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3. Fracture Theory and Its Seismelogical Applications

3.1 INTRODUCTION

Fracture phenomena pose significant geophysical problems over a vast
range of size scales. These encompass the atomistic and microstructural
scales of interest for an understanding of cataclastic rock deformation
and friction in the manner of materials science, the laboratory scale at
which study of “macroscopic” crack growth and friction phenomena
is usually attempted, and, finally, the field scale which may range from
mining rockbursts to large crustal earthquakes extending over hundreds
of kilometers. In this review we emphasize the study of fracture through
methods of continbum mechanics and discuss applications to pre-seismic
and dynamic earthquake rupturing.

The presentation is organized around theoretical models of the fracture
process that envision rupture to occur along a planar zone of displacement
discontinuity within a surrounding continuum, usually taken to be elastic.
The “ruptured” portion, which we may call the crack, may be subject
either to boundary conditions of a fixed stress drop, in which case some
fracture energy must be ascribed to processes occurring at the crack tip,
or it may be subject to boundary conditions which are themselves a consti-
tutive relation between local stress and relative displacement across the
crack. In the latter case, the constitutive relations must generally exhibit
a reduction of strength with rapidly imposed displacement. In more elabo-
rate but more realistic versions they may also exhibit a dependence of
strength, at least for shear cracks, on slip rate and surface state, where
the state itself evolves with ongoing slip in a manner that is consistent
with weaking in rapidly imposed slip and with restrengthening in stationary
or near-stationary contact. While the surroundings of the crack zone
are normally taken to be elastic, as mentioned, some progress has been
made with more complicated rheologies, such as general linear viscoelastic,
non-linearly viscous Maxwellian, rate-insensitive elastic-plastic, and fluid-
infiltrated poro-elastic. Research on the first three of these has been exten-
sive in technologically-oriented fracture mechanics; probably, their wider
examination in the earthquake context would be productive, although
we do not discuss the topics here.

Other theoretical models of the fracture process examine a non-elasti-
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cally deforming mass and seek to determine conditions under which it
becomes unstable. This instability may occur dynamically, i.e. by lack
of a continuing quasi-static solution to boundary conditions of slowly
imposed stress or displacement. It may alternatively, or additionally,
be in the form of a concentration of subsequent deformation increments
into a narrow zone or shear band, as a result of what would be a bifurca-
tion in a uniformly deformed system. Ideally, one might like to combine
concepts and to imagine a complete fracture model in which inelastic
deformation occurs in some region at a crack tip, and in which this deforma-
tion locally reaches conditions for concentration of deformation into
a narrow zone which joins onto the crack and ultimately becomes a prolon-
gation of the crack itself. At present there scems to be no complete and
mechanically self-consistent analysis of a fracture process along these
lines, although various ad-hioc models have been attempted to address
initiation of cracking from an inelastically deforming region.

In comparing the fracture models around which we organize this
review to reality, it is perhaps important to remember that fracture processes
are strongly sensitive to heterogeneities. For example, what might be
described at the laboratory scale as stable inelastic compressive deforma-
tion of a confined brittle rock specimen may involve, at the grain scale,
a series of unstable tensile cracking and frictional slip events. Further,
these give readily detected acoustic emissions. Similarly, in application
of fracture models to the much larger scale of earthquakes, it is important
to remember that local instabilities may be occurring over a range of size
scales while the overall processes of, say, slip along a fault or stressing
of some region may he stahle when judged at an appropriately large size
scale. Thus, what is described as stable, quasi-static advance of a crack-
like zone of slippage over the size scale of large crustal earthquakes may,
at a smaller size scale, involve dynamic instabilities in the form of back-
ground seismicity or perhaps foreshocks to a coming instability at the
large crustal scale. Ohviously, the local dynaniic instabilities may occur
over a range of magnitudes, some of which may involve sizes of too large
a scale to be considered “microscopic™ hy comparison to the large crustal
scale examined.

