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ABSTRACT 

WE CONSIDER quasistatic motion and stability of a single degree of freedom elastic system undergoing 
frictional slip. The system is represented by a block (slider) slipping at speed V and connected by a spring of 
stillness k to a point at which motion is enforced at speed V,. We adopt rate and state dependent frictional 
constitutive relations for the slider which describe approximately experimental results of Dieterich and 
Ruina over a range of slip speeds % In the simplest relation the friction stress depends additively on a term 
A In V and a state variable 0; the state variable B evolves, with a characteristic slip distance, to the value 
-B In K where the constants A, Bare assumed to satisfy B > A > 0. Limited results are presented based on 
a similar friction Iaw using two state variables. 

Linearized stability analysis predicts constant slip rate motjon at V0 to change from stable to unstable with 
a decrease in the spring stiffness k below a critical value k,,. At neutral stability oscillations in slip rate are 
predicted. A nonhnear analysis of shp motions given here uses the Hopf bifurcation technique, direct 
determination of phase plane trajectories, Liapunov methods and numerical integration of the equations of 
motion. Small but finite amplitude limit cycles exist for one value of k, if one state variable is used. With two 
state variables oscillations exist for a small range of k which undergo period doubling and then lead to 
apparently chaotic motions as k is decreased. 

Perturbations from steady sliding are imposed by step changes in the imposed load point motion. Three 
cases are considered : (1) the load point speed V0 is suddenly increased; (2) the load point is stopped for some 
time and then moved again at a constant rate; and (3) the load point displacement suddenly jumps and then 
stops. In all cases, for all values of k, sufficiently large perturbations lead to instability. Primary conclusions 
are: (I) “stick-slip” instability is possible in systems for which steady sliding is stable, and (2) physical 
manifestation of quasistatic oscillations is sensitive to material properties, stiffness, and the nature and 
magnitude of toad perturbations. 

t Visiting, Division of Applied Sciences, Harvard University, 1981-3. 
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1. INTR~D~JCTION 

STICK-SLIP motions are the result of interaction of an elastic system with a frictionally 
slipping surface. Qualitatively, they may be related to earthquake instabilities where an 
elastic crust interacts with a slipping fault (BRACE and BYERLEE, 1966). Traditionally 
this interaction is modelled with a friction law in which the friction force is dependent 
on slip rate. The simplest such rate dependence is a discontinuous jump in the 
coefficient of friction from a ‘static’ value when no slip occurs down to a reduced 
‘dynamic’ or ‘kinetic’ coefficient of friction when the slip rate is non-zero. Another rate 
dependence that leads to frictional instabilities is one for which the friction coefficient is 
a smooth and decreasing function of slip rate. In yet another simple friction law, the 
friction stress decreases with slip displacement, in a ‘slip-weakening’ sense, after slip 
begins following stationary contact (RABINOWICZ, 1958, 1959 ; BYERLEE, 1970). Over 
the years attempts have been made to associate these two kinds of friction laws (JENKIN 
and EWING, 1877 ; RABINOWICZ, 1958, 1959 ; DIETERICH, 1978, 1979a) and to include 
combinations of them in stability analysis of frictional sliding. 

A more comprehensive friction law has been proposed by DIETERICH (1978, 1979a) 
based on his experiments with rocks and is similar to a proposal of RABINOWICZ (1958) 
based on experiments with metals (SAMPSON et al., 1943). The original motivation of 
DIETERICI~ (1978, 1979a) and RABINOWICZ (1958) in proposing these laws was to unite 
the observed dependence of ‘static’ friction stress on time of nominally (see RUINA, 1983) 
stationary contact with the inverse dependence of steady sliding friction stress on slip 
rate. This unification utilized a characteristic slip distance (which is a property of the 
slip surface). The resulting friction laws may be said to be of a rate and state dependent 
type ; they can manifest behavior which, depending on the modeled friction experiment, 
appears as any of the simpler types of friction mentioned earlier (DIETERICH, 1978, 
1979a; RUINA, 1980, 1983). Recent experiments of RUINA (1980), TEUFEL (1981), 
JOHNSON (1981) and HIGGS (1981) lend support for these rate and state dependent 
friction laws. They are expressed in RUINA (1980, 1983) by relations of the following 
form at constant normal stress 0 : 

z = F[V,U,,&,...] 

8, = G,[K0,,H,,...] 

4, = G?.[I/;H,,& ,... 1 

(la) 

(lb) 

where the dependence of z (the shear stress transmitted across the frictional surface) on 
V (the slip rate) and 8,, 8,, . . is expressed by the function F. The state variables Oi, 

which describe phenomenologically features of the slipping surface, evolve as governed 
by the functions Gi with ongoing slip (and possibly with time, depending on the details 
of Gi, when there is no slip). The functions Gi are assumed to be such that the state 
variables evolve towards ‘steady state’ values e(V), satisfying Gj = 0 for j = 1,2,. , 
for slip at constant rate K The corresponding steady state stress is 

z”‘(V) = F[1!@(1/),@;(1/),...]. 
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[unit base ores 

FE. 1. Single degree of freedom elastic system. A sfider of unit base area moves distance 6 at the possibly 
varying rate V; the load point moves distance S, at the imposed rate V,, stressing the slider by means of a 

spring with stiffness k. The slider mass is neglected in our analysis. 

In different experiments dr”*fV)/dV may be either positive or negative, but ex- 
periments as performed thus far suggest that aF(r/, 8,, 6,, . . .)/dV is always positive. The 
above class of laws is mentioned or discussed in DIETERICH (1978,1979a, b, 1980,198 l), 
RUINA (1980,1983), RICE (1980), KOSLOFF and Lru (1980), MAVKO (1980), and RICE and 
RUINA (1983). The latter authors comment that constitutive relations in the form of 
equations (1) provide a specific realization of a general class of frictional constitutive 
relations in which stress z(t) at time t is regarded as a direct function of instantaneous 
velocity V’(t) and as a functional of prior velocity I’@‘), - co < t’ c t. 

The simplest and most commonly used mode1 for discussion of slip motion is the 
spring-slider system shown in Fig. I. It represents a single degree of freedom elastic 
dynamical system undcrgoiug frictional slip at its contact with an adjoining body. A 
slider of mass M (to be set equal to zero later for our quasi-static analysis) moves a 
distance 6 at instantaneous rate 6 = I! It is pulled by a load point at position 6, moving 
at a rate V, by means of a spring with stiffness k. Within the context of this simple model 
some aspects of known stability results for the various friction laws are now sum- 
marized. 

Analyses and observations show that slip motions may be roughly divided into two 
types : (1) those in which slip is nearly steady; and (2) those in which slip is intermittent. 
The simplest analysis is for the stability of steady sliding. In this case one examines the 
stability of motion with slip rate equal to load point displacement rate (I’ = V,), and the 
friction stress is ~cousequently) constant. For this analysis the only relevant classical 
friction law is one with Friction dependent on slip rate, z = $ I’). A simple linear stability 
analysis reveals that steady &ding at Ii is unstable if d@‘)/d I’ c 0 at I’ = Y0 and is 
stable otherwise. A non-linear analysis reveals possible limit cycfes near steady sliding if 
either dr{ V)/d V passes through zero for V near V,, or if an appropriately sized dashpot 
is placed parallel to the spring in Fig. 1 (BROCKLEY and Ko, 1970; STOKER, 1950; 
HASSARD, KAZARINOFF and WAN, 198 1). These limit cycles have a frequency of the same 
order as the natural vibration frequency of the spring and mass without friction. 

Linear analysis of the stability of steady sliding with the state variable law of 
equation (1) reveals that steady sliding is stable if dP/dV > 0, where z”“(V) is the steady 
state value of z for slip at constant K For dz”“jdV < 0 slip is stable for k > k,, and 
unstable for k < kcc,, where k,, is a finite critical stiffness (RICE and RUIWA, 1983). At this 
critical stiffness the motion of the block is oscillatory. It is expected from general 
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considerations of nonlinear stability (Hopf bifurcations, e.g. HOWARD, 1979) that finite 
amplitude periodic motions will exist for some k near k,,. 

