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AESTRACT 

CRACKS in ductile single crystals are analyzed here for geometries and orientations such that two- 
dimensional states of anti-plane shear constitute possible deformation fields. The crystals are modelled as 
ideally plastic and yield according to critical resolved shear stresses on their slip systems. Restrictions on the 
asymptotic forms of stress and deformation fields at crack tips are established for anti-plane loading of 
stationary and quasistatically growing cracks, and solutions are presented for several specific orientations in 
f.c.c. and b.c.c. crystals. The asymptotic solutions are complemented by complete elastic-plastic solutions for 
stationary and growing cracks under small scale yielding, based on previous work by RICE (1967,1984) and 
FREUND (1979). Remarkably, the plastic zone at a stationary crack tip collapses into discrete planes of 
displacement and stress discontinuity emanating from the tip; plastic flow consists of concentrated shear on 
the displacement discontinuities. For the growing crack these same planes, if not coincident with the crack 
plane, constitute collapsed plastic zones in which velocity and plastic strain discontinuities occur, but across 
which the stresses and anti-plane displacement are fully continuous. The planes of discontinuity are in several 
cases coincident with crystal slip planes but it is shown that this need not be the case, e.g., for orientations in 
which anti-plane yielding occurs by multi-slip, or for special orientations in which the crack tip and the 
discontinuity planes are perpendicular to the activated slip plane. 

1. INTRODUCTION 

THIS article analyzes stress and deformation fields around crack tips for both stationary 
and growing cracks in ductile single crystals subjected to anti-plane shear and oriented 
so that two-dimensional anti-plane strain is a possible deformation state. The material 
is considered as elastic-perfectly plastic and both asymptotic and complete analyses 
are carried out. The plastic yield condition in single crystals is of the type that the shear 
stress on each possible slip system is bounded by the strength for that system. Thus the 
response is anisotropic, but with a flow rule of associated type. For the complete 
solutions developed, small scale yielding is considered, i.e. it is assumed that the plastic 
zone dimensions are small in comparison with the crack length. 

Previous work on this problem has been presented for the stationary crack case by 
RICE (1967, 1984). He devised a solution method for an edge crack or V-notch in a 
general anisotropic ideally plastic half space under anti-plane conditions, based on the 
well known “hodograph” type transformation. He also presented some specific results 
for cracks under small scale yielding in solids with yield surfaces consisting(like those in 
crystals) of straight-line segments in a two-dimensional stress space whose coordinates 
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PI<;. I. Coordinate systems and notations used : .x1. x2, x3 Cartesian system ; r, 0 polar coordinates 
centered at crack tip; e, h unit vectors in radial and angular directions. respectively: (I crack length. 

are the anti-plane shear stress components. For yield surfaces of the type mentioned, it 
was shown that the plastic zone collapsed to planes of displacement discontinuity 
emanating from the notch tip. We adopt the Rice solution method later in the paper to 
present results for small scale yielding at stationary crack tips in some specific crystal 
geometries. We also present results which are new in character on the form of the near 
tip stress and deformation fields for quasistatic growth in ideally plastic crystals. These 
results are primarily asymptotic in character and are developed by first extending, and 
specializing to the single crystal context, asymptotic results by RICE (1982) on 
quasistatic crack growth in ideally plastic solids of arbitrary anisotropy. 

Coordinate systems adopted for this analysis are shown in Fig. 1. The fixed Cartesian 
system xr, x2, xj is chosen so that xJ is parallel to the crack front and x1 is pointing in 
the direction ofcrack growth. Polar coordinates r, 0 lie in the x1, x2 plane, have origin at 
the possibly moving crack tip and have the associated unit vectors e and h in the radial 
and angular directions, respectively. It is evident that 

where 

&/ax, = e,, dOl?x, = h,/r, (1) 

c1, = 113 = cos 0, ez = -h, = sin 0, e3 = h, = 0. (2) 

Greek indices have values 1, 2 and follow the summation convention. Exception is 
made for 0 ; indices r and 0 always denote components relative to the polar coordinates. 
The crystal orientations and loadings considered are such that the only non-vanishing 

stresses are or3 = c3r = z1 and @23 = 032 = rz. 

Equilibrium 

2. GOVERNING EQUATIONS 

The equilibrium equation for anti-plane shear is 

r&n +J’ = 0, 

where f is the body force, or, in polar coordinates, 

(3) 

(4) (dz,/aO)h, + r(drlJdr)e, + rf’ = 0. 
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For the asymptotic analysis of the stress field around the crack tip we assume that, 
because of boundedness of stress, r(&JJar) -+ 0 as I + 0 so the second and third terms in 
(4) vanish as I + 0. Hence, in that limit the equilibrium equation requires that 

h,z; = 0, (5) 

where 7: = lim [&Jr, 0, t)/Nj. Equation (5) can by use of (2) be written as 
r-0 

e2z; = elz; (6) 

or, in polar coordinates as 

z,+r;, = 0. (7) 

Yield condition 

A plastic yield condition is in general presumed to take a form f(a) = 0 where tr is the 
stress tensor. This is the equation of a curve in the two-dimensional cr space with 
coordinates denoted by rr, r2 ; we refer to this curve as the yield surface. However, in 
single crystals as they are modelled conventionally, the yield surface consists of 
straight-line segments. This is because in crystals slip can occur only on certain planes 
and in certain directions (e.g. { 11 l} planes and (110) directions in face-centered cubic 
crystals), i.e. on particular slip systems. Thus the allowable states of stress are given by 

r(k) E n!k)e..#) = #)r,s$k)+ #Jr 
1 VJ 01 

s(k) < rg) 
a 3 (8) 

(i,j = 1, 2, 3; c1 = 1, 2), 

where rCk) is the resolved shear stress on the kth slip systems, nik), nb”’ are the components 
of the unit normal of the slip plane, s3 , (‘) sck) are the components of the unit vector in the a 
slip direction, and r#“ is the yield strength for the kth slip system. Thus for each slip 
system in a given crystal we will have a line in r space whose equation is of the form 
rr~\~‘rr + m(zk)r2 = $I. The yield surface is the inner envelope of this set of lines as shown 
in Fig. 2, and mtk)[ = @I\~), m$“)] is a vector in the outer normal direction to a given line. 

Stress-strain relations 

The rate of deformation is given by 

(9) 

FIG. 2. Yield surface for a single crystal as the inner envelope of the set of lines corresponding to critical 
stressing of the separate slip systems. 
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where u is the displacement in the x3 direction. The elastic deformation is 

where c,~ is 2 x 2 matrix of elastic compliances, and the plastic strain rate is 

(11) 

where jCk’ >, 0 and c denotes the summation over all active slips systems (with index k). 

jck) > 0 only if the ehuality holds in (8). Sometimes, several symmetrically oriented slip 
systems must be active simultaneously to produce (only) anti-plane strain. Hence a 
single yield surface segment of normal m may correspond to more than one active slip 
system, and a vertex where two segments join may correspond to more than two active 
systems. The flow rule is of associated type and this corresponds to normality of $ to 
the yield surface in the r, plane (or to j: having the direction within the fan defined by 
limiting normals at a vertex). For elastically isotropic crystals as well as for some high- 
symmetry orientations of cubic crystals (10) can be written as 

YE = ca#9rp = (f//L (12) 

where M is the shear modulus. 

3. STRESS AND STRAINFIELDSINDIFFERENTSECTORSAROUNDTHECRACKTIP 

In general, there will be zones of material that currently deform only elastically and 
zones that currently respond plastically. The former zones may be either of a type that 
has previously yielded but now responds elastically, or of a type that has always 
responded elastically. Thus, around the crack tip we will have some combinations of 
what we call “elastic sectors”, i.e. regions of material that currently respond elastically, 
and “plastic sectors”, i.e. regions of material that are currently plastically active. The 
full stress and strain fields around the crack tip will be obtained by assembling different 
types of sectors and satisfying certain continuity conditions across the lines that are 
boundaries between sectors. 

