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First-Order Variation in Elastic
Fields Due to Variation in Location
of a Planar Crack Front

The problem explained in the title is formulated generally and given an explicit
solution for tensile loadings opening a half-plane crack in an infinite body. For the
half-plane crack, changes in the opening displacement berween the crack surfaces
and in the stress-intensity factor distribution along the crack front are calculated to
Jirst order in an arbitrary deviation of the crack-front position from a reference
straight line. The deviations considered lie in the original crack plane. The results
suggest that in the presence of loadings that would induce uniform conditions along
the crack front, if it were straignt, small initial deviations from straightness should
reduce in size during quasistatic crack growth if of small enough spatial wavelength
but possibly enlarge in size if of longer wavelength. The solution methods rely on
elastic reciprocity, in terms of a three-dimensional version of weight function theory
Jor tensile cracks, and on direct solution of elastic crack problems. The weight
JSunction is derived for the half-plane crack by solving for the first-order variation in
the elastic displacement field associated with arbitrary variations of the crack front
Jrom a straight reference line. Also, a new three-dimensional weight function theory
is developed for planar cracks under general mixed-mode loading involving tension
and shears relative to the crack, the connection between weight functions and the
Green’s function for crack problems is shown, and some results are given for the
half-plane crack on the variations of elastic fields for variation of crack-front
location in the presence of general loadings including shear.
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Theory for Tensile Cracks

A three-dimensional elastic solid contains a planar crack
with smooth bounding contour C along the crack front. For
the present we assume that the solid is homogeneous,
isotropic, symmetric about the crack plane, and subjected to
an “‘original’’ load system consisting of some distribution of
fixed forces and/or imposed boundary displacements that
induce “mode 1"’ tension along the crack front. A cartesian
X,y,z coordinate system is attached so that the crack plane lies
on y=0 (Fig. 1). In addition to the original load system
described, a pair of concentrated forces + P wedges open the
crack at locations x,0*,z and x,0~,z on its surfaces. Let
Au(x,z) be the opening gap between the crack surfaces at the
load location. (So that Au is bounded when P#0, it is con-
venient at this stage in the development to regard the forces
=P as being distributed uniformly over a disk of arbitrary
small radius ¢ centered on x,z. Then Au(x,z) is understood as
the average opening over the same disk, so that P§(Au) is the
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work done by the forces. Later we will be interested in the case
P=0and can let e —0 with impunity.)

Suppose that while the combined load system (original plus
forces =P on crack surfaces) is acting, the crack front C is
advanced normal to itself on the y =0 plane by some variable
distance 8a(s) as in Fig. 1; s is the measure of arc length along
C. Thus, treating da(s) as infinitesimal, the change in strain
energy U plus potential energy V, of the fixed forces of the
original load system is

U+ Vo)=P5[Au(x,z)]-SCG(S)éa(s) ds (n

where G is the energy release per unit crack area of elastic
fracture mechanics. G is related to the crack tip stress in-
tensity factor K[=K(s)] by the Irwin relation

G=(1-v)K2/E )

(E = Young tensile modulus, » = Poisson ratio), whereas X
itself appears in expressions for the tensile stress ¢ across the
plane y=0 at small distance r ahead of the crack tip and for
the opening gap Au at small distance r behind the tip through
the asymptotic forms

o~K/(2nr)?, Au~8(1 —2)K/E) (r/2m)'2.  (3)

It is evident that such quantities as U and V, can depend
only on the magnitude of P or Aw and on the location of the
crack front, and thus that the right side of equation (1) is a
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Fig. 1 A planar crack on y =0 with front along the arc C. Forces =P
applied to the upper and lower crack faces at position (x,z). The crack
front is advanced normal to itself, in the piane y =0, by amount 5a(s),
where s denotes arc length along C.

perfect differential. It then follows (next paragraph) that, to
first order in 8a(s), the variation in opening displacement
Au(x,z) when the crack front location is altered while P and
the original load system are held fixed is

aG(s)
P

_20-) K(s) .
=222 ke S sats) as, @

where the derivatives with respect to P are evaluated with the
crack front fixed in position along arc C.

To prove this result, introduce an arbitrary function g(s)
along C that describes the shape of a crack-front alteration
and a quantity A that describes the amplitude of that
alteration, such that

lauten)=| sa(s) ds

da(s) =g (s)8A. &)
Then after a Legendre transformation of equation (1) one has

SLP(8u) — U— V] = (Au) 6P+ (L Gg ds) s4. (6

Since for any given g(s), the quantities in brackets on the left
can all be regarded as functions of P and A, the right side is a
perfect differential. Hence the coefficients of 6P and 44,
regarded as functions of P and A, must satisfy the reciprocal
relation

3(Au)/3A =a(5c Gg ds) /aP= gc (3G/aPyg ds.  (T)

Upon multiplying this last equation through by 864 and
recognizing that g(s)éA represents an arbitrary distribution
of crack advance éa(s), one verifies equation (4).

In fact, equation (4) must hold no matter what the
magnitude of P and, in particular, it must hold when P=0 so
that no wedging forces are present at all (we may then let
e—0). It is evident that in the case P=0 we may write for
insertion in equation (4) that

K(s)=K°(s), 0K(s)/3P=k(s:x,2), 8)

where K° (s) is the intensity factor distribution induced along
the crack front by the original load system and k(s;x,2) is
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defined such that Pk (s;x,z) is the intensity factor at position s
along the crack front due to wedge forces +P opening the
crack at location x,z. Hence, the variation in crack-opening
displacement at location x,z when the crack-front position is
altered by éa(s) in presence of (only) the original load system
is

2(1-1?)
E

to first order in da(s).

It may be noticed that the original load system enters into
this result only through the distribution X°(s) of intensity
factor that it causes but not otherwise. Thus two ‘‘original’’
load systems that induce identical K° distributions will induce
identical first-order alterations in crack opening for a given
advance da(s). The derivation of equation (9) follows
essentially the author’s (Rice, 1972) formulation of the theory
of Bueckner’s (1970) ‘‘weight functions®’ for two-dimensional
elastic crack mechanics, and particularly parallels the Ap-
pendix of Rice (1972) in which three-dimensional weight
function theory is introduced; equation (9) may be recognized
as a special case of equation (47) in that work. Bueckner
(1972) gave an equivalent three-dimensional extension of his
weight function theory based on ‘‘fundamental fields’’ that
satisfy the equations of elasticity but have normally inad-
missable singularities of arbitrarily prescribed strength
around the crack rim. In fact, Bueckner’s (1972) fundamental
fields have displacements that may be regarded as specific
realizations of &(Ax) in the foregoing and his strength
measure may be regarded as being proportional to the product
K° (s)8a(s). The significance of that product or of the related
product K°(s)g(s) will be clear from several subsequent
expressions.