Among other sources, the material which follows in this chapter draws
extensively on a review by Dmowska (1983) on crack dynamics and its
seismological applications, and on portions relating to fracture modelling
in geological materials in an article by Rice (1980) on the mechanics of
earthquake rupturc, These references and their extensive bibliographies,
to some extent updated here, may be consulted for a fuller treatment.
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3.2 ELASTIC-BRITTLE CRACK MECHANICS

By an “elastic-brittle” crack model, we shall understand a model in which
material outside the crack remains ideally elastic and in which there is
an abrupt drop in stress o,, on the plane of the crack (taken as x, = 0)
as the cracked region is entered {see Fig. 3.2.1). In the case of tensile cracks
(mode I, possibly in combination with II and/or III) the stresses o,; (J
= 1, 2, 3) drop to zero on the crack plane (or to a value consistent with
the pressure of some crack-filling fluid). For shear cracks (modes II and/or
Iil), which are of interest for earthquake processes, the stress o,, and
displacement v, are continuous across the crack, whereas the shears o,,,
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Fig. 3.2.1. Elastic crack model. (2) Coordinates at tip, with crack piane x; = 0 and
crack front tangent to x3 axis; stress 0,,; displacement gap Aw,. (b) Three modes; I is
tensile opening, T1 is in-plane shear, TI1 is anti-plane shear.



180 FRACTURE THEORY AND SEISMOLOGICAL APPLICATIONS Ch. 3

9,3 are assumed to drop abruptly to constant or slowly varying frictional
values ¢f,, of; on the crack surface, there being associated discontinuities
in #;, w3. The abrupt drop of resisting stress on such a crack plane, em-
bedded within an otherwise elastic solid, leads to singular stress and strain
fields at the crack tip. Hence, the actual flow of energy to inelastic processes
near the tip of an advancing rupture, leading to breakdown of strength,
is represented within the elastic-brittle crack model by the elastic energy
G that is released per unit area of new crack surface as the singular crack
tip stress and strain field advances through the material. That is, in the
model the entire rupture process is confined to an arc (crack tip) of singu-
larity surrounding the (crack) surface of previously ruptured material;
the material outside the crack has its undisturbed elastic properties. This
elastic-brittle crack model, however unrealistic in detail, seems to provide
an adequate approximation of many seismological problems (e.g. static
and dynamic models of earthquake rupture, described as one planar crack
and/or its development), Other models of cracks are also used, allowing the
rupture process to ocour in an annular zone, rather than an arc, surround-
ing the crack surface. This group of models, considered in Section 3.4,
gives an explicit, if oversimplified, representation of the breakdown process
in shear, in terms of a reduction from some high peak strength o7 to the
residual frictional strength o within a zone of strength degradation at the
crack tip.

3.2.1 Static crack tip stress fields; stress intensity factors

In elastic-brittle crack models the strain field in general is highly concen-
trated at the crack front, which is the site of a strain singularity, while
the strain e;; and all displacement derivatives du;/dx; (where here x,
has heen chosen in a direction that is locally tangent to the crack front
at the point considered; Fig, 3.2.1) necessarily remain bounded and small
due to constraint of surrounding material. Consider the implications
of this remark in terms of the governing equations of an elastic field in
terms of displacements. These equations follow within the usual assump-
tions of linear and isotropic elasticity from

day,fdx; = pd*u,{or?

(3.2.1)
Oy = Adyy Outypf Oxy+ 12(B1iy O, + By 0x))

(A, u are the Lamé elastic moduli, g is the density), and hence have the
Navier form
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Evidently, for asymptotic solution for the crack tip singular field from
these equations, all terms involving 2/8x; can be deleted on grounds
that they either are bounded or are one order less singular than the remaining
terms with spatial derivatives. Also, in the case of a stationary or only
slowly advancing crack, the inertia terms pd%u,/0t? may be disregarded
pear the tip by comparison to tbe spatial derivative terms (see Section
3.24 to follow for inclusion of dynamic effects in rapid crack growth),
and hence the near-tip singular field satisfies the statical equations