For friction governed by a single state variable H [i.e. r = F( V, Q), 6 = G( I/, Q)] the 
critical stiffness for steady slip at speed V is (RICE and RUINA, 1983) 

mV 

L 8F( x q/a V 1 (2) 

evaluated at H = fP( V) ; L is the characteristic relaxation slip distance for the state 
variable 8 [i.e. L = - V/(dG( V, 0)/l@) at 0 = H”“(V), so that the relation 4 = G( V, 0) 

linearizes to de/d6 = (P-@/L for H near to P”(V)]. The angular frequency of the 
oscillations at critical stiffness is given by 

(3) 

with 8 = N”“(V), and the oscillations decay or grow in amplitude with time when k is 
slightly greater or less, respectively, than k,,. For the rock experiments reported to date, 
the term in square brackets in (3) is of order unity, and for low slip rate V it is clear that 
LC) z V/L may be well less than (k/m) Ii2 the natural frequency of the spring-slider , 
system. In this case it is straightforward to show that the terms within the square 
brackets in equation (2) differ negligibly from unity, i.e. the mass m may be set to 0, 
which is equivalent to the quasi-static analysis of motion in RUINA (1980, 1983). The 
linearized stability analysis will be discussed further subsequently. 

On the other extreme from this nearly steady sliding is the intermittent slip termed 
‘stick-slip’. In stick-slip the block alternately sticks and slips. ‘Slip’ is modeled in 
elementary treatments to begin after ‘stick’ when the spring force reaches the ‘static 
friction strength which, depending on the model, may increase with the time of 
stationary contact or the rate at which the tangential load is applied. Once slip begins, 
the friction then (again, depending on the model) is either dependent on slip dis- 
placement or slip rate. When the integrated equations of motion predict that the slip 
rate falls back to zero, ‘stick’ resumes and the cycle repeats. 

Since the state variable laws (1) are intended to describe a variety of slip histories, it 
should be possible to use them to model both the motion near steady state and the 
episodic motion with them. DIETERICII (1979b, 1980, 1981) and MAVKO (1980) have 
done this numerically, neglecting inertia (although they simulate inertia indirectly for 
high slip rates) and have obtained results that resemble classical stick-slip. 

The aim of this paper is to report some results, within the rate and state dependent 
constitutive framework, which begin to bridge the gap between a linearized description 
of stability near steady sliding and the description of fully developed ‘stick-slip’. In 
particular, results are developed from general non-linear analysis of quasi-static 
motions of the spring-slider system, for a limited class of idealized friction laws 
suggested by experiment. The stability of the system is analysed when a steady slipping 
state is finitely perturbed, either by imposition of a sudden jump in load point 
displacement or velocity, or by holding the load point stationary for some ‘relaxation’ 
time before resuming imposed motion at the same speed. 
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2. NON-LINEAR STATE VARIABLE FRICTION LAWS 

2.1. Constitutive relation with one state variable 

The simple one state variable constitutive law proposed by RUINA (1980, 1983) as 
representative of experiments on slip at constant normal stress 0 over a range of 
positive x and motivated as an approximation to a more complex law by DIETERICH 

(1979a, 1980, 1981), is 

z = F(v8) E z,+Q+A In (V/V,), 

d0/dt = G(V;8) 5 -(V/L)[d+B In (V/V,)]. 

(4a) 

(4b) 

Here V’. is an arbitrary positive constant and T*, A, B and L are positive empirical 

constants with z.+ dependent on choice of V,. Use of L in (4) is consistent with its use 
in equations (2) and (3). In this expression, the frictional stress z has a positive 
instantaneous rate dependence expressed by A In (V/V,), and the state variable 8 
evo. ves towards the steady state value -B In (V/V,) with a characteristic slip distance 
L. The evolution with ongoing slip at a fixed I/ is such that z exponentially approaches 

the steady state value 

P = P(V) = T*-(B-A) In (V/V,). 

If B > A as we assume here, this constitutes a long term negative rate dependence of 
z : d?( V)/dV = -(B- A)/V < 0. One can observe from equation (4b) that the state 
variable 0 varies continuously with time even when z and V vary discontinuously. This 

means that a sudden change in the stress T causes a sudden change in slip velocity V (or 
vice versa) and in dQ/dt, but 8 itself does not change discontinuously. 

A response predicted by the above law is illustrated by Figs. 2a and 2b. Starting after 
steady state slip at speed V, and stress TV, the frictional stress changes when the slip rate 
is suddenly increased by a factor e g 2.71828 from V0 to eV,. The frictional stress 
instantaneously increases to z0 + A, then falls exponentially with ongoing slip to a new 
steady state value T~-(B-A) over a characteristic slip distance L. The important 
features, verified at least approximately by experiments, are: (1) the frictional stress 
depends logarithmically on rate, both instantaneously and at steady state; and (2) at 
constant slip speed, the stress relaxes exponentially with a characteristic slip distance 
that is independent of slip rate. 

We have fitted the one state variable law of equations (4) to DIETERICH’S (1981) 

experiments on sliding of intact Westerly Granite blocks, with gouge layers of the same 
material between them, at 0 = 100 bars and speeds from 0.25 to 25 pm/set. The 
experiments varied gouge particle size, layer thickness and roughness of the intact rock 
surfaces. The surface roughness was the most significant variable, and separate fits for 
the roughest (Y) and smoothest (s) of three surface preparations are: A/a = 0.006 to 
0.008 for (Y) and 0.003 to 0.005 for(s), B/A = 1.12 to 1.14 for (Y) and 1.5 to 2.3 for (s), and 
L = 40 to 50 pm for (r) and 4 to 25 pm for (s). (A somewhat better fit of experimentally 
observed decay processes is given by a two state variable law described in the next 
subsection.) 

Because later discussion for the one state variable law (4) will involve a 
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FIG. 2. Response to step change in slip rate at a sliding surface according to the friction law of equations (4). (a) 
The slip rate, constant at V, for a large slip distance (l), is suddenly changed to e V, (2) and then held constant 
for a large slip distance (3). (b) The friction stress, constant at ~a (1) suddenly increases by the amount A at the 
jump in slip rate due to the instantaneous viscous-like response (2), and then decreases exponentially with 
ongoing slip (3) by amount B, with characteristic decay slip distance L, as the state variable evolves to its new 
steady state value. (c)The same response is plotted in a phase plane in terms of the variablesf[ = (T - T,)/A] 
and $ [= In (V/V.)] ; the slip rate is initially constant at V, (1) then suddenly changes (2) so thatfand 4 
change along the dotted line of constant state, 0 = f- 4 = const., and then at the new constant slip rate (3) 

frelaxes along the line C#J = const. (V = const.) to the new steady state value. 

non-dimensional phase plane, dimensionless quantities such as frictional stress 
S = (t-r.+)/A, logarithmic velocity measure 4 z In (V/V,), state variable 0 z H/A, 
constant j? = B/A and time T 3 V*t/L are introduced. Hence the non-dimensional 
form of the constitutive relation (4) can be rewritten as 

.f = @+A (54 

dO/dT = -e’#‘(@+/I+) = -e++‘(f+@), (5b) 

where 1, - (fl- 1) = (B - A)/A. At steady state, the block moves with the same speed as 
the load point (i.e. I/ = V,), C$ = In (VJV,) and .f = - @. Therefore, a steady state 
motion with a particular load point speed can be represented by a point on a steady 
state line ,f‘“” + @ = 0 in the .fi C#I phase plane as shown in Fig. 2c. 
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Recalling that the state 0 is always continuous, the experiment illustrated in Fig. 2a 
can be reproduced in Fig. 2c in terms of the variables f and 4. In steady state sliding 

with I/ = V, = const., f = (rO -r,)/A and 4 = In (VJV,) are denoted by (1) in Fig. 2. 
When the slip rate is suddenly increased to eV, along (2), 0 = f - q5 remains constant. 
Thus the jumps in f and 4 are equal. The new slip rate I/ is constant at eV, (i.e. 
C$ = In (eV,/V,)) and the frictional stress f relaxes along (3) towards the new steady 
state valuefss(e V,) = - Il$(e V,) = (zO - 7,)/A -(B - A)/A. 