Elastic sectors 

Elastic sectors can either be of constant stress type, rh = 0, or a more general type in 
which 7: # 0. Starting from the compatibility condition 

aYIiax2 = aY2/ax, (13) 

we consider first a sector which has always responded elastically or which, if previously 
yielded, is such that the yX are finite and do not vary with 0 as r -+ 0. This is the type of 
elastic sector found at a stationary crack tip. In such a case it suffices for asymptotic 
analysis to use the elastic constitutive relation (10). Using r(&,/ar) + 0 as r + 0 we 
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obtain from (13) and (1) that 

Cl,7& = c&7&, ($4) 

or by making use of (2) 

c1=7Lel +cz,7:ez = eScga7i = 0. (15) 

Taking into account the equilibrium condition (6) from which we can write 7; = 
(e,/e&, this becomes 

csc&i/ez)7; + eseflz7; = escc,e,7;/e, = c,7~/ez = 0, (16) 

where c,, = e,cGPeS. Since c,, # 0 it follows that 

7i = constant and 72 = constant (17) 

in the sense that in the limit r -+ 0 the stress components are inde~ndent of 8 (or 
“constant”) in such an elastic sector. 

A more general type of elastic sector in which 7: # 0 is possible for the growing crack 
case. This arises in sectors of material that currently respond elastically but have 
previously yielded in the crack tip singularity. We write 7, = 7&r, 8, t) and then we have 
for the stress rate 

fr = (&J&)i +{~7~~~)~ + (d7,J&) = (&/Jar) (- e,li) -i- (&JiW) (e#/r) + (87,J&), (18) 

where use is made of + = -e,ci and e = e&/r when we follow a material point. Since 
r(d7JJar) -+ 0 as r + 0 and we may assume r(LJ7JJat) + 0, it follows from (18) that 

. ,. I”C, -h t,e,a. (19) 

This means that the stress rates, and hence elastic strain rates, are singular as k/r in 
sectors around the crack tip in which 7: # 0. If we make use of (10) and (19) we can write 

9, = c,B?lr -+ c,g7be,d/r. (20) 

Now we make use of compatibihty condition 

liI,2 = j2.1 (21) 

and we write this with the use of (20) and (1) as 

(c,87;lez)(--e,lr2)+(cla)(7;pez)l(hh2/’2) = (- czg7beZ) (beilr2) + (c2& (7;ldWWr2). 

(22) 

Now using (2) and knowing that cI@ = e,caa and c& = &cag = c,,, we obtain from (22) 

+d7be2Y + c0~(7+2) = CcrB(7ie2)l’ = 0. (23) 

Hence 

crs76e, = constant, 

which we can rewrite using 7; = (e,/e,)zl, from (6) as 

(e,c,ge&; 5 c,,z; = constant. 

(24) 

(25) 
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Thus, in elastic sectors of the type considered 

t2 = A -fi [cl,(O)]-’ de, 
J 

s (26) 
z, = C-B (sinU))‘cos8[c,,(U)]-‘do, 

where A and B are constants. This includes the constant stress sector as a special case, 
8 = 0. For the case of an isotropic material, c,, = l/p independently of 8, the expres- 
sions for stresses (26) reduce to the known relations (RICE 1982) 

r2 = A-B0, z1 = C-Bln(sin8). (27) 

Since c?ti/ilr = eaja, we have from (20) and the steps from (24x26) that the velocity 
field in such elastic sectors satisfies 

hi/& -+ eac,gThe2Lijr = c,,T;ci/r = -&i/r. (28) 

Thus, the velocity field is singular in the form ti -+ &+ In (L/r), L having length 
dimensions, in such elastic sectors at a growing crack tip. 

Plastic sectors 

Plastic sectors are regions of material around the crack tip that are currently stressed 
to yield and deform plastically. Their discussion here applies also to the special case of 
sectors that are instantaneously stressed to yield but do not further strain (as in 
stationary crack solutions by RICE (1967,1984)), or do so only elastically by unloading. 
See section 3 for further discussion. Such sectors for general anisotropic solids can be of 
constant stress type or of variable stresses (centered fan sectors, RICE (1982)). For single 
crystal yield surfaces as given in Fig. 2 it is now shown that we shall have only sectors of 
the first type, i.e. with constant stresses. It is evident that in any sector that is stressed to 
yield, a relation of type mini +m,z, = z,, = constant is satisfied. This refers to a 
straight-line segment of the yield surface whose outer normal is m. If the stress state in a 
sector lies simultaneously on two such non-collinear line segments, i.e. if the state is at a 
vertex, then r 1 and t2 are necessarily fixed and the sector is of constant stress type (and 
not only as r + 0). Hence, we now consider the case of stresses on a single line segment, 
in which case 

mlz; f mg', = 0 (29) 

within the segment. When combined with the equilibrium equation in asymptotic form 
ezr’, = eiz; there results 

(30) 

Hence, everywhere except possibly along the single ray from the crack tip for which e is 
perpendicular to m, i.e. m * e = 0, the result (29) implies that r; = 5; = 0 and hence that 
the sector is of constant stress type. It will be seen shortly that the special ray mentioned 
is, in fact, one along which stress and displacement discontinuities are permissible for a 
stationary crack, and velocity discontinuities for a growing crack. It is a ray to which 
the associated plastic strain rate is perpendicular, by (11). 
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For the case of a stationary crack we obtained the result that possible sectors around 
the crack tip are either elastic or plastic sectors of constant stress type. Therefore, to 
assemble such sectors in the full field around the crack tip, the existence of 
discontinuities is necessary if the crack surface boundary conditions TV = 0 are to be 
satisfied while transmitting shear r2 # 0 ahead of the crack. As suggested by the 
equilibrium equation written in the form of (7), we have the requirement that z, must be 
continuous, and thus only z, is discontinuous across the line between two different 
constant stress sectors. This suggests that y, may be discontinuous at sector boundaries, 
and this is what occurs in solutions presented by RICE (1967, 1984). Hence we consider 
discontinuities along which possibly 

i?[ujpr # 0, [u] = u--u+, (31) 

where U+ and U- are the values of displacement just ahead of, and just behind a line of 
discontinuity, respectively, which implies that u is discontinuous across that line. This 
displacement discontinuity, when regarded as a concentrated plastic shear of type yi, is 
consistent with the flow rule (11) only if the discontinuity is such that the vector h along 
it is a direction of plastic shear yp allowed by the flow rule (11). Thus the stress state on at 
least one side of such a purported discontinuity must be at yield and such that the yield 
surface outer normal m of Fig. 2 (or some positive linear combination of two m vectors 
at a vertex) is in the direction of h. 

Let us examine the case, arising in specific solutions, that both sides of the 
discontinuity are stressed to yield in a manner consistent with concentrated plastic 
shear along the discontinuity. Then stress states on both sides of the discontinuity lie 
along a yield surface segment with normal m and, analogously to (29) 

Since from equilibrium r0 = h,z, is continuous, we also have 

(32) 

(33) 

and the last two conditions can be satisfied simultaneously only if, analogously to (30), 

(mrer +m& Er& = 0. (34) 

Hence such a discontinuity (for which [rr 1, [Trz ] # 0) is possible only along a ray from 
the tip for which e is perpendicular to m, because then mlel + m2e2 = 0. 

