that for the semicircular and rectangular loop shapes, the energy 
I? per unit length of crack tip dislocation is defined in terms of one-half that for the 
full loop construction, plus the correction term, 

6 = biA,bj In z +b,Ajjbj In m, (6.1) 

where biAjibj is the prelogarithmic energy factor for the crack tip dislocation, and rO 
is a core cut-off. RICE and THOMSON (1974), ASARO (1975) and RICE (1985~) in analyses 
of increasing generality, have noted that the radial force do/dr attracting such a 
dislocation to the tip is b,A,,b,/r. This is consistent with 0 as in equation (6.1) for 
arbitrary m and confirms only that the prelogarithmic factor, but not the entire energy 
expression, is compatible with the approximation of writing the energy for a crack tip 
loop as half the full loop energy. Although the force, dU/dr, on a 2D straight 
dislocation line is unaffected by m, such is not the case for the 3D loop. Analogous 
to the 3D geometries discussed, we calculate m by 

where we note 

(P. r)] dp = biA,jbj In m, (6.2) 

(6.3) 

For the crack tip dislocation geometry, we define the stress field in isotropic solids 
in terms of three analytic functions of [ = x 1 + ix2 (= x + iy), 

(J.1 I f@22 = qcp’K)+@(o), 

-p 

where 

C22-i@12 = tp’(i)+o’(i)+(i-i)cp”(i)t (6.4) 

fl32fic31 = 29’(C), 

w’(i) = (q’)* - (cpb)* + 06 (6.5) 
and where 

A, 1 A, 
C&=pi_e “b=&- 

1 _ s--F; 
q-py_-. I 
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The position of the dislocation for the geometry considered here is given by 5 = r 

exp ($), and the observation point along the slip plane by 5 = p exp (i4). A, and A, 

denote the prelogarithmic energy factor, biAijbj, as calculated from either the edge or 
screw components, b, or b, of the Burgers vector, so that A, = pb,?/4n(l -v) and 
A, = ,ubh/4n. B is a complex number given by - ie’;’ where y = arctan (b,/h ,). Here 
the notation (c$({))* = m is used. 

The integrand in equation (6.2) is simply expressed for the three cases discussed 
here. For the (i) prismatic loop, B = exp (i4) and q’ = 0 ; for (ii) in plane shear, 
B = -i exp (i@) and q’ = 0, and for (iii) out of plane shear, B = 0 and cp’ = o’ = 0. 
Using these results with equations (6.2) and (6.3), the integrand becomes 

1 
~ ni[oj,([ = p e’$, 5 = r e”#‘)-af;“‘““p(p)]b, 
2 

(i) prismatic, 

A, 
zz- 

[ 

iir 
r e 

~{(P’+w’+([-_)(P”) iem2’&-2q’sin 2$}- 
( 

l-Ap,r + I+‘~m~ 
11 

(ii) in plane shear, 

(iii) out of plane shear, (6.6) 

where each expression in square brackets defines a dimensionless function of p/r and 
angle 4. Presented in Figs. 13, 14, and 15 are the differences, -(1/2)(aij-ai,““‘““P)n,b,, 
for the prismatic, in plane shear, and out of plane shear loops, respectively, as functions 
of position, p/r, within the loop and angle 4. This difference represents the integrand 
in equation (6.2) for the energy change between the approximate half-full-loop and 
exact representations for a crack tip dislocation loop. The profiles show as functions 
of position, p/r, the additional (if the abscissa is positive) elastic work performed in 
forming the dislocation loop at the crack tip as opposed to forming a full dislocation 
loop in an infinite, untracked body. Three slip plane angles, 4 = 0, 45”, and 90” are 
chosen for profiles in each type of loop. In all cases, the largest energy difference 
occurs when the loop and slip planes are coplanar (4 = 0), and it diminishes as 4 
increases to 90”. As in the study of the prismatic 3D loops in Section 5, the sign of 
the profiles for C$ = 0 are positive for all p/r. 

In all cases, there is an inverse square root singularity in the abscissa as p = 0 is 
approached. As p/r + 1, the abscissa goes to zero, signifying that the approximate 
half-full-loop energy representation exactly characterizes the image force exerted on 
the dislocation in the presence of the crack. 

The resulting correction factors m for the prismatic and shear loops are presented 
in Fig. 16. For all three types of loops, m is the largest and equals 2 at 4 = 0, 
and monotonically decreases through to 4 = 90”. This suggests that the estimate of 
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I%. 13. Stress difference. 2D prismatic loop. 

Fro. 14. Stress ditrerence, 2D in plane shear loop. 

m = 2.21 for the prismatic semicircular loop is an upper bound to YPE for the semi- 
circular geometry. ~~i~~u~~ the endpoint values of pn for the prismatic and in-plane 
shear loops are identical, m for the latter type of loop decays much more rapidly with 
# than for the former. In this 2D geometry, unlike the semicircular loop or other 3D 
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FIG. 15. Stress difference, 2D out of plane shear loop. 

m 

FIG. 16. Correction values, m, for 2D loops. 

geometry, a value of m other than unity does not affect the image force exerted on 
the dislocation, as may be seen by differentiating 6(r) in equation (6.1). 

