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Abstract—Constraints on diffusive creep cavity growth along grain boundary facets are studied for the
limiting case when all facets oriented approximately normal to an applied tensile load are uniformly
cavitated. This situation represents the opposite limiting case to when cavitated facets are well-separated
and do not interact with each other. The analysis is done for a 3-D periodic polycrystalline model of grains
in the shape of the Wigner-Seitz cells of a f.c.c. lattice. The grains have frecly-sliding boundaries and
deform in a nonlinear viscous manner in response to applied stress. Expressions for the cavity growth rate
and the strain and time to rupture are compared with resuits of prior work in which cavitated facets are
well-separated, and this gives a good understanding of the ranges of stress and temperature over which
cavity growth is constrained and rupture lifetime is increased. The time to rupture, which is taken here
to mean cavity coalescence on the damaged facets, is scen to depend strongly on the proximity of cavitated
facets, at least when cavity growth is constrained. However, the strain to rupture is observed to lack this
strong dependence although for constrained conditions, the cavitation process contributes substantially
to the total strain when cavitated facets are closely-spaced. When cavitated facets are well-separated, the
polycrystal is seen to achieve a relatively constant strain rate. By comparison, the strain rate is seen to
vary substantially with time when cavitated facets are closely-spaced. The time and strain to rupture as
well as strain rate versus time curves are calculated as functions of applied load and temperature for nickel
as a representative f.c.c. metal,

Résumé—Nous étudions I'effet de contraintes sur la croissance des cavités de fluage de diffusion le long
de faccttes intergranulaires dans le cas limite ol toutes les facettes orientées approximativement
perpendiculairement 4 une contrainte de traction appliquée présentent une cavitation uniforme. Cette
situation est Popposée du cas limite ou les facettes présentant la cavitation sont bien séparées et
n'interagissent pas entr’clles. Nous avons effectué I'analyse pour un modéle polycristallin périodique a
trois dimensions de grains ayant la forme des cellules de Wigner et Seitz d’une structure c.f.c. Les grains
présentent des joints qui glissent librement et ils se déforment de maniére visqueuse non linéaire sous Peffet
d’une contrainte appliquée. Nous comparons les expressions pour la vitesse de croissance des cavités, la
déformation et la durée de vie & la rupture avec les résultats d’un travail antérieur dans lequel les facettes
présentant la cavitation sont bien séparées; ceci conduit & une bonne compréhension des domaines de
contrainte et de température dans lesquels la croissance des cavités est génée et on la durée de vie d la
rupture est augmentée. On voit que la durée de vie 4 la rupture, que est prise ici égale au temps moyen
de coalescence des cavités sur les facettes en dommagées, dépend fortement de la proximité des facettes
cavitées, au moins lorsque la croissance des cavités est génée. Cependant, la déformation & Ia rupture ne
présente pas cette forte dépendance bien que, lorsqu’elle est génée, la cavitation contribue notablement
4 la déformation totale lorsque les facettes cavitées sont proches. Lorsque les facettes endommagées sont
bien séparées, le polycristal présente une vitesse de déformation ? constante. Au contraire, la vitesse de
déformation varie notablement en fonction du temps lorsque les facettes endommagées sont proches. Nous
avons calculé la durée de vie et la déformation 4 la rupture, ainsi que les courbes de la vitesse de
déformation en fonction du temps, en fonction de la contrainte appliquée et de la température dans le
nickel considéré comme représentatif des métaux c.f.c.

Zusammenfassmng—Dic  Einschrinkungen, denen das Hohiraumwachstum wihrend des
Diﬁ'ugonskriechens entlang von Korngrenzfacetten unterliegt, werden fiir den Grenzfall untersucht, daB
simtliche Facetten ungefahr senkrecht zu ciner duBeren Last liegen und gleichmiBig mit Hohlrdumen
besetzt sind. Diese Bedingungen stehen im Gegensatz zu dem Grenzfall, bei dem die hohlraumbesetzten
Facetten deutlich getrennt sind und nicht miteinander wechselwirken. Die Analyse wird in einem
3-D-periodischen polykristallinen Modell aus Kémem in der Form von Wigner-Seitz-Zellen eines kfz.
Gitters durchgefiihrt. Die K6rner weisen frei gleitende Grenzen auf und verformen sich nichtlinear und
viskos entsprechend der Spannung. Die Ausdriicke fiir Wachstumsrate der Hohlriiume, Bruchdehnung
und Bruchstandzeit werden mit Ergebnissen verglichen, die friiher fiir den Fall deutlich getrennter
Facetten erhalten wurden. Hieraus ergibt sich eine gute Einsicht in die Temperatur- und Span-
nungsbereiche, in denen das Hohlraumwachstum eingeschriinkt ist und somit die Bruchstandzeit erhoht.
Die Bruchstandzeit, bestimmt hier von dem Zusammenwachsen der Hohlriume, hingt stark vom Abstand
der hohlraumbesetzten Facetten ab, wenigstens beim eingeschriinkten Wachstum, Die Bruchdehnung
jedoch weist diese starke Abhidngigkeit nicht auf, wenn auch der ProzeB der Hohiraumbildung im Falle
des cingeschrinkten Wachstums bei nahe beicinanderliegenden Facetten betrichtlich zur Gesamtdehnung
beitriigt. Liegen dic hohlraumbestzten Facetten deutlich getrennt, dann verformt sich der Polykristall mit
ciner relativ konstanten Dehnungsrate, Im Vergleich dazu variiert die Dehnungsrate betriichtlich in der
Zeit fir den Fall nahe beicinanderliegender Facetten. Bruchstandzeit und -dehnung, ebenso der
Zusammenhang von Dehnungsrate mit der Zeit, werden fiir Nickel als repriisentatives kfz. Metall als
Funktion der angelegten Last und der Temperatur berechnet.
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INTRODUCTION

At elevated temperatures polycrystalline materials
generally fracture by the initiation, diffusive growth
and eventual coalescence of grain boundary cavities.
The basic model for the diffusive growth process is
due to Hull and Rimmer [1}, who depict a cavitated
grain boundary facet as a uniform array of voids
(Fig. 1). Many others have contributed to subsequent
improvement of the model and have formulated the
void growth rate 4 and the average opening rate of
the cavitated grain boundary & in terms of the current
void radius a, void spacing 2b and the average stress
oy across the cavitated facet [21H9); see (19) to follow.

However, in applying such relations for 4 and 4, it
is incorrect to equate o to the stress §S which acts
across the grain boundary of an identical but non-
cavitating specimen under the same macroscopic
stress S [Fig. 2(a)]. Here, B (which we estimate later
to be approximately 1.7) is interpretable as a stress
enhancement factor, on facets approximately normal
to the tensile direction, due to freely-sliding grain
boundaries. Consider the geometry of a cavitated
facet in a polycrystalline material shown in Fig. 2(b).
The cavitated facet there is surrounded solely by
uncavitated material to depict the case of relative
isolation of one cavitated facet from another. Dyson
[10] observed that the opening rate of the cavitated
facet must be accommodated by surrounding mate-
rial, and this may strongly constrain the void growth
process, particularly when the cavitated facets are
relatively isolated from one another. That is, condi-
tions may exist where the surrounding material is
unable to accommodate the cavity opening rate cor-
responding to op= BS. The load across the cavitated
facet is then shed to the surrounding material, reduc-
ing o, from BS until the opening rate of the facet is
compatible with the creep rate of surrounding mate-
rial. The result under such constrained conditions is
that the cavity growth process is slowed, and the time
to void coalescence on a cavitated facet is prolonged.