é P alh 3“2 ( 92 32 )
(A+p) [ ox, 7 ox, ’0]( ax, ¥ ax, )-l-p ax? + dx3

x [y, tr, u3] = [0,0,0] 3.2.3)
These equations, valid asymptotically for tbree-dimensional crack problems,
are the same equations which govern two-dimensional elastic plane strain
(for w, and u,) and anti-plane strain (for u;) fields. Hence their solutions
may be written through well-known methods of two-dimensional elasticity
{(Muskhelisbvili, 1953) in terms of analytic functions @({), »(0), @({)
of the complex variable { = x,+ix,

2u(uy+iny) = G—)p) -l O -
2ipy = (@)@
wbere i is the unit imaginary number, » is Poisson’s ratio, and the overbar
denotes complex conjugation. The resulting stresses are

O3+ 022 = 033fy = 29"@)-{-2?(?)

O3 —0y, +2i0); = 229’“(0']' 2y'(%) 3.2.5)

032tios; = o'(])

(3.24)

Following the method of Rice (1968a), based on analytic function
theory, the only singular solution of these equations consistent with bounded
tractions on the crack faces and giving finite displacements is

p(l) = (K, —iKy) (/2m)"?

y() = (K, +3iK,) ({/8n)'/? (3.2.6)

w({) = 2K5(¢/2m) 2
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where K,, K,, K; are real quantities chosen to coincide with standard
definitions of Irwin’s crack tip stress intensity factors {e.g. Paris and Sih,
1965). Here, however, the K’s have been given subscripts such that X
corresponds to a crack displacement discontinuity Au;, where

Auy = wy(xy, 0%, x3)—1y(x,, 07, x3) = tloen—tylo=—n
the latter with reference to Fig. 3.2.1, and induces concentrated stress g,
along the x, x; plane ahead of the crack tip. Thus X, corresponds to mode
I, X, to mode II, and X, to mode III; i.e. with the usual method of denoting
modes by Roman numericals, Fig. 3.2.1,

[Kn, K, Km] = [Kl » K, Ka]
In particular, the stress distribution acting on the plane 8 = 0 directly
adjacent to the crack front is

O2il0=0 = K)f@rr)' 12 + 0%+ O('17) (3.27)

where the r~!/2 singular term is calculated from the equations for the
analytic functions above, where the bounded term of, is the limiting value
of the traction acting on the crack surfaces # = +w as r — 0, and where
the additional terms, denoted by the order symbol, vanish at the crack
tip. Similarly, the displacement discontinuity along the crack is

Au, = [(1-9)K;+v8;3 K3)(8rir) 2 fu+ O(32), (3.2.8)

where » is the Poisson ratio 4/2(1+ ).

The full angular distribution of tbe r~!/2 singular stress field, and
resulting r1/* displacement field, may be determined by substitution of the
solutions for ¢, y, w above into the equations for o,; and ; in terms of these
functions. The results are given in many sources {e.g. Paris and Sih, 1965;
Rice, 1968a; Lawn and Wilshaw, 1975, which contains plots of various
components against §) and are not reproduced here.

Many solutions to elastostatic crack problems have been developed,
and extensive tabulations of solutions are given by Paris and Sib (1965),
Tada et al. (1973), and in a series of books edited by Sih (1973, 1975).
Certain features of solutions are now cited for some simple problems
of planar cracks, on x, = 0, which are well isolated from boundaries
of the crack-containing body. Suppose the loadings on the body are such
that a stress field ¢%,(x,, x;, x;) would exist in tbe body if the crack surfaces
were constrained to have zero relative displacement, but that a stress
o4, is actually transmitted across the crack plane in the natural cracked
state, The stress drops Ag; (variahle with positions x;, x5 along the crack
plane in general) are defined by

AG‘J(X.I ) x3) = Ug}(xl s 0: JC3)— O‘{J{xl ] Ia) (3'29)
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Now, for a “tunnel” crack, extending indefinitely in the +x; directions
and with edpes at x; = + a, which sustains uniform stress drops, the relative
displacements along the crack surfaces are given by

