
Inr. J. SOWS Sfrucrurrr Vol. ?I. No. 7. pp. 781-791. 1985 W?O-76113!85 53.00+ .cm 

Prmled In (ire;11 tJril;km C 1985 Pcrpamon Prcu Ltd. 

THREE-DIMENSIONAL ELASTIC CRACK TIP 
INTERACTIONS WITH TRANSFORMATION STRAINS 

AND DISLOCATIONS 

JAMES R. RICE 
Division of Applied Sciences, Harvard University, Cambridge, MA 02138. U.S.A. 

Abstract-Three-dimensional elastic interactions between a half-plane crack and sources of 
internal stress such as transformation strains and dislocations are analyzed. These interactions 
include the stress intensity factors induced along the crack front by the source and the overall 
energy change and stress field induced in the source region owing to the presence of the crack. 
The analysis is based on the author’s recent extension of “weight function” methods of three- 
dimensional crack analysisll] and principal results of that extension are summarized at the 
outset here. 

INTRODUCTION 

In this study, recent developments[l] in three-dimensional elastic crack analysis are 
applied to deriving the interaction between a source of internal stress and a crack tip. 
The source is represented as some region that is given an Eshelby transformation of 
its stress-free state. This representation includes, as a limiting case, an arbitrary dis- 
location on a planar cut. As particular cases for which the mathematics is relatively 
tractable, explicit results are given for the tensile stress intensity factor due to arbitrary 
dilatant transformations in an isotropic material, and for the intensity factor and stress 
field associated with an opening dislocation (e.g. a prismatic dislocation loop) on a cut 
that is coplanar with the crack. 

Understanding the interaction between an arbitrary source and the crack referred 
to above involves calculating the stress intensity factors induced along the crack tip 
by the source, and also calculating the energy and image like contributions to stresses 
or energetic forces (i.e. configurational forces) exerted on the source owing to the 
presence of the crack. The recent developments[l] which facilitate such calculations 
are the analysis of first-order variations in three-dimensional elastic fields associated 
with variations in location of the tip of a planar crack and the use of such analyses to 
extend and apply “weight function”l2, 3, 41 concepts for crack analysis in the three- 
dimensional regime. 

The present work is dedicated to the memory of Alicia Golebiewska Herrmann, 
whose interests included the theory of dislocations, cracks, and other defects in solids 
and of the energetic forces which act upon them. 

THREE-DIMENSIONAL WEIGHT FUNCTIONS FOR CRACKS 

Consider a half-plane crack in an infinite elastic body. The crack lies on the plane 
Y = 0 and its tip is parallel to the z axis along x = a such that the region x < a is 
cracked. As is well known, in such circumstances arbitrary loadings induce a singularity 
at the crack tip such that stress components uci (i, j = x, y, z) ahead of the tip on _I 
= 0 vary like 

as x 4 a. The K’s are stress intensity factors and may vary with position z along the 
crack front. They appear also in the expression 

G= &&K,, (2) 
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(Greek indices have range I, 2. 3 and the summation convention is followed with 
repeated indices) for the Irwin energy release per unit area of crack advance. The 
coefficients A,, are symmetric, Agu = Ame, and for an isotropic material Aue is diagonal 
with 

A,, = A22 = (I - v)/2t_~, AN = 112~ (3) 

(t.~ = shear modulus, v = Poisson ratio). Following Stroh[S] and Barnett and Asaro[6], 
for anisotropic solids A Ug can be expressed as a numerical factor times the inverse of 
a matrix appearing (pre- and post-multiplied by Burgers vector) in the pre-logarithmic 
energy factor for a straight dislocation line lying parallel to the direction of the crack 

tip. The displacement discontinuity across the crack surfaces very near the crack tip 
may be expressed in terms of the K’s and A’s by 

where A/r; = ui(x, 0' , z) - Ili(x, O-, I). Thus the terms LpKp, (Y = I, 2, 3, may be 
regarded as displacement intensity factors. 

