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Constitutive Relations for Fault Slip and
Earthquake Instabilities

James R. Rice!

Abstract - Constitutive relations for fault slip are described and adopted as a basis for
analyzing slip motion and its instability in the form of earthquakes on crustal faults. The
constitutive relations discussed include simple rate-independent slip-weakening models, in
which shear strength degrades with ongoing slip to a residual frictional strength, and also more
realistic but as yet less extensively applied slip-rate and surface-state-dependent relations. For
the latter the state of the surface is characterized by one or more variables that evolve with
ongoing slip, seeking values consistent with the current slip rate. Models of crustal faults range
from simple, single-degree-of-freedom spring-slider systems to more complex continuous sys-
teros that incorporate nonuniform slip and locked patches on faults of depth-dependent consti-
tutive properties within elastic lithospheric plates that may be coupled to a viscoelastic astheno-
sphere.

Most progress for the rate and state-dependent constitutive relations is at present limited to
single-degree-of-freedom systems. Results for stable and unstable slip with the various constitu-
tive models are summarized. Instability conditions are compared for spatially uniform versus
nonuniform slip, including the elastic- brittle crack limit of the nonuniform mode. Inferences
of constitutive and fracture parameters are discussed, based on earthquake data for large
ruptures that begin with slip at depth, concentrating stress on locked regions within a brittle

“upper crust. Results of nonlinear stability theory, including regimes of complex sustained stress

and slip rate oscillations, are outlined for rate and state-dependent constitutive relations, and
the manner in which these allow phenomena like time-dependent failure, restrengthening in
nearly stationary contact, and weakening in rapidly accelerated slip, is discussed.

- Key words: Earthquakes; Fault mechanics; Friction.

Introduction

This paper reviews fault instability modeling. Throughout, tectonic shear
faults are modeled as planar surfaces of (slip) displacement discontinuity in
elastic surroundings. The relation of slip motion and its stability to the
constitutive equations that describe slip on the fault surface is given particu-
lar attention. These constitutive equations relate shear strength 7 along the
fault to stip & (Figure 1) and to other parameters such as normal stress G,»
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Figure 1. Section of fault modeled as a surface of possible slip displacement discontinuity.
Notation: 7 is shear stress; d is slip displacement; g, is normal stress; p is pore pressure; ¢;; 18 the
stress tensor; u; is the displacement vector.

pore pressure p, temperature 7, and rock and fault gouge mineralogy. Figure
" 1 shows a slipping region along a fault on the surface x, = 0 and shows how 7
and o, are expressed by stresses g,;, and how ¢ is expressed by a discontinuity
- Ay, of displacement ;. According to whether slip is in the 1 or 3 direction, T
is identified as o, or 6,5, respectively. More generally, slip will occur in both
directions and a compilete constitutive description relates the pair o;,, 03310
Auy, Au, (e.g., Day 1982), although attention is restricted here to unidirec-

tional slip.

Constitutive models

In the following discussion two types of constitutive models are adopted.
The first is appropriate for the one-time motion of a fault segment that has
been effectively stationary in its recent geological past. This constitutive

- model is referred to as a*“slip-weakening” model. It embodies the elementary
requirement that in order for a fault segment to exhibit seismicity, its
strength must degrade with ongoing slip. The model is most simply repre-
sented graphically, as shown in Figure 2. In the plot of T versus J (Figure 2a),
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Figure 2. (a) Slip-weakening stress versus slip relations for constant effective normat stress;
unloading and reloading branches shown. (b) Peak (7%), residual {#), and intermediate
strengths depend on effective normal stress, and zalso on temperature.

strength degrades in the slip §* from a peak resistance 77 to initiate siip down
to a fixed residual frictional level 7/, where ¢'is sustained for larger amounts
of slip. Response is of the rigid-plastic type, in that unloading and reloading
occur along the vertical line segment shown. The plot in Fig. 2a envisions
constant o, and p; if these change, 77, ¢/, and 7 at any slip J are altered, as
shown in Figure 2b, where they are considered to depend on the effective
normal stress g, = 6, — p.

The slip-weakening model has its roots in the well-known “cohesive
zone” models of tensile fracture developed by Barenblatt, Dugdale, and
Bilby - Cottrell - Swinden. The model was adapted to shear faulting by Ipa
(1972) and PALMER and RiCE (1973), the latter including an account of
residual friction 7 at large slip; recently Rice (1980) and WoNG (1982) have
shown how slip-weakening 7 versus J relations for faults can be estimated
from postpeak force versus deformation relations of laboratory triaxial spec-
imens. The mode! as described is not explicitly rate-dependent and contains
no provision for regaining strength with time after a slip episode, although
some discussion has been presented of the effect of stress corrosion micro-
cracking in causing a slip-rate-dependent 7 versus J relation for initially
coherent rock (RICE, 1984).

Presumably, the difference between 2 and 1/, which describes the capacity
for generating relatively sudden strength drops, should be assumed to de-
crease with increasing temperature and to first increase but then decrease
with increasing g,,, thus describing the transition from cataclastic, or brittle,
to ductile rock deformation. Since g, and T both generally increase with
- depth, the difference 12 — ¢/ should firts increase and then diminish with
greater depth. The brittle zone of high % — 1/ thereby defined models the
“seismogenic” layer of the Earth’s crust. Along the San Andreas fault in
California, which is of transfrom or strike-slip type, this seismogenic layer
ranges from 2 to 3 down to 10 to 15 km. The depths are greater in subduction
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zones, presumably because the cold subducting plate depresses local geo-
~ therms. Applications of the slip-weakening and related concepts at a large
crustal scale (STUART, 1979a,b; STUART and Mavko, 1979; L1 and RICE,
1983a,b) assume therefore that 7» — 7/ achieves a peak valué in the seismo-
genic layer at a depth on the order of 10 km for transform fault condition and
diminishes toward zero at greater depth.

The slip-weakening constitutive model as just outlined is plainiy limited
to description of a single fault slip sequence. Indeed, a feature of a more
general constitutive relation, intended for description of sequences of re-
‘peated slip instabilities on the same fault surface, is that there can be no
- fundamental dependence of 7 on J. A general constitutive framework that
meets this objection and is capable of incorporating dependences of strength
‘on slip speed and prior slip history in a manner adequate to describe re-
‘strengthening has emerged in recent work by DIETERICH (1978, 1979a,b,
1981) and RuiNa (1980, 1983). As commented by RicE and Ruina (1983),
such constitutive relations as have been proposed fit a general framework in
which stress 7(f) at time ¢ at a point of a sliding fault surface is a direct
function of stip speed WV(¢) [ = dd/dt] and 6,(¢) at that point and is a memory
functional of the prior values ¥(’) and a,(t’) on the interval —» <¢ <1,
The necessity for such a memory dependence on ¥{¢’) was noted much
earlier by RaBiNowicz (1958) in an insightful discussion of the inadequacies
of classical friction concepts.

Presuming that the memory dependence can be represented suitably by
the current numerical values of some set of parameters, which themselves
evolve with onging slip, one may cast the constitutive equations in the
general form (Ruina, 1980, 1983)

T=F(I/’Ens \P!aq}}a L] ,‘Pn); (1)
d¥jdi =GV, 0,, ¥, ¥, . .., ¥), i=1,2,...,n
* Here the set of parameters ¥,, ¥, . . . , ¥, are called state variables. It

would be satisfying to relate them to the microphysics of the slip process, and
'DIETRICH (1978, 1979a) argued for constitutive relations in which the (sin-
gle) state variable involved was related to an effective time of contact be-
tween currently mating asperities. Alternatively, the state variables may
simply be identified phenomenologically as parameters that enable descrip-
tion of experimental results. The latter is the approach taken by RuUINA
(1980, 1983), who showed, for example, that experimental records domi-
nated by two prominent strength decay events after a sudden change of
imposed slip speed could be simulated by constitutive relations involving
two state variables that had no identity other than that endowed by the
specific version of equations (1) they satisfy.
Later we shall examine the slip motion and stability of simple elastic
systems that slip in compliance with specific forms of these constitutive
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relations. Some general constitutive features have emerged, however, from
experimental results reported by a number of workers (see GU er al., 1984 for
arecent summary). These features are best discussed with reference to Figure
3, where a schematic record of stress 7 at the slip surface versus displacement
d is shown for slip at constant a,, just before and after a suddenly imposed
change in slip speed from a constant value V, to a new constant value
V(> V). The features are:

- (1) There is a sudden increase in 7 at the time of the velocity change
(experiments with J;, < V| show a sudden decrease). The sudden change in
¥ is not accompanied by a sudden change in the Ws, according to the
constitutive framework of equations (1), and we therefore interpret the sud-
den change in 7 to occur at a fixed state, with

BT/ dixeasae > 0, OF SF(V,5,, ¥, ..., W)V >0. @

(2) In slip at constant speed V, 7 evolves toward a “steady-state” value
dependent on that speed and denoted 5V, 7,,). We interpret this as meaning
that for fixed ¥ (and o,,) the latter set of equations (1) has solutions such that
each W, evolves toward a steady-state value ¥ (V, g,) that satisfies G, = 0 for
i=1,2, ..., n Thesteady-state strength is then given by

=1V, 5,) = F[V, 5,, ¥,(V,3,), . . . ¥.5(V, 5. 3)

It may, of course, be the case that a steady state exists as a well-founded
- concept for slips over a distance scale like that illustrated in the figure, but
that for much longer slips, even at constant V, there is a systematic change in
7 as the fault evolves structurally, thermally, or chemically. In that case it
may be assumed that some of the state variables relax as discussed above to
steady state values, but that others maintain a gradual evolution.