Rice [11]incorporated Dyson’s concept to model in
an approximate manner void growth in a material
with well-separated cavitated facets [Fig. 2(b)], the
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Fig. 1. A cavitated grain boundary, modeled as an array of

uniformly spaced voids, subjected to stress o, and sepa-

rating at a rate 3 due to diffusional flow of matter from the
cavity surfaces to the grain boundary.
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opening rate of which is accommodated by the
dislocation creep of material surrounding the facet.
Also, Cocks and Ashby [12] studied the effect of the
proximity of cavitated facets to one another over a
wide range, and reached similar conclusions in the
well-separated regime. The functional form for the
average opening rate of a well-separated cavitating
facet was assumed as [11]

3 = al(BS ~ 05)/BS)Erscayd- (n

Here E oy = Epoae(S) is the creep strain rate for
stress S acting on an uncavitated polycrystal (in
which case o,=fS), and d is the diameter of the
cavitating facet. The proportinality factor « in (1)
depends on the creep exponent n in the relation
& o 0" between creep strain rate and stress. Rice
estimated that in the absence of grain boundary
sliding, values of « would range from about & = 0.64
for n =1 to a =0.90 for n = 5. Improved estimates
for that case were given by He and Hutchinson [13].
Rice noted, however, that the presence of freely-
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Fig. 2. (a) An uncavitated grain boundary, across which acts
a stress o= fBS enhanced by a factor § due to grain
boundary sliding. (b) The same grain boundary in (a), but

in a cavitated siate. Local opening of the grain boundary
due to void growth reduces o, from the value §S.
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sliding grain boundaries would increase a over the
previous values, and estimated that perhaps a doubl-
ing of the previous a values would then be appropri-
ate. Combining (1) with an equation characterizing
the diffusive void growth process for the basic geom-
etry of Fig. | [i.e. 8 = 8(o,)] enabled solution for o,
and thus for the cavity growth rate d and the time to
“rupture” as a function of the applied stress S. Here
“rupture” was equated to the coalescence of voids
along the cavitated facet.

Rice thus found the degree of constraint to be
characterized by a length parameter L =(2,S/

E,..n)'” which decreases with increasing stress and
temperature. When L3 is much greater than b%d, the
compliance of the void growth mechanism exceeds
that of the surrounding uncavitated material, the
constraint effect discussed herein is important, and
rupture lifetime is controlled by the strain rate £,,,,.
Here 2, = D,0,Q/kT is a boundary diffusive parame-
ter for which D,J, is the grain boundary diffusion
coefficient, Q is the volume per atom, and kT is
temperature in energy units. The discussion assumes
that E,,,, has the same temperature dependence as
does bulk diffusion, and is proportional to S”.

Different forms for 4 must arise in (1) when the
cavitated facets are more closely spaced so that the
surrounding material may not be regarded as un-
cavitated. If E,,., is interpreted consistently as the
strain rate resulting from stress S applied to an
uncavitated polycrystal, the effect will be to substan-
tially increase the factor of proportionality « in (1)
due to larger scale interactions between the creep
deformability of the grain and grain boundary void
growth. This effect can be seen in the equations of
Cocks and Ashby [12].

In particular, an opposite limiting case discussed
by Dyson [10] occurs when all facets approximately
perpendicular to a remotely applied tensile stress are
cavitated and again, the grain boundaries slide freely.
Such a case represents a lower bound to the con-
straint effect, and hence an upper bound to the void
growth rate in a polycrystalline sample. As such, it
constitutes the focus of this study. A functional form
for & similar to (1) is developed for a 3-D poly-
crystalline model with freely-sliding grain boundaries
and with all facets cavitated which are perpendicular
to a uniaxial tensile stress. A diffusive cavity growth
model is ‘then included in the analysis to obtain
criteria as to when constrained cavity growth occurs.
Times and strains to rupture are then calculated for
pure nickel as a representative f.c.c. metal, and
comparison is made between the two opposite lim-
iting cases discussed above so as to provide bounds
to actual situations.

CONCEPT OF 3-D CONSTRAINED
CAVITY GROWTH

Constraint manifests itself somewhat differently in
3-D than in 2-D. Consider the 2-D hexagonal
geometry in Fig. 3 for which grain boundaries are
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considered freely-stiding. Effectively, the concept of
constraint by surrounding material does not exist
when all facets perpendicular to an applied stress are
cavitated.” No deformation of the grains is then
required to accommodate the opening rate of the
cavitating facets. Hence, constraint in the 2-D case
has meaning only for isolated or nonuniform
distributions of cavitating facets, or when a regular
hexagonal array of grains is not used [14].

A 3-D geometry shows similarities to the 2-D one,
except that when deformed, it has additional sliding
components located out of the plane of the 2-D
representation in Fig. 3. When a structure of 3-D
space-filling grains cavitates, grain boundary sliding
components that are consistent with the grain sym-
metry and accommodate the cavitation do not
produce compatible displacements without grain
deformation. Therefore, a 3-D geometry, unlike a
regular 2-D one, permits constraint of the void
growth process for the posed limiting case of closely-
spaced cavitating facets.

The manner by which surrounding material
accommodates the opening rate & of the cavitated
facet depends on the magnitude of the applied tensile
load as well as the specific material and geometrical
characteristics of the polycrystal. At very low applied
stress, it is often reasonable to approximate the grains
as rigid bodies. The Nabarro-Herring and/or Coble
diffusional flow of material between grain boundary
facets, driven by chemical potential differences pro-
portional to differences in normal stress, then accom-
modates local openings at cavitated facets and hence
allows overall strain of the polycrystal. At higher
applied stresses, the dislocation creep of grain interi-
Ors serves as a more responsive accommodation
mechanism to grain boundary void growth.

The particular 3-D model used consists of a peri-
odic arrangement of the 14-sided Wigner-Seitz cells
of a f.c.c. lattice [see Fig. 4(a,b)]. Particular features
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Fig. 3. Widespread cavitation in a 2-D regular hexagonal

structure. Grains need not deform to accommodate cavity

growth; they need only to displace inward a macroscopic
center axis.
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direction of
applied load S

partially

Strain rate E T Stress S
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Fig. 4. (a) The Wigner-Seitz cell of an f.c.c. lattice. All faces F are perpendicular to the macroscopic load

S and are partially cavitated. Uncavitated faces are cither square (S) or hexagonal (H). (b) The periodic

assemblage of such cells, subjected to load Sy, = S, with corresponding strain rate . The cell boundaries
are assumed to slide freely.

of the arrangement are that it completely fills space
and has a high degree of symmetry which greatly
simplifies analysis. Stress S is applied in a direction
normal to a family of hexagonal faces marked F. The
limiting case of closely-spaced cavitated facets is
represented by specifying all such faces oriented
perpendicular to the far-field applied stress S to be
cavitated. All grain boundaries are assumed to slide
freely. The accompanying macroscopic strain rate in
the direction of Sis £. As illustrated, we also consider
the possibility of transverse stresses Sy and denote by
E; the strain rate in the transverse directions.