2.2, Constitutive relation with two state variables 

The one state variable friction law (4) is a simple form representing the class of 
realistic state variable laws. It is used for discussion in this paper because it is 
mathematically simple. However, for experiments performed by DIETERICH (1981) and 
RUINA (1980, 1983), a two state variable law of similar structure provides a closer 
description of observed relaxations following jumps over a wide range (approximately, 
a factor of 100) of sliding speeds. This law has the form (RUINA, 1980,1983), at constant 
normal stress C, 

where V,, z,, A, B,, B,, L, and L, are constants. Two examples of fits follow. 
From experiments on polished quartzite surfaces sliding from 0.01 to 2 pm/see 

at constant normal stress (r = 30 bars, RUINA (1980, 1983) found A/o = 0.011, 
B,/A = 1.00, B,/A = 0.84, L,/L, = 0.048, with L, = 0.25 pm and L, = 5.2 pm. From 
experiments on Westerly Granite with 2 mm gouge layer, < 85 pm particle size, 
between rough surfaces at constant normal stress CJ = 100 bars, we estimate (fitting 
figs 17 of DIETRICH, 1981) that L,/L, = 0.27, with L, = 20 pm and L, = 75 pm, 
A/a = 0.015, B,/A = 0.67 and BJA = 0.60. Similar to the one state variable law, 

the frictional stress z also has a positive instantaneous rate dependence denoted by 
A In (V/V,) and the state variables 8i and 0, evolve towards the steady state values 
- B, In (V/V,) and - B, In (V/V*).over characteristic distances L, and L, respectively. 
For sliding at constant speed, z has a steady state value 

-c”“(V) = z.+ -(B, + B, - A) In (V/V,). 

Again, if B, + B, > A, z at steady sliding is a decreasing function of slip velocity I/: 
With the two state variable law (6), the illustration of the effect of a sudden jump in 

slip velocity as described earlier by Fig. 2a, 2b can be repeated and is shown in Fig. 3. 
For the increase of slip rate by a factor of e, the frictional stress increases to z0 + A, as for 
the one state variable law in Fig. 2b, and the new steady state value is r0 -(B, + B, - A). 
Figure 3b shows the decay of the state variables with the corresponding characteristic 
slip distances. This two state variable law (6) is similar in form to equations (4), and 
reduces exactly to the one state variable law (4) when L, = L,( = L) with B = B, f B, 
and 8 = 0, +0,. 
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FIG. 3. Response to step change in slip rate for two state variable friction law of equations (6). (a) Stress 
response as the slip rate jumps from V0 to ek’, ; the stress jumps to a peak r0 + A from original steady state 
stress rO, then decays exponentially with ongoing slip, with distinct decay slip distances L, and I!,,, to the new 
steady state stress ra-(B, +B, -A). (b) Decay of the state variables O,, 0, to new steady state levels. (c) 
Experimental response to changes in slip rate on polished quartzite surfaces at normal stress e = 30 bars, 
from RUINA (1980,1983); u is the relative displacement of a controlled set of measurement points close to the 
sliding surface, and u x 6. (d) Simulation of experiments in (c) by two state variable friction law with 

A = O.Ollc, B,/A = l.OO,B,/A = 0.84,L, = 0.25 pm, L, = 5.2 pm. 

Figure 3c shows experimental results on polished quartzite by RUINA (1980,1983) in 
two cases of suddenly imposed jumps in slip velocity (U is the relative displacement of a 
controlled pair of points near to but not precisely on the slip surface ; u z 6 = the 
surface slip). Figure 3d shows Ruina’s simulation of the experiments by the two state 
variable law of equations (6), using the parameters cited above. 

In order to show clearly the short-slip decay process characterized by L, 
it is necessary that experiments accomplish a very abrupt, step-like increase in l! 
Otherwise, slip of order L, or greater may occur during the time taken to increase V 
and the short-slip decay process is obscured. The two state variable law for the velocity 
jump test, in cases with L, << L,, would then appear as a one state variable law (with 
A -B, of the former identified as A in the latter, and B,, L, identified as B, L). 

3. ELASTIC LOAD SYSTEM INTERACTIONS AND LINEAR STABILITY RESULTS 

The constitutive relation (4) or (6) describes the frictional stress at a sliding interface. 
In order to understand the behaviors of the one-degree-of-freedom system of Fig. 1, 
elastic load interaction must be considered simultaneously. We represent the elastic 
interactions by the linear spring with stiffness kin series with the slider. The spring-force 
r (per unit base area) is therefore related to motion of the slider and its load point by 

z = k(6,-d), or dz/dt = k(Vo - V) (7) 
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where 6, and 6 are the load point and slider displacement respectively; inertia of the 
block is neglected here for simplicity. As mentioned earlier, the inclusion of inertia 
would not affect results in which the calculated acceleration is small. 

For constant load point speed V,, equations (6) (which include equations (4) as a 
special case) and (7), constitute a system of first order autonomous differential 
equations. A general analytic solution is not completely known. However, the simplest 
solution to this system of equations is the steady state solution : 

I/ = V,, Oi = f3y = -Bi In (V,/V*), and 7 = P = z,-(B,+B,-A) In (I&/V,). 

One may raise the question : will motion very near to this steady state motion be stable? 
From linear stability analysis, it is understood that if the real parts of the eigenvalues of 
the corresponding linear system of equations (6) and (7) are negative, zero, or positive, 
the solution will be stable, neutrally stable or unstable respectively. 

In an equivalent approach, adequate for the entire class of constitutive relations 
represented by equations (l), RICE and RUINA (1983) regard the dependence of 
z on surface state as being equivalent to the functional dependence of z(t) on prior V(t’), 
-co < t’ < t, with loss of memory of slips in the distant past. They observe that 
the linearized expression for z(t) in response to a perturbation i(t) of slip rate, such that 
V(t) = V, +i(t)(li(t)l/V, c-c 1), has the general form 

s 

f 

r(t) = 7ss + gi(t) - h(t - t’)i(t’) dt’ (8) 
0 

assuming i(t) = 0 for t < 0. Here 7” = zss( VO), g and the memory function h(t) depend 
on V,, and 

0 < 9 = Ca~(r!e,,~,...)/avlI.=..,,i=,,.,”o,, (94 

s 

cc 
h(t) dt-g E -[dz”“(V)/dV] (v=yo. (W 

0 

As remarked following equation (I), experiments support the inequality in (9a). Data 
OfDIETERICH(l978,1979a, b, 1981) and R~1~~(1980,1983) show that dz”“(V)/dV < Oin 
their experiments. However, experiments by TEUFEL (1981) indicate that dP(V)/dV 
ceases to remain negative at high < as also is sometimes observed during early run-in 
periods and in experiments at high temperature. 

RICE and RUINA (1983) prove that if dP(Vo)/dVo < 0, there exists a critical positive 
stiffness k,, such that the steady slip state is stable fork > k,, and unstable fork < k,,. In 
the vicinity of k,,, the system exhibits flutter oscillations of (circular) frequency w whose 
amplitude grows in time if k < k,, and decays if k > k,,. The critical frequency w and 
critical stiffness k,, are found by RICE and RUINA (1983) to be given by the real solution 
of 

s 

a, 
cos (ot)h(t) dt = g, and (loa) 

0 

s 

m 

k,, = w sin (ot)h(t) dt. (lob) 
0 
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They show that if the decay in stress following step changes in slip rate is monotonic 
(i.e. h(t) > 0), then dr”“(l/,)/dV,, < 0 is a necessary and sufficient condition for the 
existence of a solution of equation (10a). Thus instability is possible, with some 
sufficiently reduced positive stiffness k, if friction stress decreases with slip rate at steady 
state. 

If one linearizes the two state variables law as given by equations (6), and puts it in the 
functional form of equation (8), g and h(t) of (8) are found to be 

g = A/I/, and h(t) = (B,/L,) e-“otiL1 +(B,/L,) e-“of’Lr. (lla,b) 

Equations (lOa, lob) then give the critical frequency o and critical stiffness k,,: 

w = Ml +/ML, + ~,)JP142~,r-_(P, + Pz- 111 (124 

and 

Jc = k,,(& + W2A = UPi - 1) + p2(Pz - 1) + 2~(P1+ 82 - 1) CT - 

+ J(C(B1 - 1) + P’(Bz - 1)12 + 4PZ(P1 + Bz - 1)~lPP (12b) 

where p = L,/L, and p1,2 = B,,,/A. Ifp=l (L,=L,=L) and fi=/3i+&, the 
corresponding critical frequency w and critical stiffness K,, for the one state variable law 
are obtained, 

w = (W)J(P- 1) = (IW)JA (13a) 

K ,,=k,,L/A=&1 ~1. (W 

Equations (13a) and (13b) can also be equivalently deduced from equations (3) and (2), 
with m = 0. The constant A, which appears often in what follows, can be equated to the 
bracketed term in (3). Some representative values of j?,, /3*, p and the associated rc,, 
calculated from (12b) are listed in Table 1. 