(3) Apparently, 3t(V, 0,)/8V can be of either positive or negative sign
(the latter is shown in Figure 3), depending on normal stress conditions and
temperature for a given rock —gouge - rock combination. Negative values of

T
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Figure 3. Rate and (evolving) state-dependent response to sudden increase of slip rate ¥ at
constant normal stress. Note the positive instantaneous viscosity, followed by evolution with
ongoing slip toward a new strength level 7%, appropriate to the steady state at the new slip rate,
which may be less or greater than the previous steady-state strength level. Velocity weakening is
shown here.
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a1/3V allow steady slip motions to become unstable to small perturbations,
provided the effective elastic stiffness of the surroundings is iow enough
(Riceand RuUINA, 1983). Thus the classical division of the normal stress and
temperature plane into separate fields where either “stick-slip” or *“stable
sliding” resulted experimentally {(BRACE and BYERLEE, 1970; BRACE, 1972)
in the relatively soft testing machines of the time may be thought of as
- marking approximately the respective domains of negative and positive
87%%/3V. Parameters that determine the positions of such domains in relation
to mineralogy of the rock - gouge - rock system seem still to be rather incom-
pletely understood (H1GGs, 1981), but increase of temperature seems gener-
ally to cause a transmission to stable sliding at the normal stress levels for
which stick —slip occurs at lower temperature.

(4) Loss of memory of the prior slip history occurs over a characteristic
amount of slip &*, Figure 3, which seems to be approximately independent of
the magnitude of ¥. The decay of 7 toward 7= in slip at fixed V" is often
modeled tolerably as the sum of one or two terms that have exponential
decay with & as measured from the inception of the slip at fixed V' (DIETER-

‘1cH, 1981; RuUINa, 1980, 1983; Gu et al, 1984). There seem to be no
published data on loss of memory of prior normal stress history. It is some-
times assumed that this loss is instantaneous, so that 7(¢) is dependent on g,
only through the current value ¢,(¢); this is equivalent to a case for which the
functions G; of equations (1) are independent of g,,.

The rate and (evolving) state-dependencies of 7 described here comprise
 an extremely small part of the total stress 7 required to slip a fault, at least for
variations by factors of, say 10° orlessin V. In fact, these dependencies can be
regarded as modest variations about a classically described critical 7 for slip.
" This critical 7 is given to a first approximation by the BYERLEE (1968) form

t=0.850,, 0,<200MPag; =60 MPa+0.6a,, o,>200MPa (4)

for a variety of rock types; clay gauges can exhibit substantially lower coeffi-
cients of g, of order 0.3 to 0.4, and there is very large scatter about the
-coefficient 0.85 at low &, when different rock types, surface roughness, etc.
-are considered. While the rate and state-dependent parts of 7 are small
compared to the total, they are nevertheless critical to understanding insta-
bility, because they embody the means by which strength can reduce in
appropriate circumstances with ongoing slip, thus allowing seismic instabili-
ties. Measures of rate sensitivity are given by

a= (VIt)3t/0Vxes suer @ — b= (VTN 37%/8V). (3)

One finds that g and 4 are posttive and of order of magnitude 0.01; asis clear
from (3), a — b may be positive or negative in different circumstances.

By comparing Figures 2a and 3 it becomes evident that rate and state-de-
pendent frictional constitutive relations can sometimes lead to a response of
a type that may be labeled “slip-weakening.” This happens, particularly,
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when a surface whose current state variables are comparable to those for
steady slip at some speed Vis suddenly obliged to slip at much greater speeds.
This i1s what happens at the advancing edge of a zone of slip along a fault;
OxuBo and DIETERICH (1981) observed 7 and ¢ histories near the tips of
propagating slip zones in a large rock friction apparatus with a slip-
weakening appearance. It is perhaps less obvious that constitutive relations
that describe response to sudden velocity jumps could also describe what
could be called (in slip-weakening terminology) the time-dependent regain
of peak strength 72 after a rapid slip episode. Nevertheless, Ruina (1983)
showed that his particular two-state-variable constitutive model closely de-
scribed experimental results on time-dependent restrengthening in (nearly)
stationary contact; it turns out to be critical to Ruina’s explanation that very
low-speed relaxational slips occur in what is nominally regarded as station-
ary contact.

While the rate and state-dependent constitutive framework just described
with reference to equations (1) and Figure 3 is much more comprehensive
- than the rate-independent slip-weakening concepts of Figure 2, its richness is
accompanied by complexity. Thus relatively little progress has been made
up to the present on understanding consequences of the constitutive frame-
work for instability with realistic fault models. In fact, at the present time a
relatively complete understanding is in hand only for a severely simplified
fault model, represented (Figure 4a) as a single-degrec-of-freedom elastic
system.

Slip-weakening fault instability models

The general description of fault instability, using rate-insensitive slip-
weakening concepts, involves combining a constitutive description of the
type illustrated in Figure 2 with the equations of elasticity for the surround-
ings and with a specification of the tectonic loading conditions. The result of
the equations of elasticity is that there is a relation between the slip and stress
distributions on a fauit. Simplifying to undirectional slip, we have that the
stress 7{P, ¢} at point P of the fault is related to slip 8(P’, 1) at points P’ along
the fault surface S, in a linear elastic medium, by an expression of the type

(P, 1) = 1P, 1) — j K(P, P)o(F, 1) dS(P') (6)
s

under quasistatic conditions. Here K(P, F’) is an elastostatic Greens func-
tion, and what is written here as its integrated product with slip & actually
‘corresponds to the limit of a similar integral representation for general points
P off the fault surface as P approaches a point on the fault. Also, 1(P, #)
denotes the tectonic loading; for present purposes, we will regard the loading
as specified. As is evident from equation (6), (P, ¢) is identifiable as the _
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Figure 4. (a)Single-degree-of-freedom fault model. The block has unit base area. The spring is
loaded by imposition of motion J,; k ddy/d! corresponds to the loading rate dt,/dt, as discussed
in the text; (b) Stable response of slip-weakening fault in stiff system. (¢) Unstable response
insoft system. (d) B, C, D, E denote possible final states after instability. If there is no radiated
energy loss, the final state is £, for which the area under the straight line 4E equals the area
under the t versus § relation between 4, and Jg.

stress that would act at point P of a fault if the (entire) fault surface were
constrained against slip offset.

The constitutive relation between t and d converts equations (6) to what
may be regarded as a nonlinear integral equation for (P, r) with specified
forcing function 7o P, t). Often, solutions &(P, f) exist to this equation only up
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to a finite limiting time, at which 35(P, t)/dt — = for some set of points P
while d1,/9¢ is finite. This models a seismic instability, 1.e., an earthquake.
The actual dynamics of the instability are, at least in principle, described
similarly, with equation (6) replaced by

(P, 1) = 1P, 1) — f ' j K, Pt — )P, t')dS(P) dr, 7
5

‘using an elastodynamic Greens function X,

Depending on constitutive and geometric details, the slip-weakening ap-
proach may lead to slip histories that are either entirely aseismic or termi-
nated by seismic instability (STUART, 1979a; STUART and MAvVKo, 1979)
and involve extremes ranging from approximately uniform slip over a fault
segment to strongly nonuniform slip in a crack-like mode. In the remainder
of this section we examine the simple imiting extremes of essentially uni-
form and strongly nonuniform slip.