Equation (9) may be put to use in two ways. First, in a
manner paralleling the typical two-dimensional applications
of weight function theory, suppose (Au) can be calculated to
first order for arbitrary a(s) in presence of the original load
system. Then equation (9) evidently enables one to infer the
expression for the unknown function k(s;x,z), namely, the
intensity factor at s per unit wedging forces applied to the
crack faces at x,z. This is easy to use in two dimensions
because then 8z has no dependence on distance s along the
crack front and we have only to calculate d(Au)/3a to ex-
tract the desired function k(x). Analogous three-
dimensional applications have not been much considered,
apparently because it always seemed impossible to solve the
three-dimensional elasticity equations in enough generality to
calculate §(Au) for arbitrary da(s). It will be shown here a
few sections later, however, that such a solution can be
constructed for the simple geometry of a half-plane crack in
an infinite body. Also, Parks and Kamenetzky (1979) have
outlined a numerical implementation of three-dimensional
weight function theory in a finite element procedure and
Bueckner (1972) has pointed out that, effectively, the solution
to 6(Au) for simpler éa(s) amounting, say, to expansion in
radius or translation in center location for a three-
dimensional crack, allows certain weighted averages of &
around the crack rim to be obtained. The latter idea was also
developed by Besuner (1974).

For the second use of equation (9), suppose that we know
from some other source the function k(s;x,z) for a given
crack geometry. Then equation (9) lets us construct the first-
order variation §[Au(x,z)] for arbitrary variation daz(s) from
the given crack geometry. The equation is applied in that way
in the next section. As will be seen, such an application
enables one to calculate the corresponding variation 8K (s) in
intensity factor along the crack front to first order in dq(s), as
considered recently by Meade and Keer (198454), and the
calculations allow study of the configurational stability of a
three-dimensional crack front.

lAu(x,2)]1= SCK°(s)k(s;x,z)6a(s} ds [¢))
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Fig. 2 Half-plane crack ony =0 in an infinite body. Reference straight
crack front along z axis; z' denotes location along front and éa(z)
denotes advance of crack front; a is distance from some fixed point on
a crack surface to reference straight crack frontand @ = @, when front
lies along z axis as shown.

Before turning to the applications, we note the following
extensions of equation (9). Suppose, for example, that we
wish to know the variation of a certain weighted average of
the crack opening when the crack front is advanced. Thus for
weighting with some function p(x,2)

B[S gp(x,z) Au(x,z) dx dz]

_ 21— %) 5 -

=—F CK (s)k(s)da(s) ds (10)
to first order in ¢ where evidently

k(s) =Hp(x,z)k(5;x,z) dx dz, amn

and hence k(s) is the stress-intensity factor distribution due
to a “‘loading”’ p(x,y) considered as a pressure distribution on
the crack faces. A similar expression is obtained for other
deformation measures than crack-opening displacement. For
example, if Q measures the intensity of some arbitrary ad-
ditional force distribution acting symmetrically about the
crack plane, and if g is the conjugate deformation quantity
(i.e., defined so that Qdq is a work increment of that ad-
ditional force distribution) then

1% . -
6q=2—§CK ($)k(s)da(s) ds (12)

E
is the change in g to first order when the crack is advanced in
presence of the original load system but with Q=0. Here k(s)
is the intensity factor induced by unit Q.

Variation of Front of a Half-Plane Crack in an Infinite
Body

Suppose that the crack front C, or at least the segment of
interest whose location is to be perturbed, is initially straight.
Provided that we are interested only in the opening
displacements in the vicinity of this straight front, at points
x,Z that are much closer to it than to external boundaries of
the cracked body or to other segments of the crack front, it
will suffice to use in equation (9) the result for & (s;x,z) for an
infinite body containing a half-plane crack. In particular, the
crack front C is chosen to coincide with the z axis and the
crack plane with the plane y=0, x<0 as in Fig. 2. Now we let
z’, which runs along the z axis, replace s and rewrite equation
(9) as
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dlAau(x,2)]

2(1 — 2 +%
= (—EV2 S_w K°(2'Yk(z"x,2)0a(z") dz’.

The formulation is complete once we have a formula for
k(z';x,z), which can depend on only z' —z and x, and this
can be taken from published work. The stress intensity factors
for arbitrary point forces on a semi-infinite crack face are
given in the handbook by Tada et al. (1973) and referenced to
prior elasticity analyses by Uflyand (1965), Sih and Liebowitz
(1968), and Kassir and Sih (1973). The problem has recently
been given a convenient reformulation by Meade and Keer
(19844). The result for the mode I stress intensity at z’ along
the crack tip due to unit opening forces applied on the crack
faces at x( <0),zis

k(z'sx,2) = (-2¢/7) 2/ [x* +(z' —2)?], (14)

where positive square root is implied, and thus the alteration
of the opening displacement of the crack faces is

T [ e L e K et
M x (L] )éa(z’)

E 27 2rd-o  xXP+(z—2')2

(13)

At this point it is useful to recall, as suggested by equation
(3), that the opening displacement very near a point along the
(altered) crack tip will have the form

8(1-?)
E

where K is the stress intensity factor at that point. If we now
let x—0~ in equation (15) at a location z where da(z) # 0, it
is easy to show that the bracketed term becomes infinite as

Au(x,z) =

— 172
(%) K + O(a—x)"*  (16)

[...1~K°(z)8a(z)/(—2x), 17
and thus equation (15) predicts that 8[Au] behaves as
41 -1?) ba(z) o
olAu(x,2)] ~ E (“zm) K°(2). (18)

This is an obviously correct asymptotic form as x—0~, as we
can check from equation (16); it corresponds to evaluating
d(Au)/d(a) at 8a = 0 from that equation and then
multiplying the result by da to give the first-order result.
Suppose now that at a particular value of z, éa(z) = O.
Assuming that d[éa(z)]/dz exists at that point, one may show
that the bracketed term in equation (15) has a well-defined
limit as x—0 and that this limit is
e K°(z2')0a(z’)
-o (2 -2
where PV in front of the improper integral denotes the
principal value. (To prove this, break the integral on z° up
into one over z—7 to z+n and another over the rest of the
axis. One shows that the limit as x—0 of the integral from z—
7 10 z+ 7 vanishes when one takes the subsequent limit n—0,
and the limit »—0 of the integral over the rest of the axis with
x=0 defines the PV.) However, if we compare equation (15)
to equation (16) at a point z where 6a(z) = 0, it is evident that
the then well-defined value of the bracketed term of equation
(19) can be interpreted as the variation of intensity factor K at
z due to some or all of the rest of the crack front being altered
in position. Hence to first order in éa,