That is, the sector boundaries are defined by rays of stress and displacement 
discontinuities for which h of the ray has the direction of m. As revealed in the solutions 
by RICE (1967,1984), for the stationary crack under loadings inducing z2 > 0 ahead of 
the crack, the field at the tip consists of an array ofconstant stress sectors at yield. These 
sectors have a stress state corresponding to the vertices of the yield surface (or, along the 
crack faces, to the points on the z1 axis where r2 = 0), and the stress state jumps 
discontinuously from vertex to vertex along the ray for which h has the direction m of 
the normal to the yield surface segment joining the vertices (i.e. along the ray in the x1, 
x2 plane which is parallel to the considered yield surface segment in the rl, r2 plane). 
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Assembling sectors : yrowing crack 

For the case of a growing crack, possible sectors around the crack tip are elastic 
sectors of possibly variable stresses and plastic sectors of necessarily constant stress 
type. Following DRUCAN and RICE (1984) where a complete discussion on dis- 
continuities across a quasistatically moving surface is given, we consider now what 
kinds of discontinuities may emerge on the ray which is the boundary between the two 
types of sectors mentioned. A ray of displacement discontinuity cannot move per- 
pendicular to itself so we have 

irh, hf4il = 0, (35j 

where dh, is its velocity normal to itself; here h is the unit vector perpendicular to the 
ray ofdiscontinuity. So we have that the displacement is continuous everywhere except 
possibly on the crack plane itself. Note that if i] uj = 0, then t’,ii;l,] = 0. Also from 
equilibrium 

(as in equation (33)). Now we make use of the principle of maximum plastic work 
(identically satisfied by the constitutive description of (8) and (1l)j which in our case can 
be written as 

where T, is the actual stress state and 7: is any other stress state with stresses at or below 
yield. Following the DRUGAN and RICE (1984) procedure, if we take r,O = T: and 
integrate (37) across the ray of discontinuity we have 

where + and ~ are the respective forward and rear sides of the discontinuity ray: 
values with superscript + are evaluated immediately before and those with superscript 
- immediately after the discontinuity. By the kinematic and equilibrium requirements 
above, (.c, - r:) dy, vanishes identically in the integration, and hence with d;,’ = c,,~ dr,,. 

(39) 

which proves that [rU] = 0 since cXB is positive defnite. Thus we have a fully continuous 
stress field. The significance of this remark is that the only way that stress can vary from 
that of a (constant stress) plastic sector is if that sector is bordered by an elastic sector of 
type discussed in the first part of section 3. 

As in general discussion by DRUCAN and RICE (1984), a velocity discontinuity at the 
interface is not prohibited, so long as it is consistent with the flow rule. Thus if the stress 
state at the discontinuity is such that the yield surface outer normal m (or some positive 
linear combination of the two ms at a vertex) is in the direction of h, a velocity 
discontinuity [ti] # 0 is allowed. 

Now we consider, using these general conclusions, the boundary between a plastic 
and elastic sector; Fig. 3. From the expression of (28) for &/?r in an elastic sector we 
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FIG. 3. (a) Detail of the stress field around the crack tip; plastic sector (sector with stresses at yield) and 
neighboring elastic sector with boundary fi between them. (b) Corresponding detail of the yield surface. 

can write 
e-3 = --&jr 

and from equations (26) for pi and t2, that 

(40) 

T’ = -eB/e+,,. (41) 

If the stress state in the plastic region is at yield on a segment with normal m, then it is 

necessary that the unloading condition e,m. T’ d 0 be met as the elastic region is 
entered at fi (the factor e, caters to the sign of tI at the discontinuity). We shall handle the 
possibility that the stress state is at a vertex, and hence also on a segment where the 
normal is I& by appending results pertaining to ti in square brackets [. . .] ; these are to 
be disregarded when the stress state is not at a vertex. Thus the unloading condition, 
using (41) is 

(42) 

In the plastic sector we have from the flow rule that 

v= Am[+Ati], (43) 

where A 3 0 [and A >, 0] is a scalar. 
We now enumerate two possibilities : that the interface at fi either (i) is, or (ii) is not 

an interface of velocity continuity. Consider case (i) first. In that case e. i must be 
continuous at the interface, and hence from (40) and (43) 

-&i/r = Ae*m[+Ae-ti]. (44) 

Multiplying through with B, 

-(B)‘b/r = A(Be*m)[+T(Be-ih)] 2 0, (45) 

where the inequality is from (42) and A 3 0 [and jc 2 01. Obviously the only possibility 
is that fi = 0, but that is of no interest because it would only continue beyond p the 
constant stress state of the plastic region. Thus we conclude that alternative (i) is 
untenable and (ii) must apply, i.e. the velocity must be discontinuous at an unloading 
ray p, from plastic to elastic, in an ideally plastic crystal. (There is no contradiction in 
having a reloading ray, elastic to plastic, with continuous velocity since then the 
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inequality reverses (42) and (4.5); such reloading rays appear in solutions to be 
presented.) 

We now know that the ray at [jmust be a site of velocity discontinuity, but the earlier 
discussion shows that this is possible only if e at /j satisties the flow rule condition 
e-m = 0 when the stress state is not at a vertex. When the stress state is at a vertex, the 
condition is e * (xm + 3iti) = 0, with c[ 3 0, d 2 0 and max (a, 2) > 0. But this condition 
can be met, while the unloading inequalities of (42) are met with B # 0. only if either 
e*m=Oore-k=O. 

Thus we conclude that the unloading ray is such that its direction e satisfies e. m = 0 
for the m, or one of the ms at a vertex, corresponding to the constant plastic stress state. 
This means that unloading rays at the growing crack tip, which are rays of velocity 
discontinuity (but continuous stress and displacement), occur along directions in the 
x,, x2 plane which are parallel to straight-line segments of the yield surface in the ‘I,, 7, 

plane. These are the same directions of allowable discontinuities of stress and dis: 
placement for the stationary crack. 

The velocity discontinuity at the unloading ray must leave behind it a discon- 
tinuously accumulated plastic strain. Consider the geometry shown in Fig. 3a. With 

n.ra =.f’ -.f+ and noting that [y’] = 0 since [z] = 0, the flow rule requires that 
[y] = [[y”j = l-m, where I- > 0, and the unit normal N to the discontinuity is --m 
(if m is resealed to be a unit vector). The velocity V of the discontinuity normal to itself 
is N ,6, and since by continuity of U, 

we have 

Now using N, = sin 0, (Fig. 3) and observing from (2X) that li is logarithmically 

infinite at the tip, and assuming tif is not. one has the asymptotic result 

I- = (B/sin 0,) in (L,ir) as r + 0, (48) 

where the scale length L is undetermined by the asymptotic analysis. (For the direction 
of m assumed in Fig. 3, one must have B > 0.) Thus the plastic strain accumulated 
discontinuously at the unloading boundary is 

/j yp j = (Bm/sin fl,) In (Ljr) as r -+ 0. (49) 

Plastic sectors or elastic sectors stressed to the yield level? 

Our asymptotic analysis leads to angular sectors at a crack tip whose stress states as 
r + 0 meet the yield condition, typically at a vertex, and are constant in H within the 
sector. Do such sectors respond plastically or do they instead respond elastically and 
sustain sub-yield stress levels which meet the yield condition only at the limit point 
r = O’? The complete elastic-plastic solutions developed by RICE (1967, 1984) for 
stationary cracks, when specialized to single crystal yield surfaces, show that the latter 
alternative is correct. Such sectors do in fact respond only elastically and all plasticity is 
confined to the displacement discontinuities separating the sectors from one another. 
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Further perspective, applicable to the growing crack as well, is provided by 
observing that a plastic zone corresponding to a vertex cannot exist over a finite 
angular sector at a crack tip and be bordered by elastic material that has not yet 
yielded. To see why, assume that such a zone did exist. The stresses z,, z2 within it are 
constant, and hence they are constant along the finite arc within the sector which 
constitutes the elastic-plastic boundary. But for an elastically isotropic material (the 
argument is easily extended to anisotropy) z2 + iz, is an analytic function of x1 + ix,, 
and an analytic function which is constant along an arc must be constant everywhere. 
Hence zl, z2 are constant everywhere, which is untenable, and we must reject the 
presumption that a plastic zone corresponding to a vertex can exist over a finite area, 
and border unyielded elastic material. The argument then suggests that constant stress 
sectors which are at the front of a growing crack, and which are at yield at a vertex 
according to the asymptotic analysis, are in fact elastic sectors which sustain a stress 
state that reaches yield only at the limit point r = 0. This suggestion should be borne in 
mind in examining asymptotic fields for growing cracks in what follows : for example, 
sectors B, f?’ in Fig. 4d are presumably elastic in the sense just discussed, as are the 
angular sectors immediately ahead of the growing crack for the various cases presented 

after that figure. 