A fanlted system that exhibits or is idealized as exhibiting spatially uni-
form slip and stress can be regarded as a single-degree-of-freedom elastic
system in the form of a spring-loaded slider (Figure 4a) of unit base area.
Equation (6) reduces in these circumstances to

7(t) = 7o(2) — kd(2) = k[oo(2) — d(1)], 8)

where k is an elastic stiffness in interaction with the surroundings. It is
perhaps more natural to regard the loading of the slider as being specified by -
imposition of an imposed motion &,(¢) of the spring end; hence we can write
the second version of equation (8), for which it is seen that 7,(7) has the
interpretation kdy(?). Figures 4b and 4c illustrate the solution of the slip-
weakening mode] under uncreasing imposed displacement J,. The state (4,
7) that results for any given &, is then the simultaneous solution of equation
(8) and the slip-weakening constitutive relation. As is evident from Figure
4D, a succession of such states is traced out stably as d, is increased in a system
of sufficiently high stiffness k. This approximately models the aseismic slip-
page of a previously locked fault segment.

When the stiffness is too small, however, an instability as shown in Figure
4c, is encountered and this models the onset of a seismic slippage. The course
of events after the instability may not be described adequately by the single-
degree-of-freedom fault model, even if it provided an acceptable description
prior to instability. Nevertheless, if a single-degree-of-freedom concept is
adopted for the seismic motion, the final rest state of the system is con-
strained by the requirements that (1) the rest state must be a possible equilib-
rium state —1.e., it must satisfy the slip-weakening t versus J relation, possi-
'bly by lying along one of the rigid unloading branches (Figure 2a), and also
equation (8) based on &, at the onset of instability —and (2) the energy lost
from the system, represented by radiated energy losses not explicitly in-
cluded in the model of Figure 4a, must be nonnegative. The latter require-
ment means that the loss in spring energy cannot be less than the work done
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- on the friction surface:

)
P+ (@ —d)= f T(d') diY, ®)

&
where 7(J) denotes the 7 versus J relation for continuing slip, ¢ and 7 denote
the final rest state, and J, and 7, denote the state at the instability. These
requirements show that the final state must lie somewhere between points
labeled B and E in Figure 4d. The upper limit point £ corresponds to
equality above—i.e., to an absence of radiated energy—and is chosen so
that the area under the straight line AE is equal to that under 7 = 7(d)
between d, and J;.

The description of fault-slip and instability under the presumed condi-
tions of uniform slip is probably a good description only of small laboratory
specimens. As larger scales of size are considered, the slip~weakening pro-
cess is predicted to become decidedly more nonuniform. This occurs be-
cause the constitutive relation contains a characteristic length scale (e.g., the
slip distance 6* in Figure 2), so that the usual concepts of scaling in contin-
uum mechanics do not apply and the mode of failure in very large systems
~ 1.e., with large size of the faulted region-—is predicted to be so nonuni-
form that an elastic—brittle crack model of slip rupture applies as a limiting
case.

The question of how large is “large” can be addressed within the model.
- Figure 5a shows schematic stress and slip distributions in the vicinity of the
advancing tip of a long slipping region, advancing quasistatically into a
previously locked fault segment. Local 7 and § values along the slipping
section satisfy the slip-weakening relation 7 = 1(J) illustrated in Figure 5b.
The length w of the zone of strength degradation at the slipping zone tip—
1.e., the zone over which slips 6 (which vanish at the tip) have not yet become
large enough to reduce 7 to its residual value #/— may be estimated approxi-
mately (RICE, 1980, eq. 6.12) as

w = [97/16(1 — v)|ud/ (t? — ) =~ 2.4ud/(v* — /). (10)

Here v is the Poisson ration, ¢ the elastic shear modulus, and d isa character-
istic displacement in the slip-weakening process defined by

1
w—1

5
5= f [%(d) — 1 45; (1)
o]
the integral represents the cross-hatched area in Figure 5b.

The length w is what is desired for scaling. Slip-weakening on surfaces
with dimensions much smaller than «, e.g., in small through-cut laboratory
specimens, can be assumed to involve uniform slip. As will be elaborated
- upon shortly, advancing slip regions with dimensions much larger than @

can (usually) be described well by calculations of elastic—brittle crack me-
chanics, which are relatively simple by comparison to the general formula-
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Figure 5. (a) Nonuniform stress along a fault as a siipping region advances into a locked
section. (b)Slip-weakening relation followed between shear stress and slip. When zone w, over
which strength degradation occurs, is small compared to characteristic fault dimensions and to
length scales associated with loading stresses the process may be described by elastic—brittle
crack mechanics for fauit-sustaining residual strength 7/ on slipping section, and supplying the
fracture energy G, as indicated, for continued advance,

tion suggested in connection with equation (6). Of course, the middle ground
- -for which w and the size of the slipping region are more nearly comparable to
one another requires a full implementation of the general formulation,
which has actually been carried through in a few tectonically interesting
cases (STUART, 1979a,b, STUART and MAvVKo, 1979). The slip-weakening
concept has also been applied to model the dynamics of rupture propagation
(IDA, 1973; ANDREWS, 1976; BURRIDGE, et al., 1979; Day, 1982); thisis not
our present concern, but a recent review of studies on dynamic rupture 18
‘given by DMowsKA and RICE (1984).

By extending the corresponding arguments for cohesive zone models of
tensile cracks PALMER and Rice (1973) showed that the slip-weakening
model led to predictions of conditions for crack advance that become inden-
tical, in the limiting case w < size of slipping region, to the following
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elastic — brittle crack calculation: One neglects details of the slip-weakening
process and assumes that all currently slipping regions of the fault surface
sustain their residual frictional strength 7/, Such a model leads to well-known
singularities of the type (for Mode 11, or in-plane slip, as in Figure 5a)

Gy — ' — Ky/ N2nr (12)

- at distance r along the fault plane ahead of the tip of the slipping region. Here
' Ky is the Mode 11 stress intensity factor. For Mode I1I, or antiplane slip, the
relevant stress component is 0,3 and the stress intensity factor is denoted as
Ky in general both modes may act simultaneously, but this tends to go
beyond the present simplification to unidirectional slip. The energy drained
- through the crack tip singularity per unit area of fault over which the slip
- zone advances is
o K+ 5K a3)
and the condition under which the slipping region can actually extend is that
(7 as so calculated attain the critical value

G=

G=fé.[f(é)—rf]dJE(TP—Tf)g, | (14)
0

represented as the cross-hatched area in Figure Sb.
Of course, the stress intensity factors have the form

K = (numerical factor) X (?0 - ¢f) X Vsize, (15)

where 7, is some appropriately weighted average of the loading stress that
acts to slip the crack, being generally dependent on the “size” of the shpping
region when the local loading stress 7, is nonuniform. Thus equation (13),
with G set to its critical value in equation (14), provides an explicit criterion
for how the loading stress must vary with the size of the slipping region to just
maintain conditions for advance of that region into locked segments of the
* fault. It may happen, and usually does, that the following of this criterion
“ultimately requires the loading stress to diminish with advance of the slip-
ping zone. Whether this process is stable or not may be judged by a stiffness-
based analysis analogous to what is depicted in Figures 4b and 4c, as elabo-
rated upon in L1 and Rice (1983a,b), which is to be discussed further shortly.
Various estimates have been made of the parameters ?— %, 4, w,and G
‘that enter this discussion. Based on an interpretation of the post-peak re-
sponse in stiff servo-controlled laboratory triaxial tests of initially intact
granite cylinders failing by shear fault formation while under confining
stresses thought to be representative of seismogenic zones, Rice (1980) and
WONG (1982) infer values for Gin the range 5 X 103to 5 X 10* J/m? and for
6 of the order 0.5 mm. The corresponding estimates of e are of the order 0.5
to 1 m. It will be seen that these estimates for G, J, and w are far smaller than
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what is inferred from crustal scale applications of slip-weakening and
elastic - brittle crack models.

Crustal scale applications

Figure 6a shows the strike slip version of a widely adopted concept of how
the bnttle crust is stressed and ruptured in a great earthquake cycle. The
dimension H represents the lithospheric thickness, and the lithosphere may
be regarded as riding on a viscoelastic asthenosphere such that it is effectively
decoupled in base shear from the asthenosphere during the slow rebuilding
of tectonic stress in the period between great earthquakes. Of course, the
coupling is significant in the coseismic and early postseismic stages, and
probabiy also over periods of the order of one to several years prior to a great
earthquake (L1 and RICE, 1983b).