ANALYSIS OF ACCOMMODATION BY
DISLOCATION CREEP

Here, applied stress levels are assumed high enough
for dislocation creep of the grains to be the primary
accommodation mechanism for the opening rate & of
the cavitating facets. The analysis is done as now
outlined.

(i) Stress-based variational principle

A stress-based variational principle is developed in
Appendix A for the Wigner-Seitz cell model. Here
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the grain material is modeled as linear or nonlinear
viscous. We regard the macroscopic stress tensor S;
and stress g, on the cavitated facets as “given”, and
seek to determine, in terms of them, the overall strain
rate E; and average opening rate & of the cavitated
facets. The latter relation is analogous to (1). Formu-
lated in Appendix A is an averaged complementary-
energy-like density ¥ (o,), defined as a functional of
any local stress field o, in the cell satisfying:

d6,/0x; =0 (local equilibrium in grain volume)
g, produces no shear traction on the grain
surface

a; equilibrates the given applied stress state S;;
[see equation (A4)]

noyn;=ap the given applied load, on the
cavitated facet

oy produces normal tractions on the grain
surface which are consistent with the period-
icity of the polycrystal [see condition stated
immediately before equation (A4)].

Of all admissible grain stress states satisfying the
above, the actual solution renders ¥ (o) a minimum.
The variational principle A¥(g,) =0 produces the
strain displacement relations [see relation stated
immediately before equation (AS)] and also a com-
patibility relation between £, & and the component
of velocity normal to the grain surface [see equation
(A2)]. The macroscopic strain rate tensor E; and
average opening rate é of the cavitated facet are then
given as

= — £ ¥)

Here V; is the grain volume and 4, is the area of the
cavitated facet.

(i) An approximate stress state in the grain

A local stress state o, meeting the above conditions
may be constructed as the sum of a uniform hydro-
static state Ad, and seven uniform uniaxial stress
states; each uniaxial field acts only within a right
cylindrical column positioned through the grain and
defined by one of the set of seven face pairs (see
Fig. 5)

7
0,x) =28, + ¥ [6©@ = Ug®(nnf. ()
am|

Here, a is an index for the seven face pairs; ¢®(x) = 1
for x in column « and =0 otherwise; n® is a unit
vector along the column generator, and ¢® is the

normal stress on the face pairs of column a.
Accordingly, ¥ (a,) can be expressed as the integral
over a cell of an algebraic function of 4 and the seven
o', Specifying Sy, o, as given determines the seven
@ and ¥ is minimized with respect to the remaining
free parameter 4. Then ¥, = ¥, (Sy, ), and (2) is
used assuming an axisymmetric macroscopic stress
state Sy, = S, S, = Sp = Sy and all other S, =0. The
procedure can be carried out readily for linearly
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viscous grain creep. In that case the average opening
rate § and strain rates £ and E; in the directions of
S and S, respectively, are given by

8 ~4.33(1.67S — 0.67S; — o dd/u @
E = 3.02{1.855 —0.858,— o/u (5a)
Erx — 061[2.11S — L.11S,—ad/u.  (5b)

Here, d is the diameter of the cavitated facet and u
is the linear shear viscosity of the material, i.c.
é = g /3u for uniaxial tension of a crystallite.

The effect of sliding grain boundaries in an un-
cavitated, uniaxially loaded specimen (S = 0) may be
estimated by setting § =0 in (4). We then see that
o= 1.67S, which determines the factor § as ~1.67
for the Wigner-Seitz cell geometry. Inserting this
value of o into (5a), the macroscopic strain rate is
then £ = 1.635/3u (later denoted as E,,,,). This is as
compared to E = S/3u when there is no grain bound-
ary sliding. By the analogy between linear elastic and
linear viscous materials, the same results hold for the
Wigner-Seitz model with linear elastic grains of
Poisson’s ratio v = 1/2, if the strain rate E is replaced
by strain E and if u is regarded as the elastic shear
modulus. The ratio of the elastic strain when grain
boundary shear tractions are relaxed to that when no
relaxation of shear tractions occurs would therefore
be 1.63 for loading of the Wigner-Seitz cells in the
direction indicated. We compare this value to the
theoretical calculations of Zener [15] who obtained a
value of approximately 1.32 by applying strain energy
considerations to spherical grains.

(iii) Interpretation of y for nonlinear materials

An extension of the formulation is now made to
include nonlinear materials described by the creep
rate (o) = [T dependent factor] x ¢" for which n is
the creep exponent. Direct use of the variational
formulation is prohibitively complex for that case, so
instead we proceed in an approximate manner as
indicated in order to have a basis for simple estimates
of material response. The local grain strain rate and
stress deviatoric tensors are related as

1 1
&= ﬂ 1, where =0, 36”‘6” ©)

o-(ﬂ) =05,
(@)

F i,
A/

L] /] 2
‘r —ZI—<xX_|__q(® = 1(inside column a)
- *

? S,

—q' = 0(outside column @)

o'(a)lo's

Fig. 5. One of the seven column stress states comprising the
approximate local stress state o, in the grain.
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and the nonlinear viscosity u is related to the equiv-
alent stress o, as

u=0,3(c) o, [“3 = '; ’070]- )

We obtain an approximate effective viscosity of the
grain, for use in (4) and (5), by using (7) with g, being
the function of S and o, obtained as the square root
of the cell average of o2 for the lincar solution
described in (ii). Results express this average équiv-
alent stress 7, for a tensile loading (Sy=0) as

3,(S, 0p) = [16.75* — 18.1S0,+ 547032, (8)

Here, &, varies from about 1.3S for g,=1.67S to
about 4.18 for o, = 0. If (8) is inserted into (7), the
ratio of grain-averaged viscosities for a polycrystal
with completely cavitated facets (i.e. with all grain
boundary cavities coalesced) to that for a polycrystal
with no cavitation is

Mav ~ [6’,(3, 1~678) =t 1

b L 780 | “BF @
This is a numerically significant effect, and an im-
portant aim for further work is the clarification of the
accuracy of the somewhat rough approximations
adopted here, perhaps by applying directly our vari-
ational principle to the nonlinear case.

(iv) Comparison of opposite limiting cases

We can now consider the two limiting cases for
which the cavitated facets are well-separated and
closely-spaced, respectively. In the former case, & is
given by (1) using « = 1.8 (corresponding to a poly-
crystal with freely-sliding grain boundaries and a
creep exponent n = 5), f = 1.67, and £,,,, is given by
(5a) by setting o= 1.67S, Sy =0 and by evaluating
# = pu(S, 1.67S). In the latter case, i.c. that for which
all facets of type F are cavitating, we use directly (4)
and (5a) with S,=0 and p = u(S,0p). Thus, to
compare the two limiting cases

8 % 0.58[1.67S — o:)d/u(S, 1.67S)

E % By, = 0.54S/u(S, 1.67S)

(well-separated) gg:g
& ~4.33[1.67S — o Jd/u(S, op)
E ~3.02{1.858 — o )/u(S, op)

(closely-spaced). 8 ]l 8

{v) Results for well-constrained and unconstrained void
growth

The results discussed herein assume that cavities
are present at the initial stage. Hence, the time to
nucleate such cavities is not considered. Instead, we
focus on the time to rupture, ,, needed for a uniform
distribution of cavities on a facet of type F [see Fig.
4(a)] to grow from an initial cavity radius g, to a final
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radius b at coalescence. Thus

f ]
1’,=J~ -l-da
o 8

Here, a is the time rate of change of the cavity radius.