+te K°(z')éa(z’)
-o (2'-2)°
is the variation in stress-intensity factor at a location z where

da(z) = 0butd[da(z)]/dz exists, and the total stress intensity
factor K(z) at that location is

K(z) =K°(z) +8K(z). 20
To find K at some location z where éa(z) # 0 we simply

1im[.._1=2i7rpvg

x—=0

dz’ (19)

1
8K (z) = Z_PVS dx’ (20)
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relocate the reference straight crack front by moving it along
the x direction an amount éa(z) and then apply the formulas
just derived. To express this in an equation, a variable a is
introduced to measure the distance of the reference straight
crack front from some given point of the body on one of the
crack surfaces (¢ has the value @, shown in Fig. 2 when the
reference straight crack front coincides with the z axis).
Further, to emphasize dependence on @, the intensity
distribution K° (z) induced along a straight crack front by the
original loadings is written henceforth as K° (z;a). Evidently,
to calculate the stress-intensity factor at location z, we want to
move the reference straight crack front to ¢ = ay + da(z),
and then use equation (20) to account for the nonstraightness
of the crack with 8a(z’) replaced with éa(z’) — da(z). It is
convenient to write the result using the notation

a(z)=ay+6a(z), (22)
and the stress-intensity factor at location z is therefore
K(z) =K"[z;a(2)]
+ o Cle’- Yy
+ —]—PVS K[z ,a(z)?[a(zz) a(z)]dz,. @3)
27 S (z'—2)

This formula is accurate to first orderina(z) — a(z’).

The result just obtained appears not to be consistent with
one presented by Meade and Kerr (1984b) for a half-plane
crack in an infinite body with a wavy crack front in the form

a(z) =ag—A[l —cos2nz/N). (24)

Here A is a small parameter. They consider opening loadings
applied to the crack faces as uniform line loads, applied along
lines parallel to z on the crack faces at distances a, from the
tip. For their method of loading, X° = K°(a), independent
of z(and K° = 22 Py/x'2a!”2, where P, is the intensity of
their line loading). They propose in their equation (110) that

K(z) =K"[a(2)]+O(4/7Y), (25)

and this is at conflict with equation (23) in the foregoing,
where the PV integral contributes an effect of first order in 4.
This particular case is discussed further in the next section.
Also, in the section after that the convenient formulation
presented by Meade and Keer (19844,b) for three-dimensional
problems of plane cracks in infinite elastic bodies is used to
give an alternative derivation of equation (15) in the foregoing
which is the basis of equation (23) for K(z), and also to
discuss an apparent inconsistency of the solution to the elastic
field equations for a wavy crack front proposed by Meade and
Keer (1984d). As a bonus, that alternate derivation leads to a
new derivation of the intensity factor distribution of equation
(14), and also to the general three-dimensional weight func-
tion for a half-plane tensile crack in an infinite body.

A similar approach to that leading to equation (23) from
(20) is useful for rewriting the result for the crack-surface
opening displacement. As it stands, equation (15) for 8(Auw) is
rigorously correct to first order in éa(z) but, because of the
effect of transport of the crack tip singularity in changing the
(—x)'? of equation (16) to (—x)~'"2 where indicated in
equation (15) is not very useful near the tip of a crack at a
location where 8a(z) = 0. Indeed, the first order expression
for & (Au) becomes highly inaccurate when (—x) is of the same
order or smaller than da(z). By moving the reference crack
tiptoa = a, + da(z) weeliminate this problem.

Thus, we introduce the notation Awu°(x,z;a) for the
distribution of opening displacement when the crack front is
straight and at distance a from the fixed point on the crack
surface. One notes incidently from equation (15) with éq
uniform in z that the & dependence of this opening
distribution must satisfy

0Au’ (x,z;8) _ 8(1-?) (a“au _x) 172
da T E 27
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X[LE*’” K°(z;a)dz’ ]
2md-e (a=ap-x)?+(@-2') 1’
here —x has been replaced by a—a,—x to accommodate
general location of the crack front, and the derivative on the

left is calculated as the limit of 8(Au)/6a. When K° is
uniform in z, this reduces to

dAu® (x;a)  4(1-4%) K (a)
da ~ E [w(a—gp-x)]"%’

which is essentially K° times the two-dimensional Bueckner
weight function for the semi-infinite crack in an infinite body.

Now, the total crack-opening displacement Au(x,z) along
the crack faces at a given location z can be obtained by adding
Au® when @ = aqp+6a(z) to 8(Au) as calculated from
equation (15) with éa(z") replaced with 2(z’) ~ a(z). Thus
there results

(26)

e

Au(x,z) =Au’[x,z;a(2)] +

8(1-2?) [a(z) —a, —x] 172
E 27
{ 1 5“’ K°[z";a(z))a(z’) —a(z)] }
X1 3n P N7 9z
2 d - [a(z)—a,—-x]*+(z-2")
which is accurate to first order in @(z’) — @(z) and remains
well defined as x approaches the crack tip ata(z) —a,.

(28)

Wavy Crack Front and Stability
Consider the crack profile
a(z) =ay+A cos 2xz/N), (29)

A>0, and suppose that the cracked body is loaded such that
the intensity factor is uniform along the crack front when the
front is straight, i.e., that K°(z;a) = K°(a). Then insertion
of the preceding a(z) in equation (23) and calculation of the
integral shows that

K(z)=K"[ag+A cos 2az/N]{1—-x(A/N) cos 2xz/N) ]}
(30)

to first-order accuracy in A. If we rewrite the equation to
exhibit only those terms that are of zeroth and first order in
A, then

K(2) =K°(ao) +[dK" (ag)/day — K" (ag)/NA cos (27z/N).
(1)

This solution enables one to address the following stability
problem. Suppose a small deviation from straightness in the
form of equation (29) exists along a uniformly stressed
crack front, that is, along one that would be uniformly
stressed if it were straight. Will the deviation grow or decay as
cracking advances quasistatically by, say, fatigue or
corrosion? It seems reasonable to conclude that the deviation
will grow if K is higher at the most advanced parts of the crack
front (z=0, A, £2A, etc.) than at the most retarded (z =
N2, £3N2, etc.), and that the deviation will decay if the
opposite is true. Thus the sign of the bracket governs and
decay will occur, i.e., deviations from straightness will be
smoothed out, if the bracket is negative. We conclude that the
straight crack-front configuration is stable to small-amplitude
perturbations of wavelength satisfying

MK (ao)/da0<’K'K° (ao). (32)

Further, if dK°/da, < 0, as is the case, e.g., with localized
wedging forces applied on or near the crack surfaces, then the
straight configuration is stable to perturbations of all
wavelengths. On the other hand, if dK°/da, > 0 as is nor-
mally the case when loads are applied remotely from the crack
tip, then there exists a critical wavelength A\, =
7K ° 7 (dK° /da,) above which perturbations will tend to grow.