4. APPLICATION TO SPECIFIC CRYSTALS AND CRACK ORIENTATIONS 

In this section we will apply the asymptotic solutions developed in previous sections 
to different cases of crystals and the orientation of cracks within them. We will also 
apply the conformal mapping technique of RICE (1967,1984) to give a full elastic-plastic 
small scale yielding solution for the stationary crack cases and, where possible, we will 
adapt an analysis by FREUND (1979) (see also FREUND and SILLS (1980)) to solve 
approximately for the steadily growing crack cases. In applying the yield condition (8) 
for the crystals and orientations which we consider here, we find that the yield surfaces 
in the r,, z2 plane are diamond-shaped parallelograms. In the first case considered two 
edges of the parallelogram are parallel to the z1 axis and in the other cases vertices of the 
diamond are on coordinate axes. 

F.c.c. crystal-crack on slip plane (11 l), tip in slip direction [lOi] 

There are 12 different primary slip systems in an f.c.c. crystal, where the slip planes are 
octahedral planes of (1 1 l> type and the slip directions are face diagonals of (1 Oi) type. 
For the case considered in this section the crack is on the slip plane (111) and the crack 
tip lies along the face diagonal [lOi]. Figure 4a shows this orientation of the crystal and 
the crack and the corresponding yield surface is shown in Fig. 4b, with slip systems 
corresponding to different straight-line segments indicated. As the yield surface is the 
inner envelope of a set of straight lines only the four lines that are relevant are shown. 
Principal features of the stationary and growing crack tip fields are shown in Figs 4c 
and 4d, respectively. 

Stationary crack. As already proven in detail in section 3, for the stationary crack the 
stress field around the crack tip will consist of sectors of constant stress type which are 
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Fit;. 4, (a) F.c.c. crystal with crack un ii f I) plaae, tip along [10X] dire&m, &I the yield surfxu;: (c) stress 
field around the statinnarg crock tip, with discontinuous changes between cons%mt stress states at yield as 
I 4 0; R,,. R,, R2 arelengthscrflineplastrczones:~ri)slressfieidaroundthegrowingcra~k tip: B. B’-sectors 
with stresses at yield ; C, c’ elastic sectors : 11, D’--- plastic wakes ; a-lint of displacement discontinuity, [j. 
/F lines of v&city discontinuitics : 7, ;” -elastic to plastic interfaces. Wake angles exaggerated for clarity. 

stressed to yield as Y -+ 0. and which are actuafiy efastic sectors, whereas the plastic 
zones are the discrete lines of the displacement and stress disc~nt~nu~t~es separating 
those sectors. The line plastic zones are parallel to correspanding segments of the yield 
surface. Line plastic zone K,, corresponds to the segment BB’ of the yield surface with 
stresses 2, = uta( - 1.413 i a < 0.706) and z2 = r,; line R, corresponds to the 
segment BD’ with the equation --WI432 1 - 0.3332, = T* and line R2 corresponds to the 
segment B’B with the equation 1).843~, +0.333x, = x0. Here x0 is the yield strength for 
any of the 12 f.c.c. slip systems. Fur the ease of an etastically isotropic crystal in smafl 
scale yielding the lengths of these plastic zones are determined by the conformal 
mapping procedure in the Appendix and are 
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Here K is the elastic stress intensity factor, defined according to the elastic crack solu- 

tion such that @r, -+ K as r + 0 on 6’ = 0, and ,u is the shear modulus. 

Growing crack: In section 3 we considered assembling sectors for the growing crack 
case and we came up with some general conclusions which we can directly apply here 
for the parallelogram yield surface. We obtained earlier the result that the stress field 
around the crack tip of a growing crack consists of sectors with stresses at yield (plastic 
sectors) of constant stress type and elastic sectors of variable stresses. It seems 
reasonable to assume that as in the solution for a plastically isotropic solid by 
CHITALEY and MCCLINTOCK (1971), there must be a plastic zone ahead of the crack. For 
the crystal any such finite sector will necessarily be of constant stresses and can be 
expected to correspond to some point on segment BB’ of the yield surface; Fig. 5. We 
also know that due to the stress continuity requirement discussed in section 3, adjacent 
to this sector of constant stresses there has to be an elastic sector with variable stresses. 
The interface between these two sectors, /I (and p’ for the lower part of the field), has to 
satisfy conditions developed in section 3, i.e. it has to be parallel to the corresponding 
segment of the yield surface and has to allow velocity discontinuity. Here we have to 
consider two possible cases : stresses in the plastic sector, B, ahead of the tip correspond 
to either ; (1) any interior point on the segment BB’, e.g. A, or (2) to a vertex, B. Case (1) 
would imply, according to the analysis of section 3, that the interface p is at 8 = O0 = 0”. 
The stress continuity condition requires that stresses in the elastic region are equal to 
stresses in the plastic region at the interface /I, for 6 = 8,. But from expression (27) for 
stresses we see that in that case, stress z1 would be pi = C-B In (sin 0,) and for Q0 = 0” 
it is unbounded unless B = 0 (but B = 0 merely continues the constant stress field). 
(Constants A, B and C of (27) are not to be confused with similar letters designating 
sectors at the crack tip and corresponding points or arcs on the yield surface diagram.) 
Thus we cannot have the interface, p at 8 = O”, and case (2) must instead apply with 
stresses at vertex B or B’. According to section 3, the sector of constant stresses then has 
to extend until the condition e * m = 0 for the existence of a velocity discontinuity is met 
for one of the ms at the vertex (and in this case, evidently not that corresponding to 
e0 = 0). Thus the stresses from 0 = 0 up to the angle B0 correspond to vertex B of the 
yield surface where the condition e * m (I) = 0 is satisfied, and to vertex B’ up to the 
negative angle for which e * m (‘) = 0 for the lower part of the field. Corresponding angles 
are, Fig. 5, 

0, = 1.910 rad = 109.46” and I!& = - 1.231 rad = - 70.54”. 

q 

FIG. 5. Enlarged detail of the yield surface of Fig. 4b 
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Thus we have for stresses in sectors B and B’ 

T, = - 1.4132,,, 52 = 5,) in B, (SOa) 

T , = 0.70720, x1 = T,) in B’. (50b) 

and the line ahead of the crack remains a line plastic zone of stress and displacement 
discontinuity (permissible since h, = 0 on that line). The interfaces fi and /I’ satisfy 
conditions required for plastic to elastic interfaces in section 3 and are parallel to 
corresponding segments of the yield surface BD’ and B’D, respectively (Fig. 4b and d). 
Now using (27), again treating the elasticity as isotropic. we can write the stress 
continuity condition across /I’. at 8 = fl, = 109.46’) 

T I= - 1.413~~ = C ---B In (sin (IO). r2 = zC, = A -- BU,. (51) 

A similar set of equations can be written for the lower part of the field. Thus we obtain 
the final expressions for stresses in elastic regions as 

71 = -1.4132,-B In (sin d/sin O(,), s2 = zo- B(f)--O,,) in C (52a) 

and 

T I = 0.707r,,-~- B’ In (sin fI/sin Hi)), z2 = T,+ B’(f).--01) in C’, (52b) 

.l’hcre c‘ :tnd C“ arc the elastic sectors respectively above and below the crack tip in 
F‘ig. 4d. and constants B and B’ are yet to be determined. 