For the rupture modeling considered it is assumed that concentrated
shear deformation takes place in the lithosphere, at the plate boundary
considered. In the crustal depth regime this concentrated shear may be
treated as slip along some megascale fault surface, to which slip-weakening
and related fracture concepts may be applied. For the reasons mentioned
earlier it is assumed that the strength drop 77 — ¢ associated with slip is
relatively large in the seismogenic layer but falls off to negligible values at
greater depths (and also decreases towards the Earth’s surface, since 6,,1s low
there). Thus deeper regions along the plate boundary slip at effectively con-
stant local stress T = ¢ = 12, whereas slip in the shallower regions occurs with
a strength drop and hence can potentially result in an earthquake instability.
Probably, the flow in the deeper regions of the lithosphere should be regarded
as nonlinear viscous; the assumed flow at constant stress 7 there 1S an ap-
proximation to this response.

At the end of an earthquake cycle the seismogenic layer has undergone a
sharp drop in strength and thus carries a stress equal to 7, or possibly less if
there is some dynamic overshoot (Figure 4d). Assuming that rehealing
occurs (1ts reasons lie outside the present constitutive description), a much

‘higher stress 72 must be reached in that layer to reinitiate slip, and thus the
seismogenic layer is effectively locked during much of the following earth-
quake cycle. Deeper portions of the lithosphere, however, underwent
smaller or no strength drop in the previous earthquake. The stress there
remains at or near a level appropriate for continuing slip, so that at a rather
‘early stage in the next earthquake cycle a configuration like that in Figure 6a
is expected to have developed. In that configuration ongoing tectonic load-
ing causes slip to occur downdip from the seismogenic layer, but most of the
layer itself is still understressed and locked. It is evident that stress concen-
tration effects will occur at the upper border of the slipping zone, causing slip
to be reinitiated locally there, and by this process the slipping region gradu-
ally penetrates upward into the effectively locked layer. Conditions are uiti-
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(a)

unloading
stiffness

z (§>

(b) (c)

Figure 6. (a) Model of great earthquake instability in strike slip mode. Tectonic loading
combined with slip or localized shear below concentrate stress on the locked upper crust; His
lithosphere thickness. (b) Fracture energy variations with depth for the elastic - brittle crack
model of the advance of the slip zone. The peak of fracture energy simulates the brittle seismo-
genic layer. (c) Following L1 and RicE (1983a,b), lithosphere-thickness-averaged stress (1)
and slip { 6 ) at the boundary are shown as crack advances to supply required fracture energy at
the tip. In the simplest model instability occurs when the softening slope equals an effective
elastic unloading stiffness (dependent on length along the strike and the mode of coupling to the
asthenosphere) of fault surroundings, as in Figure 4b; more exact analysis includes viscoelastic
coupling to the surroundings due to relaxation in the asthenosphere.

mately achieved such that this penetration process continues unstably and a
great earthquake results. To the extent that this describes the earthquake
cycle it is undoubedly affected by heterogeneities of strength and structure
“along strike. For example, a slipping region may partly surround and con-
centrate stress on a strong locked patch, sometimes called an asperity, and it
has been suggested that certain precursory seismicity features can be under-
stood in this way (DMowsKa and L1, 1982). We first review simpler models,
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which concentrate only on the effect of the depth dependence of properties
and slip distributions.

STUART (197%9a,b) and STUART and Mavko (1979) have, in various
studies, used a slip-weakening relation of the form

T — 7= Sexp] — (z — 2/ Jexp( — &#/4?), (16)

~ where S, z,, b, and A are constant, and z denotes depth from the Earth’s
surface, to model depth variation of material properties. As employed by Lt
and RICE (1983a) in the elastic—brittle crack limit, this corresponds to a
depth-dependent fracture energy G of the form

G =G, expl —(z — zo}*/P*]. (17)

This is a Gaussian bell-shaped distribution with maximum value G,, at depth

-z within the seismogenic layer and with variance width b/v2 (Figure 6b).
When the upward progression of a slipping zone into the locked fault zone
above it is considered, subject to the condition that the stress concentration
at the tip of the slipping zone is sufficient to supply the requisite G as the tip
progresses upward through each level z, there results a certain relation be-

“tween thickness-averaged shear stress (7) in the lithospheric plate and the z
to which the tip has advanced.One may then also calculate the thickness-
averaged slip () at the plate boundary associated with each such pair of ()
and z values. Thusa (7)) versus {J) relation may be defined for the boundary.
Thisis shown in Figure 6¢ based on calculations by Liand Rice (1983a) fora
G distribution as in equation (17). As one moves along the (7 versus (J)
relation in the direction of the arrowheads shown, the tip of the slipping
region moves progressively upward into the seismogenic layer. Ultimately a
peak value of (7 is reached and further upward progression of the slipping
zone occurs under decreasing stress. Similar relations between average stress
and slip, exhibiting a peak and post-peak softening, have been shown by
STUART (1979a,b) and STUART and Mavko (1979) on the basis of the full
slip-weakening formulation rather than just on its crack-like limit.

An elementary analysis of the seismic instability point in the process of
upward progression of the rupture, analogous to that based on elastic spring
stiffness for a single-degree-of-freedom slip model (Figure 4) is indicated by
the line representing the elastic unloading stiffness of the surroundings in
Figure 6¢. The system becomes unstable when the softening slope — d {T)/
d{J) exceeds this stiffness. As analyzed by L1 and RicE (1983a), the unload-
ing stiffness at final instability is dependent on the along-strike length of the
rupturing zone (see Figure 7), and also on the elastic properties of the asthen-
osphere, which becomes elastically coupled to the lithosphere in the terminal
stages of pre-instability upward progression of the rupture, due to the rapid
strain alterations that then occur. ‘

In fact, the coupling to the asthenosphere is strongly time dependent. The

 fuller analysis of this viscoelastic coupling, by L1 and Rice (1983a,b), sug-
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gests that it may lead to an extended precursory period, of the order of a few
months to several years, depending on parameters chosen within what they
suggest as a representative range, during which deformation rates at the
Earth’s surface above the upselling rupture and stressing rates in the shallow
crust are distinctly higher than those of previous decades in the earthquake
cycle.
L1 and Rice (1983a) emphasize the possible along-strike dependence of
upward rupture progression and, following a procedure outlined by
DMowska and L1 {1982), show how “line spring” concepts from tensile
crack mechanics, developed originally for long surface cracks penetrating
part-way through the wall of an elastic plate, can be adapted to deal with the
problem. A representative along-strike variation in the great earthquake
context is illustrated in Figure 7a, in the lithospheric cross-section of a plate
boundary. The zone currently being driven toward instability is a slip-defi-
cient patch along strike that remained locked while adjacent sectors slipped
and were destressed in previous great ruptures. As shown in Figure 7b, the
- effect of the adjacent ruptures would be to concentrate the thickness-aver-
aged stress (7) near the ends of the slip-deficient patch. This effect was

slipped and de-stressed in
4 / recent ruptures ; effectively Iocked\ /

(a}

$(T) ‘
T — N

T distance along strike

{b)

Figure 7. (a) Slip-deficient locked patch along strike, bordered by zones that have been re-
lieved of stress by recent earthquakes. (b} Stress distribution concentrated near the ends ofa
locked patch. : ' R
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neglected in the simple instability analysis of Li and Rice, who merely used
an effective unloading stiffness appropriate to a finite zone along strike. As
remarked by DMowska and L1 (1982), however, the real effect of such
concentrations should be to cause preinstability seismicity to cluster at one
or both ends of the slip-deficient gap and to cause the dynamic rupture not
only to nucleate from below the slip-deficient gap, due to the upward pro-
gression of slip rupture, but to initiate toward one of the ends of the gap zone
and propagate toward the other. As they point out, such features describe the
accepted phenomenology of great earthquakes at plate margins (albeit based
more abundantly on observations of margins of subduction rather than
transform type)} and lend confidence that the general framework for earth-
quake modeling is correct. :

Asregards the slip-weakening and fracture parameters associated with the
large crustal-scale application discussed, L1 and Rick (1938a) show that an
assumed peak fracture energy G,, on the order of 4 X 106 J/m?2is necessary to
simulate the parameters of great strike-slip earthquakes within their model-
ing procedures. For example, calculations based on assumptions that such a
peak occurs 7 to 8§ km below ground surface and is the peak of a Gaussian
bell-shaped distribution of G with depth, with variance on the orderof 3to 7
km simulating strength buildup in a seismogenic layer, leads to predictions
of hypocentral depths slightly below the peak of G at 8§ to 10 km and to
nominal seismic stress drops of the order 40 bars and seismic slips of the
order 2 to 4 m. The latter two parameters are proportional to G, for given
depth to peak, bell variance width, lithospheric thickness, along-strike
length, etc. and the 4 X 10° J/m? has been chosen accordingly; a G, of
1 X 10% J/m? would reduce the nominal seismic stress drop and slips by a
factor of one-half and may perhaps be considered equally plausible as a
representative value.