In [I], three vector functions & = h,(_r, I’, a) of position r ( =(x, y, z)) in the body 
were introduced. Here a = 1, 2, 3. These functions are also associated with a location 
z = z’ along the crack front and they depend, of course, also on a, which measures 
the position of the crack front. The functions are called “weight functions” and they 
are universal for a given geometry of cracked body in the sense of having no dependence 
on the particular distribution of loading forces to which the body is subjected. For the 
half-plane crack in an infinite homogeneous body, translational invariance requires that 

the h,(r, I’, a) be dependent only on x - a, y, and z - z’. 
Th; weight functions have the following two properties: The stress intensity factors 

induced at the location z = z’ along the crack tip by an arbitrary distribution of body 
force f = f(r) per unit volume are given by -- 

K,(z’) = I h&, z’, a)-f(r) dU_r), 
V- -_ 

where dV(r) denotes an element of volume and the integral extends over all loaded 
elements. Also, if the crack tip is moved from x = a to the neighboring position x = 
a + 6a(z), where tia(z) is an arbitrary function of position z along the tip, while the 
body is subject to some system of loadings inducing stress intensity factors K,(z) along 
the initial straight crack tip, the associated variation in displacement field 2 = u(r) is -_ 

&4(r) = 2 -- I 
+r A.,&({, z’, a)Kp(z’)Ga(z’) dz’ 

-x (6) 

to first order in 6a(z’). Thus the displacement intensity factors AUeK, times i3a are the 

source terms, weighted with the h,, to form 6~. Later it will be seen why the second 
property necessarily follows from the first; see[ I] also. 

The functions h, are expressed in [I] for isotropic homogeneous materials with 
half-plane cracks in terms of certain rather formidable double integrals. An explicit 
solution was also developed for hr (denoted as h in the relevant part of [I I) by con- 
sidering a crack under arbitrary tensile (mode I)-loading, and by directly formulating 
and solving the three-dimensional elasticity problem for the first order variation SN(T) 
associated with arbitrary &(z). Probably a similar approach based, e.g., on the rep- 
resentation of shear mode solutions for the half-plane crack as given by Meade and 
Keer[7], will prove a convenient route to explicit forms for /Jo and 11~. The results for 
the x, y, z components of hr are 
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h,, = -[l/2(1 - u)]cgL + yH)ldx 

h ,! = H - [l/2( I - v)]ydH/dy 

h,; = -[l/2(1 - u)]il(L + yH)&, 

where H and L are harmonic in X, y, z and given by 

H(x _ a v z _ z,) _ (1/2n3P h?Kx - a + iY)“*l 
9.1 

(x - a)* + y* + (z - z’)* ’ 

with branch cut on the crack surface and 

x 

L(x - a, y, z - 2’) = - (I - 2u) H(x - a, y, z - z’) dy. 
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(7) 

(8) 

(9) 

It may be noted also, as required for subsequent applications, that 

h I?.) = ah,,& = [(I - 2v)/2(1 - u)]aH/dy - [l/2(1 - u)]yd*H/dy*, (10) 
hI.i..i E h~,r..v + h1,v.y + hl;.: = [( 1 - 2~)l( I - u)]~H/Q. 

Here Latin indices such as j (but excepting x, y, and z) range over the values x, y, z 
with summation on repeated indices; the comma denotes partial differentiation. 

The following result was also derived in [I] for a planar crack with a slightly 
nonstraight front in an isotropic homogeneous solid under general loadings that cause 
mode 1 tension at the tip. For present purposes, let fl[z, a] denote the tensile stress 
intensity which the given loadings induce at location z along the tip when the tip is 
straight and is located at x = a. For example, e[z’, a] is given by the right side of 
eqn (5) with a = 1. Then for the case when the tip deviates slightly from straightness, 
lying along the curve x = b(z) in the plane y = 0, one has 

K,(z) = P’[z, b(z)1 + k J_= 
+= Kxz’, b(z)lW(z’) - WI dz, 

(I’ - z)* 
(II) 

to first order in b(z’) - b(z) for the mode 1 intensity at z; the integral is interpreted in 
a principal value sense. This expression improves upon a result of Meade and Keer[7] 
as discussed in [I]. 

Knowledge of the weight functions IJ,, lets one express the displacement field every- 
where in the half-plane cracked body provided that the field is known when the given 
loadings act but no crack is present. To see why, let 6a be uniform in z’ in eqn (6) and 
divide by &a. This gives 

(12) 

where eqn (5) for KP has been used. Suppose that the dyad GKe’” (r - 9, with com- 
ponents GE”“, is the Kelvin Green’s function for the infinite uncrackkd body, or is the 
generalization of Kelvin function for an infinite anisotropic untracked body. Then, 
when there is no crack present (i.e. when a = -z) 

- ?)-f(F) d”(i). _ _ _ (13) 

If we add to this the integral of adaa from --x to 0, we get the displacement field for 
a body subjected to the given loa&ngs and containing a half-plane crack on y = 0 with 
tip along the z axis: 
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u(r) = -_ GKe’” (y - F).f(,l) dV(P) --_ - 