Given a cavity geometry such as that in Fig. 6, 4
may be related to & through a statement of the
conservation of material. Including an as yet unstated
relation that characterizes the cavity growth process
[i.e. 8 =&(0;) where the function depends also on b
and the current a) enables one to eliminate o, from
(10a) and (11a), and thus to obtain 4 and ¢, as a
function of the applied stress S.

For cases where the void growth process is greatly
constrained, o, may be driven down towards the
sintering threshold level oy, so that o, — 6, < 8S — 0.
As will be shown later, such constrained conditions
may be realized at sufficiently low S. One can calcu-
late ¢, for such strongly constrained conditions. For
example, if cavities are assumed to be of a quasi-
equilibrium spherical cap shape during growth (see
Fig. 6), then conservation of material requires that
nb* = 4nh(a® — a})/3. Here, h depends on the cavity
dihedral tip angle and a typical value is & = 0.6 (see
Chuang et al. [S]). Thus, we differentiate with respect
to time to obtain

8 =4h(a*/bDa (13)

Then for 6, — 0,«<BS — a,, & for the well-separated
and closely-spaced distributions of cavitated facets is
given in terms of S and o,, by replacing ¢ with ¢, in
(10a) and (11a), respectively. Using (12) and (13), we
find

(12)

(st 7 » A5, 1.675)
(tr)nlouly-q’wed e “(s’ 00)
. [345,1.678) -
= 7.2[——-—-—-———-—3‘ .00 (14)
i
G OF
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—

4

=y
— 0 —— /
no flux
Fig. 6. Axi-symmetric geometry used to analyze cavily
growth. Cavities enlarge by surface transport of material to
the cavity tip, and subsequent transport of this material by

boundary diffusion into the adjoining region between
cavities.
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where here g, is to be understood as an average as
weighted by the integral in (12).

The bracketed ratio in (14) is evaluated for various
values of ¢,/1.678 by using (8). Assuming
6,/1.67S « 1, the bracketed ratio is & 3.1 as predicted
by (9). For 4,/1.678 = 0.4, the bracketed ratio is
#2.0. Thus, it is found for low to moderate values of
6,/1.67S that (14), valid for conditions of strong
constraint, predicts a considerably longer time to
rupture for the well-separated geometry than for the
closely-spaced one. For example, if the material ir
characterized by a creep exponent of 5, then in the
range of 0,/1.67S discussed above, (£,)weit.separatca 15 Of
at least two orders of magnitude greater than
(’r):h-dy-up-eed'

Bounds on the total strain to failure may be
constructed using (10a,b) and (11a,b) along with an
assumption about the cavity shape during growth. By
using (10b) to eliminate S from (10a), or equivaiently,
by considering (1) with o, < 85, a secluded cavitating
facet opens at a rate bounded by £, o, X 4, i.e.

(15)

If, for example, cavitics are assumed to be of a
quasi-equilibrium spherical cap shape during growth,
then volume conservation reguires the average open-
ing of the cavitated facet at rupture to be
8, = (4h/3)b(1 — f}7) where a}/b®=f;=initial area
fraction of grain boundary which is cavitated. Here,
we assume h = 0.6, Integrating cach side of (15),
respectively, from § =0, E=0t0 d =d,, E = E, and
setting « = 1.8 (corresponding to a polycrystal with
freely-sliding grain boundaries and a creep exponent
of 5), one obtains

(Edvataepart = 0445/ (1 = £37).  (16)

A bound on E, for the closely-spaced situation is
constructed in a similar manner; equation (11b) is
used to eliminate S in the bracketed term of (11a)

Smll-mnwd = aEnouvd-

) o 33
clowlyepacsd ™ u(sS, o r
1.67Eu(S, op) 1.67
* [‘(37)3)'(173)—" (‘ ~18s r]- an

Since the second term in (17) is inherently positive, a
bound is constructed where & < 1.29 Ed, the equality
holding when o, = 0. Integration of (17) as with (15)
yields

(B sontysncot 2 0-6200/d)(1 =117 (13)

The equalities in (16) and (18) hold when constraint
is strong, i.c, when 0 — 0, < S — 0, and also g, « BS.

In the other limit for which cavity growth is
unconstrained, the details of the distribution of cav-
itated facets become irrelevant when calculating ¢,
and E,. Here ¢, for any distribution of cavitated facets
is determined as the time for cavities on a single facet
to coalesce, given that 6, = S (see Fig. 1). One also
observes that setting o, = 85 in (10b) and (11b) gives
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E #s the same for both the well-separated and closely-
spaced situations. Since ¢, is also the same for both
the well-separated and closely-spaced situations, £,
given here by the product of £, and ¢, is unchanged
as well. Hence, the proximity of cavitated facets to
one another does not change greatly the total strain
to rupture, but it does alter the time to rupture
substantially, at least when cavity growth is greatly
constrained.

For the closely-spaced geometry, the contribution
of the void growth process to the total strain may be
estimated as the opening of the cavitated facet at
coalescence divided by the separation distance
between two grain centers. Using a quasi-equilibrium
spherical cap cavity shape, one estimates this con-
tribution to be 0.59(b/d)(1 —£37) as compared to the
estimate for E, in (18). Hence for the closely-spaced
situation under constrained conditions, the void
growth process is seen to be a major contributor to
the total rupture strain. This last observation is
supported by Harris et al. [16] and Hanna et al. [17]
whose long term fracture experiments showed that
the volumetric strain may become the dominant
strain.

VOID GROWTH BY THE HULL~RIMMER
PROCESS

Bounds on E, have been constructed for the lim-
iting cases of completely constrained and completely
unconstrained void growth. The stress and tem-
perature regimes for which constraint is actually
important arc obtained by characterizing the void
growth process (i.c. expressing 4 as a function of o)
and coupling results with (10) and (11).

A basic model for grain boundary void growth was
proposed by Hull and Rimmer [1]. Here, cavities
enlarge by surface transport of material to the cavity
tip, and subsequent transport of this material by
diffusion into the adjoining grain boundary region
between two cavities (Fig. 6). Boundary diffusion is
normally the dominant transport process and then
the resulting opening rate of the cavitating facet is
given in [9] as

49, [or—201 —/)(y/a)siny]
b* In(Uf) -~ B -NAU =N

Here 2, = D0, Q/kT as explained ecarlier; y, is a
surface energy, ¥ is the cavity tip dihedral angle and
f=a%/b? is the voided area fraction. The void half
spacing b is assumed to be uniform over position and
time in this calculation although in actuality, nucle-
ation effects may make cavity spacing a function of
time and of the relative orientation of grains joining
at a facet. The bracketed term in the denominator is
solely a function of the current voidage fraction fand
it is of order unity for typical f values. The term
subtracted from o, represents a sintering cutoff
stress g, =2(1 — f)(y,/a) sing which is frequently
negligible compared to §S.