As a practical matter, A, as just defined will typically be of
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the order of the crack length itself for disk-like or tunnel
cracks, and hence conditions may not generally be met to
consider perturbations on the scale of A, by use of the model
of a half-plane crack in an infinite body, i.e., by neglect of
proximity of the perturbed region to boundaries or to other
differently oriented segments of crack front. For A < < A,
such is not a concern, and in that case the term involving A in
equation (31) dominates the first order effect. Thus K is
decreased by xK°A/\ at the most advanced penetrations, and
increased by the same amount at the most retarded locations.
This increase may be taken to describe the stress in-
tensification at microscale heterogeneities when a crack tip
begins to advance by and surround a fracture-resistant zone
of material.

We may also consider the perturbation of equation (24)
considered by Meade and Keer (1984b). In this case equation
(23) implies that

K(2) =K°(a,)+[dK" (ap)/daglA[cos(2wz/N) — 1]
— 7K ° (@) (A/N)cos(2nz/N). (33

when only zeroth and first orders in A are retained. By
contrast, the solution proposed by Meade and Keer (1984D)
when expanded to the same order is

K(2)=K°(ay)+[dK® (ap)/dag)lA[cos(2nz/N) —1]. (34)

This is missing the last term of equation (33), which is the
result of the principal value integral in equation (23). Given
the form of perturbation from straightness in equation (24), it
would seem evident that K at z =0 should indeed decrease with
increasing A. This is because more of the crack surfaces are
attached back together when 4 >0, compared to the situation
when A =0, and the most advanced parts of the crack front
(z=0, =\, =2A, etc.) are then shielded by the rejoined
elements of material to their sides. This effect of decrease of K
at z=0 with increase of A is predicted by equations (23) and
(33) but not (at least to first order) by equations (25) and (34).

Direct Solution for Half-Plane Crack in Infinite Body

Since there is disagreement with other work, it seems ap-
propriate to reexamine the problem of a wavy half-plane
crack in a full space here by directly solving the Navier
equations of elasticity. Meade and Kerr (1984a,b) show,
following Sections 5.8 of Green and Zerna (1954), that these
equations are satisfied in a manner compatible with tensile
loading that is symmetric relative to the crack plane if
displacement components are written as

u,=—=2[(1-v*)/E1Y+[(1+v)/E ]y 3Y/dy
U, =[(1 +v)/EJI(F+yY)/dx
=1 +v)/E)(F+yY)/dz (35)
where F and Y are harmonic functions related by 0F/dy =
(1-2»)Y. In addition, the stress components that enter
crack-surface boundary conditions are calculated from the
stress-strain relations as

0,,=—3Y/3y+y32Y/3y?

0,, =yd*Y/dydx, 0,,=y8?Y/dydz (36)
and cause no shear traction on y=0. Thus the problem of
loading on the crack face is one of finding a function Y
satisfying ¥2Y =0, having vanishing derivatives at infinity,
and generating stress ¢ and opening gap A on y =0 given by

o=—03Y/dy and  Au=-[4(1 -2)E]Y
y=0 y=

0+
(37

respectively, such that boundary conditions are satisfied. If
the crack tip lies along
x=Ag(z), (38)
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where g(z) is some arbitrary function of z, and the crack
faces are loaded by normal pressure p(x,z) [= —o0(x,2)],
these conditions are

for

a}’/ayL=0 =p(x,2) x<Ag(z),

and

Y =0

y=0

for x>Ag(z) (39)

as discussed by Meade and Keer (1984b) for their particular
case. The problem cannot be solved explicitly in this
generality but it is known that solutions to it, when restricted
to have bounded energy in any finite region about the crack
tip, exhibit characteristic inverse square root stress
singularities whose nature is indicated in such equations as (3)
and (16). The harmonic function Y generating such a
singularity necessarily has the form

Y~ —2K(r/27m)'?sin(6/2) (40)

(plus another part generating finite ¥ Y) near the tip, where r
and 6 are polar coordinates in planes locally perpendicular to
the tip; § = + = on the crack surfaces.

Let the solution of the boundary value problem as for-
mulated be Y(x,7,2;4). We now turn to calculation of the
function

W(x.y,z) =[8Y(x,y,2;4) /0A4] P 41

It is evident that V2 W = 0 and, since the crack-face loading
has no dependence on A,

BW/ay‘ =0 for x<0,
y=0

w =0

y=0

for x>0. (42)

This apparently homogeneous boundary value problem for W
would have only the solution W=0 if restricted to the
bounded energy class in the same way as for conventional
elastic solutions. However, W has a stronger singularity along
the crack front than normally allowed. We can calculate this
by calculating 3r/3A4 and 86/90A, corresponding to fixed x,,2,
in equation (40) at A =0 so as to calculate 3Y/3A4. Of course,
K at any particular z also varies with 4 but this does not affect
the most strongly singular term. The result of a straight-
forward calculation is that

W~ —K"(2)g(2) (27r) ~1?sin(6/2) (43)

where, in this limit, the crack front is straight and coincident
with the z axis, and K° (z) is the K distribution induced by the
given loadings p(x,z) for that straight configuration. Note
that the nature of the original loading and shape g of the
incipient growth appear only in the product K° (2)g(z) .

To obtain a solution of Y2W = 0 with the singular form
indicated, introduce the Fourier representation

+ o

1 .
K*()g(2) = 5~ j a(w)edw. (44)
T o =~

Evidently, we wish to seek solutions of V2W=0 with a z
dependence of form e™?, and to meet the homogeneous
boundary conditions of equations (42) on the crack faces one
begins by looking for harmonic functions in the form

f(r)sin(mé/2)e'* (45)
withm = 1,3, 5, ... . As it happens, all conditions on the
problem can be met with m=1. In that case it is easy to show
that the possible forms for f(r) are

f(r)=,.-l/2e*lulr’ (46)

and obviously the + sign must be rejected in the present case.
Thus we see that
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r=12¢=1eVrsin(6/2)e @7

is harmonic, and this has precisely the singular structure as
r—0 required in equation (43). Therefore the solution is

+ o .
a(w)e— Iulrewzdw

W=—(1/20)Qxr) " ”zsin(ﬂ/Z)S (48)

since, by equation (44), this reduces to equation (43) when
r—0.