0 +== 

+2 J / A&z&, I’. a) h#. i’. a)$[) dV(J) dz’ da. (14) -r --x 

If an isotropic solid is subjected to symmetric loadings f which induce only mode 
1 tension conditions along its tip, the volume integrals in eqns (12) and (14) vanish for 
p = 2 and 3. In such cases, eqn (14) reduces to 

44 = ” G -_ I Kc’v (r - g.f([) dV([) 

+1-v ” 
I I 

+= 
h,(r, z’, a) (15) 

CL --f --I - - I 
v h(f, z’, a)+f(!) dV([) dz’ da. 

When we read-in the components of hr from eqns (7), and move the integration op- 
eration on z’ above inside the differential or integral operations on other variables in 
eqns (7, 9), the integration on z’ is found to be elementary in each case. For all com- 
ponents of hi&, z’, a) hbj(fI z’, a) we need the integral 

I 
+r dz’ 

--x [(x - a)* + y* + (z - z’)*][(.f - a)’ + jt’ + (i - z’)‘] 

= dlk’ + I/(i)/[(Z - 2)’ + (p + @*I, (16) 

established by residue methods, where 

P = V(x - a)* + y*, 0 = d(_f - a)’ + j*. (17) 

The integral on a in eqn (15) is more formidable but is carried out subsequently for a 
special application. 

STRESS INTENSITIES DUE TO TRANSFORMATIONS AND DISLOCATIONS 

Suppose that the cracked solid is given some distribution of transformation strain 
eT = eT(r) throughout a region V. This is to be understood in the sense that - -_ 

"ij = Cijmn(Un8,tr - dtn) (18) 

where C is the same modulus tensor as before transformation and has the usual sym- 
metries, By a well-known argument used, e.g. for analysis of transformation of an 
inclusion by Eshelby and for stress analysis in presence of plastic strain by Lin, and 
earlier by Duhamel for thermal stress analysis, the displacement field produced by the 
eT distribution is the same as that produced in an identical body with eT = 0 subject 
to a certain effective force field. That is, the equilibrium equations read 

uij.i + fj = (CijmrrUw.n).i + fj - (CijmnEkn).i = 09 (19) 

and on traction-free elements of boundary, such as crack surfaces in the present case, 
having outer normal n 

Tj = niUij = n&'ijmnU,n.n - niCijmnEj,;n = 0. (20) 

Thus the displacement field induced by eT is the same as that induced by the effective 
body. force distribution 

fj’” = - (CijmnEj_nn).i (21) 
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throughout the transformed region V plus a Dirac singular layer of effective body force 
along the crack surfaces equivalent to tractions 

yr = ~liCi,,,,rrrZ!,,r. (“1 __ 

Inserting this effective force field into eqn (5) and applying the divergence theorem. 
which results in cancellation of the integral of /I~,,~~“” along the traction-free surfaces, 
one sees that the distribution of transformation strain induces stress intensity factors 

at location z’ along the crack front. Here the differentiation in lt,i.i(r. c’. a) is with 
respect to the ith component of r. i = .I-, y. or z. The expression for K, is analogous 
to that derived on the basis of two-dimensional weight function theory by McMeeking 
and Evans[8] for isotropic cracked solids with uniformly transformed cylindrical regions 
with axis parallel to the tip of a plant-strain crack: the same two-dimensional problem 
had been solved by direct elasticity calculations by HutchinsonlY. IO]. Equation (23) 
reduces to those results when we consider the isotropic solid, make e7 independent of 
z, and integrate in z over --z to +x. 

Dislocations on some cut surface A can also be considered: let the sides of A be 
denoted + and -, let N be the normal to A pointing from - to + . and AU = II( + ) 
- u(-_) be the dislccaTon. Then to represent a dislocation e‘I‘ is regarded-as Dirac 
singular on A, and zero outside A, such that if we integrate;!,,, over some volume 
element 6V that includes area 6A of A there results 

I E;;,, dV = ; / tN,,,Alr,, + N,,Air,,,) dA. (24) 
AV hA 

Thus, the resulting stress intensity factor distribution along the crack tip is 

The full expression for the displacement field induced by the transformation strain 
is analogous to eqn (14) and its derivation again begins with eqn (6) which remains 
valid in this case. Thus 

Here the i in Gz$ is to be understood as differentiation on the ith component of r’. In 
the case of a dislocation, the expression is the same except that the integral over V 
becomes one over A and E:,,, dV is replaced by N,,Alr,,, dA. 

