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Abatraet-constraints on diffusive creep cavity growth along grain boundary facets are studied for the 
limiting case when all facets oriented approximately normal to an applied tensik load am uniformly 
cavitated. This situation represents the opposite limiting case to when cavitated facets are we&sepamted 
and do not intemct with each other. The analysis is done for a 3-D periodic polycrystallii mode3 of grains 
in the shape of the Wigner-Seitz cells of a f.c.c. lattice. The grains have freely-sliding boundarks and 
deform in a nonlinear viscous manner in response to applied stress. Expressions for the avity growth mte 
and the strain and time to rupture are compared with results of prior work in which cavitated facets are 
well-separated. and this gives a good understanding of the ranges of stress and tempemtum over which 
cavity growth is constrained and rupture lifetime is increased. The time to rupture, which is taken here 
to mean avity coalcsccncc on the damaged facets, is seen to depend strongly on the proximity of avitated 
facets, at least when cavity growth is constrained. However, the strain to rupture is obaervcd to lack tbis 
strong dependence although for constrained conditions, the cavitation process contributes substantially 
to the total strain when cavitated facets are closely-spaced. When cavitated faoets am well-scpamted, the 
polycrystaf is seen to achieve a relatively constant strain rate. By comparison, the stmin rate is seen to 
vary substantially with time when cavitated facets are closely-spaced. The time and atrain to rupture as 
well as strain mte versus time curves are calculated as functions of applied load and tempemtum for nickel 
as a representative f.c.c. metal. 

R&utnLNous Ltudions l’efiet de contmintes sur la crohssance des avitis de fluage de diffirsion k long 
de facet&s intergmnulaires dans le cas lhnite od toutes k-s facettes orient&a approximativanent 
perpendicukirement a une contminte de traction appliqucle pr6sentent unc cavitation uniforme. cette 
situation est l’oppos& du cas limite ou ks facettes pn%entant la cavitation sont bkn s&&es et 
n’intemgissent pas entr’elks. Nous avons effeotut i’analyse pour un modele polycristaUin p&iodique i 
trois dimensions de grains ayant la fotme des celluks de Wigner et Seitz d’une structure c.f.c. Los grains 
pr6sentent des joints qui glissent librement et ils se defonnent de man& visqueuse non fin&ire sous l’effet 
d’unc contminte appliqu&. Nous comparons ks expressions pour la vitesse de croissancc des avitcq la 
d&formation et la d&e de vie B la rupture avcc Is rCsultats dun tmvail antCrieur dans kquel ks facettes 
prlsentant la cavitation sont bien &parceS; ceci conduit P une bonne compmhension des domaines de 
contminte et de temp&mture dans lesquels la croissance des cavit6s est gin& et ou la d&e de vie g la 
rupture at augment&. Gn voit que la d&e de vie a la rupture, que est prke ici &gak au temps moyen 
de coalescence des avitbs sur ks faccttes en dommag&s, d&d fortement de la proximiti dea facettm 
cavit&s, au moins lorsque la croissancc des cavittS est g&n&. Cependant, la dCformation B la rupture ne 
pr&ente pas cotte forte dCpendance bien que, lorsqu’elle cst g&r&, la cavitation contribuc notablunent 
a la d&formation totale lotsque lcs facettes cavit&s sont pro&a. Lomque ks faosttes endomrnag6es sont 
bien s+r&s, le polycristal pr6sente une vitessc de deformation ? constante. Au contmim, la vim de 
dCfonnation varie notablcrnent en fonction du temps lorsque ks facet& endotnmag&a sont pro&es. Nous 
avons cakulC la dur& de vie et la dtformation a la rupture, ainsi que ks oourbcs de la vitesse de 
dCfonnation en fonctioo du tcmps, en fonction de la contminte appliqube et de la tcmp&atun dans k 
nickel consid& comme mpmsmtatif des metaux c.f.c. 

-Die Einschritnkungcn, dcnen das Hohlraumwachstutn w&tend des 
Diffiyionskrkchcns entlang von Korngmnxfacetten unterliegt, wet-den fur den Grenxfall tmtemucht, da13 
sfunthche Facetten ungcBthr senkmcht xu ciner HuSeren L.ast liege-n und glc.ichmiBig mit Hoblrihnnen 
buetxt sind. Dicsc Buhngungen stehen im Gegensatx xu dem Gmnxfall, bei dun die hohlmumhu&ten 
Facetten deutlich getmnnt dnd und nicht mitebrander wechselwirken. Die Analyse wird in e&m 
J-Dperiodiadun polykristallinen Mcdell aus Kernem in der Form von Wigner-Scitz2&n dnes kfz. 
Gitters durcbgefbhrt. Die K6mer weisen fmi gltitende Gmnxen auf und verformen sicb nkhtlinear und 
viskos cntapmchend der Spannung. Die Ausdrticke Bir Wachstumsmte der Hohltbwne, Bruchd&nung 
und Bruchstandxeit we&n mit Ergcbnisscn verghchen, die friiha fir den Fall deutlich gctmnnter 
Facetten &altcn wurden. Hiemus ergibt sich tine gute Einsicht in die Tempemtur- und Span- 
nungsbemiche, in dcnen daa Hohhaumwachstwn eingesch&kt id turd somit die Bmchstandzit erh6ht. 
Die &uchataM%t, bestitnmt bier von dun Z usammenwachsen der Hohldume, Mngt stark vom &stand 
da hohlmumbemmten Facetten ab, wenigstcns beim eingcschmnkten Wachstum. Die Brucbddmung 
jedoch w&t dime starke Abhfmgigkeit nicht auf, wenn au& der RoxeB da Hohlmuutbildung im Falle 
dcs cingcachrdnkten Wachstums bei nahe bekinanderliegenden Facetten bctriichthoh xur Gaatntddmung 
b&r&t. Liegen die hohlmumbcstzten Facetten deutlich getrennt, dann vcrfotmt sich da Polyktistalf mit 
ciner m&iv konstanten Dehnungsmte. Im Vcrgkich daxu varikrt die Dehnungsmte betr&zhtlich in der 
Zeit fur den Fall nahe beieinanderliegender Facetten. Bruchstandmit und dehnung, ebenso der 
Zusatnmcnhang von Dehnungsmte tnit der Z&t, w&en Rir Nickel als reprftsantatives kfz. h&tall als 
Funktion der angelegten Last und der Tempemtur beret&net. 
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At elevated temperatures polycrystalline materials 
generally fracture by the initiation, diffusive growth 
and eventual coalescence of grain boundary cavities. 
The basic model for the diffusive growth process is 
due to Hull and Rimmer [1], who depict a cavitated 
grain boundary facet as a uniform array of voids 
(Fig. 1). Many others have contributed to subsequent 
improvement of the model and have formulated the 
void growth rate ri and the average opening rate of 
the cavitated grain boundary din terms of the current 
void radius u, void spacing 26 and the average stress 
ur across the cavitated facet [2H9]; see (19) to follow. 

However, in applying such relations for d and 6, it 
is incorrect to equate a, to the stress j&S which acts 
across the grain boundary of an identical but non- 
cavitating specimen under the same macroscopic 
stress S [Fig. 2(a)]. Here, /l (which we estimate later 
to be approximately 1.7) is interpretable as a stress 
enhancemeut factor, on factts approximately normal 
to the tensile direction, due to freely-sliding grain 
boundaries. Consider the geometry of a cavitated 
facet in a polycrystalline material shown in Fig. 2(b). 
The cavitated facet there is surrounded solely by 
uncavitated material to depict the case of relative 
isolation of one cavitated facet from another. Dyson 
[lo] observed that the opening rate of the cavitated 
facet must be accommodated by surrounding mate- 
rial, and this may strongly constrain the void growth 
process, particularly when the cavitated facets are 
relatively isolated from one another. That is, condi- 
tions may exist where the surrounding material is 
unable to accommodate the cavity opening rate cor- 
responding to or = /S. The load across the cavitated 
facet is then shed to the surrounding material, reduc- 
ing ur from @ until the opening rate of the facet is 
compatible with the creep rate of surrounding mate- 
rial. The result under such constrained conditions is 
that the cavity growth process is slowed, and the time 
to void coalescence on a cavitated facet is prolonged. 