Auy = 2[(1 —)Aa,+8;3A0,)(a? —x3) 12 [ (3.2.10)

whereas the stress acting on the crack plane outside the crack (|x,| > @)
is given by

Fay(xy, 0, x5} = a,(x,,0, x3)+Adj[|x1[(xf—az)'”2— 1} (3.2.11)

By comparison of either of these results to the previous expressions for
near tip fields in terms of stress intensity factors, it is evident that

K; = Aoy(na)!/? (3.2.12)
Another problem which has a simple but useful solution is that of the
circular crack, with front at x}+x2 = @* along x, = 0, subject also to a

uniform stress drop. In this case the relative displacements of the crack
faces are

Any = 4(1 —%) (QAc;—v8,,A0;) (@ — x3 — x3)H/2/(2—v) mp (3.2.13)

and the stress intensity factors at the point x, = a, x; = x3 = 0 along the
crack front are given by

[Ky, K3, K5] = [280,/(2—7), Agz, 2(1 —9) A0y /(2—)] (4a/m)'/?
(3.2.14)

(this corrects eq. (5.13) of Rice (1980), where the factor (1—») for K,
is missing).

The results given thus far could be derived from the result of Eshelby
(1957): A homogeneous ellipsoidal inclusion, embedded in a homogeneous
elastic body subject to remotely uniform stress, undergoes a state of uni-
form strain. By specialization to an inclusion of vanishing moduli, and
then letting one principal axis of the ellipsoid approach zero so that the
ellipsoid degenerates to a crack, we conclude that for uniform stress drops
Ag; on an elliptical crack occupying the region

xa®+x3fe? <1 onx,=0
the relative displacements must be given by

Auy = 4, ;A0)(1 —xifa®—x3{c?) P u (3.2.15)
where the matrix A4;; of coefficients, necessarily diagonal for the given
choice of axes, is homogeneous of degree one in 4 and ¢, and dependent

also on the Poisson ratio ». Values of the A;; can be obtained either by
specialization of the results by Eshelby (1957), e.g. Budiansky and O’Con-



194 FRACTURE THEORY AND SEISMOLOGICAL APPLICATIONS Ch. 3

nell (1976), Budiansky and Rice (1978), or by an energy-based argument
stemming from work of Irwin (1962) and given by Hoenig (1978). Pre-
suming a > ¢,

Ay =201 =»)ck2 {(K2—»)E(R)+»(1 k) K(K) )}

Az = 2(1—v)e/E(k)

Azy = 2(1—v)ek? {{K2 +»(1 =K E(R) —v(1 — kP K(K) } -1

A=Az = A3 =A3 =43, =4,5=0 (3-2-16)
where k? = 1—¢?/a?, and where K(k) and E(k) are the complete elliptic
integrals of first and second kind, respectively.

As an application of the foregoing solution for Au; under uniform
stress drops, we apply an elegant theorem by Madariaga (1979; see also
Rice, 1980) based on elastic reciprocity to state the following: Let the
elliptical crack considered above be subjected to an arbitrary, non-uniform

distribution of stress drop, Aa;{x,, x;). Then the components of the moment
tensor M;, of the relative displacement distribution are given by

Mu =i S(auﬁllj-k ajzAuf)dxldxa
5

= (di2Ay;+ 952410 S‘ﬁuk(xls x3)(1 —xt/a® —x3fe?)2dx, dx, 3.217

8
where § denotes the surface of the elliptical crack and &;, enters as the §
component of unit normal to this surface, Thus, for example, if only the

stress drop component A, is non-zero, the non-vanishing components
of M;; are

M=M=y SAude
8

= Ay § 80y (xy, x5) (1 = x3fa? — ¥3[c?)!2dx, dx, (3.2.18)
5

and for the special case of a uniform stress drop this reduces to
My, = My, = 2nfPacd,Av, (3.2.19)
[= 16(1—+)a*Ac,f3(2—») when ¢ = q]
The result above for M, is used extensively to estimate Ar; (which should
perhaps be called the nominal shear stress drop) from seismically observed
moments when some independent means (aftershock zone size, surface

breakage, geodetic changes, corner frequency of spectrum) is available to
estimate the size of the rupture. The nominal stress drops estimated thereby
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for large crustal earthquakes generally fall in the range of 1 to 10 MPa,
with values in the 3 to 6 MPa range heing most representative (Kanamori,
1977).