Stresses in the elastic region vary with 0 (following the path C‘ or C” of Figs 4b and 5) 
but the elastic sector cannot extend up to 0 = n, i.e. to the crack surface. because the 
expressions fcJr tl would then be unbounded. The crack surface boundary condition is 
TV = 0 and this condition can be met at points D and D’ of the yield surface (Figs 4b and 
5). ‘Thus, we join the elastic sectors to constant stress sectors D and D’ in Fig. 4d, i.e. 
plastic wakes with 

71 = 1.06~,,. r2 = 0 in D and T! == 1 .OO. 7% = 0 in 11’. 

Thus we have elastic to plastic interfaces 1,’ and y’ which, according to section 3. can exist 
and have velocity continuity. We now impose the stress continuity condition across 
y, the interface between elastic sector c’ and plastic wake I), which will allow us to 
solve for the constant B and angle of the interface H, (or the angle of the wake 0 where 
ctr = no-- 0,); Fig. 4d. Thus, for 0 =- fJ,, 

f L1 = 1.067, = .~ 1.413~,,~~ B In (sin H,,/sin 00), (53a) 

rz 2: 0 := ?(I - 1318, UC,). (S3b) 

From (53b) we can express B in terms of TO, r2 and H,, and 0, and substitute into (53a). to 
obtain the equation for CD 

2.417(71-(I,)-2.4170 = ---In (sin QJ+ln (sin (I,,). (54) 

We can obtain similarly the equation for the angle of the lower wake. They have 
solutions 

4) = 0.0509 rad = 2.91 ’ and Q’ = 0.0343 rad = 1.96 ‘. 
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Corresponding values of the constants are 

B = rO/(B1 -0,) = z,/(rc-a-8,) = 0.8472, and B’ = 0.533r0. 
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From (49) with & = B/,a, the plastic strain accumulated at the velocity discontinuity 
at p is of the form 

yp = (B/p sin &,)m(‘) In (L/r) as I + 0 (55) 

and this plastic strain prevails throughout the elastic region C, so long as r is interpreted 
as the radius of a material point when it is traversed by the moving discontinuity p. 

Further plastic straining, in addition to the Dirac-singular y4 accumulated on x2 = 0 
in the front discontinuity, occurs in the wake D and there the flow rule requires 
1; = 1;” = Am@’ (note that ye vanishes in the wake). Thus by (9), in the wake, 

zi = f(x*mc2’), A = f’(~*rn’~‘) 2 0. (56) 

Since ti must be continuous across the boundary of the wake at y in Fig. 4d, so also must 
e. 9. This is given on the elastic side of the boundary by (40) and setting x = re, along 
that boundary (e, is the radial unit vector at 13,), there results for r -+ 0 

f’(re, - mc2)) = - Bd/,ur. (57) 

Note that eY * rn(‘) < 0. Thus the function f’(A) is such that 

f’(A) = - BLi/pA, 2 + 0 

and hence f(A) = (Bd/p) In (%/[A]) w h ere the scaling length z is undetermined by the 

asymptotic analysis. Finally, 

ti = (Bti/p) In (z//Ix - rn”‘I) (58) 

in the wake near the crack tip, and this shows that the upper crack face velocities have 
the form 

where L = L/lm(:)]. 

ti = (B&/p) In (L/r), r -+ 0, (59) 

Equations similar to (56), (58) and (59) can be derived for the lower field in Fig. 4d. In 
this case we have not been able to proceed further to develop a complete small scale 
yielding solution, but this can be done approximately for other growing crack cases to 
be considered next. 

F.c.c. crystal-crack on cube face plane (OlO), tip in slip direction [ lOi] 

This, and two following subsections deal with cases for which the yield surface is a 
diamond with vertices on the ri, r2 axes. This form is obtained for both f.c.c. and b.c.c. 
crystals when the crack is on the (010) cube face plane. For the particular case 
considered in this subsection the crack and crystal orientations as well as the shape of 
the yield surface is shown in Fig. 6, where the near tip stress field solutions for both 
stationary and growing crack are also illustrated. Owing to the symmetry of the yield 
surface the stress field is symmetric about the crack line. 
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FIG. 6. (a) F.c.c. crystal with crack on (010) plane, top along [lOi] direction: (b) the yield surface;(c) stress 
field around the stationary crack tip ; R is length of line plastic zones; (d) stress field around the growing 
crack tip : A sector with stresses at yield ; B, tl’ plastic wakes ; C, C’ elastic sectors; [i, B’ lines of velocity 

discontinuities ; ;I, ;a’ -elastic to plastic interfaces. 

Stutionury truck. The results are illustrated in Fig. 6c. Constant stress states at 
vertices A, B’, B are separated by line plastic zones. The conformal mapping procedure 
as explained in the Appendix enables us to determine the lengths of the line plastic 
zones as R = 0.292 (K’/z$ and the displacement discontinuity at the crack tip is 
Au = 0.346 (K2//qJ. 

Growilrg crack. The procedure of obtaining the solution for the growing crack is 
somewhat different than for the case in Figs 4 and 5. Here we do not have the line of 
displacement discontinuity, CI, ahead of the crack tip (no corresponding horizontal 
segment on the yield surface), but the sector A with constant stresses at yield results 
over - do < 0 < + (I,, where 8, = 0.9553 rad = 54.74” is the slope of the inclined faces 
of the diamond (Fig. 7). The sector ends at the lines of velocity discontinuity /I at angle 
H,, beyond which there is an elastic sector. Now, knowing this angle we can calculate 
the position of lines I’, i.e. the interfaces between the elastic sectors C, C’ and plastic 
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(a) bl 

FIG. 7. (a) Yield surface of Fig. 6b and stress trajectory in elastic sector; (b) stress trajectory of Freund 
procedure (1979) for 0, = 54.74”. 

wakes B, B’, respectively. As we start from the point A of the yield surface the stresses in 
sector A will be 

zr =o, rz = (r2).4. (60) 

From stress continuity across /3 we obtain for stresses in the elastic region C 

tI = - B In (sin e/sin 19,), (61a) 

rz = @*)A - B(B - 44, (61b) 

with (T*)~ = 1.732~~ for the present case. Figure 7a shows the procedure of obtaining 
the angle 13~ at which the interface y occurs between the elastic sector C and plastic wake 
B. Starting from point A the stress trajectory of (61) departs from the yield surface 
tangentially and follows a path C throughout the elastic region. The constant B in (61) 
must be chosen so that the trajectory passes to the stress state at vertex Bin Fig. 7a so as 
to meet the crack surface boundary condition. Since (r& = (cos tI,/sin 0,) (zJA we will 
have 

r1 = (cos B&in e,) (z~)~ = -B In (sin B&in e,), (624 

z2 = 0 = (T2)A -B(e, -e,). (62’4 

Eliminating B, we can solve for the angle 8, at the wake interface y, and the angle of the 
wake @, where Q, = z-B,, is given by 

(7~ -Q-e,) (cos Be/sin e,) = In (sin e,) - In (sin a). (63) 

Substituting the value for 8,, we obtain for the wake angle @ = 0.201 rad = 11.52”. The 
corresponding value of the constant is B = 0.8722,. 