Rice [ 1 1] incorporated Dyson’s concept to model in 
an approximate manner void growth in a material 
with well-separated cavitated facets pig. 2(b)], the 

Fig. I. A cavitated grain boundary, modeled as an array of 
uniformly spaced voids. subjected to stress ur and sepa- 
rating at a ralc d due to diffusional flow of matter from the 

cavity surfaces to the grain boundary. 

opening rate of which is accommodated by the 
dislocation creep of material surrounding the facet. 
Also, Cocks and Ashby [12] studied the effect of the 
proximity of cavitated facets to one another over a 
wide range, and reached similar conclusions in the 
well-separated regime. The fimctionat form for the 
average opening rate of a well-separated cavitating 
facet was assumed as [l I] 

8 = a [W - ~&W&e,” d* (1) 

Here &,, = Z$_(S) is the creep strain rate for 
stress S acting on an uncavitated polycrystal (in 
which case bF= /%!i’), and d is the diameter of the 
cavitating facet. The proportinality factor a in (1) 
depends on the creep exponent n in the relation 
i a u’ between creep strain rate and stress. Rice 
estimated that in the absence of grain boundary 
sliding, values of a would range from about a = 0.64 
for n = 1 to a = 0.90 for n = 5. Improved estimates 
for that case were given by He and Hutchinson [13]. 
Rice noted, however, that the presena of freely- 
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Fig. 2. (a) An uncavitated grain boundary, across which acts 
a stress uT= 1.9 enhanced by a factor g due to grain 
boundary sliding. (b) The same grain boundary in (a), but 
in a cavitated state. Local opening of the grain boundary 

due to void growth reduces of from the value /IS. 
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sliding grain boundaries would increase a over the 
previous values, and estimated that perhaps a doubl- 
ing of the previous a values would then be appropri- 
ate. Combining (I) with an equation characterizing 
the diffusive void growth process for the basic geom- 
etry of Fig. 1 [i.e. d = d(u,)] enabled solution for uF 
and thus for the cavity growth rate ci and the time to 
“rupture” as a function of the applied stress S. Here 
“rupture” was equated to the coalescence of voids 
along the cavitated facet. 

Rice thus found the degree of constraint to be 
characterized by a length parameter L = (%S/ 
&_v)“3 which decreases with increasing stress and 
temperature. When L3 is much greater than b’d, the 
compliance of the void growth mechanism exceeds 
that of the surrounding uncavitated material, the 
constraint effect discussed herein is important, and 
rupture lifetime is controlled by the strain rate &.,,,. 
Here gb = D,,GJl/kT is a boundary diffusive parame- 
ter for which D,& is the gram boundary diffusion 
coefficient, Q is the volume per atom, and kT is 
temperature in energy units. The discussion assumes 
that E,,, has the same temperature dependence as 
does bulk diffusion, and is proportional to S”. 

Different forms for a’ must arise in (1) when the 
cavitated facets are more closely spaced so that the 
surrounding material may not be regarded as un- 
cavitated. If &,,, is interpreted consistently as the 
strain rate resulting from stress S applied to an 
uncavitated polycrystal, the effect will be to substan- 
tially increase the factor of proportionality a in (1) 
due to larger scale interactions between the creep 
deformability of the grain and grain boundary void 
growth. This effect can be seen in the equations of 
Cocks and Ashby [12]. 

In particular, an opposite limiting case discussed 
by Dyson [lo] occurs when all facets approximately 
perpendicular to a remotely applied tensile stress are 
cavitated and again, the gram boundaries slide freely. 
Such a case represents a lower bound to the con- 
straint effect, and hence an upper bound to the void 
growth rate in a polycrystalline sample. As such, it 
constitutes the focus of this study. A functional form 
for 6 similar to (1) is developed for a 3-D poly- 
crystalline model with freely-sliding grain boundaries 
and with all facets cavitated which are perpendicular 
to a uniaxial tensile stress. A diffusive cavity growth 
model is ‘then included in the analysis to obtain 
criteria as to when constrained cavity growth occurs. 
Times and strains to rupture are then calculated for 
pure nickel as a representative f.c.c. metal, and 
comparison is made between the two opposite lim- 
iting cases discussed above so as to provide bounds 
to actual situations. 

CONCEPT OF 3-D CONSTRAINED 
CAVITY GROWTH 

Constraint manifests itself somewhat diffe~ntly in 

3-D than in 2-D. Consider the 2-D hexagonal 
geometry in Fig. 3 for which grain boundaries are 

considered freely-sliding. Effectively, the concept of 
constraint by surrounding material does not exist 
when all facets perpendicular to an applied stress are 
cavitated.’ No deformation of the grains is then 
required to accommodate the opening rate of the 
cavitating facets. Hence, constraint in the 2-D case 
has meaning only for isolated or nonuniform 
distributions of cavitating facets, or when a regular 
hexagonal array of grains is not used [l4]. 

A 3-D geometry shows similarities to the 2-D one, 
except that when deformed, it has additional sliding 
components located out of the plane of the 2-D 
representation in Fig. 3. When a structure of 3-D 
space-filling grains cavitates, grain boundary sliding 
components that are consistent with the gram sym- 
metry and accommodate the cavitation do not 
produce compatible displacements without gram 
deformation. Therefore, a 3-D geometry, unlike a 
regular 2-D one, permits constraint of the void 
growth process for the posed limiting case of closely- 
spaced cavitating facets. 

The manner by which surrounding material 
accommodates the opening rate 8 of the cavitated 
facet depends on the magnitude of the applied tensile 
load as well as the specific material and geometrical 
characteristics of the polycrystal. At very low applied 
stress, it is often reasonable to approximate the grams 
as rigid bodies. The Nabarr-Herring and/or Coble 
diffusional flow of material between grain boundary 
facets, driven by chemical potential Merences pro- 
portional to differences in normal stress, then accom- 
modates local openings at cavitated facets and hence 
allows overall strain of the polycrystal. At higher 
applied stresses, the dislocation creep of grain interi- 
ors serves as a more responsive accommodation 
mechanism to grain boundary void growth. 

The particular 3-D model used consists of a peri- 
odic arrangement of the 14-sided Wignerseitz cells 
of a f.c.c. lattice [see Fig. 4(a,b)]. Particular features 

4 Center 
IJ axis t S 

Fig. 3. Widespread cavitation in a 2-D e hexagonal 
structure.. Grains need not deform to accommodate cavity 
growth; they need only to displace inward a macroscopic 

center axis. 
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Fig. 4. (a) The Wigncr-Scitz cell of an f.c.c. lattice. All faces F arc pcxpindicular to the macroscopjc load 
S and UC ~artiaUy cavitated. Umivitatal faces arc either square (S) or hexagonal (I-I). (b) The periodic 
assemblage of such cells, subjcctcd to load S,, = S, with amsponding strain rate d The cell bounclari~ 

arc assumed to slide freely. 

of the arrangement are that it completely fills space 
and has a high degree of symmetry which greatly 
simplifies analysis. Stress S is applied in a direction 
normal to a family of hexagonal faces marked F. The 
limiting me of closely-spaced cavitated facets is 
represented by specifying all such faces oriented 
perpendicular to the far-field applied stress S to be 
cavitated. All grain boundaries are assumed to slide 
freely. The accompanying macroscopic strain rate in 
the direction of S is I?. As illustrated, we also consider 
the possibility of transverse stresses Sr and denote by 
& the strain rate in the transverse directions. 