However, it should be understood that only very smooth rupture propa-
gation on a uniform fault surface would be approximated successfully
by a uniform stress drop model, and, in reality, it should be expected that
local stress drops fluctuate highly along the rupture surface and such a model
would pive only the (weighted, e.g. as in eq. (3.2.18)) averape value of a
real stress drop (see Aki, 1979; Madariaga, 1979; Rice, 1980; Rudnicki
and Kanamori, 1981). It might be also noted here that many large shallow
earthquakes represent “multiple events” rather than the development
of one planar crack, and thus more sophisticated crack models should
be used to approximate the real source process. For example, rupture
models with harriers along a single fault surface, Section 3.3, show that
propagation may be slowed or stopped completely at some barriers on
the way, perhaps starting again on a disconnected fault surface in the
latter case.

It is expected that uniform stress drops models might provide better
approximations for deeper earthquakes than for shallow ones, because
events deeper than approximately 40 km seem to exhihit relatively smooth
spectra, possibly reflecting a greater uniformity of stress and material
conditions at such depths.

3.2.2 Integral representations for elastic-brittle cracks and integral equations

Returning to the case of the tunnel crack, another solution (which will
be useful for analysis of slip weakening models in Section 3.4) is that which
corresponds to a stress drop Ae; which is not uniform but, rather, which
varies with x; over the width —a < x; < +a of the crack; ie. Ag
= Ag;(x,). Further, suppose that the region x; < —a, x; =0 (i.e. the
portion of the crack plane lying to the left of the crack itself) is cut and
given the umiform relative displacements Au; = D,, where D,, D., D,
are given constants., These constants represent the net Burgers vector
of displacements within the crack. This problem is formulated conveniently
by singular integral equations (Muskhelishvili, 1953a, b; Bilby and Eshelby,
1968). Thus, observing that — dAw,(x,)/dx, can be regarded as the density
of continuously distrihuted line dislocations along the plane x, = 0, and
recalling that a line dislocation at x, = £ creates stresses elsewhere on the
x; axis proportional to 1/(x, —§), one has the integral representation
of the alteration of stress field o,; on x, = 0 in terms of relative displace-
ments
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# 1 d
T 2n(1-w) S X —¢& E[A”J(f)—*dnﬂua(s)]df

Here the integral is to be interpreted in principal value sense if [x;| < g,

and the relative displacement Au; must be consistent with the stress drop
distribution, such that

+a
__ 14 s
dai) =iy | o a Bu® - rontusilae
for —a<x;< +a (3.2.20)

and must, further, be consistent with the given net dislocations D; within
the crack

+a d

S @ Ay (H)d¢é = —D, (3.2.21)
Regarding the stress drop distribution as given, the second to last equation
is a singular integral equation with Cauchy kernel, and the supplementary
condition given by the last equation enables its unique solution

2 g @—g2yr

mu(a—x2)1 p x—¢ [(1—»)Ag)(&)

d
d_xA""(x) e

D
+w313Ada(ﬂ]dE—W, —a < x(=x,)< +a (3.222)

The associated stress intensity factors may be determined hy comparing
the above result, near x, = +a, to the asymptotic expression for Au,
near a crack tip (eq. (3.2.8)). Hence, at the respective crack tips +a,

+a

172 s
; S ( "ix) Agy(x)ydx+ e L, Gi2da)

17 (ma) J VaFx 2(1-)(=a)'?