The linearized stability analysis shows that small perturbations of slip in steady state 

TABLE 1. Examples of the critical spring stifness k,, in steady state slip, according to 
linear stability theory, for the two state variable friction law of equations (6); K,, 

calculated from equation (12b) 

p G L,/L, 

any value any value 
-1 1 
1 .oo 0.84 
0.67 0.60 
1.3 0.5 
1.5 1.2 
0.2 1.5 
1.0 1.5 

1 
any value 

0.048 
0.27 
0.20 
0.20 
0.20 
0.20 

0.876t 
0.224$ 
1.318 
2.395 
0.436 
1.388 

t From RUINA (1980, 1983) data on polished quartzite surfaces. 
$ From DIETERICH(~~~~) data on Westerly granite with 2 mm gouge layer, < 85 pm particle size, between 

rough intact rock surfaces. 
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cause sustained periodic sinusoidal oscillations when k = k,,, but cause oscillations 
with amplitude that either decays or grows exponentially with time when k is slightly 
greater or less, respectively, than k,,. Such response defines a Hopf bifurcation (e.g. 
HOWARD, 1979; HASSARD, KAZARINOFF and WAN, 1981) at k = k,,. The theory of the 
Hopf bifurcation then shows that finite amplitude periodic solutions exist for values of 
kin some sufficiently small neighborhood of k,,. It may be that this occurs for k > k,, (in 
which case the periodic solutions are unstable), for k < k,, (stable limit cycles) or, 
exceptionally (but as occurs in our one state variable case), for k = k,,. 

A nonlinear stability analysis using the Hopf technique was done by hand for the one 
state variable law and numerically (using the computer program by HASSARD, 
KAZARINOFF and WAN, 1981) for the two state variable law. In short the procedure may 
be described by introducing a vector 

{r) = (~-~““(vo),~1-~(yo),~,-~(v,),...j, 

having the properties that fz) = {O> in the steady slip state examined and that, 
according to a linearized description of motion of the spring-slider system, periodic 
solutions 

{z} = const. x Re [{zL} eiwt] 

exist at k = k,,, where w and k,, are given by equations (lo), and (zJ is a mode shape 
vector. One then seeks exact oscillatory solutions to the non-linear equations for the 
spring-slider system, of small finite amplitude (parameterized by E), in the form 

{zf = E Re [{zL) exp (ie.$l + <.$ + e * .)t)] + 0(r2), 

where O{e’) represents time dependent periodic terms of the order indicated or higher 
in c: and Q2 is an unknown term showing the first non-zero perturbation of the 
oscillation period. Such periodic solutions are found generally to exist for amplitude- 
dependent stiffnesses given by an expansion of the form 

k = k,,(l -p22- . ..). 

Here the sign of p,, whose calculation is the object of the Hopf technique, determines 
whether the solutions exist for either k > k,, (p2 < 0 and periodic solutions are 
unstable) or k < k,, (p2 3 0 and limit cycle solutions are stable). Hence the analysis 
gives the curvature of the E vs k locus of periodic solutions at E = 0. 

The results are indicated in plots of c vs K (dimensionless k) by the curvature of the 
solid line segments in Fig. 4a for the one state variable taw and Fig. 4b for the two state 
variable law. Remarkably, the curvature is zero (pZ = 0) for the one state variable case 
and, as indicated by the straight dashed line, a full analysis (next section) shows that 
finite amplitude oscillations are found at K = K,, for a range ofthe amplitude parameter 
E. The dashed line is shown bifurcated abruptly to the right at a certain point. This 
occurs because (as will be clear from the next figure) motions with K = K,, that begin 
sufficiently far from steady state are unstable, in that V +cc in finite time. This 
transition from periodic to unstable motions at K = IC,, may, in fact, occur at an 
unbounded amplitude as measured bye, but it occurs at a finite amplitude as measured 
by physical variables (e.g. by z,,, - P( V,), where rmsx is the maximum stress in the 
motion). This is the reason for the appended question mark in Fig, 4a, which indicates 
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FIG. 4. Soiid line segments illustrate results of Hopf bifurcation analysis for (a) one state variable and(b) two 
state variable friction law. The segments show how the dimensionless spring stiffness K must vary from K,, (its 
criticai value according to linear stability theory) in order for finite amplitude periodic solutions, with 
amplitude measured by a, to exist in response to motion of the load point at uniform speed. The one state 
variable result in (a) is exceptional and persists over a range of finite amplitudes as shown by the dashed line 
continuation of the solid segment. Curvature exhibited for the two state variable case in (b) shows the 
existence of stable limit cycle oscillatory solution in a small range ofstiffnesses K below K,, (see Figs. 13 and 14 
for further discussion). Dashed line segments with appended question marks are intended only as qualitative 

indications of response at larger amplitudes ; see text. 

that the segment of dashed line extending to the right is only a qualitative indicator of 
response type. This extension of the dashed line to the right indicates that for IC > Q, 
there exists a boundary at su~cientiy large amplitude between oscillatory motions with 
V- V, -+ 0 and motions with V- V, --, i70. This boundary is a locus of unstable periodic 
solutions. 

For the two state variable friction law, the curvature of the E vs tc relation at E = 0, 
Fig. 4b, is always of a sign (except for special parameter values reducing it to the one 
state variable law) so as to assure the existence of stable limit cycle oscillations in some 
sufficiently small neighborhood K < K,,. Our numerical integrations of equations (6) 
and (7) suggest a response qualitatively like the dashed line continuation of the E vs ti 
locus (the question mark again denotes its imprecision; among other possibilities it 
may bifurcate into a family of loci). The dashed line is intended to indicate that periodic 
solutions are found only in a small range of K below ti,, and that response is comparable 
to that of the one state variable case when ic > K,,. More is reported on this at the end of 
the paper. 

4. NON-LINEAR ANALYSIS OF SPRING-SLIDER SYSTEM 

WITH ONE STATE VARIABLE FRICTION LAW 

Here we adopt the dimensionless variablesf, (p and 0 introduced to write the one 
state variable friction law as in equations (5), and used also in Fig. 2c. In terms of these, 
the last version of equation (7) is 

df/dT = ~(u~-e~). U4a) 

where K = kL/A and L+, = V,/V.. Combining equations (5) with this, we obtain 

d&d T = e#( - K +f-f- A#) + KU@. U4b) 
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Equations (14) represent the system of non-linear equations governing quasistatic 
motions of a single degree of freedom elastic system following the one state variable 
friction law. We note that solutions to equations (14) obey a scaling rule. That is, iff1(7’) 
and 4,(T) are solutions corresponding to load-point speed v0 thenf = fi(sT)-n In s 
and 4 = (Pl(sT) + In s is a solution corresponding to load point speed SQ. The scaling 
rule can also be justified by noting that u,, = V,/V, and V, may be chosen arbitrarily+ 
The rule applies more generally in using solutions corresponding to load-point motion 
s,(t) to generate those which correspond to 8,(st), and a similar rule applies to motions 
governed by the two state variable friction law (RUINA, 1980). Consequently, if o0 > 0 is 
a constant imposed load-point speed, we may take ug = 1 and not lose any features of 
solutions or stability criteria. Related to this is the lack ofdependence ofcritical stiffness 
K,, on r.+, in equations (12b) and (13bf. We do not replace u0 with 1 in all subsequent 
calculations since we will look at solutions with step changes in Q. 

The trajectories in thef- # phase plane (like that in Fig. 2~) for the system considered 
are given in differential form by eliminating time T from equations (14) to obtain 

0 = [( - K +f+ 24) eb + lcuO] dJ’- IC(Q -e@‘) d$. (15) 

The right side of(15) is not a perfect differential but it expresses the fact that dP(f; 4) = 0 
where P = const. is the solution being sought. Multiplying (15) by an integrating factor 
which can be written in the form eq’l*@“, we have 

dP = eqcs*@)[f - K +f+ &) e+ + KU~] dJ-eg(f~%c(~O -e@) d@ = 0. (16) 

Denoting the coefficients of df and d4 in (16) as PI. and P+ respectiveIy, the integrating 
factor must allow satisfaction of aP~~~~ = aP,/3A which then requires that 

/-- I+ ~~/t/a~>( - K +f+ @‘) + 2 - K @/$f] 6 + [(a&%$ + &,@f)KUo] = 0. ( 17) 

This equation is generally not easy to solve for 4 but once it is solved, the function P can 
be found and P = const. represents a path or orbit in theJ; 4 phase plane which the 
system follows. 