To complete the solution, we write by Fourier inversion of
equation (44) that
+ 0
oz(w)=§_a° K°(z')g(z’ )e "' dz’, (49)
insert this into equation (48), change the order of integration,
and note that

+ @ , X
5 e—iwz e-lwlremzdw.__zr/[rz +(Z‘—Z')2]. (50)
The result for W is therefore that
W(r.6,z)
. +te K°(z')g(z')dz’
=—(l/x) (r/21r)l/25m(0/2)5 ce TRtz (£29)]

Remembering that W is dY/dA at A=0 and that the
opening gap Au is related to Y as in equation (37) on 6=0, 7,
we have therefore derived that

dAu(x,z,A) l
04 A=0

p— —_ 1/2 4o ° ’ ’
8(1-+%) (_x) [i 5 K°(z')g(z") dz,]. (52)

E 2% 27 -0 X2 4+(z—2')2
Here 0 has been set equal to # and thus r to —x. This last
equation is precisely the same as equation (15); éa(z) is just
8A4g(z). Thus an independent derivation of equation (15) is
now at hand, and the result given earlier in equation (23) for K
along a nonstraight crack tip follows from there.

Now, in what amounts to an application of weight function
ideas of the first type described in the opening section, let us
note that equation (52), just independently derived, and
equation (13) must be consistent with one another for ar-
bitrary da(z). Their consistency requires that k(z;x,z) have a
certain definite form, which is exactly that given in equation
(14). Thus the solution derived in this section together with the
fundamental equation (13) of weight function theory gives the
solution for the stress intensity distribution & along the crack
front due to unit concentrated forces opening the crack faces.

It has been shown (Rice, 1972, equations (48) to (411) put
in the notation for the present problem) that if the
displacement vector variation is expressed as
+o

ou (x,y,2) =§_w U’ (x,y,z:2" )éa(z')dz' (53)
to first order in éa(z) for a crack under some “‘original”’
tensile loading, then
h(x,9,2;2') =EU° (x,,2:2') /21 = v)K"(2’)  (54)
is the three-dimensional weight function. This is unique
within rigid motions, is independent of the nature of the
original loading system, and has the property that for ar-
bitrary distributions of body force f(x,y,z) compatible with
tensile loadings, the stress intensity factor induced along the
crack front is
K@) = [ty beyne) dayaz. (55)
The integral extends over all locations where the body force

acts and loads on the crack faces can, of course, be included
as concentrations of body force.
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By substituting from equation (54) in (53), we may write the
latter in a manner to show that the weight function can be
read off when we have obtained a representation for éu in the
form

du(x,y,z)

21— [+
= B " ez 0k (2 )6a(z )

But du can be written from equations (35) as a linear
operation on §Y, the same operation that forms u from Y.
Also, recognizing that 8Y is just W84 with the product
g(z’)8A written as da(z’), we may write from equation (51)
that

(56)

+oc
8Y (x,y,2) = —g_w H(x,y,z;2’)K*(z")8a(z")dz"  (57)
with
H(x,y,z;2") = (r/27%)2sin(872)/ [ + (z—2')?).  (58)

Thus recognizing that su of equation (56) is formed from §Y
of (57) by the linear operation (35), we conclude that 2(1
—v®)h/E is formed from — H by the same linear operation.
Thus the components of the weight function are

hy=H—[1/2(1 - v)ly dH/dy
hy=—[1/2(1 = »)]3(L+yH) /dx

h,=—[172(1-w»)d(L+yH)/dz 59

where

Leayziz) = -(1-2) " Hxpzz)ds. (©60)

This seems to be the first case for which a three-
dimensional weight function has been determined. Regret-
tably, since the integral defining L cannot be reduced to a
simple form, the x and z components of the weight function
are not in a very convenient form for applications. However,
h, has no similar difficulties and it is all that is needed when
loads act in directions perpendicular to the crack plane. As a
check, letting y—0* or 0, one observes that

hy(x,£0,2;2") =H(x,£0,2;2" ) = =(1/2)k(z";x,2)  (6])

as expected, where & is the intensity factor of equation (14).

Mead and Keer (19845) attempt to directly calculate the
function Y defined by equations (39), for their particular
shape function

8(2) = —[1 —cos(2nz/N)], (62)

and for loading of the crack faces by line loads of intensity P,
at distance g, from the tip as described earlier. Shortly after
their equation (47), they propose that the solution for Y (in
present notation) is

Po

Y=- log
2T
{ r+ag+Ag(z) +2[ray +rAg(z)]'*sin(6/2)
r+ay+Ag(z) —2[ra, +rAg(z)1'/%sin(6/2) }
+0(A42/22) 63)
where
r’=x—Ag(z)]*+y*, tanb=y/[x—Ag(z)]). (64)

The difficulty is that when this solution is used to calculate
3Y(x,y,2,4)/3A at A = 0, it does not give a result that
coincides with the exact solution derived here. In particular,
when the g(z) of equation (62) is used and we use K° (a) =
2V2p,/xV2q? as appropriate for the line-load problem,
there results from the solution in equation (51) for W that

W=0Y/04| = (Py/m)(aer)”sin(6/2)[1
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—cos(2mz/N)e 2T/ (65)

By contrast, the corresponding quantity calculated from
equation (63) for Y as proposed by Meade and Keer does not
show the exponential decay of the effect of the cos(2wz/N)
wiggle in crack-front position at large distances r, nor does it
show a dependence on g, only in the form of a factor. Meade
and Kerr develop their analysis by asymptotic methods based
in part on multiple (double) scaling in the z direction, one
length scale being based on A and the other on A. Equation
(65) together with the fix-up of type in going from equation
(15)-(28), based on placing the reference straight crack front
ata(z), i.e., at x = Ag(z), suggest that there may not in fact
be a double scale of the type they assumed for the z depen-
dence of the solution, but that instead such occurs for the x
and y dependence.

Cracks Under General Mixed Mode Conditions

As a generalization, we can consider a possibly anisotropic
body of arbitrary shape containing a planar crack on y=0and
suppose that the original loading system induces opening as
well as shear displacements in the x and z directions on the
crack faces. In this case there are three stress-intensity factors,
given subscripts 1,2,3 where 1 refers to tension, 2 to in-plane
shear, and 3 to antiplane shear relative to a plane locally
perpendicular to the crack front. Thus in the plane y=0 at
distance r ahead of the tip there is the asymptotic stress
distribution

(oyy )ayn voys) ~(Kl ,Kz ’KJ)/(ZWT ]/2: (66)

where n and s denote directions in the plane y=0 that are,
respectively, normal and tangential to the crack front C. The
Irwin relation for the energy release per unit area of crack
extension is

G=A4K.K; 67)

where «,8 range over 1,2,3 with summation on repeated
indices, where A,s = Ag,, and for an isotropic material

Ay =AMy =(1 - PV/E, Ay =(1+V)/E,

other  A.s=0. (68)

For anisotropic solids the calculation of A4 is discussed by
Stroh (1958) and Barnett and Asaro (1972); A,g can be ex-
pressed as a numerical factor times the inverse of a matrix
appearing in the prelogarithmic energy factor of dislocation
theory. In general, the A,z will depend on the local tangent
direction to the crack front.