ANALYSIS OF ACCOMMODATION BY 
DISLOCATION CREEP 

Here, applied stress levels are assumed high enough 
for dislocation creep of the grains to be the primary 
accommodation mechanism for the opening rate $ of 
the cavitating facets. The analysis is done as now 
outlined. 

(i) Stress-based variational principle 

A stress-based variational principle is developed in 
Appendix A for the Wigner-Seitz cell model. Here 
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the grain material is modeled as linear or nonlinear 
viscous. We regard the macroscopic stress tensor S, 
and stress or on the cavitated facets as “given”, and 
seek to determine, in terms of them, the overall strain 
rate & and average opening rate d of the cavitated 
facets. The latter relation is analogous to (1). Formu- 
lated in Appendix A is an averaged complementary- 
energy-like density Y(u$, defined as a functional of 
any local stress field uu in the cell satisfying: 

&s&Ix, = 0 (local equilibrium in grain volume) 
IJ~ produces no shear traction on the grain 
surface 
oii equilibrates the given applied stress state S, 
[see equation (A4)] 
“pUnI= ur, the given applied load, on the 
cavitated facet 
uil produces normal tractions on the grain 
surface which are consistent with the period- 
icity of ‘the polycrystal [see condition stated 
immediately before equation (A4)]. 

Of all admissible gram stress states satisfying the 
above, the actual solution renders !P(u& a minimum. 
The variational principle AV(u,) -0 produces the 
strain displacement relations [see relation stated 
immediately before equation (AS)] and also a com- 
patibility relation between &, d and the component 
of velocity normal to the gram surface [see equation 
(A2)]. The macroscopic strain rate tensor I&, and 
average opening rate b of the cavitated facet are then 
given as 

Here V; is the gram volume and A, is the area of the 
cavitated facet. 

(ii) An approximate stress state in the grain 

A local stress state u,, meeting the above conditions 
may be constructed as the sum of a uniform hydro- 
static state 16, and seven uniform uniaxial stress 
states; each uniaxial field acts only within a right 
cylindrical column positioned through the grain and 
defined by one of the set of seven face pairs (see 
Fig. 5) 

u&x) = #I& + i [u@) - l]q’“‘(x)nj%l”‘. (3) 
a-1 

Here, a is an index for the seven face pairs; q@)(x) = 1 
for x in column a and =O otherwise; II(#) is a unit 
vector along the column generator, and u(a is the 
normal stress on the face pairs of column a, 

Accordingly, ‘P(tru> can be expressed as the integral 
over a cell of an algebraic function of 1 and the seven 
u(m). Specifying S, F u as given determines the seven 
a(“) and Y is minimized with respect to the remaining 
free parameter 1. Then Ur,, = Y,,,+,,(Z$,, ur), and (2) is 
used assuming an axisymmetric macroscopic stress 
state S,, = S, S,, = S, = Sr and all other S, = 0. The 
procedure can be carried out readily for linearly 

viscous grain creep. In that case the average opening 
rate 6 and strain rates k and &r in the directions of 
S and Sr, respectively, are given by 

8 z 4.33[ 1.67s - 0.67Sr - uJd/j~ (4) 

l? z 3.02[ I .85S - 0.85Sr - uJ/j~ (5a) 

L&z - 0.61[2.llS- I.llS,-a,]//~ (5b) 

Here, d is the diameter of the cavitated facet and p 
is the linear shear viscosity of the material, i.e. 
i = u/31 for uniaxial tension of a crystallite. 

The effect of sliding grain boundaries in an un- 
cavitated, uniaxially loaded specimen (S, = 0) may be 
estimated by setting 6 = 0 in (4). We then see that 
uF x 1.67S, which determines the factor /I as x 1.67 
for the Wigner-Seitz cell geometry. Inserting this 
value of ur into (5a), the macroscopic strain rate is 
then f? x 1.63S/3~ (later denoted as &,_). This is as 
compared to I? = S/3p when there is no grain bound- 
ary sliding. By the analogy between .linear elastic and 
linear viscous materials, the same results hold for the 
Wigner-Seitz model with linear elastic grains of 
Poisson’s ratio Y = l/2, if the strain rate B is replaced 
by strain E and if p is regarded as the elastic shear 
modulus. The ratio of the elastic strain when grain 
boundary shear tractions are relaxed to that when no 
relaxation of shear tractions occurs would therefore 
be 1.63 for loading of the Wigner-Seitx cells in the 
direction indicated. We compare this value to the 
theoretical calculations of Zener [15] who obtained a 
value of approximately 1.32 by applying strain energy 
considerations to spherical grams. 

(iii) Interpretation of cc for nonlinear material9 

An extension of the formulation is now made to 
include nonlinear materials described by the creep 
rate d(u) = [T dependent factor] x u” for which n is 
the creep exponent. Direct use of the variational 
formulation is prohibitively complex for that case, so 
instead we proceed in an approximate manner as 
indicated in order to have a basis for simple estimates 
of material response. The local grain strain rate and 
stress deviatoric tensors are related as 

1 
iV-2P 0 

1 
- - r where rv = uV - -CT&, 

3 
(6) 

qta) = 1 (inside column a) 

q~a)=Obutsidr column a) 

Fig. 5. One of the seven column stras states comprising the 
approximate local stress state 0” in the grain. 
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and the nonlinear viscosity p is related to the quiv- 
alent stress u= as 

c = cQ31(uJ CC a;+ ‘) ~:-;r#%]. (7) 

We obtain an approximate effective viscosity of the 
grain, for use in (4) and (5), by using (7) with o, being 
the function of S and ar obtained as the square root 
of the cell average of of for the linear solution 
described in (ii). Results express thii average &&iv- 
alent stress & for a tensile loading (Sr = 0) as 

i?,(S, or) c [16.7S2 - 18.1Su,+ 5.47~#~. (8) 

Here, Be varies from about 1.3s for a,= 1.67s to 
about 4.1s for ur - 0, If (8) is inserted into (7), the 
ratio of grain-averaged viscosities for a polycrystal 
with completely cavitated facets (i.e. with all grain 
boundary cavities coalesced) to that for a polycrystal 
with no cavitation is 

This is a numerically significant effect, and an im- 
portant aim for further work is the clarification of the 
accmacy of the somewhat rough approximations 
adopted here, perhaps by applying directly our vari- 
ational principle to the nonlinear case. 

(iv) Compar~on of opposite limiting cases 

We can now consider the two limiting cases for 
which the cavitated facets are well-separated and 
cio~e~~-sp~e~ respectively. In the former case, S is 
given by (1) using a = 1.8 (caning to a poly- 
crystal with freely-sliding grain boundaries and a 
creep exponent n P S), j I 1.67, and tiMQY is given by 
(5a) by setting or = 1,67S, Sr = 0 and by evaluating 
p = p(S, 1.67s). In the latter case, i.e. that for which 
all facets of type F arc cavitating, we use directly (4) 
and (Sa) with Sr= 0 and p = p(S, oii). Thus, to 
compare the two limiting cases 

8 $* 0.58[1.67S - u#/p(S, 1.67s) 
,?% @ &,, * O.slls/& (S, 1.67s) > 

(well-separated) ~~~~ 

8 %4.33[1.675 - u&i/p(S, ur) 
i? k 3.02(1.8X? - a&@, ur) > 

(closely-spaced). (‘: ;;; 

(v ) Resuitsjbr well~~tra~d and unco~tra~d void 
growth 

The results discussed herein assume that cavities 
are present at the initial stage. Hence, the time to 
nucleate such cavities is not considered. Instead, we 
focus on the time to rupture, f, needed for a uniform 
distribution of cavities on a facet of type F fsee Fig. 
4(a)] to grow from an initial cavity radius a, to a final 

radius b at coalescence. Thus 

Here, ci is the time rate of change of the cavity radius. 
Given a cavity geometry such aa that in Fig. 6, li 

may be related to d through a statement, of the 
conservation of material. Including an as yet unstated 
relation that characterizes the cavity growth process 
[i.e. d = &a,) where the function depends also on b 
and the current u] enables one to eliminate Us from 
(lOa) and (1 la), and thus to obtain ci and t, as a 
faction of the‘applied stress S. 