4.1. An integralfor K = 1 = zc,, (stzjjness is equal to thatfor linear neutral stability) 

In order to understand the general motion predicted for this one state variable law, a 
special case, k’ = K,, zz A, is considered first. By inspection, q =f--~,6 is a solution to 
equation (17) in this case. One then integrates (16) to obtain trajectories in the form 

P, = ef[f+ lifb, + u0 e-“-- 1) - 1] = const. (18) 

At a steady state 4 = In u0 and f”” = -A In uO, so that Py = -DO”. Curves of 
P, = constant are shown as solid lines in Fig. 5 for 2 = 1 (a representative value from 
the fits to experiments mentioned earlier) and I.+, = 1, involving no loss of generality as 
mentioned. Therefore, at steady state, P”; = - 1. If - 1 < P, < 0 (i.e. the system 
deviates slightly from steady state) the orbits are closed curves, which shows that the 
system exhibits finite amplitude periodic oscillations. Since all these orbits occur at the 
fixed value IC = /2, the vertica1 dashed line in Fig. 4a is justified. P, > 0 corresponds to 
open trajectories extending to infinity and represents unstable motions. Therefore, 
P, = 0 gives the limiting trajectory separating (periodic) stable and unstable orbits. 
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FIG. 5. Phase plane of dimensionless friction stressf[ = (t - z,)/A] and velocity measure 4 [ = In (V/V,)] for 
constant rate load point motion at V,, chosen as V, = V,. Solid lines are trajectories for stiffness K = K,, = 1, 

with 1 = 1. These trajectories are the level lines of P, in equation (18); P, -c 0 are closed orbits, P, > 0 are 
unstable orbits on which V -+a. Heavy solid line is steady state relations betweenfOS and In (V/V,). Dashed 
lines are orbits for K = 1, K,, = I = f. The subcritical dashed orbit decays to steady sliding, the supercritical 
orbit leads to infinite slip rates, and a critical orbit separates the two types. The solid curves provide level lines 

of a Liapunov function for general motions with K # 1. 

4.2. General analysis of motion by Liapunov method 

The function P, is also useful as a Liapunov function for cases in which the spring 
stiffness K is different from the critical value, A. Indeed, if one identifies a related function 
P’ by 

P’ = ef[f+ic(4+v0 e-+-1)-1+(2--K) In vO] 

and uses the identity 

(19) 

dP’/dT = (W/8j’)(df/dT) + (W/@)(d&dT) 

and equations (14), one finds that 

dP’/dT = eslc(A- x)(4 -In v,)(e”- vO). 

Since (rj -In uo)(ed-v,) is always positive for 4 # in vo, we have 

dP’/dT < 0 for K > A 

and 

dP’ldT> 0 for K < i. 

(20) 

(214 

@lb) 
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We now explain why P’ can be regarded as a Liapunov function by first deduc- 
ing the geometry of curves P’(~,c/I) = constant in thef, C#I phase plane. We note that 
the global minimum of the function P’(~,c+!J) occurs at the steady state point 
4 = In v,,f = -I In uO, and Pm,, = --a0 -I. Now we show that curves P' = const., with 
Pdin < P’ < 0, are closed orbits in the f; 4 plane. This is shown by observing that, 
for givenf, P' = const. (in the above range) gives exactly two values of Cp, and that 
for a given 4, P' = const. gives exactly two values off: Rearranging equation (19) 
gives 

P(4) - rc(uO e- ++&) = P’ eef-f+ 1 +Ic-(l-lc) In uO. (22) 

If we fix P’ andf; then dzp(4)/d24 = rcvo e-@ > 0, so that if the system is not at steady 
state, there are two values for C#I satisfying (22). Likewise, if one rearranges equation (22) 
such that 

p(f) E P’ ems-f= ~(a, e-@+4)--l -rc+@-K) In u. (23) 

and fixes P’ and 4, then d2p(f)/df2 = P’ e-s < 0 and, again, if the system is not at 
steady state, there are two values forf satisfying (23). Hence P’ = const., with Pbin < P 
< 0, is a closed path in thef, #I phase diagram, and the path degenerates to a point, 
which is the steady state point, when P’ = Pki,,. 

Next, we show that if one moves away from the steady state point, P' increases 
monotonically. This follows by calculating from (19) that 

I~Y/&/I = (e6 - U~)IC ef-+, (24) 

so that i?P'/&j has the same sign as C#I -In uo. We therefore conclude that P’ is a suitable 
Liapunov function, in that it defines a family of closed curves with P’ increasing 
monotonically as one crosses curves of the family moving away from the steady state 
point at which P' - P&,. Pictorially, the properties described are summarized by the 
solid lines P, = constant in Fig. 5 and, indeed, the function P’(f, 4) is identical to 
P,(S, q5) when we choose o. = 1 as in that figure. 

The inequalities (21) thus insure that, for K > 2, orbits are constantly crossing curves 
P’ = const. in a direction so as to decrease P’. Hence, when K > 1 E K,,, any orbit which 
passes within the region of the phase plane covered by closed curves of type 
P’ = constant will be drawn towards the steady state point C#I = In uo,f = -R In u. 
at which P’ = Pm,,,. This shows that the steadily slipping state is stable to sufficiently 
limited finite perturbations when K > 2. The numerically computed dashed orbits in 
Fig. 5 correspond to IC = I,1 = 0.5, u0 = 1, and verify the result. The (subcritical) orbit 
which passes into the domain ofclosed curves is drawn to their center at the steady state 
point. Another (supercritical) orbit remains far from the closed curves and corre- 
sponds to unstable behavior with 4 -+ co ; a critical dividing orbit between the stable 
and unstable regimes is also shown. By contrast, equation (21b) shows that when 
K < i = lc,, the steady state point is always unstable since orbits will then follow paths 
which increase P'. 

For 4 large and negative (4 +-co), K and i arbitrary and v. # 0, equation (14) 
immediately shows thatf= rcv,T+const., and 4 = ~~~T+const. are solutions. They 
appear as the 45” solutions on the left edge of Fig. 5. These are constant state 
trajectories. That is, for very small v (large negative 4 = In V) the state changes very 
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FOG. 6. Trajectories of slider rno~o~ for a stationary load point, V, = 0, shown for the case A = K -ir 1. The 
curves are level lines of the function P, in equations (25) and the curve P, = 0 separates nonstable orbits 
fP, > 0) from stable orbits ii’, -Z 0). The dotted curve ill shows the traiectorv followed if steadv load ooint 
m&ion at V0 L- V, is s*dde~l~sio~ped. The dotted cur;< (2) shows the motion if the Load point;after sieady 
motion at rate tb = VI, suddenly makes a diispiacement jump and then stops. .A supercr&ica% jump is shown. 

slowly. The friction stress change is due only to spring stretch from load point motion. 
The slip rate change is due only to the viscous part of the friction law (A in equation (4)). 

As remarked, for ic z== K,, the system is stabIe, at least for small but finite per- 
turbations. One may then ask for what kind of perturbations and what magnitude will 
the system he stable? Further insight is provided by study of the foliowing special case. 

The exact solution (18) for trajectories is limited to IC = R. We were able to solve other 
than nume~call~ for trajectories with arbitrary ;i and K only when the load point is 
stationary, v0 = 0. In that case equation (17) is solved by q *- ;If/rc - (p and the solution 
trajectories are given by 

P, E e(““~f[-“f+Ai#J) - K( 1 _t K)/xj =1 cmst. (25) 

They are shown in Fig. 6 as solid lines, drawn for the case K = ), = 1. Solving (25) for Q 
we obtain 

$#) = cp, e-fd!Kff --.f-i- K( 1 + &/Al/n. (W 
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The time derivative of P, in equation (25) is, using equation (14) for general non-zero 

00, 

dP,ldT = ec”K’*von(f+@), (27) 

which is of course zero for v. = 0. Also, applying (26) to (14) with v. = 0 one can solve 
for 

df/dT = --IC exp {[P, e- (+Q-f+ K(1 +n)/n]/i} < 0. (28) 

Thus, although we cannot integrate (28) explicitly for the time history off; we can see 
from (28) (or directly from (14)) thatfdecreases along trajectories (as shown by dotted 
lines (1) and (2) in Fig. 6). This merely states that the spring relaxes if the load point is 
still. 