Suppose that in addition to the original loading system, a
distribution of forces with intensity proportional to Q acts, as
in the discussion preceding equation (12), and that g is the
conjugate deformation quantity. Then with the original load
system fixed, one has

Q&I‘gc-'\ae(S)Ka (s)K5(s)da(s) ds=6(U+Vy), (69)
as in equation (1), and from this we infer analogously to
equations (9) and (12) that the variation in ¢ when the crack is
advanced in presence of only the original loading system
(@=0)is

oq= SczAc,ﬁ (s)k, (s)K3(s)8a(s) ds (70)
to first order in da(s). Here K are the intensity factors in-
duced by the original loading and &, the intensity factors
induced by unit value of Q. As before, if the &, are known,
one can calculate &g, whereas if 8g is known for arbitrary
“‘source’’ terms K &a along C, one can calculate the £, .

To proceed to a three-dimensional weight function for-
mulation appropriate for arbitrary mixed mode conditions,
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consider the problem of calculating the first-order variation
Su in the elastic displacement field at a general positionr =
(x,y,2) when the crack advances in presence of the original
loading. It is clear that du satisfies the equations of elasticity
in presence of zero body force, zero boundary traction on the
crack faces and wherever else tractions were prescribed in the
original loading, and zero boundary displacement where
displacements were prescribed. Despite the apparent
homogeneity of the problem, u is nonzero because its three
components have prescribed singularities of strengths that are
linear in the three terms of form K (s)éa(s) along the crack
front. Each such source term can be regarded as generating a
vector displacement field at r which is conveniently written as
2A,gh, (r, 5) weighted with the source strength Kg(s)da(s)
along C. Thus

Su(r)= 5C 2A,5(s)h, (r,s)K5(s)0a(s) ds. an
Note that the vector functions h, thus defined are universal in
that they have no dependence on the nature of the original
loading system, other than depending on which portions of
the external boundary had tractions versus displacements
prescribed. Of course, the functions also depend on the shape
and location of the crack. The vector functions h ,(r,s) defined
by equation (71) are sensibly called ‘‘weight functions.”” To
see why, denote the components of h, as 4,; where j = x, y,
or z, and observe that du; (r) is generated by A, (r,s). But du;
is just 8¢ when Q measures the intensity of a concentrated
force in the j direction at r, and hence A (r,s) must equal
k,(s) of equation (70) where the k, are then the intensity
factors induced by a unit point force in the j direction at r.
Thus for an arbitrary distribution of body force f(r), the
intensity factors induced at location s along the crack front
are

Ko(9) = |10 nor.9ae 2

integrated over the region of loading, confirming the weight
function interpretation of the h,. Paris et al. (1976) and
Bortman and Banks-Sills (1983) introduced two-dimensional
weight functions for shear modes in isotropic solids.

To summarize, if we know from some other work the stress
intensity factors induced by concentrated forces at r, then
from equation (72) it is clear that we know the h, (r,s). We
can then use these h, in equation (71) to calculate éu(r) and,
from it, variations in stress intensity factors K, along the
crack front to first order in da(s). This is what was done for
the half-plane tensile crack in the second section of this paper.
On the other hand, if we can calculate directly éu(r) for ar-
bitrary source terms K(s)da(s) along the crack front, as
done for the half-plane tensile crack in the preceding section,
then we have a more basic result. That calculation, when put
in the form of equation (71), amounts to fundamental
calculation of the weight functions h, (r,s). I leave for future
work the full exploration of these ideas for the half-plane
crack in an infinite isotropic body, under general tensile and
shear loadings, and discuss here only some aspects of that
case.

Specifically, let us develop the expression for general
mixed-mode loading that is analogous to equations (13) and
(15) for the tensile crack problem. Suppose that the faces of
the half-plane crack are loaded by concentrated forces P; at
x,0*,z and —P; at x,0",z, with j = x,y, or z. The stress-
intensity factors k,; = k,; (z';x,2) induced at z' by unit P;
are (Tada et al., 1973; Meade and Keer, 19844)

k|x=kl:=k2y=k3y=0
k|y=k

k1x=[l+

vy x2-(z'-2)? ]k
2—v X2 +(z'—2z2)?
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2y x2—(z' —2)? ]

=1 2 =0
3 2—v xX24+(z' —2)2

v  x(2'—2)
ky,=kyy=—— ———&%
2 3x 2—vx2+(z’—z)2
where &k = k(z’;x,2) is given by equation (14). Of course the
ko;(z’;x,2) are functions only of x and z—z’. Evidently, the
k,; must be related to the weight functions defined in the
foregoing by

ko (Z'3%,2) =hoi (x,0%,2;2") = hoy (x,07,2;27). (74)
Thus the previous formulas, written out fully for the isotropic
case, imply that

(73)

—E—-—) [k (z":x,2)Ki(Z")

+kyi (2':%,2)K3(z")]

8lAu;(x,2)]= 5 - [ -

2(1+»)
E

+

k;j(z';x,z)K§(z’)}6a(z')dz’ (75)

is the first-order variation in j component of the relative
displacement Au of the crack faces at x,z when the crack front
advances by da(z’) in presence of (only) the original
loadings, which have induced intensity factors K (z') along
the reference straight crack front.

Let us note the relation between the weight functions and
Green’s function (i.e., the dyadic G(r,T) giving, by u = G+P,
the displacement u at r induced by concentrated force P at )
for a cracked body. Suppose that the ‘‘original loading” is
just the concentrated force described, with null body forces
and boundary tractions or displacements elsewhere. Then
equation (72) requires

K;(S)=hﬁ (fss).P’ (76)
and hence equation (71) reads that
su(r)= [SC 2,5 (5)h, (r,5)h; (f,s)aa(s)ds] P T

Since u = G-P, this shows that the bracketed term is the
variation 8G(r,¥) to first order in da(s) .