For cases where the void growth process is greatly 
constrained, ur may be driven down towards the 
sintering threshold level a,, so that V~ - uo<c@S - 0,. 
As will be shown later, such constrained conditions 
may be realized at sutliciently low S. One can calcu- 
late t, for such strongly constrained conditions. For 
example, if cavities are assumed to be of a quasi- 
q~lib~~ spherical cap shape during growth (see 
Fig. 6). then conservation of material requires that 
d’6 = 47th(a3 - 4:)/3. Here, h depends on the cavity 
dihedral tip angle and a typical value is h = 0.6 (see 
Chuang et al. [51). Thus, we differentiate with respect 
to time to obtain 

d = ~(a2~~~~ (13) 

Then for uP- a,ccj?S - uo, S for the well-separated 
and closely-spaced distributions of cavitated facets is 
given in terms of S and a,, by replacing ur with cro in 
(lOa) and (1 la), respectively. Using (12) and (13), we 
find 

+ b 

Ia 

$/2 

Jr t 
---P3+ 

k--o--4 no flux / 

Fig. 6. Axi-symmetric geometry used to analyze cavity 
growth. Cavities cniarge by surface transport of material to 
the cavity tip, and subsequent transport of this material by 
boundary diffusion into the adjoining region between 

cavities. 
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where here a,, is to be understood as an average as 
weighted by the integral in (12). 

The bracketed ratio in (14) is evahtated for various 
values of &I.675 by using (8). Assuming 
o,,/ 1.67s << 1, the bracketed ratio is x 3.1 as predicted 
by (9). For u,,/l.67S = 0.4, the bracketed ratio is 
a: 2.0. Thus,’ it is found for low to moderate values of 
cr0/l.67S that (14) valid for conditions of strong 
constraint, predicts a considerably longer time to 
rupture for the well-separated geometry than for the 
closely-spaced one. For example, if the material is 
character&d by a creep exponent of 5, then in the 
range of a0/l.67S discussed above, (f&,,_nrat is of 
at least two orders of magnitude greater than 
(&mcly-atNad 

Bounds on the total strain to failure may be 
constructed using (lOa,b) and (1 la,b) along with an 
assumption about the cavity shape during growth By 
using (lob) to eliminate S from (lOa), or ~~v~cndy, 
by considering (1) with a, zz /IS, a socludsd cavitating 
facet opens at a rate bounded by &,=.* x d, i.e. 

L~.~~sed 5 a&,&. (15) 

If, for example, cavities are assumed to be of a 
quasi-equilibrium spherical cap shape during growth, 
then volume conservation requires the average open 
ing of the cavitated facet at rupture to be 
S, = (4~/3)~(1 -f:@) where a@’ =fr = initial area 
fraction of grain boundary which is cavitated. iicrc, 
we assume h = 0.6. Integrating each side of (15), 
respectively, from 6 = 0, E = 0 to b = 6, E rc: E, and 
setting a = 1.8 (corresponding to a polycryatal with 
freely-sliding grain boundaries and a creep exponent 
of S), one obtains 

kQu.&qmad 2 O‘~~l~(J -f :@.I* (16) 

A bound on E, for the closely&aced situation is 
constructed in a similar manner; equation (1 I b) is 
used to eliminate S in the bracketed term of (1 la) 