]

(19)
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In the Hull-Rimmer analysis, cavities are assumed
to retain a quasi-equilibrium spherical cap shape.
This is valid for low @ and low oy, or equivalently,
when the rate of material transport by surface
diffusion greatly exceeds that due to boundary trans-
port [5, 18). In addition, & is assumed to be indepen-
dent of position along the cavitated facet. This is
valid [9, 18, 19, 20] for a + 1.5L > b, where the length
parameter L = [D,0,/é(c,)]'” is defined as is L, except
that it is based on o, rather than the applied stress S.
An interpretation is that the matter diffused from the
cavity is accommodated nonuniformly on the grain
boundary, with local creep flow allowing openings to
occur only over a distance of order L ahead of the
cavity tip. From this observation, Chen and Argon
[19] suggest a reasonable approximation to the finite
clement results of Needleman and Rice [9] for the
case of tensile loading is to use (19), but with f
replaced by the maximum of (a/b)* and {a/(a + L)}*
Work by Sham and Needleman [20] suggests a best
fit of this approximate method to the data is obtained
if a factor of 1.5 multiplying L is inserted into the
above formula for . Equation (19) may be altered to
account for other effects; for instance, the influence of
triaxiality on cavity growth rate could be included in
the present analysis by adopting an approximate
expression given by Sham and Needleman [20] rather
than use (19). -

Use of (19) to eliminate o, from (102) and (11a)
gives the opening rate, &, for the well-separated and
closely-spaced geometries in terms of the applied
stress S. In particular, the opening rate normalized
with that when no constraint exists (i.e. o5 = 1.67S)
gives for the well-separated case

5 = Or— 0y
(5).,- s 1678 — o

~ (1)) -G =N -2}
[2.2L%6%d} + In(1/f) — B3 = NA =N)/2)

The degree of constaint is determined by comparison
of the two bracketed terms in the denominator of
(20). Constraint is important when the first of the
bracketed terms in the denominator is comparable to
or greater than the second of the bracketed terms or
equivalently, when L3/b%d is of order unity or greater
(since the second of the bracketed terms in the
denominator is of order unity).

As mentioned, L decreases with increasing stress
and temperature. Needleman and Rice [9] observe
that when power-law creep occurs with an activation
energy equal to that for bulk (lattice) diffusion, L
may be expressed as L(S) = Lyexp(xT,/T)(10"2G/
S)*-" where L, and x are constants, T,, is the
absolute melting temperature, n is the creep exponent
and G is the elastic shear modulus. They find that for
S=10-*Gand T =0.5T,, L ranges from about 2 to
8 um for some common f.c.c. metals and from about
0.25 to 0.35um for some b.c.c. metals [9). For
S = 10~* G at the same temperature, the above values

(20)
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are increased by about a factor of 20. Increases in
temperature, for example from 0.57, to 08T,,
decrease L by a factor between 0.05 and 0.28, de-
pending on the material, for fixed S/G. Hence, the
constraint effect decreases with increasing applied
stress and temperature.

A similar expression for the closely-spaced
situation states

5 = 0'5—‘ ao
(5)0,- 1os 1678 —a,
~ fin(1/f) — G =S)(1 -S)/2)
[0.3L%(S/5.y~"/b%d] + In(1if) — B =)L =)
@

Again, constraint is measured by comparison of the
two bracketed terms in the denominator. Comparing
(21) to (20) the effect of having closely-spaced cav-
itated facets is seen to reduce the first of the bracketed
terms, first by the smaller factor of 0.3 and second,
by the introduction of the factor (S/5,y~', which
ranges from (1/1.3y"~' for o,=BS to (1/4.1y~" for
o= 0. The constraint effect is thus reduced as cav-
itated facets become closely-spaced. As will be seen in
a later example, it is typically significant even then at
low applied stress.

Cocks and Ashby [12] obtained an approximate
expression for (07— 0,)/(1.67S — 0,) as a function of
the spacing, 2J, of cavitated facets of size d. Their
result is similar in form to (20, 21) where the degree
of constraint is measured by comparison of two térms
in the denominator. In particular, their result is
obtained by replacing the factor of 2.2 in (20) by
(16/3)(1 — d/21)" and by multiplying the second of the
bracketed terms in the denominator of (20) by
[1-(1-d/2!)). In the limits of (df2/)« 1 and (d/2]) =1,
the Cocks and Ashby result agrees qualitatively with
the respective expressions for the well-separated and
closely-spaced situations discussed here, in that well-
separated conditions rather than more closely-spaced
ones favor constrained cavity growth.

Work by Dyson et al. [21] and Raj [22] has
considered the effect of constrained cavity growth in
altering the macroscopic behavior of damaged mate-
rial. In particular, Dyson et al. subjected 20/25/Nb
stainless steel to a multiple-mechanical-thermal-
treatment which increases the amount of grain
boundary cavitation and observed that the macro-
scopic deformation rate could no longer be described
by the applied effective stress as in classical plasticity
theory, but rather that a dependence on hydrostatic
pressure be included as well.

This observation may be studied within the closely-
spaced analysis presented here by using (4,5a) with p
interpreted as a grain-averaged viscosity as discussed
earlier. Setting the opening rate of the cavitating
facet, 8, in (4a) equal to that predicted by a
Hull-Rimmer cavity growth model in (19) vields a
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relation between o5 S and S, Combining this
relation with (5a) gives

Ex 31 —n)S + (0.85 — 0.67)(S — Spl/u 22)

where 5 = 04/[S +0.67(S — S7)] is given by the
right-hand side of (21) when the sintering cutoff is
peglected, and is a measure of to what degree cavity
growth is constrained. Here, n =1 implies no con-
straint of the cavity growth process, whereas n =0
implies strong constraint. The explicit dependence of
4 on the applied stress state is obtained by using (7)
with a generalized version of (8) for a biaxial stress
state, and this is

5, ~[(5.51% — 10.9n + 5.4)8?
+(7.37% — 14.50 + 1.2)S(S — S7)
+ (2,502 — 499 +4.1)(S - S (23)

(which means that 7. is determined implicitly by
equation 21). Hence, we see that £ for closely-spaced
conditions with little or no constraint (4 = 1), like £
for a well-isolated geometry, depends onlyon § — Sy
as would be observed in classical plasticity theory.
However, for closely-spaced geometries where cavity
growth is greatly constrained (n « 1), £ depends on
both the maximum principal stress $and § — Sy (and
increasingly so on § as the cavity growth becomes
more constrained). These basic features agree quali-
tatively with the studies presented in [21, 22].

NUMERICAL RESULTS FOR PURE NICKEL

Given specific values of f, b, d, S and the necessary
physical parameters to determine L(S), then equa-
tions (21) and (11a) for the closely-spaced situation or
(20) and (10a) for the well-separated case are a pair
of equations containing two unknown parameters s,
o5 One may then solve for o, and é and thus obtain
¢ by using (13). Equation (12) is then used to
determine ¢,.