Asremarked by L1 and RicE (1983a), the inferred range of G is consist-
ent as to order of magnitude with independent seismic estimates for large
earthquakes (IDA, 1973; RupniIck1, 1980). It is also consistent with but a
little larger than the corresponding values in the form (z? — 7/)d used in the
various crustal-scale simulations by Stuart (private communication, 1983).

In order to further constrain parameters for crustal-scale slip-weakening
models {(or their elastic-brittle crack limit), one may observe that as a slip-
ping configuration like that in Figure 5a begins to propagate unstably in a
manner generating detectable desimic signals, there is a distinctly nonuni-
form distribution of stress drop on the fault—i.e., of 6, — ¥, where g,, is the
stress distribution as shown in Figure 5a evaluated just as the seismic event

-begins. The stress drop is equal to the strength drop 17 — v/ at the tip of the
preinstability slipping zone, but decreases to smaller values ahead of that
zone, since o, diminished from 77 and is equal to zero (at least for the present
slip-rate-independent rupture model) along all portions of the preinstability
slipping zone that slip further in the seismic event. Thus one must conclude
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that 7 — ¢/is greater, perhaps by as much as a factor of 2, than stress drops
extracted seismologically from rupture models that assume a uniform stress
drop in the early stages of the seismic instability.

~ Such a uniform stress drop model has been developed by BOATWRIGHT
(1980) based on fitting the average initial S0P %yea/fpears UP tO the first peak
in the seismologically recorded velocity record, to the intial slope of the
theoretical Kostrov slip function for uniform stress drop on a circular rup-
ture that extends from zero size at uniform speed. BOATWRIGHT (1984a,b)
used this method to analyze eight moderate aftershocks of the Oroville,
California, earthquake that occurred in a normal faulting environment over
a 7 to 11 km depth range. He infers (BOATWRIGHT, 1984b) stress drops for
the series ranging from 97 to 215 bars and averaging 158 bars. Assuming
normal fault conditions and hydrostatic pore pressure, the limiting shear
strength estimated (see the following) from Byerlee’s relation, equation (4),

“ranges from 750 to 1190 bars over this depth range. Using 970 bars as an
average, the nominal uniform dynamic stress drop is seen to amount approx-

imately 16 percent of the Byerlee strength.

The suggestion that shallow earthquake stress drops correlate with esti-
mates of the Byerlee strength is further supported by recent work by
McGARR (1984). He examines the parameter paR (where p is density, a is
peak ground acceleration, and R 1s distance from source) for several normal
and thrust earthquakes and finds that the parameter correlates within mod-
erate scatter with the Byerlee strength as estimated at the focal depth for each

- event, and is of order 40% of that strength. For the case of the Kostrov
growing circular rupture mentioned above, this parameter when based on
body wave radiation is equal to the uniform stress drop times an orientation
and directivity dependent factor of order unity, and times ©*/c® (v is rupture
- velocity, ¢ is wave speed). Guided by the results discussed and by considera-
tion of local stress concentration at the source, we may estimate 2 — 7/ very
approximately as, say, 30 percent to 40 percent of the Byerlee strength.

The Byerlee equation is easy to apply for thrust and normal faults, because
the overburden pressure pgz (p = density of rock) at depth z can be assumed
to be respectively, the minimum or maximum principal compressive stress.
Figure 8 shows the “Mohr circle” implications, where the effective normal
stress axis is labeled as pgz — p, and p is pore-water pressure at the location
corresponding to the effective overburden pressure. If p is hydrostatic this
effective overburden is (p — p,,) gz, where p,, is the density of water. The
application of the Byerlee equation to vertical strike slip faults is not direct,
because pgz is then the intermediate principal stress. The circle labeled
“strike slip” in Figure 8 takes the intermediate stress as the average of the
other two principal stresses, but any circle between those for normal and
thrust faults could apply.

For definiteness, let us consider seismic rupture nucleation at a depth of &
km in a region of hydrostatic pore pressure. For p/p, = 2.9 the Byerlee



a

Fault Slip and Earthquake Instabilities 461
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Figure 8. Limiting frictional strength, assuming that effective overburden pressure equals
greatest (normal fault), least (thrust fault), or average {approximation for strike-slip fault)
principal effective stress.

limiting strength is calculated from equation (4) by the procedure suggested
in Figure 8. The Mohr circle centered on the effective overburden pressure
touches the limiting friction line at a strength = = 750 bars; hence the esti-
mate of 77 — ¢/ is 200 to 300 bars. The estimate may vary from slightly
smaller to much greater values, as is evident from the relative locations of the
limiting 7 for the normal and thrust limits to the strike slip geometry. Regret-
tably, for a given fracture energy G the characteristic weakening slip 6 and the
size w of the zone of strength degradation are strong functions of 7 — 7,

=GN — 1), w=24uGlHrr—1)2 18)

so the uncertainty in 77 — ¢ prohibits tight constraints. Nevertheless, taking
77 — /= 250 bars (25 MPa), G = 2 X 106 J/m?, and u = 30 GPa as repre-
sentative for a great strike slip earthquake nucleating at 8 km depth, one
estimates = 8 cm and e = 230 m.

This result for w is small enough compared to the large crustal scale
considered that the elastic - brittle crack limit of the slip-weakening concept
seems appropriate. However, there is considerable uncertainty, and it may
be noted that a reduction by one-half of the inferred strength drop, which still
represents a plausible case, would increase the estimated w to 1 km. It does,
however, seem that no plausible choices for G and & compatible with infer-
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ences from seismology for large crustal earthquakes can be reconciled di-
rectly with the laboratory estimates of slip-weakening parameters discussed
earlier, even though the estimated strength drops, 72 — v/, are generally com-
patible with laboratory results.

The situation may arise because the laboratory results refer to slip on a
well-defined fault surface, whereas what is modeled as a single planar fault
surface on a large crustal scale may in fact consist of irregular segmented
~sections of fault, on the surfaces of each of which a laboratory-like descrip-
tion of slip-weakening applies, but which may be slipped cooperatively only
by distributed inelastic rock deformation at the junctions between smaller
misaligned fault segments. Such a picture is consistent with strengths and
strength drops that are compatible with laboratory experience but with ef-
fective fracture ductilities, as measured by G or &, that are much larger than
those inferred in the laboratory for a single fault surface. The interpretation
of the large G and ¢ values just given also encourages the viewpoint that w as
estimated should be regarded as an approximate length scale of the region,
near the tip of an advancing megascale slipping zone, over which individual
misaligned fault segments are being reduced to their residual frictional
strength level. It seems likely that this strength reduction could be accompa-
nied by locally unstable events at the size scale of the individual segments,
thus generating small-scale background seismicity even when the slipping
zone as viewed at the crustal megascale is advancing quasistatically in the
preinstability stage of the great earthquake cycle.

This concept relates to the suggestion of DMowskaA and L1 (1982) that
seismicity patterns prior to great earthquakes may be related to the gradual
upward progression of slip-rupturing regions into locked patches of plate
boundary, and to the stress concentrations thereby induced (e.g., Figure 7).
The present considerations suggest that a zone of a size related to what is
estimated as w, near the tip of the advancing megascale slipping region, may
be a particularly fertile source of minor seismicity by comparison to deeper
portions of the slipping region that are will slipped and to shallower portions
of the fault zone that have not yet begun to slip. If such an idea is correct,
improvements in the depth resolution of minor seismicity may serve to help
track the upward progression of large-scale slip rupture in the preinstability
period.