s 
4.331 

~~~Y-tpcod 
=lro 

-(1 -~~~I, (17) 

Since the second term in (17) is inherentIy positive, a 
bound is constructed where d < 1.29 & the equality 
holding when a, = 0. Integration of (17) as with (15) 
yields 

(Wd&y& r: 0.62(Wf)(l -fin). (181 

The equdities in (16) and (18) hold when blent 
is strong, i.e. when or,- a&IS - a0 and also rr&$S. 

In the other limit for whiclr cavity growth is 
unconstrained, the details of the distribution of cav- 
itated facets become irrelevant when calenlating $ 
and E,. Here r, for any distribution of cavitated facets 
is determined as the time for cavities on a single facet 
to coalesce, given that a, = /?S (see Fig. I). One also 
observes that setting a, = /IS in (lob) and (1 lb) gives 

&as the same for both the well-separated and closely- 
spaced situations. Sina f, is also the same for both 
the well-separated and closely-spaced situations, E, 
given here by the product of $ and r,, is unchanged 
as well. Hence, the proximity of cavitated facets to 
one another does not change greatly the total strain 
to rupture, but it does alter the time to rupture 
substantially, at least when cavity growth is greatly 
constrained. 

For the closely-spaced geometry, the contribution 
of the void growth process to the total strain may be 
estimated as the opening of the cavStated facet at 
coalescence divided by the separation distance 
between two grain centers. Using a quasi-equilibrium 
spherical cap cavity shape, one estimates this con- 
tribution to be 0.59(b/d)(l -f:“) as compared to the 
estimate for I?, in (18). Hence for the closely-spaced 
situation under constrained conditions, the void 
growth process is seen to be a major contributor to 
the total rupture strain. This last observation is 
supported by Harris et al. [la] and Hanna et of. [17] 
whose long term fracture experiments showed that 
the volumetric strain may become the dominant 
strain. 

VOW GROWTH BY THE HULbRlMMRR 
PROCESS 

Bounds on E, have been constructed for the Iim- 
iting cases of completely constrained and completely 
unconstrained void growth. The strass and tem- 
perature regimes for which constraint is actually 
important are obtained by charaetetiziqg the void 
growth process (i.e. expressing d as a function of ur) 
and coupling resuhs with (10) and (1 I). 

A basic model for grain boundary void growth was 
proposed by HuIl and Rhnmer [I]. Here, cavities 
enlarge by surface transport of material to the cavity 
tip, and subsequent transport of this material by 
diffusion into the adjoining grain boundary region 
between two cavities (Fig. 6). Boundary diffusion is 
normally the dominant transport process and then 
the resulting opening rate of the cavitating facet is 
given in [9] as 

(19) 

Here g,, = D&lfkT as explained earlier; yI is a 
surface energy, J/ is the cavity tip dihedral angle and 
f = a’/b’ is the voided area fraction. ‘The void half 
spacing b is assumed to be uniform over position and 
time in this calculation alone in actuality, nucle- 
ation e&cts may make cavity spacing a function of 
time and of the relative orientation of 8rains joining 
at a facet The bracketed term in the denominator is 
solely a function of the current voidage fraction f and 
it is of order unity for typical f values. The term 
subtracted from a, represents a sintering cutoff 
stress 00 = 2(1 -f )(y$u) siqb which is frequently 
negligible compared to @S. 
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In the Hull-Rimmer analysis, cavities are assumed 
to retain a quasi-equilibrium spherical cap shape. 
This is valid for low ci and low a, or equivalently, 
when the rate of material transport by surface 
diffusion greatly exceeds that due to boundary trans- 
port [5,18]. In addition, d is assumed to be indepen- 
dent of position along the cavitated facet. This is 
valid [9,18,19,20] for u + I.% 2 b, where the length 
parameter z = [B,~&(ur)]‘~ is defined as is L, except 
that it is based on a, rather than the applied stress S. 
An interpretation is that the matter diffused from the 
cavity is accommodated nonuniformly on the grain 
boundary, with local creep flow idOWing openings to 
occur only over a distance of order e ahead of the 
cavity tip. From this observation, Chen and Argon 
(191 suggest a reasonable approximation to the finite 
element results of Needleman and Rice [9] for the 
case of tensile loading is to use (19), but with f 
replaced by the maximum of (a/b)’ and {u/(u + z)}l. 
Work by Sham and Needleman [20] suggests a best 
fit of this approximate method to the data is obtained 
if a factor of 1.5 multiplying L is inserted into the 
above formula forJ Equation (19) may be altered to 
account for other e%cts; for instance, the inlluence of 
triaxiality on cavity growth rate could be included in 
the present analysis by adopting an approximate 
expression given by Sham and Needleman [20] rather 
than use (19). 

Use of (19) to eliminate cr from (lOa) and (lla) 
gives the opening rate, d, for the well-separated and 
closely-spaced geometries in terms of the applied 
stress S. In particular, the opening rate normalixed 
with that when no constraint exists (i.e. cr= 1.67s) 
gives for the well-separated case 

d CF-3 

(hi,- 1.67s 
=1.67S-rro 

Pn(lll) - (3 -n(l -fPl 
z [2.2L3/b2d] + [In(llf) - (3 -f)(l -f)/2]’ (20) 

The degree of constaint is determined by comparison 
of the two bracketed terms in the denominator of 
(20). Constraint is important when the first of the 
bracketed terms in the denominator is comparable to 
or greater than the second of the bracketed terms or 
equivalently, when L’/b2d is of order unity or greater 
(since the second of the bracketed terms in the 
denominator is of order unity). 

As mentioned, L decreases with increasing stress 
and temperature. Needleman and Rice [9] observe 
that when power-law creep occurs with an activation 
energy equal to that for bulk (lattice) diffusion, L 
may be expressed as L(S) = L,exp(rcTJT)(lO-‘G/ 
S)‘” - u/r where b and K are constants, T,,, is the 
absolute melting temperature, n is the creep exponent 
and G is the elastic shear modulus. They find that for 
S = lo-’ G and T = 0.5 T,, L ranges from about 2 to 
8 pm for some common f.c.c. metals and from about 
0.25 to 0.35pm for some b.c.c. metals [9]. For 
S = lo-’ G at the same temperature, the above values 

are increased by about a factor of 20. Increases in 
temperature, for example from 0.S T, to 0.8 T,,,, 
decrease L by a factor between 0.05 and 0.28, de- 
pending on the material, for fixed S/G. Hence, the 
constraint effect decreases with increasing applied 
stress and temperature. 

A similar expression for the closely-spaced 
situation states 

6 @F- @O 

d>.,- 1.67S 
= 1.67s -a, 

Pn(llf) - (3 -#(l -f)Pl 
w[0.3L3(S/ii,)“-‘/b2dj + @n(llf) - (3 -n(l -n/2]’ 

(21) 

Again, constraint is measured by comparison of the 
two bracketed terms in the denominator. Comparing 
(21) to (20) the effect of having closely-spaced cav- 
itated facets is seen to reduce the tlrst of the bracketed 
terms, 6rst by the smaller factor of 0.3 and second, 
by the introduction of the’factor (S/Z,)“-‘, which 
ranges from (l/1.3)“-’ for u,=/lS to (l/4.1)“-’ for 
cr= 0. The constraint effect is thus reduced as cav- 
itated facets become closely-spaced. As will be seen in 
a later example, it is typically significant even then at 
low applied stress. 

Cocks and Ashby [12] obtained an approximate 
expression for (cr - ao)/(1.67S - uo) as a function of 
the spacing, 2l, of cavitated facets of size d. Their 
result is similar in form to (20,21) where the degree 
of constraint is measured by comparison of two terms 
in the denominator. In particular, their result is 
obtained by replacing the factor of 2.2 in (20) by 
(16/3)(1- d/21)” and by multiplying the second of the 
bracketed terms ,in the denominator of (20) by 
[I-(l-d/2lr]. In the limits of (d/2&x 1 and (d/Z) = 1, 
the Cocks and Ashby result agrees qualitatively with 
the respective expressions for the well-separated and 
closely-spaced situations discussed here, in that well- 
separated conditions rather than more closely-spaced 
ones favor constrained cavity growth. 

Work by Dyson et al. [21] and Raj [22] has 
considered the effect of constrained cavity growth in 
altering the macroscopic behavior of damaged mate- 
rial. In particular, Dyson ef al. subjected 20/25/l% 
stainless steel to a multiple-mechanical-thermal- 
treatment which increases the amount of grain 
boundary cavitation and obse~ed that the macro- 
scopic deformation rate could no longer be described 
by the applied effective stress as in classical plasticity 
theory, but rather that a dependence on hydrostatic 
pressure be included as well. 