Considered here is a pure nickel polycrystal of the
Wigner-Seitz cell geometry discussed, loaded in uni-
axial tension S, Cavities are located on grain bound-
ary facets oriented perpendicular to the applied
stress, and they are assumed to grow by a
Hull-Rimmer diffusive growth mechanism that is
modified by the approximate method of Chen and
Argon [19] described earlier. The opening of such
cavitated facets is accommodated by the nonlinear
creep of grains, the boundaries of which are freely-
sliding. For the results illustrated, the cavity half-
spacing b and facet diameter d are 1.3 and 50 um,
respectively, where the initial void size g, is taken as
0.13um.

The parameter L, which characterizes the
diffusional and dislocation creep properties of the
material is defined as earlier in terms of the constants
L, and x, the melting temperature 7, creep exponent
n and clastic shear modulus G. For nickel, Needle-
man and Rice [9] tabulate L,=2.57 x 10~3um,
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K = 3.90, T, = 1726K, n = 4.6 and G is estimated to
be 8.1 x 10*MPa. The resulting values of L are
regarded as representative of other pure f.c.c. metals.
Here, an estimate y,=1.725J/m? for the surface
energy of nickel is used from Chuang ez al. [5].

The time to rupture is calculated as described
earlier, using (12). Figure 7(a) shows ¢, vs §/G at
T =0.5T,, for cach of the opposite limiting cases of
well-separated and closely-spaced cavitated facets as
compared to the unconstrained situation for which
o= 1.67S. For applied loads greater than about
3 x 107G, values of ¢, on the order of minutes are
predicted. Here, cavity growth is unconstrained and
¢, based on o = 1.678 provides a good estimate of the
actual time to rupture.

For applied loads less than about 1 x 10-? G, the
void growth process is indeed constrained and times
to rupture for the well-separated and closely-spaced
situations are many times larger than ¢ based on
o¢= 1.67S. In this constrained regime, the proximity
of cavitated facets to one another (bounded here by
the well-separated and closely-spaced extremes) is
seen to vary f, by up to two orders of magnitude.
Thus, we find here that (1)ereeperased > (4 )toeoly-spaced:

Also apparent in the well constrained regime is that
t, for the well-separated and closely-spaced geome-
tries is dependent on §~* This occurs since for
constrained conditions, the dependence of ¢, on § is
determined by the features of the accommodation
mechanism, given here as the power-law creep of
grains. In particular, the cavity growth rate is deter-
mined by using (13) and also (10a), (11a) for the
well-separated and  closely-spaced  geometries,
respectively, evaluating ¢, approximately as the
sintering threshold. The resulting cavity growth rates
are dependent on applied stress as S/u, which is

13~ 3~
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Based on @2 1.67S ...l

Fig. 7. Time to rupture ¢, of pure nickel versus normalized
applied load S/G (G = elastic shear modulus) for the cases
of well-separated and closely-spaced cavitated facets, and
for that based on o= 1.675. Results are for temperatures
{a) T =0.5T, and (b) T = 0.4 T,.. In cach case, cavity half
spacing b = 1.3 um, cavitated facet diameter d = 50 um,
and initial cavity size g, = 4/10. Local creep flow on cav-
itating boundaries aids the diffusive rupture process for
applied loads greater than (A). For applied loads less than
(+), Nabarro-Herring and/or Coble creep are expected to
be more responsive accommodation mechanisms than the
dislocation creep of grains assumed here.
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Fig. 8. Strain to rupture £, of pure nickel versus normalized
applied load 5/G for the well-separated and closely-spaced
geometries of cavitated facets. Results are for temperatures
(@) T=057_and (b) T =0.4 T, Values of b, d, g, and the
meanings of (A), (+) are the same as in Fig, 7.

proportional to $*. The time to rupture is then
calculated using (12), so that ¢, is dependent on §~*.

At an applied load S equal to about 2 x 10~*G, the
load carried across the cavitated facet equals approxi-
mately the sintering stress limit based on the initial
cavity size. Cavity growth is then negligible and times
to rupture for each of the three cases plotted in Fig.
7(a) asymptotically approach infinity. Since the sin-
tering stress depends on the inverse of the cavity
radius, the sintering threshold is strongly dependent
on the initial cavity radius a, For instance, if g, is
increased from the value of 0.13 um in Fig. 7a to
0.5 um, the sintering threshold would be decreased by
about four times.

A lower limit of applied load to the validity of this
analysis is shown on the abscissa of Fig. 7(a). Below
this, Nabarro-Herring and/or Coble creep is ex-
pected to act as a more responsive accommodation
mechanism than the power-law creep of grains con-
sidered here. This latter estimate of S/G is made using
deformation maps [23] for a pure nickel polycrystal
of grain size 100 um, and at T/7,, =0.5. An upper
value of the applied load is also set (based on
[9,19,20) and L as discussed earlier), above which
local creep flow between cavities on a boundary
shortens the necessary diffusive path length for cavity
growth.

The effect of temperature on rupture time is ob-
served by comparing Fig. 7(a) (where T = 0.5 T,,) and
Fig. 7(b) (where T =0.47,). Here, a temperature
decrease substantially increases predictions for 1,
more so for the well-separated and closely-spaced
geometries, but also for that based on o= 1.67S.
Accompanying these increases in 1, are increases in
the ranges of S/G over which cavity growth is
constrained.

The total strain to rupture is calculated according

to ' g
E,=J -:da.
a8 a

Figures 8(a, b) show E, to be relatively unchanged by
the proximity of cavitated facets to one another as
predictions of E, for the well-separated and closely-
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spaced geometries differ little. The lower shelf of each
plot corresponds to a strong constraint regime and
cach shelf spans a rather large range of applied stress.
Values of E, in this range agree well with the lower
bounds developed earlier as (16), (18). The strain to
rupture increases rapidly from the shelf as the con-
straint effect becomes less important.

Rice {11} considers the limiting situation in which
cavitated facets are well-separated and observes that
cavity growth rate is proportional to £,.,, for condi-
tions of strong constraint. Thus, it is under such
constrained conditions that his results are compatible
with 2 Monkman-Grant [24] correlation (i.c. £, .1,
is approximately constant), and ¢, may be estimated
by determining E, .

Results indicate that a Monkman~Grant cor-
relation may also exist when cavitated facets are
closely-spaced. Shown in Fig. 9(a) (where T' = 0.5 T,,)
and Fig. 9(b) (where T = 0.4 T,) are plots of E/E,
vs t/t, for several values of applied load on nickel,
assuming the limiting case of closely-spaced cav-
itating facets. Material and geometrical parameters
used here have the same values as stated earlier for
Fig. 7(a,b). The initial transient strain rates present in
such a creep test are assumed to relax early in the
specimen life; they are not considered explicitly here.
The upper and lower bounds to strain rate are given
as E=FE, .., (corresponding to o,=0) and
E=E,., (corresponding to o, 1.67S), re-
spectively. As applied load levels become large, cavity
growth becomes unconstrained and E approaches a
steady state value of E,,, [see Fig. 9(a)]. The product
E, ot then models E, well, but as seen in Fig. 8(a),
E, is not coustant in this unconstrained cavity growth
regime and a Monkman-Grant correlation does not
hold.