Rate and state dependent fault slip

As we have remarked, analysis of slip motion and stability for rate and
state dependent and (evolving) state-dependent friction has not advanced
much beyond the single-degree-of-freedom system in Figure 4a. The conclu-
sions of the previous section also leave some uncertainty as to how under-
standing of slip on a single fauit, modeled on laboratory studies, can be
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extended to the large crustal scale. These factors notwithstanding, it does
seem appropriate to review here some of the new viewpoints on slip motion
and its stability that have emerged based on the more comprehensive rate
and state-dependent constitutive framework. This is in the nature of a report
on work in progress, since few definitive conclusions appropriate to fault
motion as it occurs naturally as nonuniform slip on a fault have yet been
drawn.

Linear stability analysis has been developed by Rice and RUINA (1983)
for small departures from steady-state slip. The constitutive relation, when
cast in memory-functional form and linearized about slip at steady velocity
Vo, 18

r
T=15 4 fIV{1) — V] — f Wt — U)Wy — Vo) dr, (19)
where 7% is the steady-state strength at speed ¥y, /= at%/V, (as defined in
equation (5)), and #(¢) > 0 represents the slope of the decay process in Figure
3, with #(z) =0, A{t) =0 ast— =, and

f ) h(t) di = b=}V, ' (20)
0 .

(b is as defined in equation (5)). Rice and Ruina analyze the single-degree-
of-freedom system in Figure 4a, with mass # per unit contact area, constant
normal stress, and imposed constant speed V, (= dé,/dt) of the load point; .
1.e., equation (8) applies with dy(z) = V¢ and the left side augmented by the
inertia term md2d/ds?. Their result is that steady-state slip is always stable if
a>b, e, ifor(V, 6,)/dV> 0. If a < b, i.e. 914V, 6,)/9V < 0, such slip is
found to go from stable to unstable by Hopf bifurcation as the stiffness &
. reduces below the critical value

k., = mf? -l-ﬁ’fﬂ° h(t) sin Bt dt > 0, 2n
1]

where £ is the circular frequency of oscillations at neutral stability (at stiff-
- ness k =k,,) and is the unique (apart from sign) solution of

f= f ) h(t) cos ft dt. (22)
1]

Note that [ depends on constitutive properties only, independent of mass .
For example, in the case of a constitutive model of the type of equation (1)
based on a single state variable W (examples follow), /#(¢) necessarily has the

form
h(t) = (br/L) exp(— Vit/L), (23)
where L 1s a slip decay length (anglogous to &* in Figure 3), and then the
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frequency 8 and critical stiffness are

ﬂ=.}-‘£9 b—a3 kcf=b_a

55 2
p 7 (r=* + mVy*/al). (24)

The last expression shows that steady state slip is stabilized by increases of
stiffness and slip decay length, but is destabilized by increases of the steady-
state velocity weakening (b — a)r*° and mass. When applied to steady slip
between continuous elastic bodies (R1cE and RUINA, 1983) a corresponding
analysis shows that the response to perturbations of sufficiently short spatial
wavelength is stable, but that to longer wavelengths may be unstable.

Results that extend beyond small perturbations from steady-state slip
must be based on a full nonlinear form of the constitutive description. A
procedure for constructing constitutive relations in the form of equations (1)
from experimental measurements based on the a priori assumption (or
approximation) that a single state variable ¥ suffices to characterize surface
state is now outlined. For simplicity, assume ¢, = constant. The variable ¥
requires no a priori identification; it is assumed only to satisfy a set of
equations of the form

T=FVY), d¥/dt = G(V,¥). (25)

Suppose that the variation of ¥ with 7 for rapid changes of stress, i.e., at fixed
state, is observed. Such results can be summarized as a family of curves in the
phase plane, whose axes are 7 and V' (RUINA, 1980, 1983). The curves can be
regarded as the integral curves of the first of equations (5) with a given as
a(t,V), i.e., the integral curves of dz/t = a(z, v)dV/V. The state variable ¥
~ may now be introduced simply as a continuously variable labeling parame-

ter for these curves, so that the curves of instantaneous response are equiva-
lent to knowledge of a function F(V, ¥) such that

T=FV,¥). (26)

It is assumed further that the steady-state strength has been determined as
7= 1(V); such may be thought equivalent to specifying 2 - b1in the second
of equations (5) and integrating with knowledge of 7*° at some particular
reference speed V. Finally, consistent what was discussed as item (4) earlier,
the decay of T toward 7%(V) in slip at constant Vis fit to a single exponential
 decay with characteristic slip decay length presumed to be determined ex-
perimentally as L = L(V). That is, dt/dé = — (r — 7%)/L during slip at con-
-stant ¥, and setting 7 = F(V, ¥), dé = V dk, the relation

FV, )Y _ ¥V e

4 oH [HV, YY) — (V)] (27)

follows. However, this last equation expresses 4 ¥/dt as a function of ‘¥ and

V and, although motivated by slip at constant V/, it is immediately seen to be

general, due to the a priori assumption that d¥/d! is a function only of ¥
and V. :



[+

Fault Slip and Earthquake Instabilities 465

Consider the following two special cases of the above constitutive for-
malism:

(1) Assume g and b are constants in equations (5) and, consistently with
an idealization of data mentioned earlier, L = constant. Then the constitu-
tive relations are of the power-law form

T=0YV/Vyy, =10V/V)" d¥/di=—(VIDIY~V/V)?. (28)

The state variable W enters as a constant of integration for the first of equa-
tions (5), and here V, is an arbitrarily chosen reference velocity at which the
steady-state strength is 74; T4 is dependent on o,,.

(2) Following RuiNA’s (1980, 1983) simplification of a more complex law
proposed by DIETERICH (1979a,b; 1980; 1981), suppose that at = A (con-
stant) in the first of equations (5), and that (¢ — b)t* = 4 — B (constant) in
the second. This case is barely distinguishable from (1), since g and & are
typically of the order 0.01, so that T and 7 vary only modestly, even with
substantial changes in ¥. The constitutive relations are then

t=T,+ A (V/V)+BY¥, t5=1,+(—B)In(V/V,),
d¥/di =— (VIL¥ + In (V/V)],

(29)

where 4 and B are likewise to be regarded as functions of ¢,. This set of
constitutive relations was originally proposed as a direct if approximate fit to
expenimental data. Gu et al. (1984) discuss choices of 74/, (about 0.6 for
Vi = lum/s), A/c,, B/o,, and L to fit the data of DIETERICH (1981) for the
sliding of intact Westerly granite on a gouge layer of the same material, with
different layer thickness, gauge particle size, and degree of roughness of the
intact rock faces. The latter is the most influential, and at ¢, = 100 bars for
rough faces one finds 4/¢,, = 0.006 t6 0.008, B/4 = 1.12t0 1.14,and L = 40
to 50 um, whereas for smooth faces 4/a, = 0.003 t0 0.005, B/4 = 1.5t02.3,
and L =4 to 25 um.

- It was found by Ruina (1980, 1983) that 2 somewhat better fit of his data
on quartzite for stress decay toward steady state, following velocity jumps to
a new constant slip speed, could be obtained by using 2 constitutive relation
with two exponential decay processes with characteristic slip lengths L, and
£,(0.3and 5.2 um in his case), but otherwise like that in equations (29). The
relation is

t=1,+AIn(V}V,) + B, + BV,

(30)
_ a¥jdi=— (V/IL)Y; + In(V/ V)], i=1.2,
where B, and B, are further constants, and
=17, + (4 — B, — BYIn)(V/V,). | (31)

- Gu et al. (1984) discuss parameter choices in these constitutive relations to
fit different experiments.
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Some results of nonlinear analysis of slip motion and its stability

The linearized analysis of the stability of steady slip in response to im-
posed load point motion of uniform rate V;, in the form summarized by
equation (24) for one-state-variable constitutive laws applies, of course, to all
laws of the type in equations (26), (27)—i.e., including those of equations
(28), (29), provided that a and & are defined as in equation (5). The corre-
sponding linearized results derived from equations (21), (22) for the critical
stiffness and frequency at instability for the two-state-variable law of equa-~
tions (30) are more lengthy, and are given by GU et al. (1984). The latter
authors also report results. of nonlinear but quasistatic (2 = 0) stability
analysis for the one- and two-state-variable laws of logarithmic character in
equations (29) and (30). For example, they find that for the two-state-vari-
able law stable limit cycle oscillations of ¥(¢) about V, accompany the Hopf
bifurcation for a range of k in a small neighborhood below k,,. Remarkably,
~ for the special choice of parameters reducing that law to the one-state-vari-
able law of (29) this neighborhood collapses to the line k = k,,, and sustained
oscillations of any amplitude below a certain limit are possible with k = k.
At large amplitude, near the limit, these have the character of relaxation
oscillations: {(¢) lags behind ¥, for much of the period, and stress builds up
in the spring until a short burst of large V{z) causes the block to surge ahead
and the spring to unload, beginning the cycle again.