In applications to isotropic materials, it may be noted that 

Thus if we let the transformation strain correspond to pure dilation, ez,,, = 8’6,,,,/3, 
then 

haj,i(! I’ a)tF(r) dV(r) 
.” - -* 

(28) 
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The resulting mode I stress intensity fxlor is, usi-ng cqn (IO), 

2cl_(I + u) 
KIk’) = 3(, _ u) I dH(.s - il. !‘* : - z’) 

\, aj 
ti’(.s, !‘, :) cl.\- d.s cl,-. (39) 

where f-f is given by eqn (8) and one may, therefore, calculate that 

C?H cos ($/2)[ I - 8($/R’) sin’ ((t/2)1 
-= 
irp (2n).V-‘~‘pll’ (30) 

Here p is defined in eqn (17), tan + = y/(x - a). and 

R = d(x - a)2 + y* + (=. - z’)‘. (31) 

If we consider the case in which 8” is independent of L, then integration on ; and some 
rearrangement of the result shows that 

K, = 
p.(l + v) 

3( I - v) (2n)“’ AS, p I 
-W cos (3&/2)u’(.r. .v) d.r d.v. (33) 

where A,,,. is the cross-section of the transformed region in the s, _Y plane. This is in 
agreement with the results of McMeeking and and Evans[8] and Budiansky et N/.[ IO]. 
derived for analysis of “transformation toughening” at crack tips. Their two-dimen- 
sional treatments correspond to a smearing-out of the actual discrete transforming 
particles in the z direction, which may be quite adequate for the purposes addressed. 
The expressions (28) and (29) above allow the full three-dimensional effect of an in- 
dividual transforming particle to be calculated. 

As another application for the isotropic material. suppose that an opening dislo- 
cation is present on the plane y = 0 ahead of the crack. By opening dislocation is 
meant that only AN! = Au~(x. z) is non-zero on the cut. This is surely not the most 
interesting crack and dislocation combination but, for it, only a mode I intensity factor 
is induced and the analysis depends only on the presently known weight function 11,. - 
From eqns (25, 27) the intensity factor distribution is 

and using eqn (IO), this reduces to 

K,(z’) = 

= 
UX - a I(.\- - a)’ + (, - :‘,‘I . 

(34) 

The expression is always of one sign when Au, L 0 and shows, for example, that the 
opening of coplanar cracks ahead of a tensile-loaded straight-tipped main crack will 
always increase K, along the main crack tip. 

Note that all the expressions for K, in this section are for a crack with a straight 
tip. They can be converted to the case of a crack with a slightly nonstraight tip by use 
of eqn (11). 

ENERGY. STRESSES, AND ENERGETlC FORCES 

Let Udenote the elastic strain energy of the cracked body subject to general loading 
by a field f(r) of body force and containing some distribution of transformation strain 
s7‘(c). U isdefined by 
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CJ=;r (u;.j - e!:)C., (II 1.1 !,,1?,t, ,,,.,, - E:,,,) dV. 
LJ 

(35) 

where the integral extends over all the body. From the definition of the energy release 
rate G of eqn (2), it is evident that 

for crack advance 6a in presence of fixed transformation strain. Also, a simple cal- 
culation based on eqns (35). (IQ, (19) and (20) shows that if we alter the distribution 
of transformation strain at fixed crack position, then 

Later we shall be concerned with singular r7‘ corresponding to dislocations. The quan- 
tities G (= A,eK,Kp) and oij can evidently be interpreted as energetic forces respec- 
tively conjugate to crack advance 6a and transformation Se;. 

If we now define the potential energy 

P=U- 
/ v fjuj dVv (38) 

then one may write in general that 

6P = - ll$fi dV - AupK,Kp 6a dz - (39) 

when any of f, crack position and e7’ are varied. if f and e7’ are held fixed, we can 
integrate on a-and write 

(40) 

for the potential energy when the crack tip lies parallel to the z axis at x = a. Here P” 
denotes the potential energy which f and eT cause in the untracked body; P” may be 
formally unbounded especially if poiit forces, Volterra dislocations (i.e. discontinuous 
change of Au to zero at edge of A), and the like are considered. However, aPlaa is 
bounded unl&s the crack plane happens to pass through a singularity such as a point 
of force application or a segment of dislocation line, Clearly, the middle term on the 
right in eqn (39) is (aP/aa)Ga, and thus 

p=p- a I I += A,pKdz, a)Kp(z, a) dz da, -I -I (41) 

where 

is the a intensity factor induced at z along the crack front, when the front is at x = a, 

by f and zT. The crack necessarily lowers the potential energy from that for the un- 
cracked body and the energy change is given by the integral term in eqn (41). 