We can solve approximately for the length of the inclined plastic zone (velocity 
discontinuity at /I), at least for steady state crack growth under small scale yielding 
conditions, by adapting a result by FREUND (1979). As an approximate model for yield 
at a growing anti-plane crack tip, presumably in an isotropic material, he assumed that 
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all plastic how occurred along two straight lines of velocity discontinuity emanating 
from the crack tip at angles + 0, (0 in his notation and determined the length of these 
lines as well as the distribution of velocity discontinuity (hence plastic strain accumu- 
lation; see equation (49)) along them by requiring that the stress component z, = T,,, 
is constant, along them. As we see Freund’s assumptions describe the situation in 
crystals with diamond-shaped yield surfaces as in Figs 6 and 7, the only difference is 
that he does not include the wake. That is, Freund’s elastic sector, beyond Q,, extends all 
the way to the crack surfaces at H = n, and the parameter B in the equation (61) is then 
chosen in his elastic sector to meet the crack surface boundary condition. Thus, the 
stresses in his elastic sector are 

r , = -- [(r2),J(71 -. 0,)] In (sin B/sin fl,), (64a) 

r> = (TZ)A(rz ~ 0)/(X - 0”) (64b) 

and he commented explicitly on the logarithmic divergence of the expression for or. 
Freund’s stress distribution is identical to that of equations (61), but with the exact 
B = 0.8722, for this case replaced by 0.7915,. Figure 7b shows a plot of the stress 
trajectory according to Freund’s analysis. This is, in fact, the worst case of those we 
consider. The next case involves a much smaller wake angle and;as might be expected, 
the Frcund trajectory is then much closer to the actual trajectory. 

Hence, to within the approximation of neglecting the plastic flow in the wake 
Freund’s solution may be used to estimate the size of the plastic zone at fl. Reading 
results for B0 = 54.74’* from Fig. 3 of his 1979 paper and setting sp = rCj we obtain 
R* = 0.144 (K’/z$ for steady state quasistatic crack growth under small scale yielding 
in the crystal geometry considered. This is considerably smaller than the result noted 
earlier for the stationary crack. 

We have not been able to work out unique results for the near tip plastic strain rate in 
the wake since the stress state there corresponds to a vertex. However, it is interesting to 
note that if the yield surface were very slightly rounded at vertex B, a virtually identical 
near tip distribution would result but the direction of plastic flow in the wake would be 
unique, with i = lip = Ai,, where i, is a unit vector in the x, direction and (then) the 
normal to the yield surface at B. Thus the analysis of equations (57)-(59) applies directly 
to this case with eY now understood to correspond to the present direction :I at angle 0,) 
B to the present B, and with rn@) replaced everywhere in those equations by i,. 

F.c.c. cr~stul-crack on cube.ftice plane (OlO), tip in cube edge direction [OOl] 

For this case of orientation of the crack we also obtain the diamond, reduced to a 
square, with vertices on the rr, rZ axes for the yield surface. This case is interesting 
because we have simultaneously active two slip systems along each straight-line 
segment and four systems at each vertex. This is shown schematically in Fig. 8, where 
the figure of crystal, and stationary, and growing crack solutions are also illustrated, 
and the nature of the double slip corresponding to each straight-line segment of the 
yield surface is shown. In contrast to the previous cases, here the line (or plane, in three 
dimensions) plastic zones emanating from the tip do not coincide with a crystal slip 
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FIG. 8 (a) F.c.c. crystal, crack on (010) plane, tip along [OOl] direction; (b) the yield surface; (c) stress field 
around the stationary crack tip; (d) stress field around the growing crack tip; (e) simultaneous slip on two 

slip planes. 

plane. In Fig. 8b, the distance zY of the straight-line yield surface segments from the 
origin is 1.7322,. 

Stationary crack. The solution, obtained by the conformal mapping procedure given 

in the Appendix, for the lengths of plastic zones and displacement discontinuity at the 

crack tip is R = 0.104(K2/2,$ and Au = 0.198(K2/pzo). 
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[bl 

FIG. 9. (a) B.c.c. crystal ; crack on (010) plane, tip along LlOij direction.(b) The yield surface (same as in Fig. 6 ; 
solution same as in Fig. 6c and d). 

Growing crack. The procedure for obtaining the solution is given in the previous 
subsection. The results are angles 8, = 0.785 rad = 45”, Q, = 0.0729 rad = 4.130”. 
constant B in expressions for stresses given as B = 1.0732, (versus 1.0392, in the 
Freund procedure) and the length of the line plastic zones estimated from the Freund 

procedure as R* = 0.056(K2/rz). 

B.c.c. crystal-truck on cubejilcr plane (010). tip in slip direction [-iOl] 

The crack orientation is shown in Fig. 9a. It is the same, relative to the unit cube. as 
the f.c.c. case in Fig. 6, but now the crack tip does not coincide with a slip direction. 

In b.c.c. crystals there can be several types of slip systems as { 110) (IT1 >, 

{ 112) (I 1 i) and { 123) (1 Ii). We calculated the resolved shear stress for these three 
different types of slip systems. If we assume. following HONEYCOMBS (1961), that T() is the 
same for all slip systems then the inner envelope defining the yield surface is formed 
only by systems of the first type. The result is shown in Fig. 9b, and the yield surface is 
found to be identical to that for the f.c.c. case in Fig. 6b, except that now zC, is the b.c.c. 
critical yield strength for ( 110) (lil). Since the yield surface is the same, it follows 
within our present ideally plastic modelling that the solution and all numerical values 
which enter it are fully identical to what is shown in Fig. 6c and d and discussed in 
section 4. 

This is an interesting case because the slip systems which determine the yreld surface, 
and hence relax the crack, trll have as their slip plane the (101) plane, which is the plane 
perpendicular to the crack tip. i.e. it is the plane of type .x3 = constant and hence the 
plane of such Fig. as 6c and d. Thus, in this case the planar plastic zones which emanate 
from the crack tip are actually prrprndicular to the crystal slip plane which is active. In 
fact, for this b.c.c. case the crack tip is parallel to the normal n to the activated crystal 
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slip plane, whereas the line traces (in the xi, x2 plane) of the plastic zones are 
perpendicular to the activated slip directions s. By contrast, for the f.c.c. case of Fig. 6, 
the crack tip is parallel to the activated slip direction s, whereas the line traces of the 
plastic zones are perpendicular to the normal n of the activated crystal slip planes. 

The comparison emphasizes a symmetry in the ideal plasticity formulation for 
crystals which is perhaps seldom contemplated. In particular, the yield condition and 
hence ideally plastic response of a slip system with parameters n = a, s = b is 
indistinguishable within the continuum theory from that of another system with 
parameters n = b, s = a. It is just such an interchange, with a = (1, 1,l) and (1, - I, l), 
b = (- 1, 0, I), which converts the case in Fig. 6 to that in Fig. 9. It may be noted that 
while the yield condition and flow rule are unaffected by n, s interchange, the rotation of 
the underlying crystal lattice directions relative to the material reverse sign under such 
interchange. Thus a continuum plasticity formulation which accounts for geometrical 
hardening or softening due to rotation of the crystal planes and directions for which 
resolved shear stresses are calculated (such effects are not included in “small strain” 
formulations) will not be symmetric under interchange of n and s. 

5. CONCLUDING DISCUSSION 

We have considered quasistatic crack problems in ideally plastic single crystals 
oriented so that anti-plane shear is a possible deformation state. The yield surface in the 
two-dimensional ri, r2 plane is then a convex polygon, given as the inner envelope of 
the straight lines of various orientations representing critical shearing on different 
crystal slip systems. The envelope was diamond-shaped for the specific crystals and 
crack orientations considered here, but this is not always the case and two examples are 
cited below for which the yield surface is a regular hexagon. 

The solutions developed for stationary cracks, subject to monotonic load increase, 
show that all plastic flow near the crack tip is confined to planar plastic zones 
emanating from and containing the crack tip. The planar zones have orientations in the 
x1, x2 plane parallel to those of the activated straight-line segments of the yield surface 
in the rr, r2 plane. These plastic zones are surfaces across which both displacement and 
stress (specifically, component z,) are discontinuous. 