The situation can be summarized with reference to Figure 9, which shows
the nature of the response found by GuU et al. (1984) for the following
problem: A quasistatic single-degree-of-freedom system slides in steady state
~ atspeed V,, and then the imposed speed at the load point is changed abruptly
to V, + AV,. For the law (30) with choice of parameters making dr*/dV < 0
it is found that the response to small perturbations is of course stable,
Wit) — V, + AV, with increasing time, for stiffness k > k,, of linear stability
theory. However, sufficiently large perturbations with k > k,, always cause
instability (Figure 9). These instabilities appear in the quasistatic analysis
based on such constitutive laws as motions for which V{z) — « in finite
time. They occur even though the system considered would be stable (to
sufficiently small perturbations) when in steady slip at the altered speed
V, + AV, in this case k,, is independent of ¥,

All perturbations with k < k,, produce some permanent alteration of the
steady motion. As indicated in Figure 9, perturbations of any size when k is
sufficiently reduced below k,, cause instability, V(f) — < in finite time, al-
though for a small range of k below k,, and sufficiently limited magnitude of
perturbation there result permanently sustained oscillations of ¥{z) about
V,. These oscillations are the limit cycle oscillations of the Hopf bifurcation
at k., when k is only slightly below k., but Gu et al. {1984) find that the limit
cycle oscillations become more complex with decreasing &, exhibiting period
doubling and, with further decrease of k (but still within the region of sus-
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Figure 9. Effect of sudden change of imposed speed of load point, form ¥, to ¥, + AV, based
on quasistatic analysis of the spring-slider system (Figure 4a) originally in steady-state slip at
speed V', and obeying the two-state-variable constitutive law of logarithmic character, equations
(30).

tained oscillations), transition to apparently chaotic oscillations. The ampli-
tude and shape of the limit cycle oscillations depend only on & and are
independent of AV, provided that it lies in the domain indicated. Complex
quasistatic oscillations with some features in common with such predictions
have been observed (RUINA, 1980; Gu et al., 1984). For the special choice of
parameters in (30) reducing the two-variable law to the one-variable law of
(29) it 1s found that the region of sustained oscillations collapses to a vertical
line extending above k =k, to the limiting perturbation amplitude
AV Vo= A/(B — A). In fact, the boundary separating unstable from stable
response when k > k_,in Figure 9 is given approximately for the one-variable
law of (29) by

AVy/ Vo =[A/(B — ][l — e + exp(k/k,)]. (32)

" The collapse of the region of sustained oscillations is apparently not com-
mon to all one-state-variable laws. DIETERICH (1980} shows such oscilla-
tions for a law only modestly different from (29).

A more comprehensive understanding of nonlinear stability for the one-
state-variable law of (29) is provided by the work of GU et a/. (1984) and
some recent extensions of it by Rice and Gu (1983). They consider quasista-
tic motions with uniform load point speed V,, corresponding to uniform
loading rate 7, = AV, in (8), although it is to be understood that a more
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complicated loading process may have preceded the present uniform rate. It
is found that all motions must be stable in the sense that F{¢) — V} as
t — o if d15/dV > 0—1i.e., if A > B. Nevertheless, strong perturbations of
the system (e.g., sudden displacement of the end of the spring, say, analogous
‘to sudden stress loading of a fault segment due to a neighboring earthquake)
can in certain circumstances lead to motions with large transient speeds,
~ V(t) > V,, even though the speed ultimately reduces and ¥(z) — V,. A
spring-loaded system with dt%/dV > 0 may approximately model slip on
downdip extensions of crustal faults below the seismogenic layer. For exam-
ple, laboratory results of STEsky (1978} on Westerly granite suggest that a
transition from dr**/dV < 0 to dv*s/dV > 0 occurs as temperature rises, with
increasing depth, above approximately 250 to 300°C. Thus such downdip
extensions may slip with dr*/dV > 0, and when they are loaded suddenly by
crustal earthquakes above there would then result transiently accelerated ship
as a short-term response in the immediately postseismic regime of the earth-
guake cycle.

Evidently, faults of the brittle seismogenic crust are to be understood as
exhibiting d1%*/dV < 0—i.e., B > A in the representation by (29). For such
conditions it is found that all motions of the spring-loaded slider are unsta-
ble, in that ¥{¢) — « in finite time, if k is less than &, of linear stability
theory. Nevertheless, motions that begin with ¥ much less than ¥, and 7
much reduced from the steady-state strength 7%(¥,) may of course take a
long time, longer than (°° — t)/%,, to reach instability. The characterization
- of motion changes dramatically when k = k. For all such cases a “stability
boundary” (Rict and Gu, 1983) exists in a phase plane whose axes denote 7
and V. Such is shown in Figure 10 for a few values of k for a case with
(B — A)/A = 0.6. Each boundary separates the unstabie region, }{¢) — « in
finite time, above it from the stable region, ¥(z) — V,, below it. The bound-
ary is itself a possible trajectory of the system at the stiffness indicated. RICE
and GU (1983) show how such diagrams can be used to analyze, within the
spring—slider model, the response of fault segments to varicus perturba-
tions. These represent, for example, sudden alterations of loading stress as
‘appropriate for the analysis of aftershock phenomena, and also alterations of
loading stress rate. The latter is predicted late in the preinstability period for
some fault models. Altered stress rates may also result from accelerated deep
lithospheric and asthenospheric readjustments, over perhaps one to a few
tens of years after great earthquakes, that redistribute stress in the adjacent
brittle crust.

The analysis of quasistatic motion for the spring—slider satisfying (29)
simplifies considerably if the skip rate ¥ is much greater than the load point
rate V,. Then one may set ¥, = 0, and in this case Gu et al. (1984) show that
the family of trajectories in a phase plane analogous to that of Figure 10 is
given by

exp(Aff KM f+ A ln (V/V,) — K(1 + A)/A] = constant (33)
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Figure 10. Stability boundaries (after Rice and Gu, 1983) corresponding to different stiff-
nesses for the quasistatic motion of a spring-slider system of stiffness &, with imposed load point
motion at constant rate ¥ {i.e., loading rate ¢, = &£V}, based on the one-state-variable constitu-
tive law of equations (29). Drawn for (B — A4)/4 = 0.6, in which case &, = 0.64/L. The region
below each boundary is stable; motions starting there exhibit ' — ¥ and t — %(V/;). Those
starting above are unstable, I —» o in finte (but sometimes very long) time. Motions starting
anywhere are unstable when &k < k,,; no stability boundary exists in such cases.

with
f=—1/4, i=(B—A)/A, K=kL/A. 34)

For systems with B > 4 —Ii.e., dt%/dV < 0 —this family of trajectories has a
particular member, given by

T=1,— (B~ A)In (V/V,) + kLB/(B — A), . @35)

that provides a stability boundary similar to those mentioned earlier (it
corresponds to the straight-line limits of the boundaries in Figure 10 for
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V > V,). All motions beginning at greater values of T at some given } are
unstable in that ¥ — o in finite time. Motions beginning at lesser values of ©
are stable, in that V(¢) reduces in magnitude toward zero (or, realistically,
toward such low values that ¥, can no longer be neglected in comparison to
it). By equation (29) this stability boundary for ¥, = 0 (or ¥ > ¥}, can be
expressed as -

=1V} + kLB/(B — A). (36)

As remarked by DMowsKa and RICE (1984), the same analysis shows that
motions beginning in the strip

(VY + kLB/(B— A)>t> (V) + kL 37

in the 7-¥ phase plane are stable in the above sense, but nevertheless show
that ¥ initially increases toward a maximum value before beginning mono-
tonic decrease. Motions beginning at values of 7 less than the lower limit in
- (37) show monotonic decrease of V.

Sudden changes in stress on a fault segment, due, say, to a neighboring
earthquake, result in suddenly altered values of 7 and V. The alterations At
and AV occur at effectively constant state and thus satisfy (by equation (29))

At=Aln [(V+AV)V], (38)

at least when g, is constant, so that 4 does not change. To the extent that the
actual fault segment can be modeled as a single-degree-of-freedom spring -
slider, equations (35), (36) give the critical level of the altered stress (to be -
based on the altered V) that, if exceeded, will lead to an aftershock instability.
Rice and GU (1983) use stability boundaries to discuss the effect of this and
other types of perturbations on the character of subsequent fault motion.