For large negative C$ the stable orbits (P, < 0) are described by equation (26) and the 
lower branch asymptotically by 

df/dT = -K exp [(P,/A) e-caiw)r], (29) 

Equation (29) implies that, eventually,fdecreases much more slowly than logarithmi- 
cally with time during stationary holds. 

The straight line P, = 0, corresponding tof+A+ = ~(1+1)/1 (=2 in Fig. 6), is the 
dividing trajectory (so long as i > 0) between solutions for which 4 (3 In u) decays 

(Pz -c 0), and extremely unstable (4 -*co) solutions (Pz > 0). 
The solution (25) has some implications even when v. # 0. Since for P, = 0, the 

dividing trajectory,f+II$ > 0, equation (27) states that dP,/dT > 0 for v. > 0. Thus 
the full solution to equations (14), with arbitrary IC, 1> 0 and v. necessarily leads to 
instabilities if the trajectory crosses abovef+ /r4 = ~(1 +2)/n. 

The solution (25) to equations (14) with v. = 0 can also be viewed as the asymptotic 
solution for a case of large positive 4, i.e. large speeds v >> ro, such that u. can be 
neglected in equation (17). For P, > 0 (i.e.f+ 24 > rc( 1 + 2)/n), equation (26) then gives 
the asymptotic solution 

qb=P,e -'A'K)f/A, f = -(K/A) In (1qf~/P,) (30) 

which is, approximately, on the right edge of Figs. 5 and 6. Applying equation (29) to 
equations (14) we have the asymptotic result for unstable orbits (Pz > 0) that as 4 -+cc 

dd/dT = A+ e”. (31) 

Since &o (e-@/4’) d@ is bounded, 4 +CC in finite time. In short, for all 1, K, v. > 0, 
any solution crossing above the linef+A4 = ~(1+1)/R leads to infinite slip speed in 
finite time (as noted in RUINA (1980, 1983) for the limit K = 0). 

5. PERTURBATIONS OF A STEADILY SLIDING SYSTEM, 

ONE STATE VARIABLE FRICTION LAW 

In this section, three types of perturbations to steady state sliding will be discussed : 
(1) the load point is suddenly displaced and then held stationary; (2) the load point 
velocity is suddenly increased; (3) the load point is held stationary for some ‘relaxation’ 
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FIG. 7. Schematic diagram showing four kinds of perturbations : (a) sudden jump in loadpoint displacement, 
which is then held fixed; (b) stopping of load point motion for relaxation time T, and resuming motion at 
different load point speed VI ; (c) sudden jump in load point velocity ;(d) stopping of load point for relaxation 

time T, and resuming the same speed. 

time and its motion is then resumed at the original speed. The stability results will be 
obtained by patching together solutions from the preceding sections using appropriate 
jump conditions and also by numerical integration. 

In the first case, Fig. 7a, A(f-- 4) = 0 during the jump, since there is no jump in state 0 
when the load point jumps. Therefore, in order to jumpf+ ,I@ = ~(1 + I_)/1 (to cross the 
instability trajectory for u0 = 0) from the steady state linef+Q = 0, along a line of 
constant state 0 = f- 4, requires that Af = AC#J = K/L This means the instantaneous 
jump in the slip rate is to uI/uO = VI/V, = eKi’ (where here V, and VI are the slip rate just 
before and after the jump), and A6, = L/A is the jump in load point displacement 
necessary to cause the instability. When K = i, for example, the minimum jump in load 
point displacement required to cause massive instability, A6, = L/A, also causes an 
instantaneous slip rate change by a factor of e g 2.71828. An unstable jump across the 
dividing line in Fig. 6 is shown, leading to unstable slip on the dotted trajectory labelled 
(2) that begins on the steady state line before the jump. 

We discuss the second and third cases together with reference to Fig. 7b. Suppose the 
system begins in steady state sliding with load point speed o0 = VJV, (which gives 
u = uO, Q, = In uO,fSS = - a$). The load point is then stopped (u. = 0) for some relaxa- 
tion time T,. At this stage, the stress begins to relax and the velocity of the slider drops 
rapidly according to the spring force law (7) and the state f3 increases slowly (because of 
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the low speed). After the relaxation time ‘l$ load point motion is resumed at a new speed 
u1 (= V,/V,, where Vi is the new load point velocity). 

We consider the case K = I = K,,. Let the arbitrary constant V, be V, (initial point 
velocity) so that the steady state solution is u,, = l,f= C$ = 0, and Pi = - 1. In the 
relaxation stage, u0 = 0 and the solution can be represented by P, in equation (25), with 
K set equal to 1. The value of P, is found by substituting the initial values offand 4 

(f = 4 = 0). Thus 

P, = es[f+Q--(1+1)] = -(1+1) (32) 

so thatfand C/J are related by 

f+Q = (1 +A)(1 -e-f). (33) 

In the reloading stage, the load point moves with the new speed vi and trajectories 
are given by equation (18) with vi written for uO. Denoting 0, as the value to which the 
state parameter has risen at the end of the relaxation stage (0 = 0 at the start of 
relaxation), and remembering that 0 =f- 4 and using (33), we find initial conditions 
for the reloading stage, during which 

P, =eQ”+A(f$+u, e-“-1)-1] =-(l+i)+Iu, eer. (34) 

As was pointed out earlier, P, = 0 is the boundary between stable and unstable 
solutions when K = 1. The critical combinations of relaxation effects and reloading 
speeds for instability in this case are therefore given by 

(Vi/V,) eer = (1 +n)/l. (35) 

If the relaxation time T, = 0 (then 0, = 0) the perturbation corresponds to a sudden 
jump in load point speed as shown in Fig. 7c. The response is therefore unstable if Vi/V, 
> (1+1)/n for the case K = 2. For K > 1, the critical velocity jump below which the 
solution is stable is found numerically by integrating equations (14). Some examples 
(for the case 2 = 1) of stress vs slip response and related trajectories in thef; C#J phase 
diagram are shown in Figs. 8 and 9 respectively. For K = 2, the system exhibits finite 
amplitude periodic oscillations for a velocity jump V,/V, less than (1 +A)/2 (= 2 in this 

case), Fig. 8a. For K > 1 and Vi/V, near to but less than the critical velocity jump 
(subcritical), the friction stress oscillates initially but quickly evolves to the new steady 
state level, Fig. 8b. For K > 1 and Vi/V, greater than the critical velocity jump 
(supercritical), the friction stress drops rapidly towards - cc (unstable), Fig. 8c. For 
K > 2 and Vi/V, far less than the critical value (strongly subcritical), the friction stress 
drops rapidly to the new steady state value immediately after the instantaneous 
increase, Fig. 8d. This is similar to Fig. 2b. Figure 9 shows thef; 4 phase plane with a 
closed orbit for the case with K = 1, an inward spiral for K > 1 with subcritical velocity 
jump, an open trajectory for supercritical velocity jump, and a fairly direct path for the 
strongly subcritical case (similar to the path 2, 3 in Fig. 2~). 

Numerically computed stability boundaries for the type of perturbation in Fig. 7c are 
shown in Fig. 10, where the critical load point velocity jump (V,/V,),, is plotted against 
normalized spring stiffness k/n (= I&,, = k/k,,) for various values of 1. Each solid line 
divides finite amplitude perturbation regions (above and to the left), giving unstable 
response (V + cc in finite time), from regions giving a stable response (below and to the 
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FIG. 8. Stress response due to load point velocity jump ratio VI,‘!‘,, (V, = new load point velocity, VO 
= original load point velocity); K,, z /I = 1 in all cases. (a) Subcritical case K = 1, VI/V, = 1.9 < (V,/V&, 
= 2. (b) Subcritical case ti = 2, V,/V, = 5.9 < (V,/V&, = 6. (c) Supercritical case ti = 2, V,/V, = 7 

> (VI/V&, = 6. (d) Strongly subcritical case K = 6, VI/V, = 5 <<(VI/V&, = 375. 

right) in which the system evolves to a new steady state consistent with the new load 
point speed VI. The vertical segment of each solid line in Fig. 10, rising from K/A = 1, is 
the locus of perturbations giving sustained periodic response. These vertical segments 
correspond to the vertical dashed line in Fig. 4a, and the sudden deviation of that 
dashed line to the right is meant to reflect the corresponding deviations of the stability 
boundaries in Fig. 10. In the next section we examine a stability diagram like Fig. 10 for 
the two state variable case and find that it has a similar but somewhat richer structure. 
The dashed lines in Fig. 10 are apparent asymptotes, (l/A) exiL, of the solid lines. We 
note as a curiosity that when il = e - 1, the apparent asymptote and numerically found 
solid line coincide. 