This observation may be studied within the closely- 
spaced analysis presented here by using (4,5a) with p 
interpreted as a grain-averaged viscosity as discussed 
earlier. getting the opening rate of the cavitating 
facet, 6, in (4a) equal to that predicted by a 
Hull-Rimmer cavity growth model in (19) vields a 
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relation between a, S and Sp Combining this 
relation with (5a) gives 

6.x 3[( 1 - r/)S + (0.85 - 0.67q)(S - &)1/p (22) 

where ,q = a&S + 0.67(S - Sr)) is given by the 
~ght-hand side of (21) when the sintering cutoff is 
neglected, and is a measure of to what degree cavity 
growth is constrained. Here, q = 1 implies no con- 
straint of the cavity growth process, whereas TV = 0 
implies strong constraint. The explicit dependence of 
~1 on the applied stress state is obtained by using (7) 
with a genemlixed version of (8) for a biaxial stress 
state, and this is 

ii, = {(5.5?7’ - 10.9fI + 5.4)s* 

+ (7.342 - 14.5~ + 7.2)S(S - Sr) 

+ (2.5~’ - 4.9r/ + 4.1)(S - Sr)sl”r (23) 

(which means that r~ is determined implicitly by 
quation 21). Hence, we see that B for closely-spaced 
conditions with little or no constraint (q = I), like & 
for a well-isolated geometry, depends only on S - S, 
as would be observed in classii plasticity theory. 
However, for closely-spaced geometries where cavity 
growth is greatly constrained (q K i), J!? depends on 
both the maximum principal stress Sand S - Sr (and 
increasingly so on S as the cavity growth becomes 
more constrained). These basic features agree quaii- 
tatively with the studies presented in [21,22j. 

Given specific values off b, d, S and the necesmry 
physical parameters to determine L(S), then qua- 
tions (21) and (1 la) for the closely-spa& situation or 
(20) and (lOa) for the well-separated case are a pair 
of equations containing two unknown parameters d, 
up One may then solve for cr, and d and thus obtain 
ri by using (13). Equation (12) is then used to 
determine tp 

Considered here is a pure nickel poiycrystal of the 
Wigner-Seitz cell geometry diseussed, loaded in uni- 
axial tension S. Cavities are located on grain bound- 
ary facets oriented perpendicular to the applied 
stress, and they are assumed to grow by a 
Hull-Rimmer di&sive growth mechanism that is 
modified by the Acrobat method of Chen and 
Argon 1191 described earlier. The opening of such 
cavitated facets is accommodated by the nonlinear 
creep of grains, the boundaries of which are freely- 
sliding. For the results illustrated, the cavity half- 
spacing b and facet diameter d are 1.3 and 5Opm, 
respectively, where the initial void size a, is taken as 
0.13 pm. 

The parameter L, which character&es the 
diffusional and dislocation creep properties of the 
material is defined as earlier in terms of the constants 
L,, and K, the melting temperature T, creep exponent 
n and elastic shear modulus G. For nickel, Needie- 
man and Rice [9] tabulate L,, = 2.57 x lo-' pm, 

K *c~3.90, T,= 1726K, n = 4.6 and G is estimated to 
be 8.1 x 10’ MPa. The resulting values of L are 
regarded as representative of other pure f.c.c. metals. 
Here, an estimate y, = 1.725 J/m2 for the s&ace 
energy of nicke1 is used from Chuang et af. f5j. 

The time to rupture is cakulated as described 
earlier, using (12). Figure 7(a) shows t, vs S/G at 
T = 0.5 T, for each of the opposite limiting cases of 
well-separated and closely-spaced cavitated facets as 
compared to the unconstrained situation for which 
cr, = 1.67s. For applied loads greater than about 
3 x IO-‘“G, values of t, on the order of minutes are 
predicted. Here, cavity growth is unconstrained and 
t, based on o, = 1.675 provides a good estimate of the 
actual time to rupture. 

For applied loads less than about 1 x lo-‘G, the 
void growth process is indeed constrained and times 
to rupture for the well-separated and closely-spaced 
situations are many times larger than t, baucd on 
a, = 1.67s. In this constrained regime, the proximity 
of cavitated facets to one another (bounded here by 
the well-separated and closely-spaced extremes) is 
seen to vary t, by up to two orders of magnitude. 
Thus, we find here that (t,&>*(t,&,,_,_,. 

Also apparent in the well constrained regime is that 
r, for the well-separated and closely-spaced geoma 
tries is dependent on S’“. Thii occurs since for 
constrained conditions, the dependence of t, on S is 
determined by the fatures of the accommodation 
mechanism, given here as the power-law creep of 
grains. In particular, the cavity growth rate is deter- 
mined by using (13) and also (IOa), (lla) for the 
well-separated and closely-spaced geometries, 
resp&%ively, evaluating oF approximatciy as the 
sinteriag threshold. The resulting cavity growth rates 
are dependent on applied stress as S/k which is 

wd”-r)#aw -- - 

Ckw’Y-wowd - 

Based QI +’ (.STt . . . . . . . ,. 

Fig. 7. Time to rupture t, of pure nickel versus normalid 
applied load S/G (G = elastic shesr moduhm) for the awes 
Of well-separated and closdy-spaoai cavitaal faoets, and 
for that based on u,= 1.6X9, Rest&s arc for temperatures 
(a) T = O.ST, and (b) T = 0.4 ‘I”. In each aw, a&y halt 
spacing b=tr3~m, cavitated furt dbmctcr d=SOpm, 
and initial cavity size a, = b/IO. Local creep flow on cav- 
itating boundaries aids the ditivc rupture pmeess for 
applkd loads greater than (A). For applied lohds less than 
(+), NabarrceHerring and/or Cobk creep arc cxpaW to 
be more responsive aaxxnm ixiation mecbanii than the 

dislocation craq of grains assumed ha. 



418 ANDERSON and RICE: ~NS~I~D CREEP ~AVITA~ON 

c 4 --- L 4 ---__ 
0.01 0.01 

k-7++ -4 k+--- -2 -4 -2 

LoQ,lS/C) 

ww -r#l?wd - - - - 

aouh-wmmd - 

Fig. 8. Strain to ruphus E, of pure nickel versus norms&d 
applied load SjG for the well-separated and ~IoseIy-spaeed 
geometries of c&alai facets i&suits are for texnperatures 
(a) T - 0.5 r, and (b) T = 0.4 T,. Values of b, d, 0, and the 

meanings of (A), (+) am the same as in Fig. 7. 

proportional to S". The the to rupture is then 
calculated using (12), so that f, is dependent on S-“. 

At an applied load S equal to about 2 x lo-’ G, the 
load carried acrom the cavitated facet equals approxi- 
mately the sintering stress limit based on the initial 
cavity size. Cavity growth is theu negligible and times 
to rupture for each of the three cases plotted in Fig. 
7(a) ~ptoti~y approach infinity. Since the sin- 
tering stress depends on the inverse of the cavity 
radius, the sintering threshold is strongly dependent 
on the initial cavity radius a,. For instance, if q is 
increased from the value of 0.13 pm in Fig. 7a to 
0.5 pm, the sin&ring threshold would be decreased by 
about four times. 

A lower limit of applied load to the validity of this 
analysis is shown on the abscissa of Fig. 7(a). Below 
this, Nabarro-I&ring and/or Coble creep is ex- 
pected to act as a more responsive accommodation 
mechanism than the power-law creep of grains con- 
sidered here. This latter estimate of S/G is made using 
&fo~tion maps [23] for a pure nickel polycrystal 
of grain sixe 100 pm, and at T/T,,, = 0.5. An upper 
valut of the applied load is also set (based on 
[9,, 19,201 and f as discussed earlier), above which 
local creep flow between cavities on a boundary 
shortens the neassary diffusive path length for cavity 
growth. 

The e&ct of temperature on rupture time is ob- 
served by comparing Fig. 7(a) (where T = 0.5 TJ and 
Fig. 7(b) (where T = 0.4 TJ. Here, a temperature 
decrease su~~nti~y increases predictions for t,, 
more so for the well-separated and closely-spaced 
geometries, but aIso for that based on a, = 1.675. 
Accompanying these increases in t, are increases in 
the ranges of S/G over which cavity growth is 
constrained. 

The total strain to rupture is calculated according 
to 

Figures 8(a, b) show I??, to be relatively unchanged by 
the proximity of cavitated facets to one another as 
predictions of E, for the well-separated and closely- 

spaced geometries differ little. The lower shelf of each 
plot corresponds to a strong constraint regime and 
each shelf spans a rather large range of applied stress. 
Values of E, in this range agree well with the lower 
bounds developed earlier as (16). (18). The strain to 
rupture increases rapidly from the shelf as the con- 
straint effect becomes less important. 

Rice [I I] considers the limiting situation in which 
cavitated facets are well-separated and observes that 
cavity growth rate is proportional to .&,_” for condi- 
tions of strong constraint. Thus, it is under such 
~~~n~ unction that his msults are ~mpatible 
with a Mo~kma~rant f24] correiation (i.e. &,t, 
is approximately constant), and t, may be estimated 
by determining X?,,_. 