One of the remarkable features of the constitutive relations discussed is
their ability to simulate processes that might be called rehealing or res-
trengthening. Plainly, the general class of constitutive relations represented
by equation (1) allows such phenomena, in that state may alter with time
even when V= 0. However, the specific constitutive relations given by
equations{28), {29), (30) show no change of state when ¥ = 0. It is neverthe-
less the case, as revealed in an insightful analysis of motions based on (29),
(30) by Ruina (1980, 1983), that such relations do predict restrengthening in
circumstances like those for which it has been observed experirnentally. For
example, DIETERICH (1972) found that if, after slipping a surface at some
rate, the loading ram in his test apparatus was held stationary for some
relaxation time ¢, before resuming its motion, then the peak stress 77 encoun-
tered in the reinitiation of slip increased with ¢,, logarithmically with ¢, at
large times.

Such experiments can be simulated by the spring-slider system by ad-
dressing the following problem: The system slides in steady state with im-
posed load point speed ¥, and thus exhibits strength 7%(}). The load point



Fauit Slip and Earthquake Instabilities ' 471

motion 1s stopped for some time relaxation time £, and then resumed again at
Vo. What is the peak strength in the subsequent motion? Adopting constitu-
tive relations (29), it is easy to see, following GU et al. (1984), that in general
some restrengthening must occur, ™ > 1t%(V,); specific calculations of the
effect for different constitutive laws have been reported by DIETERICH
(1980), Ruina (1980, 1983)and Gu et a/. (1984). When the load point stops,
a relaxation period begins, in which V" decreases continuously from V, as 7
relaxes below 15(V); V ultimately attains very low values and the motion
may be said to become nearly stationary (the trajectory followed is a member
of the family given in equation (33)). During the relaxation ¥ evolves by (29)
continuously but incompletely toward values Ws( V) > Ws(V,). The speed ¥
satisfies V<V, not only during the relaxation, but also during resumed
motion of the load point prior to peak, because ¢ = kK(V, — ¥) > 0 prior to
peak. Itisalso seen that I'= V, at peak —i.e., when = 0. Thus the value ¥
at peak exceeds ¥(7,), and by equations (29) with ¥ = V, one has

2 — 55V} = B[P — Ws(V,)] > 0. (39)

~ This equation confirms the general existence of a restrengthening phe-
nomenon in such circumstances. The specific calculations mentioned above
show that ™ — (V) increases with ¢,. In fact, RUINA (1983) showed that the
peak strengthening predicted from the two-state-variable model of (30), with
parameters chosen to fit velocity jump experiments of the type illustrated in
Figure 3, gave a close fit to the previous experiments on the same material by
DIETERICH (1972) for peak strength as a function of relaxation time. It
remains an open question as to whether all low-temeprature restrengthening
can be understood as the effect of relaxational slip. The phenomena also may
exist on surfaces held in truly stationary contact, as argued by TuLLIs and
WEEKS (1983) on the basis of recent experiments.

Such restrengthening, whether based on truly stationary contact or on
subtle relaxational slip effects, is clearly important to the modeling of re-
peated earthquakes on the same surface. It allows a repeated sequence of
slip-weakening events, except that now the 7 versus & relation followed for
each cannot be thought of as universal; rather it has at least some dependence
on the elastic stiffness of the fault segment in interaction with its surround-
ings, as well as on time and rate parameters such as 7, and ¥}, in the simple
analysis of restrengthening above. The phenomenon allows stress-relieved
fault patches to effectively lock, after a previous rapid slip, such that a higher
stress than that for rapid slip must be built up to reinitiate slip; the slip, once
reinitiated, then continues under decreasing stress, leading to seismic insta-
bility in circumstances of sufficiently low stiffness.

DIeTERICH (1980) modeled a repeated sequence of such instabilities for a
simple spring - slider model, based on his one-state-variable friction law; the
analysis bypassed dynamical considerations by artificially imposing a (large)
limiting slip velocity on the quasistatic analysis. Recently MAvko (1984; a
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- preliminary abstract is given in MAavko, 1980) has reported a similar analy-

- sis for antiplane slip in a continuum fault model of geometry similar to that
illustrated in Figure 6a. He uses the constitutive relations of equations (29)
and assumes a transition with depth, discontinuous at 15 km depth, between
steady-state velocity weakening (B > A)in the shallow seismogenic crustand
velocity strengthening (B < A) at greater depths; A4 is taken to increase lin-
early with depth (normal stress dependence). This work appears to be the
first nonlinear analysis based on rate-dependent and state-dependent consti-
tutive models for slip between deformabie elastic continua. The analysis
predicts that the shallow crust remains effectively locked during much of the
earthquake cycle, and that it is stressed and driven to instability by a combi-
nation of distantly applied loading and local crack-like stress concentration
due to slip on the downdip extension of the locked region. Once the upper
portion of the crust ruptures, the stress transferred to the essentially stable
fault depths below causes a transiently accelerated by aseismic slip there,
much as discussed earlier.

Stress and slip distributions appropriate to nonuniform slip on a faultasa
slipping zone advances into a locked zone have been shown in Figure 5 and
addressed within a rate-independent slip-weakening framework. As men-
tioned in the associated discussion, such a nonuniform slip rupture mode
can be duplicated in the laboratory only in sufficiently large faulted speci-
mens. Recent experiments on a large saw-cut block of granite (DIETERICH,
1980; OxuBo and DIETERICH, 1981; LOCKNER et al., 1982) have produced
confined slip events that spread dynamically over the fault (saw-cut) surface
during a stick-slip instability. These surfaces are similar to those that comply
with rate- and state-dependent friction laws in other laboratory friction tests.
When strain-gauge-based measurements of shear stress in adjacent rock are
cross-plotted with direct measurements of slip on the fault as the dynamic
slip events propagates by a measurement station, there results a 7 versus o
relation similar in form to that sketched in Figure 5. Thus the experiments
show that a slip-weakening-like response results during dynamic rupture.
Recent integrations of equations (29) by GU (private communication, 1983)
for rapidly accelerated fault slip confirm that such slip-weakening t versus é
dependence is consistent with the constitutive description, as already hinted
by response to abrupt changes in slip rate like that suggested by Figure 3.

A problem that is still not addressed is whether, in the case of small zones
w of strength degradation, there is any simple generalization of elastic crack
mechanics for ruptures on surfaces that follow the rate-and state-dependent
- constitutive laws. Recall that for the rate-independent case the fault can be

- analyzed as if it sustains the residual strength ¢’ everywhere on slipping
regions, resulting in an elastic stress singularity at the advancing tip. The
critical intensity factor for the singularity, equation (12), is chosen as to
generate the fracture energy identified in Figure 5 and equations (13, 14). A
possible generalization to the present context is that one should regard



@

Fault Slip and Earthquake Instabilities 473

the slipping part of the fault as sustaining everywhere the steady-state
strength 755(}) associated with the local slip rate V. This will be close to
correct at positions well removed from the advancing fault tip. There the slip
velocities may be presumed to be relatively large and to change slowly
enough with time as to undergo little fractional change in slip over distances
L; it is straightforward to show that in such circumstances (29) reduces to
7 = (V). The same reduction will not be valid near the tip of the slipping
region, just as 7 = 7/ is invalid for the rate-independent case. Possibly, the
near tip differences between 7 and 7%(V') can likewise be lumped into a
critical fracture energy G. Now G will also be dependent on propagation
speed, and it is to be supplied by an elastic stress singularity calculated for a
crack model with T = %(}") everywhere on the crack surface. Of course, the
distribution of ¥ is itself not known a priori and is to be solved as part of the
complete analysis. Much remains to be done on this topic.

It is to be expected that comparison of predictions based on slip on asingle
fault with the information that can be extracted from tectonic earthquakes
will lead to scaling problems that are similar to those discussed earlier. In
particular, it seems likely that larger values of the slip decay distance L will be
necessary than can be justified for slip on a single laboratory fault. MAVKO’s
(1984) simulations are based on L values of the order 10 cm, whereas labora-
tory measurements to date have suggested values for single fault surfaces that
are less than 100 um. Thus, while the constitutive relations used in such large
tectonic-scale simulations may incorporate an acceptable phenomenology,
one has at present no reliable route from laboratory tests to assignment of
constitutive parameters like 4, B, and L. This remains an important problem
for earthquake instability theory.
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