DIETERICH (1978), in arguing for the importance of spring stiffness in stick-slip, has 
presented a qualitative analysis applicable to the case just studied. His reasoning, 
applied to the friction law considered here, is as follows. In changing the slip rate from 
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FIG. 9. TheJ; q5 phase diagram for the cases described in Fig. 8. Closed orbit (permanent oscillation) for K = 2. 
and subcritical velocity jump. Inward spiral to new steady state for subcritical velocity jump and K > 2. Open 
trajectory for supercriticaf velocity jump. Direct path to new steady state solution for strongly subcritical 

velocity jump. 

V, to I’, the friction force decreases by (B-A) In (V,/V,). This drop occurs roughly over 
the slip distance L. If the friction force drops more rapidly with slip than the spring 
force, slip is predicted to be unstable. Dieterich’s predicted stability boundary is thus 
(B-A) In (V,/l/,),,/L = k or (V,/V,),, = e K’a This result is close to ours for 1 E 1 and . 
lc > ,J. (His analysis was performed without recognition of the direct rate dependence 
and thus corresponds roughly to A -+ 0 and i + co). For K < /z this reasoning leads to 
the incorrect result that finite perturbations are required for instability. 

When T, > 0 and VI/V, = 1, the situation corresponds to Fig. 7d. ln this case, and 
with K = J., the system will become unstable if eer > (1 + ,?)/A. Since the state 0, at the 
end of the relaxation stage is a monotonic increasing function of T,, the instability of the 
system can be regarded alternatively as governed by T,. That is, if T, is greater than a 
critical value T,,, which is in turn related to the quantity In (I+ I/,?), the system becomes 
unstable; otherwise, it is stable. The critical relaxation times T,, with different K, not 
necessarily equal to 5 have been found numerically and are plotted in Fig. 11. For r, in 
the regions below and to the right of the solid lines, the system is stable and evolves 
again towards steady state when motion of the load point resumes. For T, values in the 
regions above and to the left of the solid lines, the system is unstable with V -+ GO in 
finite time. The asymptotes of the solid lines are not fully known but seem to be in the 
form T = n emK where m = m(A) and n = n(i). 

Figure 12 shows some numericaliy computed responses of stress vs sliding distance 
for different relaxation times and stiffnesses. As described by DIETERICH (1981) during 
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RATIO ,V,/V, 

1000 : 
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1. 
0 

OIMENSIONLESS STIFFNESS, K/X 

FIG. 10. Stability boundaries for load point velocity jump perturbations as in Fig. 7~. Each solid line shows 
the critical value of VJV, as a function of spring stiffness K, for the value of il z ic,, indicated on that line. At 
rc/;( = 1, (V$$),, = (1 +,I)/n as deduced in the text. The dashed lines show apparent asymptotes given by 
VI/V, = (l/n) e+. For I = e- 1 = 1.71828, the apparent asymptote coincides with the solid curve. 
Perturbations above and to left of the boundary line cause V -+ a, in finite time. Those below and to the right 

cause an approach to the new steady state at speed V,. 

relaxation, the friction stress relaxes according to the spring force law, giving a slope 
- K in the stress vs slip plot. At the end of relaxation, the load point resumes the original 
speed. This sudden step increase in load point speed causes a rapid increase of stress 
and slip rate. Afterwards, as the slip progresses, the negative dependence of state on 
speed causes the stressfto decay, leading either to instability or to a possibly oscillatory 
return to the original steady state stress. 

The reason for the appearance of a strength peak can be seen from equations (4). 
During relaxation, I/ < V, and hence 8 evolves continuously (and incompletely) 
towards values P(V) > S’“(V,). Since I/ < V, not only during relaxation but also 
during the resumed motion of the load point, so long as ? > 0 (as is evident from 
equations (7)), we have that B > es”( V,). Hence to again reach steady state it is necessary 
that f pass through zero (i.e. that z exhibit a strength peak) and since V = V, at the peak 
by equations (7), we have the result 

Zpeak - P(Vb) = BP& - P(V,) > 0. 
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FIG. 11. Critical dimensionless relaxation time T, vs K/A for perturbation as in Fig. 7d. Regions above and to 
left of the curves are unstable (V + co in finite time) while regions below and to the right the curves are stable 

(return to steady state). The apparent asymptotes are of the form T, = n(A) em(‘)‘. 

6. PERTURBATIONS. Two STATE VARIABLE FRKTXON LAW 

Comparison of Fig. 4b with 4a suggests that the responses to perturbations will be 
somewhat more complicated for the two than for the one state variable friction law. It is 
not possible to present as comprehensive a picture of results for the two variable case as 
done here for the one state variable law. We have, however, done extensive numerical 
integrations of equations (6) and (7) for a spring-slider system with a two state variable 
friction law, beginning in steady state and perturbed as in Fig. 7c by sudden increase in 
load point velocity from V, to V1. 

Figure 13 shows a stability boundary plot, analogous to that in Fig. 10, summarizing 
results of the numerical integrations (for the parameters /I1 s B,/A = 1.00, /I2 = B,/A 
= 0.84, and p E Lx/L2 = 0.048). In the region marked ‘unstable’ the sIip speed 
becomes unbounded in finite time, and in that marked ‘stable’ the perturbed system 
evofves towards the new steady state at speed Vi. However, between these regions there 
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FE. 12. Friction stress response due to relaxation and resumption of load point motion at initial speed. The 
slope of the curve during the relaxation is -K (spring constant). (a) Subcritical,(b) marginally subcritical, and 

(c) supercritical for ti = 2 and I E K,, = 1. (d) Subcritical in stiff system, K = 5 and 1, = 1. 

emerges a finite region of permanently sustained, bounded oscillations of V about V,. 
The crosses show points on the boundary of the region ; a change of perturbation 
parameters VI/V, and/or IC/K,~, too small to be seen on the figure, changes the response 
from bounded fluctuations to unstable at the upper and left boundaries and from 
periodic to constant solutions at the right boundary. (The sustained oscillation region 
degerates to the vertical line segment K = K,, (= A) in Fig. 10 for the one state variable 
friction law ; the solid line orbits in Fig. 5 and uppermost curve in Fig. 8 are examples of 
the oscillations in that case). 

For the two state variable friction law, response within the sustained oscillation 
region involves motions which ultimately become the periodic stable limit cycles, 
predicted for stiffness K near but below K,,, by the Hopf bifurcation analysis, Fig. 4b. 
The response includes also period-doubled bifurcations of those limit cycle motions 
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FIG. 13. Stability domains (with approximate determination of boundaries ; see text) for system with two state 
variable friction law, beginning in steady state at speed V0 and subject to load point velocity jump to VI as in 
Fig. 7c. Based on b, 3 B,/A = 1.00, /I2 = B,/A = 0.84, L,/L2 = 0.048; dimensionless stiffness K is defined 
consistently with equation (12b) and K,, = 0.876. Note that region of permanently sustained oscillations 
(which may be either periodic or chaotic) opens between unstable region (V + cc in finite time) and stable 

region (approach to new steady state for speed V,). 

and apparently chaotic (aperiodic) motions, as RUINA (1983) has already shown by 
imposing a given Vi/V, and plotting the numerically integrated response from 
equations (6, 7) for progressively lower values of IC. 

Figure 14 shows our numerically integrated stress versus slip records for each of the 
perturbations of steady state slip, marked by letters A, B, . . . , J, K in Fig. 13. The letters 
are listed in order of decreasing stiffness, and we find that for a given stiffness within the 
oscillatory region, the same final periodic motion (limit cycle) results no matter what 
the initial perturbation; compare D with E, F with G, H with I. If we examine in 

succession records B, C, D or E, and F or G, we find that the amplitude of the limit cycle 
response increases as IC is decreased from rccr, as is expected from the qualitative plot of 
oscillation amplitude E vs K in Fig. 4b. As the stiffness decreases from that for F or G 
(0.90 K,,) to that for H or I (0.86 K,,) the system passes through a period-doubling 
bifurcation, as is evident from the altered form of the records. Complicated and 
possibly chaotic motions result when stiffness is further reduced to a value very close to 
the left boundary of the sustained oscillation region in Fig. 13 ; see record J. By analogy 
with other better studied cases, one may conjecture that the system undergoes a 
sequence of period-doubling bifurcations as IC decreases from 0.86 K,,. The left 
boundary of the sustained oscillation region may possibly coincide with the chaotic 
limit of an infinite number of such bifurcations, or it may simply coincide with the 
chaotic-appearing result of a finite number of bifurcations. 
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FIG. 14. Some representative stress vs slip records following load point velocity jump perturbations, for 
values of V,/V, and K within (B, C,. , I, J) or outside (A, K) the region of permanently sustained oscillations 

in Fig. 13. 