We have inferred the existence of such planar plastic zones here on the basis of a 
direct analysis for a polygonal yield surface. However, the anti-plane shear formulation 
can be given in some generality for stationary cracks in anisotropic ideally plastic 
materials (RICE, 1967, i984), and visualization of the solution is aided by a simple 
membrane analogy. On this basis it is possible to assert that the solutions given here 
with their planar plastic zones and associated discontinuities are aiso interpretable as a 
well defined limit as E --+ 0 of the solution for another material model, parameterized by 
E, for which the plastic zones are diffuse and displacement and stress are fully 
continuous when E > 0. Here E represents a small curvature convex relative to the 
origin in the T$, t2 plane given to each formerly straight-line segment of the yield 
surface. For the materia1 thus defined, with E > 0, the plastic zone consists of diffuse 
lobes emanating from the crack tip. But as E + 0, each lobe contracts continuously into 
a plane and gradients in the displacement and stress fields steepen into discontinuities 
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across that plane. The discontinuous solutions given here coincide also with what one 
would calculate following the anti-plane version of the well known procedure of BILBY, 
COTTRELL and SWINDEN (1963). There, one assumes (1 priori that the plastic zone 
consists of planes of displacement discontinuity emanating from the tip across which a 
critical shear stress acts. The lengths of these zones are chosen such that no stress 
singularities occur at their outer edges. If the orientations of the planes and the critical 
stresses are correctly chosen, the exact continuum plasticity solutions as given here 
would be duplicated by that procedure. The procedure of Bilby et ul. is normally 
described as one of using continuously distributed dislocations on a plane, or planes, to 
represent the plasticity, and in the anti-plane cases the surrounding elastic field can be 
thought of as having been generated by a continuous distribution of screw dislocations 
with axes parallel to the crack tip. As the subsequent discussion indicates, the actual 
crystal dislocations involved in the plastic relaxation can be reasonably assumed to be 
of the same screw type for some crack orientations, notably those for which the crack 
tip lies in a crystal slip plane, but not for others. 

The solutions developed here for quasistatically growing cracks in ideally plastic 
crystals are necessarily such that the displacement and stress fields are fully continuous, 
at least off of the crack plane and its prolongation. For the growing crack too we find 
that apart from reverse flow plastic wakes along the crack surfaces, all active plasticity 
takes place in planar plastic zones emanating from and containing the crack tip. These 
planar zones have the same orientations relative to the activated straight-line segments 
of the yield surface, as described above for the stationary crack. The plastic zones are 
planes across which the velocity of material particles is discontinuous, and as these 
planes sweep over a material point a plastic strain is accumulated discontinuously 
there. We were not able to develop exact full solutions for the size of plastic regions in 
this case, but could do so approximately for steady state crack growth with small scale 
yielding in some of the cases considered here (Figs 6-9) by adapting previous work by 
FREUND (1979). 

We presented two examples of cracked f.c.c. crystals for which the planar plastic 
zones corresponded with crystal slip planes (Figs 5 and 6), one for a f.c.c. crystal for 
which the planar zones involved multi-slip and did not lie on slip planes (Fig. 8), and 
one for a b.c.c. crystal for which the planar plastic zones were perpendicular to a crystal 
slip plane (Fig. 9). It is of course possible to find crack orientations in a b.c.c. crystal 
such that a planar plastic zone coincides with a crystal slip plane, such as occurs directly 
ahead of the crack tip when the tip lies along [ lOi] as in Fig. 9 but when the crack plane 
normal is instead [ 101). Also, it occurs whenever the tip lines along [ 1 111, a b.c.c. slip 
direction, and in that case the yield surface in the zr, r2 plane is a regular hexagon. 
Similarly, one can find crack orientations in f.c.c. crystals for which a planar plastic 
zone is perpendicular to a crystal slip plane. This occurs, for example. when the crack 
tip lies along [l 1 1 J, a f.c.c. slip plane normal, and in this case too the yield surface is a 
regular hexagon. Indeed this and the last b.c.c. case mentioned constitute an example of 
symmetry of the ideally plastic solution under interchange of n, s for s, n as mentioned at 
the close of section 4. 

It will be of interest to seek experimental evidence for the type of concentrated plastic 
flow predicted, to study theoretically the effects of material strain hardening (actual and 
geometric) and inertia on the predictions. and to seek the correspondence between the 
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present continuum plasticity solutions for crystals and the arrays of lattice dislocations 
forming at a crack tip. 

As regards the latter correspondence, a tacit hypothesis of the continuum approach 
is that potential sources, from which new dislocation loops may be generated, are 
pervasive over the size scale of interest. Here, the size scale is that of the crack tip plastic 
zone which, according to solutions like those presented, may be arbitrarily small 
depending on the level of the applied load and, even at load levels that would be 
appropriate for crack advance (were the loading not in shear), may still not be large 
compared to source spacing in the more brittle crystals. Clearly, a material element can 
deform plastically (at stresses typical ofmacroscopic yield) only if it contains sources or 
if an ample supply of dislocations generated elsewhere can move into that element. 
Thus, when the plastic zone develops along a crystal slip plane, dislocations sweeping 
out from what would otherwise be a highly stressed crack tip may obviate the necessity 
for pervasive sources. By contrast, when the predicted plastic zone develops 
perpendicular to a slip plane, there is no similar way of sweeping dislocations out along 
the plastic zone and, in the absence of pervasive sources, a result corresponding closely 
to what is predicted here may not occur. 

The dislocation structures corresponding to these two cases are sketched in Fig. 10 
where a cut perpendicular to the plastic zone is shown. The direction of the crack tip, 
along x3. is vertical in these figures and corresponds to s in the first case, Fig. lOa, and to 
n in the second, Fig. lob. In each case I denotes the direction outwards from the crack 
tip and 6, the direction perpendicular to the planar plastic zone. The B direction 
coincides with n in the first case and sin the second. As illustrated in Fig. lOa, the loops 
generated on or near a single slip plane are expected to be the kinematic equivalent of 
an array of screw dislocations lying parallel to the crack tip. There is no rotation of the 
slip planes and hence no basis for geometrical hardening or softening in this case. These 
screw dislocations, or actual loops, will not all be on the same plane if many sources are 
activated, or if some of the screw segments cross-slip. In the absence of sources, it is 
possible that all dislocations of the array are nucleated from the crack tip. Such has 
been seen in electron microscope studies of cracks in thin, tensile-loaded foils of b.c.c. 
and f.c.c. metals (OHR and NARAYAN, 1980 ; KOBAYASHI and OHR, 1980,198 1; OHR and 

CIIANG, 1982). In these studies the cracks were initiated at the edge of a hole formed by 
chemical thinning of the foil and apparently began by complete slipping off along a 
crystal plane tilted at approximately 45” to the plane of the foil, with plasticity 
occurring as a screw dislocation array like that in Fig. 10a along the prolongation of the 
cracked slip plane. 