Results indicate that a Mot&man-Grant cor- 
relation may also exist when cavitated facets are 
closely-spaced. Shown in Fig. 9(a) (where T = 0.5 T,) 
and Fig. 9(b) (where T - 0.4 T,) are plots of ,??/I$,_ 
vs t/t, for several values of applied load on nickel, 
assuming the limiting case of closely-spaced cav- 
itating facets. Material and geometrical parameters 
used here have the same values as stated earlier for 
Fig. 7(a,b). The initial transient strain rates present in 
such a cm&p test are assumed to relax early in the 
specimeu life; they are not considered explicitly here. 
The upper and lower bounds to strain rate are given 
as g =Q%nn&4” 
g = J%ilW 

(Corresponding t0 Ir,= 0) and 
(corresponding to bgz 1.67S), re- 

spectively. As applied load levels become large, cavity 
growth becomes unconstrained and ,?? approaches a 
steady state value of I&_~ [see Fig. 9(a)]. The product 
I&,,&, then models E, well, but as seen in Fig. 8(a), 
E, is not constant in this unconstrained cavity growth 
regime and a Mot&man-Grant correlation does not 
hold. 

Conversely, when applied load is decmased, cavity 
growth may become strongly constrained and & may 
approach a steady state value of I$_,,~,~ [e.g. see Fig. 
9(b)]. The product &,,+, t, then models E, well, and 
in Fig. 8(b) it is seen that E, is relatively constant in 
this constrained cavity growth regime. Consequently, 
results for closely-spaced cavitated facets are com- 
patible with Monkman-Grant correlations, at least 
for the strongly constrained conditions shown in Fig. 
9(b). As demonstrated in Fig. 9(a), Mot&man-Grant 
products are not always applicable, even as the 
applied load is decreased. Here, for (S/G) x 10’ = 2, 
the eftbct of the sinning scold is seen to vary the 
creep rate so that a steady state value i? = &‘_ti,I is 
not achieved. In fact, I? for most levels of applied load 
is shown to vary substantially with time, rather than 
achieve a steady state value, for the limiting case 
considered of closely-spaced cavitating facets. By 
comparison, of course, & is relatively constant with 
time for well-separated cavitating facets. 

CONCLUSIONS 

Constraints as identified by Dyson [IO] on the 
creep cavitation of grain boundary facets are dis- 



ANDERSON and RICE: CONSTRAINED CREEP CAVITATION 419 

I I I I 1 I 

0.0 0.2 0.4 0.6 0.8 1.0 

f/l, 

0.0 0.2 0.4 0.6 0.8 1.0 

I I f, 

Fig. 9. Norstmkd strain mtc i#,,,, of pure nickel versus mmnakui time t/r, for several vaiues of 
a&ied load, where (a) T = 0.5 T, and (b) T = 0.4 T,. Vahcs of b. d and a, are the same as for Fig. 7. 

cussed for two opposite limiting cases, the first for 
well-separated cavitated facets and the other for 
closely-spaced cavitated faceta. These limiting cases 
are assumed to bound practical situations. The 
former case was studied by Rice [l 11 and the latter is 
analyzed in this paper utilixing a three-dimensional 
periodic array in which grain boundaries arc freely- 
sliding and all facets oriented perpendicular to a 
uniaxiti load are cavitating. 

Comparisons are made between the two limiting 
cases, assuming that grains creep in a nonlinear 
manner and thereby accommodate diffusive grain 
boundary void growth. Results show that the time to 
rupture, at least of a cavitating facet, is highly 
dependent on the proximity of cavitated facets to one 
another. When accommodation is by dislocation 
creep, the ratio of the times to rupture of the well- 
separated to the closely-spaced situations ranges from 
about 50 for a creep exponent n = 3 to about 500 for 
n= 5. 

Rupture strains, however, are relatively indepen- 
dent of the proximity of cavitated facets to one 

another. When cavity growth is greatly constrained, 
E, may have small and relatively constant values with 
load and temperature. For such conditions, the rup- 
ture strain is directly proportional to b/d the cavity 
half-spacing divided by the facet diameter d. 

Monkman-Grant correlations are shown to exist 
for both well-separated and c1ose1y-s~ geome- 
tries when constraint is strong, or e&ctively, when 
applied loads are small. For the we&separated case 
under such constrained conditions, the product of 
rupture time and strain rate of an uncavitated poly- 
crystal is found to approximate E, and therefore to be 
relatively constant with changing load and tem- 
perature. For the closely-spaced situation with 
strongly constrained cavity growth, the product of 
rupture time and strain rate of a polycrystal with 
completely coalesced cavities may be found to ap- 
proximate E, and to be relatively constant with load 
and temperature. However, in this latter limiting 
case, the cavitation process itself contributes substan- 
tially to the total strain, 

When cavity growth occurs according to a 
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Hull-Rimmer model, criteria are obtained for when 

constraint is dominant or not. For the well-separated 

case in which the opening of cavitated facets is 
accommodated by the .dislocation creep of grains, 
constraint is important when the length parameter 
L 2 (62d)“3; L decreases with increasing applied 
stress and temperature so that constraint plays a 
greater role with decreasing temperature and applied 
stress. When cavitated facets are closely-spaoed, con- 
straint is estimated to be strong for L values apptoxi 
imately a factor of 100-1000 times larger than those 
required for constraint in the well-separated case. The 
exact factor depends on the creep exponent n and the 
value of stress across the cavitated facet, although in 
general, cavity growth is less constrained as cavitated 
facets become more closely-spaced. As shown, con- 
straint of void growth may be strong even for this 
closely-spaced geometry. 

It remains for future work to bridge the gap 
between the well-separated and closely-spaced lim- 
iting situations discussed here. As a contribution, 
Appendix B briefly presents results for a closely- 
spaced situation where the cavitating facets are 
square faces of the Wigner-Seitz cells, about 40% of 
the area of the hexagonal facets discussed in the body 
of the paper. 

The heterogeneity of the creep cavitation process 
also needs to be considered in future work. Cavities 
are neither spaced uniformly on facets nor are facets 
themselves spaced uniformly. Recent work by Tver- 
gaard [25] considers the influence of nonuniform 
initial cavity radii and spacings: It is found that 
differences in initial cavity radii are quickly evened 
out when a,/t values are small or equivalently, when 
matter diffused from the cavities is distributed uni- 
formly on the grain boundary. Further analyses may 
also include cavity half-spacing as well as the size and 
proximity of cavitated facets to be a function of time 
and position. 
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APPJ?#NDIx A 

A solurio! method for periodic cells via a stress-based 
variational prbaciple 
The variational principle used here is developed from condi- 
tions of equilibrium and compatibtity which must be 
satisfied by the true stress and displacement fields, 
respectively. These conditions are discussed below: 

The grains of a poiycrystal are represented by a periodic 
arrangement of 3-D cells with fkecly-sliding boundaries 
between them. Since identical boundary conditions exist on 
each cell, focus is made on a single cell, in this case a 
Wigner-Seitz cell of which Fig. Al shows a cross-sectional 
cut. Here, the cell is bounded by three pairs of like faces, of 
which those labelled F are cavitating. 

As pointed out by Ghahremani [26], deformation com- 
patibility in a periodic array of cells enforces the continuity 
of normal displacement across the boundaries of adjoining 
grains. A macroscopic strain tensor Et is defined such that 
the relative displacements of two grain ecnters separated by 

t 

direction of 
applied load S 

I 
Fig. Al. Cross-sectional GUI through Wigner-Seitz cell, 
showing the three types of face pairs. The dotted lines 
represent the cylindrical volume of a hexagonal face pair. 
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the vector D, is given by f&&r,. &tine u,(x) as the displace- 
ment with respect to the grain center of a point with position 
vector x from the grain center. Hence, the relative displace- 
ment vector Skx) acr0ss a grain interface at a point x is given 
as 

6,(x) = E&(x) + u?(x) - &(x(x) (Al) 

Here, n,(x) is the normal to the grain face containing x and 
u:(x) = u,&*) where x* = x -Itn(x) (see Fig. Al). The 
actual opening gap 6(x) at an interface is given by 
6(x) = n@)c$(x). Deflning r%(x) = qtx)a,(x) and 
u:(x) = u,(x*f = n,(x*)u~x*) = n~x*)u~(x) we obtain 

a(x) = ~~X)~~~X~ -u.(x) -u:(x) (A21 

6 vanishes on the noncavitating facets, since here we neglect 
Nabarro-Herring and Cable creep. 