For the half-plane crack in an infinite body, this expression
leads to a formula for the Green’s function in terms of the
weight functions. Note that if a denotes the x coordinate of
the straight crack front parallel to the z axis (this means a, =0
in Fig. 2) then, representing s by z* as before, one must have

h,(r,z")=h,(x—a,y,2-2'). (78)

The Green’s function must depend parametrically on g, and if
we let éa denote a uniform 8a(z) along the crack front and
divide by e in equation (77), one has that

aG(r,r;a)
da

+
=2A,,3§_Q ho (x—a,y,z=2")hs(¥~a.5.2-2")dz’.  (79)
But when ¢ = — o, G reduces to the function G(r,F; — =)
obtained from the Kelvin-type solution for a point force in an
infinite uncracked body. This depends only onr — F. Thus the
Green’s function when the crack tip lies along the z axis (@=0)
is

G(r,P) =GX"(r-7)

0 +oo
+2A°’"S S h,(x—a,y,z—Z+1)hg(x—a,y,1) dt da.

(80)
For the half-plane crack in an infinite isotropic body,
perhaps the simplest way of solving for the weight functions
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will be to solve the Navier elasticity equations directly for
ou(r), with arbitrary éa(z’), putting the result in the form of
equation (71) so that the h,, can be read off. However, we can
also make use of what is now available in the literature to
derive an integral representation for the h, as follows. First
note that from details of the point force solution given by
Love (1927, articles 130, 131, and 141), the components of the
Kelvin Green’s function for the isotropic solid are

_ (A+ 3[1.)5,1 + ()\'F#)X,‘XJ/RZ
- 8xu(A+2p)R

andif ZXg denotes the associated stress components, i.e.,
stresses o0,, at r due to unit concentrated force in the j
direction at F, then

GE™(r - ) (81)

E%k(r_ n= R (1 (8pg X = 8p Xy — 85:X))

1
47 (AN+2p)
=30+ ) (X, X, /R)X;). (82)
Here p,q.i,j range over x,y, and 2z, ,, is the Kronecker
symbol,

X,=x—X, X,=y-j, X,=z-3%, (83)
and R? = X,X,. We wish to solve for the weight functions
h.i (¥, z’), which can be interpreted as the stress intensities K,
at z’ generated by a unit point force in the j direction at F. If
there were no crack, this loading would cause traction stresses
gy, (i.€., 0y, 0,,, 0,,) on the plane y = 0 given as

E;(qc,lv(x—i, -iyz— Z-)- (84)

To represent the effect of the crack, we must remove these
tractions. This can be done by regarding + X dxdy as con-
centrated forces applied to the upper and lower crack sur-
faces, and superposing all such forces as weighted by &,
(z’;x,z) of equations (73) to calculate X,. Thus, using the
notations hy; (F,z°) = Ay (X,7,2—2')and k,, (27;x,2) = k,,
(x,z—z") appropriate to the present case, we have

hqi (fr.fvi) =

0 400
o e amr s Dk dzax. @)
The integrations implied are somewhat formidabie and the
further development of this topic is left to future work.
However, apart from the inconvenient form of the 4,;, the
way is now available for the half-plane crack under general
loadings to find stress intensities from equation (72), to find
first-order changes in the displacement field for arbitrary
deviations of the tip from straightness by equation (71), and
to use the simpler equations (73) and (75) as a starting point in
finding associated first-order changes in the stress-intensity
factors along the crack front.

Discussion

Regarding possible applications for calculations of the type
given here for tensile cracks or as outlined in the last section
for general loadings, the following might be mentioned:

1. At a crustal tectonic scale it seems appropriate in some
circumstances to regard the shallow seismogenic crust along
plate margins as locked between great earthquakes while, in
accommodation of plate motion, creep slippage occurs
continuously below on the downward extension of the margin
into the lower crust and mantle (e.g., see Li and Rice,
1983a,b, and references therein). Roughly speaking this
geometry describes a shear crack which, late in the earthquake
cycle, may show some preinstability advance into the locked
shallow crust. Thus one would like to know what deformation
at the Earth’s surface would be associated with such crack
advance and how measurements of surface deformation could
constrain its form. Equation (71), with the mode 1 part
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deleted for slipping cracks, provides a manner of addressing
such issues. Clearly, the shear loaded half-plane crack, for
which specific solutions are discussed here, should be
modified to have a traction-free surface along, e.g., a plane of
form x = constant to represent more accurately the Earth’s
surface above a strike-slip margin. Such questions are con-
ventionally addressed in geodetic modeling by assuming a
distribution of sub-surface slip rather than by assuming
alteration of the boundary between a locked and slipping
region, although calculations of the latter type have recently
been done by Tse et al. (1984) based on approximate ‘‘line
spring’’ modeling.

2. As suggested to the author in different contexts by B.
Budiansky and E. Vanmarcke, an important problem in
fracture theory is that of how a crack advances through a
material with randomly variable fracture resistance. The
problem arises for both tensile and tectonic shear cracking.
To the extent that such crack advance can be modeled as the
elastic-brittle growth of a planar crack whose front is only
slightly deviated from straightness by the random highs and
lows of fracture resistance, the techniques discussed here for
relating local X to crack front location may be applied as a
basis for analyzing growth. The problem would seem to have
attributes similar to that of the failure of a long earth em-
bankment of randomly variable properties as treated by
Vanmarcke (1977). A localized weak spot may engender a
local, short wavelength advance of the crack, but such will not
necessarily go very far because the K at the advanced tip will
generally be reduced according to the analysis here. On the
other hand, long wavelength advances of the crack may
correspond to effectively sampling the fracture resistance over
a wide zone and are not sensitive to locally weakened zones.
Thus, as is the case in Vanmarcke’s (1977) analysis of em-
bankment failure, one expects an intermediate wavelength to
be most critical. There is also the prospect in such studies of
quantifying the random small ruptures which precede overall
failure.

3. As emphasized by Meade and Keer (1984b), crack-
front segmentation is observed in laboratory study of brittle
materials under mode 3 or combined mode 1 and mode 3
loading. They observe that modes 2 and 3 are coupled in the
sense that when the crack front protrudes ahead locally in the
plane y=0 a mode 2 intensity is induced which has different
signs on opposite sides of the localized protrusion. They
suggest that the induced mode 2 causes deviations from
planarity of opposite sense (up versus down in y direction) on
the two sides of the protrusion during tensile crack advance,
leading to nonplanar segmentation. The revised basis for
calculating stress intensities along a nonstraight crack front
set out here may allow further evaluation of the proposed
mechanism.