Since -uj(_~) and -a,,,,,(r) are the differential coefficients of 6P with respect to 
variations 6fi(r) and &j,&), s follows from (41, 42) that 
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II&-) = Ul’([) + 2 A,&,(r, z’, a)Kp(;‘, a) d:’ da. (43) 

Hcrc again, the superscript “0” denotes the field in the uncrackcd body subjcctcd to 
the given distribution off and e7. 

Now, recognizing that the K’s depend on f and eT. as in eqn (42), eqn (43) above 
for u is seen to be consistent with what was given earlier in eqns (14) and (26). Those 
equations followed from the second property enunciated at the outset for weight func- 
tions, and given as eqn (6). However, the development of this section has made use 
only of the first property, eqn (5), and of relations for elastic energy. Hence the de- 
velopments in this section show that the second property, eqn (6), follows from the 
first. As is to be expected, the expression for u,,,,, is consistent with multiplying II,,, 
with C,,,,Q (and using C,t,nij = Cij,,l,l); the part C,,,,,ij ,,, ET which has to be subtracted off 
is already included in cr!,,, for the untracked body, i.e. 

(45) 

When the transformation strain corresponds to a dislocation with singular 5’. as 
in eqn (24), the last term in eqns (37, 39) reduces to J,J Nio;,iG(Acj) dA SO that Niui.1 
on A is the energetic force conjugate to dislocation AUj. For dislocations in crystals, 
one is most often concerned with the Volterra case AU = constant on A, and the 
alteration of the “transformation” consists of enlarging th; dislocated surface A. When 
this enlargement is confined to a plane we may describe it by saying that the perimeter 
arc L of A is advanced by some distance &I normal to itself, where 61z varies with 
position along L. We then may write the last term in eqns (37, 39) as JL q6n dL where 
q is the energetic force on the dislocation and is given formally by 

9 = N,,,a,,,,,A u,l (46) 

(this is the component of the Peach-Koehler force in a direction locally perpendicular 
to L and N). As is well known, this formula for q is meaningless as it stands for Volterra 
dislocati&, as is also the integral over A above, because of the singularity in u,,,,, 
along the dislocation edge. However, the singularity resides entirely in the term u!,,, 
for the untracked body and if we write u,?,,, = ul’,,, + u;;,,,, where u:;,, is given by the 
integral term in eqn (44), then CC,, is finite everywhere except along the crack front. 
Similarly, we may write the force on a dislocation line as q = q” + 4”. The first term, 
q” is well defined only in the context of some core “cut-off’ procedure (at least such 
is required at all points of L having non-zero curvature), whereas q” which represents 
the effect of the crack on the energetic force is independent of such procedures and is 
given by 

4 “ = N,,,u:;,,,A u,, . (47) 

Such ideas as outlined should enable the more rigorous incorporation of three-dimen- 
sional dislocation effects in the analysis of shear dislocation nucleation from a crack 
tip[ 1 I]. They should also provide a fuller understanding of the dislocation-crack tip 
interaction, thus far studied two-dimensionally[l2]. These problems can, however, be 
addressed in the requisite generality only when all three weight functions IJ, are em- 
ployed. 

As a simpler illustration, the stress uyY on y = 0 is now calculated for an arbitrary 
distribution of opening dislocation AuJx, z) on y = 0 ahead of the tip (which is taken 
to be at x = a = 0, i.e. coincident with the z axis). The stress intensity due to this 
opening is given by eqn (34). Only mode I is involved and we denote the intensity 
factor as K,(z’, a). Then using eqns (3) and (27) for the isotropic material, eqn (44) for 
umn gives 
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u,w,(fj = 4!,,,(:) + (1 - v) l:z J-Lx {~I,~~,,(~. z’, a) + hhJ_r, z’. a) 

+ [2v/(l - 2u)lfi,,,,h~~.~(~, ;', a)} Ktk’, a) dz’ da. (48) 

Thus, by eqn (IO). the tensile stress on y = 0 is 

0 

a,ya, 0, z) = uyy (x, 0, z) + /I +% aH(x - a, 0, 2 - z’) K (z, a) d_, da 

aY 
I, 4 * (49) -x -x 

and by using eqn (30) for aHlay and eqn (34) for K, this becomes 

for x > 0, where 

p = x - a, fi = .f - a, R' = (x - a)’ + (z - z’)‘, R2 = (i - a)’ + (i - z’)‘. 