Analogous to E a macroscopic stress tensor S# is defined 
in terms of the ocal stress state uP This local state is r 
assumed to satisfy equilibrium, uy., = 0, and is related to S, 
by 

Hem V 
f 

and S, are the grain volume and surface, re- 
spective y. pe assumption of vanishing shear on the grain 
boundary implies n,uM = a(x)n,, where u(x) = n,n,aU is the 
traction normal to the boundary. We use also a result from 
the periodicity of cell arrangement that u(x) = u(x*) so that 
(A3) becomes 

The following form of the Principle of Virtual Work tben 
applies for any equilibrium stress field {St,,uro} and any 
compatible deformation field [Q, at,, S, u,}. Equilibrium 
stress fields are understood to satisfy ua, - 0, to satisfy (A4), 
to produce no shear traction on the grain face and to meet 
c(x+) = u(x). Compatible fields are such that 
2~~ = (u,, + uI,) and that (A2) is satisfied. For any such pair 
of fields 

It can be shown that the validity of (AS) for arbitrary 
equilibrium fields implies that the deformation field is 
compatible. Silarly, the validity of (AS) for arbitrary 
compatible fields implies that the stress field satisfies 
equilibrium, 

A functional of the local stress field us may be defined in 
a manner analogous to that for the ‘%amplementary 
energy” in elasticity 

Y(#)+ 
s 

(It(u)dV where Jr(u)= ‘Qr)do,, (A6) 
I v; I 0 

and d, = $(u) denotes a VISCOUS ccmstitutive relation, consis- 
tent with $ being a function of u only. The functional is 
defined on the class of equilibrium stress fields. If the grain 
material is linear viscous, then #(a) = l/Z+ , The 
i~~n~t~irn~ variation AY of Y‘(u), associated Httt vari- -x 
ation Au, of the stress field, is 

AY’(u)=+ 
I 

ci&)Au& V. (A71 
I: VI 

It then follows from the Principle of Virtual Work that for 
given S, and stress uF on cavitating facets, the true stress 
field oU (namely that equilibrium fteid uu for which the 
r&ting &rain rateJ it- i&u) are compatible) SatiSfiCS 

AyI = 0. in fact, F is a minimum at the true SOk!tiOn for 

given S, and u. and for variations in these quantities, Ip, 
satisfies 

AYE” = &AS, - $ 
J 

dAu dS. 
c z 

(A81 

For the particular Wigner-Seitz cell geometry discussed, 
the opening d between grain faces is nonzero on the 
cavitating face denoted here by subscript “F”. Approxi- 
mating u on face F as uniform and equal to 6,. (A8) then 
states 

Here, A, is the area of a cavitated face, and Lois the average 
opening of a cavitated facet. 

In summary, Y(u) is defined in (A6) as a functional 
of any local stress field ul/ in the grain satisfying the various 
attributes enumerated in section (i). Among all such equi- 
librium fields {S, ut,, u}, the exact solution to the problem 
of mescribed S,, and ur mnders ‘plo) a minllum. This 
value, !Ptir,, is a”functiol; of the given &antitia S, and a, 
and it then folfows from (A3) that the overall strain rates 
and average opening rate of the cavitating facets are given 
by (2). 

APPENDIX B 

An alternative representation of closely-spaced cavitated 
facets 
The Wigner-Seitz cell model may be orientad in a sccbnd 
manner where square rather than hexagonal faces are 
normal to a uniaxial stress S and are cavitating (Fig 81). 
In this case, the area of cavitated facets is mdnced by about 
60”/, over that in the original orientation, but dosely-apaced 
conditions still prevail sina each grain can&tins substantial 
cavitation. 

The development of expressions for 6, I!?, f, and E, for this 
second orientation of the Wigner-Seitz cell ir ideaticirl to 
that presented for hexagonal cavitated fimts. As assumed 
earlier, the opening of cavitated facets is a0xnnm0dated by 
the dislocation creep of grains, grain boundaries slide freely, 
and cavities are assumed to enlarge by a Hull-Rimmer 
diffusive growth process. The stress-based variational prin- 

T direction of 
applied laad S 

1 
Fig. BI . A second orientation of the Wigner-Seitx cell to the 
macroscopic applied load S, in which partially cavitated 

facets are square rather than hexagonal. 
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Fig. B2. (a) Tiie to rupture f, of nickel vs normalized applied load S/G using the second orientation of 
the Wigner-geitxcell in Fig Bl. Here T=OJT,. b= 1.3pm. d=5Opm and a,=b/lO as in Fig. 7(a). 
(b) Corresponding strain to rupture E, vs normalized applied load S/G. Both (A) and (+) have the same 

meanings as in Fig. 7. 

ciple described earlier is used, with the approximate stress 
state de&d by (3). For the axisymmetric stress state 
S, = S, S, , = S, = S, and for a linear viscous material one 
obtains 

d z 2.q3.OS - 2.0+ oJd/j~ (Bl) 

c * 0.q4.6S - 3.6Sr- u&l. 
Gr @ - o.zo[s.4s - 4.4sr - u&l ) 

(B2) 

Here, d is the diameter of the cavitated facet. 
The effect of freely-slidillg grain boundaries in an un- 

cavitated uniaxially loaded specimen is estimated by setting 
d=OandSr=OO~l).Onethenobtoinsu,~3.0S,which 
determiues the factor /I for this second orientation as az3.0 
compared to /3 = 1.7 when cavitated facets are hexagonal. 
In&ting 0,; 3.0s into the first of (B2) determines 
,#? m 2.9Sl3u as cornoared to g = 1.6S/3u obtained for the 
first ori&t&io~ of he Wiperseitx ceil. Since d = S/3j1 
when gram boundaries do not slide, the e&t of such grain 
boundary sliding is to enhance t as seen before. Comparing 
strain rates for each of the orientations considered, grain 
boundary sliding is seen to introduce anisotropic response 
of the polycrystal even though the grain material is taken 
here to be isotro ic. 

The results (Bl! (B2) may be interpreted for a nonlinear 
creeping grain material described by $ = vdependent fac- 
tor] x u”. An approximate effective vrscnsity r(S. u,) of the 
grain, for use in (Bl). (B2). is obtained in the manner 
described earlier. Here, &S, ur) has a weaker dependence on 
the value of or than for the case of hexagonal cavitated 
facets. In fact, for this second orientation, the ratio of 
viscosities for a polycrystal with completely cavitated facets 

(u,= 0) to that for an uocavitated polywystal (0, = 3.0s) is 

(B3) 

We now develop for this second orientation expressions 
for d and &, analogous to (lOa,b) and (1la.b). that describe 
the limiting cases of well-separated and closely-spaced cav- 
itated facets. In the former case, 6 is given by (I), using 
a = 1.8 (corresponding to a polycrystal with freely-sliding 
grain boundaries and a creep exponent n = 5). b - 3.0 and 
&, is given by the first of (BZ), setting u, = 3.0s. Sr = 0 
and c = j4(S, 3.0s). Also, B = L,, for the well-separated 
geometry. In the latter case, d and 2 are given by (Bl) and 
the tirst of (B2), respectively, setting Sr = 0 and evaluating 
p = p(S, u,). Results are 

6 *r O.5gP.OS - c#/~(S, 3.0s) 
i = I?-,” a+ 0.96$/j@, 3.0s) > 

(well_separated) (B4) 

6 = 2.q3.OS - u#/j@, u,) 
B a 0.60[4.6S - u&l(S. ur) > (closely-spaced)* (BS) 

Numerical results for nickel using this second orientation 
are presented in Fig. B2. Values of the void half-spacing b, 
facet diameter d and the material properties of nickel are 
unchanged from those used in Fig. 7 so that comparisons 
may be made. In essence, the functional forms of the t_ E, 
curves are similar for both orientations discussed, although 
the case of square cavitated facets produces lower times and 
strains to .rupture, and the differences in r, between well- 
separated and closely-spaced situations is somewhat less 
than when cavitated facets are hexagonal. 