The case shown in Fig. lob, however, is one in which sources emit dislocation loops 
in planes perpendicular to the crack tip. To accomplish the concentrated shear, the 
dislocation array is then expected to be the kinematic equivalent of highly elongated 
loops of predominantly edge character. The resulting walls of edge dislocations 
accomplish the shear by effectively forming two tilt boundaries of opposite sense. This 
involves a rotation of the slip planes as shown and hence is expected to involve strong 
geometrical hardening. Both cases are identical within the ideally plastic model, but we 
expect that both the lattice rotation and the width required for the accommodating 
array of loops, Fig. lob, will make the actual thickness of the “planar” plastic zone 
much greater in the latter case. 
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(b) 

FIG. 10. Dislocation structures corresponding to planar plastic zcmes of concentrated shear: (a) slip direction 
s is along crack tip and plastic zone lies cm slip plane ;(b) slip plane normal n is along crack tip and plastic zone 

is perpendicular to slip plane. 
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Yet another aspect of discrete dislocation effects at the crack tip involves the 
“dislocation free zone” of CHANG and OHR (1981) for cases like that in Fig. 10a. The 
observations mentioned of crack tips in foils suggested that the relaxing dislocation 
arrays were somewhat detached from the crack tip where they were nucleated. Chang 
and Ohr argued that this can be explained on the basis that a critical elastic stress 
intensity factor must be achieved within the slipped but elastic and dislocation-line-free 
near tip region to nucleate yet another dislocation from the tip, and have derived in this 
way estimates of the dislocation-free zone size. These estimates are comparable to 
observed values, although three-dimensional complexities of the slant fractures in the 
foils are not included in their two-dimensional anti-plane modelling. 
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APPENDIX 

Here we give a briefexplanation of the conformal mapping procedure with which we obtained 
results for the stationary crack for direrent cases quoted in section 4. RICB (1967,1984) developed 
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this procedure to give the anti-plane small scale yielding solution for an ideally plastic material 
with an arbitrarily anisotropic but convex yield surface, with an associated flow rule, and with 
isotropic elastic response. He gave the solution in terms of the analytic function Cl(r), with 7 = r1 

+ k2. which conformally maps the upper portion of the sub-yield stress domain (i.e. a region 
bounded by portion of yield surface with TV > 0 and by 7, axis) into the upper portion of a unit 
circle in the complex 0 plane. The map is constrained such that intersections of the yield surface 
with the negative and positive 7, axis map to - 1 and + I, respectively, on the Re (Q) axis, and 
that 7 = 0 maps to Q = 0. Hence the 7, axis maps to the Re (0) axis, and for points 7 on the upper 
part of the yield surface 

where 0, I/I arc angles measured anti-clockwise from the positive Re(R) and Im(R) axes. 
rcspectivcly. to points on the unit circle I@] = I and 0 d @ < rr, -n,;2 5: $ d n,‘2. The same 
function R (7) maps the upper portion of the sub-yield domain and its mirror image about the T I 

axis to the full unit circle in the Q plane. 
The small scale yielding problem may be regarded as that of a semi-infinite crack in an infinite 

body with asymptotic boundary conditions 

lim (7, +ir,) + K/[27r(x, +i.x2)]r’)- (At) 
r .r 

for coordinates .X ,, x2 centered at the crack tip. For this problem, Rrcr (I 984) (equation 71) shows 
that the solution for coordinates x,, Y> of points within the elastic region corresponding to sub- 
yield stress 7, is 

(A.2) 

Our conformal maps for single crystal yield surfaces are obtained by the SchwarL Christoffel 
method and hence are more naturally expressed in the form 7 = 7(O), rather than 0 = Q(7). Thus 

x, --IS2 = [K*:777’(0)] [i/nr’(n)] [(n - l/Q)/2i] (A.3) 

By letting Q approach the unit circle at i B’~, coordinates of the elastic--plastic boundary are 

Yr - i.X^, = - [K’/2777’(0)] (d+/d7) cos $. (A.4) 

where d7/d$ = iRz’(Cl), and d7 is directed along the yield surface. Note that d$ = d@ and cos li, 
= sin @. When the yield surface contains flat segments, dr has a constant phase along them, and 
it is easy to verify that the segment maps into a straight-line plastic zone in the x,, xZ plane. 
parallel to that segment, with x, = 0, Y? = 0 at the vertices terminating the segment. The radius 
to a given point is 

R = [K’/nr’(O)] jd$/dzl cos $. (A.5) 

Displacements are discontinuous across these line plastic zones. Along them (RIVE. 1984: 
equation (76)) 

u = RT,/~L - R,T,,/~ + [K”/77n7’(0)] (sin $ -sin $,,). (A.6) 

where the subscript ‘O’refers to some value of r/ at which 11 = 0. The displacement discontinuity at 
the crack tip is (RICE, 1984; equation (77)) 

An = 2K2+7’(0). (A.7) 

For the case of the yield surface of Fig. 4b, and with n defined as in Fig. 11 a. we have by the 
Schwarz-Christoffel method that 

r’(Q) = (r&)(1 -a,“,‘[(1 +Q)“(l -2Q cos i+R’)” +“‘?l --2Q cos to+R’)” ~-“‘,‘]. (A.X) 

where r, >. and (II are as yet undetermined. Writing Q = r’@ on the boundary of the unit circle. 

dt/dcD = (T,,/~z) [sin (@/2)]“/[cos (O)/~)]“[COS a,-cos 11” ’ “)iZrcos @-cos w]” -“jiL. (A.9) 
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We need three conditions to determine a, 1 and w. From Fig. 11 we see that points A, B, C and D 
lie on the unit circle in the Q plane and that corresponding points in the r plane he on the yield 
surface, and that the following conditions must be satisfied 

-- - - 
OA = DO = AB = t,/cos(nn/2). (A. 10) 

These three conditions may be rewritten as 

oc/cos (n7r/2) = F(I, w) = G(i, o) = H(1, w), (A.1 1) 

where F, G and H are defined as 

1 
F(/Z,w) = 

s 
[(1-x)“/(l+x)“(l-2xcos1+~~)“+~~‘~(1-2xcosw+~~)’~-“~‘~]dx, (A.12) 

0 
0 

G&o)= 
s 

. . . (same integrand) . . dx, 
-1 

H(1, w) = f 
s 
' [I sin (@/2)]“/] cos (Q/2)“] 1 cos @-cos Afl +W 1 cos CD-cos wfl -“)“] da. 

0 

By use of numerical integration and iteration procedures the unknown parameters can be 
evaluated for the given value of the angle nn/2. For the case in Fig. 4a, n = 0.2163, and then we 
find ). = 0.5702 rad = 32.67”; w = 2.156 rad = 123.53”, and CI = 0.9174. The radius along the 
line plastic zone is from (A.5 to A.9) 

R = (2a2K2/xz$ [sin @ lcos (@/2))” Jcos Q- cos I]” +“)12 Jcos @ -cos e$’ -“)‘2/]sin (Q/2)]“]. 

(A. 13) 

(a) 

(b) 

FIG. 11. (a) Yield surface in complex T plane; (b) unit circle in complex R plane; (c) physical x,, x2 plane; 
(d) discrete line plastic zones for different ranges of @. 
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ia) rbl CC, 

FK;. 12. (a) Yield surface in T plane;(b) unit circle in C2 plane:(c) physical xi. x2 plane 

and by maximizing this expression with respect to CD on the intervals 0 c CD < E.. I < Q < W, and 
w < CD < n we obtain the plastic zone lengths quoted in the first subsection of section 4. 

Next we consider the mapping of the yield surface for the three cases in the following 
subsections ofsection 4. All have shape of a diamond with vertices on the T,, t2 axes ; Fig. 12. Here 
sY denotes the perpendicular distance ofeach straight-line segment from the origin ofthe T plane. 
Letting an/2 be the angle indicated, 

dr/dQ = nI:( 1 - !A’)“( I -iciZL)” ‘I, 

where M can be evaluated from either of the following equivalent expressions 

(‘4.14) 

Thus, the radius along a line plastic zone is 

R = (IK’/nM’)(sin I/J)” “(~0s $)‘I *“, (A.101 

Maximizing R on the interval for 0 i tj < n/2 one obtains (dRl’d$) = 0 for cos ?I,!I - Y = 0, which 
gives the maximum plastic zone radius as 

R = (2K2/n.u”)[(I m.a)/2]” I1 ?[(I -+g) ‘-1” ‘~‘~‘. (A.171 

Values of r are 0.3918 in subsections two and four (section 4). and 0.5 for the thud CRSC in this 
section. The corresponding values of hf are l.IOXOr, (= 1 1080~,,) f<lr subsections t\ro and four. 
and 1.07872,. ( = 1.8684~~) for part three in section 4. 