(51) 

The integral on z’ can be done with the help of eqn (16), resulting in 

(x + f - 2a)Arr,(f, i) ti de da 
(x - a)“‘(i - a)3’z[(z - i)2 + (x + i - 2a)‘] 

for the last term in eqn (50) above. The integral on a is reduced to an elementary form 
by introducting a new variable 

t = 2(x - a)“*(i - a)“2, (52) 

which runs from x to 2(~i)“’ as a runs from --r: to zero. Thus the integral term is 

which is readily evaluated with the substitution I = D/tan 4 where 

D = [(x - i)’ + (I - i)‘]“‘. (53) 

Thus the final expression for stress is 

u.&, 0, z) = U&(-L 0, I) 

LL 
+ 2f12(1 - V) 

I_cix JI,z j$ [& - arctan &] 

x Au,(i, i) ti di. (54) 

Note that the integrand remains finite as f, i approach the point x, z at which D = 0. 
The expression a& for the stress which the same opening AL+ induces in an infinite 

untracked body can be found by several routes. Perhaps it is simplest to follow Meade 
and Keer[7] and their predecessors in observing that such elasticity problems are gov- 
erned by a three-dimensional harmonic function Y = Y(x, y, z) having the properties 
that on the plane y = 0 

C&(X, 0, Z) = -aWay lycOr Au,,.(x, z) = -[2(1 - u)/~lY (,._,j+. (55) 
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Thus we seek a harmonic function Y which vanishes at infinity and takes on given 
values on the plane y = 0. Some elementary analysis shows that the solution can be 
obtained by differentiating the spherically symmetric harmonic potential (D’ + _$)- I’: 
on y (i.e. forming a double layer) and superposing such that 

(56) 

and hence 

where D is given by eqn (53). By moving one alax in eqn (57) inside the integral, 
observing that 

AU,= -; $ 
0 

a AL(> 
AN,=-ZT - 

( ) 

+ 1 aAl/, 
D af * 

(58) 

applying the divergence theorem while noting that A14,. vanishes outside some finite 
region, doing the same for one a/&z, and then moving the other alax and dlaz inside the 
integral one has 

a 
(n - “‘2 + (i - z,, a Alc,.(f,i$- , 1 &di 

(59) 

which is the form given by Weaver[ 131. 
Equations (54) with (57) or (59) gives the stress induced in the cracked solid by 

some arbitrary distribution of opening dislocation on y = 0. One must add to that 
expression the stress field induced in the cracked solid by whatever loadings f act in 
order to obtain the total stress. If, as an example, one wishes to analyze the opening 
Au,, of a crack on some region A of the half plane y = 0, x > 0, ahead of the main 
crack on y = 0, x < 0, then it is necessary that Au, be chosen so that the total CJ?) 
vanishes on A. Weaver-[ 131 has outlined a discretization of the integral in eqn (59) which 
allows numerical solution for the opening Au,. of an isolated crack on A in an infinite 
but otherwise untracked body. By adding to Weaver’s discretized matrix the non- 
singular contributions from the integral in eqn (54) on A it would seem straightforward 
to extend his approach to determine numerically the opening Ahu,. of the crack surface 
A ahead of the half-plane crack. 
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Note udded in proof: 

Since preparation of the manuscript the author has learned that Dr. H. F. Bueckner has derived, in the 
paper The weight functions of mode I of the penny-shaped and of the elliptic crack (Fracture Mechunics 
und Technologp, (Edited by Sih and Chow), Vol. 2, pp. 1069-I 107, Sijthoff and Noordhoff, (1977)), results 
somewhat analogous to those quoted here from [I] as eqns (7)-(9) for the mode 1 weight function of the half- 
plane crack. Bueckner’s results are for fields which vary as cos (AZ) along the crack front, but by weighting 
them with the Fourier transform of a Dirac function of z-z and then integrating in A it is possible to derive 
the mode I weight function of eqns (7)-(9) from them. As learned in a private communication from Dr. 
Bueckner. he has independently derived the mode I weight function in this way, in as yet unpublished work, 
and has developed a similar derivation for the mode 2 and mode 3 weight functions denoted hz and h3 here 
and given only by integral representations in [I]. His results update the discussion at the bottom of the second 
page of this paper. 