Conversely, when applied load is decreased, cavity
growth may become strongly constrained and £ may
approach a steady state value of E, ., [¢.g. see Fig.
9(b)). The product E, e, £, then models E, well, and
in Fig. 8(b) it is seen that E, is relatively constant in
this constrained cavity growth regime. Consequently,
results for closely-spaced cavitated facets are com-
patible with Monkman-Grant correlations, at least
for the strongly constrained conditions shown in Fig.
9(b). As demonstrated in Fig. 9(a), Monkman-Grant
products are not always applicable, even as the
applied load is decreased. Here, for (S/G) x 104 =2,
the effect of the sintering threshold is seen to vary the
creep rate so that a steady state value E = E, .., is
not achieved. In fact, £ for most levels of applied load
is shown to vary substantially with time, rather than
achieve a steady state value, for the limiting case
considered of closely-spaced cavitating facets. By
comparison, of course, E is relatively constant with
time for well-separated cavitating facets.

CONCLUSIONS

Constraints as identified by Dyson [10] on the
creep cavitation of grain boundary facets are dis-
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Fig. 9. Normalized strain rate £/£,,,, of pure nickel versus normalized time ¢/t, for several values of
applied load, where (2) T=0.57,, and (b) T =04 T, Values of b, d and q, are the same as for Fig. 7.

cussed for two opposite limiting cases, the first for
well-separated cavitated facets and the other for
closely-spaced cavitated facets. These limiting cases
are assumed to bound practical situations. The
former case was studied by Rice [11] and the latter is
analyzed in this paper utilizing a three-dimensional
periodic array in which grain boundaries are freely-
sliding and all facets oriented perpendicular to a
uniaxial load are cavitating.

Comparisons are made between the two limiting
cases, assuming that grains creep in a nonlinear
manner and thereby accommodate diffusive grain
boundary void growth. Results show that the time to
rupture, at least of a cavitating facet, is highly
dependent on the proximity of cavitated facets to one
another. When accommodation is by dislocation
creep, the ratio of the times to rupture of the well-
separated to the closely-spaced situations ranges from
about 50 for a creep exponent n = 3 to about 500 for
n=>5

Rupture strains, however, are relatively indepen-
dent of the proximity of cavitated facets to one

another. When cavity growth is greatly constrained,
E, may have small and relatively constant values with
load and temperature. For such conditions, the rup-
ture strain is directly proportional to 5/d, the cavity
half-spacing divided by the facet diameter d.

Monkman-Grant correlations are shown to exist
for both well-separated and closely-spaced geome-
tries when constraint is strong, or effectively, when
applied loads are small. For the well-separated case
under such constrained conditions, the product of
rupture time and strain rate of an uncavitated poly-
crystal is found to approximate E, and therefore to be
relatively constant with changing load and tem-
perature. For the closely-spaced situation with
strongly constrained cavity growth, the product of
rupture time and strain rate of a polycrystal with
completely coalesced cavities may be found to ap-
proximate E, and to be relatively constant with load
and temperature. However, in this latter limiting
case, the cavitation process itself contributes substan-
tially to the total strain.

When cavity growth occurs according to a
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Hull-Rimmer model, criteria are obtained for when
constraint is dominant or not. For the well-separated
case in which the opening of cavitated facets is
accommodated by the . dislocation creep of grains,
constraint is important when the length parameter
L 2 (b*d)'®; L decreases with increasing applied
stress and temperature so that constraint plays a
greater role with decreasing temperature and applied
stress. When cavitated facets are closely-spaced, con-
straint is estimated to be strong for L values approx-
imately a factor of 100-1000 times larger than those
required for constraint in the well-separated case. The
exact factor depends on the creep exponent n and the
value of stress across the cavitated facet, although in
general, cavity growth is less constrained as cavitated
facets become more closely-spaced. As shown, con-
straint of void growth may be strong even for this
closely-spaced geometry.

It remains for future work to bridge the gap
between the well-separated and closely-spaced lim-
iting situations discussed here. As a contribution,
Appendix B briefly presents results for a closely-
spaced situation where the cavitating facets are
square faces of the Wigner-Seitz cells, about 40%, of
the area of the hexagonal facets discussed in the body
of the paper.

The heterogeneity of the creep cavitation process
also needs to be considered in future work. Cavities
are neither spaced uniformly on facets nor are facets
themselves spaced uniformly. Recent work by Tver-
gaard [25] comsiders the influence of nonuniform
initial cavity radii and spacings. It is found that
differences in initial cavity radii are quickly evened
out when a/L values are small or equivalently, when
matter diffused from the cavities is distributed uni-
formly on the grain boundary. Further analyses may
also include cavity half-spacing as well as the size and
proximity of cavitated facets to be a function of time
and position.
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APPENDIX A

A solution method for periodic cells via a stress-based
variational principle

The variational principle used here is developed from condi-
tions of equilibrium and compatiblity which must be
satisfied by the true stress and displacement fields,
respectively. These conditions are discussed below:

The grains of a polycrystal are represented by a periodic
arrangement of 3-D cells with freely-sliding boundaries
between them. Since identical boundary conditions exist on
cach cell, focus is made on a single cell, in this case a
Wigner-Seitz cell of which Fig. Al shows a cross-sectional
cut. Here, the cell is bounded by three pairs of like faces, of
which those labelled F are cavitating.

As pointed out by Ghahremani [26), deformation com-
patibility in a periodic array of cells enforces the continuity
of normal dxsplacement across the boundaries of adjoining
grains. A macroscopic strain tensor E, is defined such that
the relative displacements of two grain centers separated by

direction of
T applied load S

Fig. Al. Cross-sectional cut through Wigner-Seitz cell,
showing the three types of face pairs. The dotted lines
represent the cylindrical volume of a hexagonal face pair.
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the vector D, is given by E D, Define u(x) as the disp!qce'
ment with respect to the grain center of a point with position
vector x from the grain center. Hence, the relative displace-
ment vector §{x} across a grain interface at a point x is given
as

5{x) = Efinfx) +u}(x) — ufx) GY)

Here, n{x) is the normal to the grain face containing x and
u¥(x) = u{x*) where x*=x - hn(x) (sec Fig. A}). The
actual opening gap 4(x) at an interface is given by

8(x) = n{x)6{x). Defining u,(x) = n{(xX)u{x) and
wX(x) = u (x*) = nfx*ufx*) = n{x*)u}(x) we obtain
8(x) = hn{X)En{(X) — u (X} — uz(x) (AZ)

& vanishes on the noncavitating facets, since here we neglect
Nabarro-Herring and Coble creep.