The implications of the 2D study here and the 3D study in Section 5 in regard to 
the choice of m for general 3D loop geometries is discussed next. 

7. ESTIMATE OF m FOR A GENERAL 3D SHEAR DISLOCATION LOOP 

In principle, analogous procedures to that presented here for the copianar prismatic 
dislocation loop may be used to calculate m for general loop shapes, with arbitrary 
slip plane and Burgers vector orientations. Since such 3D calculations are complicated, 
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an approximate procedure to estimate m in such cases is proposed, based on knowledge 
of m for the identically shaped prismatic loop situated on the crack plane ahead of 
the crack, and an understanding of how the analogously defined m for the 2D “loop” 
varies with slip plane and Burgers vector orientations. In general, m = m(#, tl/, s), 
where 4 measures the angle subtended by the untracked extension of the crack and 
slip planes, I/I measures orientation of the Burgers vector, and s denotes the variable(s) 
to describe the loop shape (e.g. r/w for a rectangular loop). 

The approximation made is to estimate the dependence of m3D on loop shape by 
comparing the 3D and analogously defined 2D values of m for the particular case 
addressed earlier, of a prismatic loop situated on the crack plane ahead of the crack 
(# = 0). The dependence of m3D on slip plane and Burgers vector is assumed to be 
that for the 2D case. In particular, it is proposed that 

In pn3D(~, *, s) z 
In m3”(# = 0, prismatic, s) 

______ In m’“(#, $). 
In pn’“($ = 0) (7.1) 

Thus, this approximation has the feature that m3”(~ = 0), like ~‘“(4 = 0), is inde- 
pendent of $. [Added note : This feature is incompatible with recent calculations made 
by GAO and RICE (1987), following preparation of this manuscript which determine 
m3D(~ = 0) for a semicircular shear loop to vary from 2.67 when b is perpendicular 
to the crack front to 1.99 when b is parallel to the crack front. For comparison, the 
value given here is 2.21 for a prismatic loop.] 

For a general shear loop, ~2D(~, $) can be written using calculated values of $” 
(edge, in plane shear) and rnz” (screw, out of plane shear) provided in Fig. 16 

M_($)+~drl/)l In m2D(~, $4 = AMll) In dD(#) +411/I In dD(#h (7.2) 

where A, = $$/4n( 1 - v), A, = pb,2/4n are the prelogarithmic energy factors associ- 
ated with the edge and screw components, b, and b,, of the Burgers vector. 

This approximate method was used to estimate m for studies of crack tip nucleation 
of full and partial dislocation loops with semicircular shape by ANDERSON (1986). For 
example, for f.c.c. geometries in which the crack front lies along (1 lo), the three full 
and three partial Burgers vectors on a (11 I} slip plane are oriented at angles $ = 30”, 
90” and $ = 0,60”, respectively, to a reference line normal to the crack front and in the 
slip plane. Using equations (7. I), (7.2), and noting that nz30 w 2.21 for the prismatic 
semicircular loop oriented at C/J = 0, we obtain the approximation 

~0s’ tj In mZD(~)+(l-v) sin’ 4(/ In mz”(#) 

cos2 $+(1-v) sin2 $ 1 (7.3) 

where In w$‘($) and In m:“(~$) are used from Fig. 16. 
Figure 17 shows estimates of m for the semicircular loop for the four values of $ 

mentioned, as a function of slip plane angle 4, using v = 0.3 as a typical value for 
many metals. The general features are that m here as in the 2D case is independent 
of $ when Q, = 0, and that as Cp increases, m is ordered from lowest to highest as II, 
changes from 90” (i.e., with Burgers vector parallel to the crack front) to 0” (i.e., with 
Burgers vector perpendicular to the crack front). [Added note: As mentioned, the 
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1.0 
1 . . . 1 . . . 

a a0 60 ai+ 
FIG. 17. Estimates of 112 for a semicircular shear loop as a function of slip plane angle 4 to the untracked 
extension of the crack plane and Burgers vector orientation I/J, where I) = 0” and 90” describe shear Burgers 

vectors perpendicular and parallel, respectively, to the crack front. 

former feature is incompatible with recent extensions of the 3D calculation, outlined 
in Section 5.2, to the shear loop case.] 

In applications to tensile loaded cracks with tips along (1 IO) in f.c.c. crystals or 
along interfaces between crystals (ANDERSON, 1986), consideration of representative 
ranges of C#I at which the most highly stressed ( 111) planes lie, and of the tj values 
appropriate to the full and partial dislocation Burgers vectors activated by such 
loading, suggests a practical range of pn for semicircular shear loops between approxi- 
mately m = 1.2 and 1.9. Since the critical applied K, predicted to make such a loop 
grow unstably scales with l/A (MASON, 1979; ANDERSON and RICE, 1986), and 
since the effect of m is to replace r,, by r,/m, K, for dislocation nucleation scales as 
,,/&. Thus, inclusion of the m correction causes a representative increase in the 
predicted K, for nucleation by 10 to 40%. 
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