Record A in Fig. 14 is representative of the response to perturbation in the stable 
region. The system approaches the new steady state (V = Vi > V,, z = ti < T,J with 
gradually decaying oscillation as shown when K is near to ICKY, but with rapid decay at 
larger K. The route to instability is different at the upper and left boundaries of the 
sustained oscillation region in Fig. 13. Perturbations at the upper boundary slightly 
greater than those for E and I cause similar initial response to that shown in Fig. 14, 
except that the system never recovers from the initial stress drops, during which V --f co. 
Record K in Fig. 14 shows a typical result just beyond the left boundary; the motion is 
initially oscillatory with growing amplitude, and ultimately a stress decrease becomes 
large enough that there is no recovery and IJ’ -+ m. 



Rate and state dependent friction 193 
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FIG. 15. Experimental record for polished quartzite at constant normal stress (RUINA, 1980), showing effect of 
perturbations of load point speed V,, stepped between 0.8 and 1.0 pm/set, and of stepped decreases in the 
spring stiffness k, simulated by servocontrol, on generation of oscillations. Apparent decreases of 6, 

represented by dashed line segments due to inadequacy of control system during rapid stress drops. 

The oscillation amplitudes in Fig. 14 can be compared to the scale division of 2 
shown for the dimensionless quantity (r - r&A. Since the initial steady state stress 2. 
would typically be of order 60A (e.g. in Figs. 3c, d, -co/~ cz 0.55 to 0.60 and A/a s 0.01 I), 
this scale division represents a stress fluctuation of the order of 3 to 4% from the steady 
state value. Hence the stress oscillation that we show in Fig. 14 represents a smaH 
fraction of the total friction stress, but this small fraction (more precisely, the 
constitutive relation which governs it) is critical to determining whether slip at constant 
normal stress is stable or not. 

Experimental results by RUINA (1980) for sliding on polished quartzite surfaces, 
reproduced here as Fig. 15, show some but not all of the features just predicted. Ruina 
continually stepped the load point speed V, between 0.8 and 1 .O pm/see, and reduced 
the effective spring stiffness k in steps. This stiffness alteration was simulated 
eIectronica?ly through servocontrol, there being no actual change made in any eiastic 
elements of the test apparatus. Sliding at high stiffness k was stable, but oscillations 
developed as stiffness was reduced to the range shown, in the plot of ~/CT vs load 
point displacement 6,. They do not seem to be characterizable as simple limit cycle 
oscillations, perhaps because the system is continually re-excited by electronic noise or 
perhaps because there was an inadequate wait before a new perturbation was applied. 
Nevertheless, two features of the experimental response shared by our calculations are : 
(1) the amplitude of the observed oscillation seems generally to increase with decreases 
in simulated stiffness, and (2) the oscillations exhibit break-ups into repeated pairs of 
peaks that appear to be compatible with period-doubling. 

The quantity 6,, is shown to decrease (dashed fines) during rapid stress drops at low 
stiffness. This happens because the servocontrol responds to a feedback signal 6e, 
interpreted as load point dispIacement, which is the sum of a displacement measured 
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somewhat remote from the slip surface and a constant times the measured force ; 
variation of the constant simulates change of stiffness. The control is intended to make 
d&,/dt coincide with the prescribed V,, but it cannot do this accurately during very 
rapid drops in force and, instead, there result the slight decreases in the sum 6, shown 
by the dashed lines. 

Our prediction of the critical stiffness from equation (12b) is K,, = 0.876, using 
constitutive parameters cited earlier for the Ruina quartzite data. Since A/a = 0.011 

and L, + L, = 5.45 pm in this case, the corresponding prediction of k,,/a is O.O035/pm. 
This may be compared to the value O.O043/pm at which the stable range is found 
experimentally to be passed in Fig. 15. 

7. CONCLUSIONS AND DISCUSSION 

Quasi-static slip motion and stability has been analyzed for single degree of freedom 

elastic systems, Fig. 1, loaded by imposed spring motions. These systems follow rate 
and state dependent friction laws that incorporate approximately features observed in 
rock sliding experiments. Most results presented are for the one state variable law of 
equations (4), Fig. 2; some are for the more elaborate two state variable law of 
equations (6), Fig. 3. The laws incorporate positive instantaneous and negative long 
term (steady state) dependence of friction stress on slip speed r/; with stress changes of 
both types proportional to In 0. 

The critical spring stiffness k,,, from linearized analysis of motions near steady state 
slip, was found to retain significance for general non-linear motions and their stability. 
This critical stiffness has the property that within linearized theory, slip in a steady state 
consistent with uniform imposed load point speed V, is stable if k > k,,, unstable of 
k < k,,, and shows sinusoidal oscillations of V about V,, in response to small 
perturbations, when k = k,,. The oscillations decay or grow in amplitude when k is 
slightly increased or decreased, respectively, from k,,. The critical stiffness is given by 
equations (12, 13) for the adopted friction laws and is independent of slip speed for 
them. 

For a system subject to the one state variable friction law, and on which motion at 
uniform speed V, is imposed at the load point, we have shown (by combination of direct 
trajectory determination and Liapunov methods, equations (18) to (21) and Fig. 5) that : 
(i) All possible motions with stiffness k < k,, are unstable in the sense that V-+x in 
finite time. (ii) When k = k,,, all motions which begin sufficiently close to steady state 
exhibit permanently sustained finite amplitude periodic oscillations of I/ about V,; 
those which begin further from steady state are unstable. (iii) All motions with stiffness 
k > k,, are stable (in that a steady state is approached with I/ -+ V,) if the motions begin 
sufficiently close to steady state; those which begin sufficiently far away are unstable. 

Boundaries between the stable and unstable responses mentioned above have been 
determined for some specific types of finite perturbations of systems that begin in 
steady state slip. Load point velocity jump (Fig. 7c) and relaxational (Fig. 7d) 
perturbations are considered ; in the latter, motion of the load point is stopped for some 
time and then resumed at uniform speed. Results show that in systems with k > k,, the 
amplitude of perturbation (velocity ratio, relaxation time) necessary to induce unstable 
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subsequent motion increases exponentially with k at large k (Figs. 10, 11). Also, the 

stress versus slip relations that follow such perturbations exhibit sharp peaks of 
strength followed by a rapid decay either to instability or to the appropriate steady 
state level, with or without oscillations (Figs. 8, 12). 

The possible trajectories in a phase plane, Fig. 6, of systems following the one state 
variable friction law and having a stationary load point are determined explicitly, (25). 
Motions are stable (standard relaxation behavior) or unstable (V + co in finite time) 
according to whether they start below or above a dividing straight line in the phase 
plane, and it is shown that all motions, whether with stationary or moving load points, 
are unstable if they reach states above that dividing line. 

Insofar as we have determined the motion and stability of a system subject to the two 
state variable friction law, results are qualitatively similar to those for a system subject 
to the one variable law, except that considerably more complicated motions are 
possible for k near to but less than k,,. The first suggestion of this was provided by the 
Hopf bifurcation analysis (Fig. 4b), through which stable limit cycle oscillatory 
solutions were shown to exist, in response to motion of the load point at uniform speed, 
for k in some small neighborhood below k,,. A numerical investigation of the response 
of a specific two state variable system, beginning in steady state slip, to a sudden jump 
in load point velocity ( V0 to V,) is summarized in Fig. 13. It shows unstable (V + co) and 
stable (V -+ V1) regions, located similarly (in a V,/V, vs k/k,, plane) to those for the one 
state variable analysis, but also shows a region of permanently sustained oscillations 
of I/ about V,. Representative examples of these oscillations, Fig. 14, were shown to 
include not only the periodic limit cycle oscillation from the Hopf analysis, but also a 

period-doubled bifurcation of it, and apparently chaotic bounded oscillations. 
We emphasize that the results here follow specifically from quasi-static analysis of 

single degree of freedom systems slipping in conformity with the friction laws of 
equations (4) and (6). It remains an open question as to what extent they are 
representative of response for more complex systems or for systems following other 
realistic friction laws of the state variable form. 
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