Analogous to £, a macroscopic stress tensor S, is defined
in terms of the local stress state ¢, This local state is
assumed to satisfy equilibrium, o, =0, and is related to §;
by

1
Sy=— (43)
iy
Here ¥, and S, are the grain volume and surface, re-
spectivcfy. The assumption of vanishing shear on the grain
boundary implies may, = o(X)n, where 6(x) =npnp, is the
traction normal to the boundary. We use also a result from
the periodicity of cell arrangement that ¢(x) = g(x*) so that
(A3) becomes

i
g;d¥V =7 noxds.

rJdS;

1
Sy= —2-—9; L‘ honpdS. (Ad)

The following form of the Principle of Virtual Work then
applies for any equilibrium stress field (S, 0,, ¢} and any
compatible deformation field {E, s, é,4}. Equilibrium
stress fields are understood to satisfy o, = 0, to satisfy (A4),
to produce no shear traction on the grain face and to meet
c(x*)=0o(x). Compatible fields are such that
Ze,,f;- (1,4 u,;) and that (A2) is satisfied. For any such pair
of fields

V,SE;— % L’ s dS =J’ oy dV. (A5)

43

It can be shown that the validity of (AS5) for arbitrary
equilibrium fields implies that the deformation field is
compatible. Similarly, the validity of (AS5) for arbitrary
compatible fields implies that the stress field satisfies
equilibrium.

A functional of the local stress field o, may be defined in
a manner analogous to that for the “complementary
energy” in clasticity

'P(a')*—-—;—‘(y‘ Y{eXd¥V where w(c)=J:é‘,(¢)da‘, {A6)

and €, = §(c ) denotes a viscous constitutive relation, consis-
tent with ¢ being a function of ¢ only. The functional is
defined on the class of equilibrium stress fields. If the grain
material is linear viscous, then ¥(o)= /244, The
infinitesimal variation AY¥ of ¥(o), associated with vari-
ation Aoy of the stress field, is

AY¥ (o) = .’;—L éfo)Ac dV. (AT
s

1t then follows from the Principle of Virtual Work that for
given S, and stress o, on cavitating facets, the true stress
field o, (namely that equilibrium field o, for whicl! the
resulting strain rates &, = gfe) are compatible) satisfies
AW =0. In fact, ¥ is a minimum at the true solution for
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given S; and o, and for variations in these quantities, ¥,,,
satisfies

AY la) = EAS, -—l—j dAq dS. (A8)
' 2V s,

For the particular Wigner-Seitz cell geometry discussed,
the opening o between grain faces is nonzero on the
cavitating face denoted here by subscript “F. Approxi-
mating ¢ on face F as uniform and equal to o, (A8) then
states

A¥ ol0) = EAS,—~ ?&‘ Ady. (A9)
z
Here, A, is the area of a cavitated face, and s the average
opening of a cavitated facet.

In summary, ¥(e) is defined in (A6) as a functional
of any local stress field o, in the grain satisfying the various
attributes enumerated in section (i). Among all such equi-
librium fields {S, ¢, 0}, the exact solution to the problem
of prescribed §;, and o, renders ¥(¢) a minimum. This
value, ¥y, is & function of the given quantities S, and o},
and it then follows from (A9) that the overall strain rates
and average opening rate of the cavitating facets are given

by (2).

APPENDIX B

An alternative representation of closely-spaced cavitated
Sfacets

The Wigner—Seitz cell model may be oriented in a second
manner where square rather than hexagonal faces are
normal to a uniaxial stress S and are cavitating (Fig. Bl).
In this case, the area of cavitated facets is reduced by about
60%; over that in the original orientation, but closely-spaced
conditions still prevail since each grain contains substantial
cavitation,

The development of expressions for &, £, 1, and E, for this
second orientation of the Wigner-Seitz cell is identical to
that presented for hexagonal cavitated facets. As assumed
carlier, the opening of cavitated facets is accommodated by
the dislocation creep of grains, grain boundaries slide freely,
and cavities are assumed to enlarge by a Hull-Rimmer
diffusive growth process. The stress-based variational prin-

direction of
applied load S

[ F

partially
cavitated

|

Fig. B1. A second orientation of the Wigner-~Seitz cell to the
macroscopic applied load S, in which partially cavitated
facets are square rather than hexagonal.
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Fig. B2. () Time to rupture 1, of nickel vs normalized applied load S/G using the second orientation of
the Wigner-Seitz cell in Fig. Bl. Here T=0.57,, b =13 um, d = 50 um and g, = b/10 as in Fig. 7(a).

(b) Corresponding strain to rupture E, vs normalized applied load S/G. Both (A) and (+) have the same
meanings as in Fig. 7.

ciple described carlier is used, with the approximate stress
state defined by (3). For the axisymmetric stress state
Sy = 8, ), = Sp = Sp, and for a linear viscous material one
obtains

8 = 2.0{3.08 ~ 2.0S,— o Md/u

£ % 0.64.65 — 3.68,— o).
Ern 4 0.20(5.45 -2.45:1/-" ollu } (B2)

Here, d is the diameter of the cavitated facet.

The effect of freely-sliding grain boundaries in an un-
cavitated uniaxially loaded specimen is estimated by setting
8 = 0and Sy = 0in (B1). One then obtains o, = 3.08, which
determines the factor § for this second orientation as ~3.0
compared to f = 1.7 when cavitated facets are hexagonal.
Inserting o,=3.0S into the first of (B2) determines
E ~2.95/3u as compared to E = 1.65/3u obtained for the
first orientation of the Wigner-Seitz cell. Since £ = §/3u
when grain boundaries do not slide, the effect of such grain
boundary sliding is to enhance E as seen before. Comparing
strain rates for each of the orientations considered, grain
boundary sliding is seen to introduce anisotropic response
of the polycrystal even though the grain material is taken
here to be isotropic.

The results (B 1?, (B2) may be interpreted for a nonlinear
creeping grain material described by é, = [T-dependent fac-
tor) x o”. An approximate effective viscosity u(S, o) of the
grain, for use in (B1), (B2), is obtained in the manner
described earlier. Here, u(S, o) has a weaker dependence on
the value of o, than for the case of hexagonal cavitated
facets. In fact, for this second orientation, the ratio of
viscosities for a polycrystal with completely cavitated facets

(1)

(o= 0) to that for an uncavitated polycrystal (o, = 3.08) is

Foomplaa 1
ooy (17!

We now develop for this second orientation expressions
for & and £, analogous to (10a,b) and (11a,b), that describe
the limiting cases of well-separated and closely-spaced cav-
itated facets. In the former case, § is given by (1), using
o = 1.8 (corresponding to a polycrystal with freely-sliding
grain boundaries and a creep exponent # = 5), § = 3.0 and
E,,.., is given by the first of (B2), setting o, = 3.0S, Sy =0
and p = u(S, 3.08). Also, £ = E_,, for the well-separated
geometry. In the latter case, & and £ are given by (BI) and
the first of (B2), respectively, setting Sy =0 and evaluating
# = (S, o). Results are

8 20.58[3.05 — o,Jd/u(S, 3.0S)
ExE. . %0968/u(S, 305) } (well-scparated) (B4)

8 %2.0[3.08 — o Jd/u(S, 0p)
£~ 0.60{4.65 — '311/71 .00 } (closely-spaced).  (BS)

(B3)

Numerical results for nickel using this second orientation
are presented in Fig. B2. Values of the void half-spacing b,
facet diameter d and the material properties of nickel are
unchanged from those used in Fig. 7 so that comparisons
may be made. In essence, the functional forms of the ¢, E,
curves are similar for both orientations discussed, although
the case of square cavitated facets produces lower times and
strains to rupture, and the differences in ¢, between well-
separated and closely-spaced situations is somewhat less
than when cavitated facets are hexagonal.