4, An approach to assessing whether a given solid will fail
by atomistically brittle versus ductile mechanisms is based on
addressing the following question (Rice and Thomson, 1974;
Mason, 1979): As loading is applied to an initially sharp crack
will one first reach conditions for tensile separation of lattice
planes or, instead, will dislocation lines first be nucleated
from the tip and blunt-out the stress concentration? Thus far
the dislocation nucleation problem has been addressed
beginning with an exact elastic analysis for the ‘“image force”’
pulling a straight dislocation line, lying parallel to the tip,
back into the tip (Rice and Thomson, 1974; Asaro, 1975;
Rice, 1984). Then the analysis is adapted in a more-or-less ad
hoc manner to deal with discrete atomistic and three-
dimensional aspects of the problem (e.g., the dislocation line
is expected to nucleate as a loop). However, the elastic field of
an arbitrary three-dimensional dislocation loop can be
represented in terms of the Green’s function for the dislocated
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body. Since the Green’s function for the half-plane crack is
given here, it is possible in principle to represent the elastic
field of a dislocation loop near a crack tip in terms of the
present results, although it is far from clear that it will be
feasible to carry through the calculations implied. Ideally, one
would like to calculate the loop shape allowing easiest
nucleation.

Acknowledgment

I am grateful for discussions on the topic of this paper with
B. Budiansky, H. J. Gao, J. W. Hutchinson, L. M. Keer, P.
Matagna, D. M. Parks, and E. Vanmarcke. Work in this area
is supported by the NSF Materials Research Laboratory at
Harvard, by the NSF Division of Earth Sciences, and the
USGS Earthquake Hazards Reduction Program.

References

Asaro, R. J., 1975, ‘““An Image Force Theorem for a Dislocation Near a
Crack in an Anisotropic Elastic Material,”” Journal of Physics, F: Metal
Physics, Vol. 5, pp. 2249-2255.

Barnett, D. M., and Asaro, R. J., 1972, “*The Fracture Mechanics of Slit
Cracks in Anisotropic Elastic Media,” Journal of the Mechanics and Physics of
Solids, Vol. 20, pp. 353-366.

Besuner, P. M., 1974, ‘‘Residual Life Estimates for Structures With Partial
Thickness Cracks,”” Mechanics of Crack Growth, STP 590, ASTM,
Philadelphia, pp. 403-419.

Bortman, Y., and Banks-Sills, L., 1983, ‘“‘An Extended Weight Function
Method for Mixed-Mode Elastic Crack Analysis,”” ASME JOURNAL OF APPLIED
MecHanics, Vol. 50, pp. 907-909.

Bueckner, H. F., 1970, ‘*A Novel Principle for the Computation of Stress In-
tensity Factors,” Zeitschrift fir angewandte Mathematik und Mechanik, Vol.
50, pp. 529-546.

Bueckner, H. F., 1972, ‘‘Field Singularities and Related Integral Representa-
tions,”" Mechanics of Fracture 1: Methods of Analysis and Solution of Crack
Problems, Sih, G. C., ed., Noordhoff, Leyden, pp. 239-314.

Green, A. E., and Zerna, W., 1954, Theoretical Eiasticity, Oxford University
Press.

Kassir, M. K., and Sih, G. C., 1973, “Application of Papkovich-Neuber
Potentials to a Crack Problem,”’ International Journal of Solids and Structures,
Vol. 9, pp. 643-654.

Li, V. C., and Rice, J. R., 19834, ‘‘Preseismic Rupture Progression and Great
Earthquake Instabilities at Plate Boundaries,” Journal of Geophysical
Research, Vol. 88, pp. 4231-4246.

Li, V. C., and Rice, J. R., 19835, ‘‘Precursory Surface Deformation in Great
Plate Boundary Earthquake Sequences,”” Bulletin of the Seismological Society
of America, Vol. 73, pp. 1415-1434.

Love, A. E. H., 1927, The Mathematical Theory of Elasticity, Cambridge
University Press.

Mason, D. D., 1979, ‘‘Segregation-Induced Embrittlement of Grain Boun-
daries,”" Philosophical Magazine, Vol. 39, pp. 445-468.

Meade, K. P., and Keer, L. M., 19844, “‘On the Problem of a Pair of Point
Forces Applied to the Faces of a Semi-Infinite Plane Crack,’’ Journal of
Elasticity, Vol. 14, pp. 3-14,

Meade, K. P., and Keer, L. M., 1984b, “‘Stress Intensity Factors for Semi-
Infinite Plane Crack With a Wavy Front,”’ Journal of Elasticity, Vol. 14, pp.
79-92.

Paris, P. C., McMeeking, R. M., and Tada, H., 1976, ‘*“The Weight Function
Method for Determining Stress Intensity Factors,”” Cracks and Fracture, STP
601, ASTM, Philadelphia, pp. 471-489.

Parks, D. M., and Kamenetzky, E. A., 1979, “Weight Functions From Vir-
tal Crack Extension,” International Journal of Numerical Methods in
Engineering, Vol. 14, pp. 1693-1706.

Rice, J. R., 1972, ““Some Remarks on Elastic Crack Tip Stress Fields,’' Inter-
national Journal of Solids and Structures, Vol. 8, pp. 751-758.

Rice, J. R., 1984, ““Conserved Integrals and Energetic Forces,”' in: Fun-
damentals of Deformation and Fracture (J.D. Eshelby Memorial Volume),
Miller, K. J., et al., eds., Cambridge Univ. Press, in press.

Rice, J. R., and Thomson, R., 1974, ‘“‘Ductile Versus Brittle Behavior of
Crystals,”” Philosophical Magazine, Vol. 29, pp. 73-97.

Sih, G. C., and Liebowitz, H., 1968, ‘‘Mathematical Theories of Brittle Frac-
ture,”” Fracture, An Advanced Treatise: Vol. 2, Mathematical Funda. tals,
Liebowitz, H., ed., Academic Press, New York, pp. 67-190.

Stroh, A. N., 1958, *‘Dislocations and Cracks in Anisotropic Elasticity,”
Philosophical Magazine, Vol. 3, pp. 625-646.

Tada, H., Paris, P. C., and Irwin, G. R., 1973, The Stress Analysis of Cracks
Handbook, Del Research Corp., Hellertown, Pa.

Tse, S. T., Dmowska, R., and Rice, J. R., 1984, ‘‘Stressing of Locked Zones
Along a Creeping Fault,”” Bulletin of the Seismological Society of America, in
press.

Uflyand, Y. S., 1965, Survey of Articles on the Application of Integral
Transforms to the Theory of Elasticity, North Carolina State University,
Department of Applied Mathematics Research Group, File No. PSR-24/6.

Vanmarcke, E. H., 1977, “‘Reliability of Earth Slopes,”” Proceedings of
ASCE, Journal! of the Geotechnical Engineering Division, Vol. 103, pp.
1247-1265.

SEPTEMBER 1985, Vol. 521579