Several comments are in order on possible generalizations of the solution
method just outlined. First, consistently with the elastic-brittle crack model,
it has heen assumed that the stress drop Ag,(= ¢3,—¢4)) is some given
quantity. More elaborate crack models would, however, relate ¢4, (and
hence Ag; also) to the current relative displacements Auy or perhaps, more
generally, to their recent time history in the manner of a functional relation

e — e et
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(see Section 3.4). In that case the integral eq. (3.2.20) remains valid but
now the Ay’s appear on the left also, in a generally non-linear manner,
Solutions must then be developed numerically as in work by Cleary (1976),
Stuart (1979a,b) and Stuart and Mavko (1979), some resulis of which
will be discussed subsequently in connection with slip-weakening models.
The basic formulation outlined above must also be modified for cracks
that are near to external boundaries, e.g. as in the Dmowska and Kostrov
(1973) analysis of a dip-slip fault. In this case the basic 1/{x, — &) dependence
of the stress field of a line dislocation in eq. (3.2.20) is modified, at least
for two-dimensional elastic fields, to

/(e — O] +A(xy, £)
where A(x,, £} is non-singular within the body considered, Hence the
integral eq. (3.2.20) contains a kernel with a regular term in addition
to the Cauchy singular term, Efficient numerical solution methods in
terms of Tchebychev polynomials (e.g. Erdogan and Gupta, 1972) are
available for this case.

Analopous integral equation procedures can be formulated for three-
dimensional crack problems. For example, let Uy,(x,E) be the elastostatic
Green's function for the region considered, i.e. the & component of dis-
placement at x due to a unit point force in the j direction at E, and let ¢y,
be the modulus tensor [da;; = ¢;;,,d(du,/dx,)]. By reciprocity, Uiy (x,E)
= Uy (%, x). Then by a well-known representation theorem, the change &y
in displacement field due to imposed relative displacements Aw, along
some surface S is

w9 = (LRI O @M@ (3224)

Here, if the sides of S are labelled + and —, then Au, = u} —u; and n,
is the unit normal to S pointing in the direction from — to +. The asso-

ciated stress field is given by
0y (X) = afy(x)+ Ceyrs(X) Dt (2)/ 0,

az
= o)+ Scu,,(x)—;’;f% o O ALEGE (3225

5

Now, consider the special case for which all external boundaries are remote
for the crack surface S and for which the modulus tensor ¢y, is spatially
uniform, In such a case the Green’s function is translationally invariant,

Un(X, ) = U,p(x—E) = U, (E—x) (3.2.26)
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Further, assume that § lies in the plane x, = 0 so that n, = §,,, let the
Greek index o range over the values 1 and 3 (i.e. over coordinates in the
plane of the crack), and, following an observation by Budiansky and
Rice (1979) for an analogous dynamical problem, note that by symmetry
of the modulus tensor and by the equilibrium equations satisfied by the
Green's function,

4 a(}m(g—'x) ad 8[7,,,,().-;_,‘) _
a&z [ 35,,, cm"p2] + 351 [ agm cmnpa] =0 (3227)

when £ # x. The second derivative of the Green’s function in eq. (3.2.25)
can be written as — 92U, (§—x)/0f,0&,, and the sum on the repeated
index s in that equation is done first as a sum over 1 and 3 (with s repre-
sented by «) and then by adding the additional term with s = 2, but simpli-
fied by eq. (3.2.27) above. Thus one obtains

Gy (X) = U?J(x) - (cljra Cmnp2

92 [}nr(g—x)
—Cijr2 cmnpa) S ——Au
),

H(E)dE &y (3.2.28)

which can be integrated by parts to give, since Au, vanishes at the crack
front,

Oy (X) . a?] (X) - (cl.lra Crnp2

~Curacomp) § 20D D sy, dy (3229)
s m a

This last equation is the three-dimensional version of the representation
given just before eq. (3.2.20) for two-dimensional elastic fields.
i For elastically isotropic materials,

‘ 1‘; Cl]rs = 1611 61': +ﬂ(6lr 6}; + 61; 6],) (3230)
) l and
! I U, (x) = 1 [(1 +3u) %— A+ y)’i"—;f,i] (3.2.31)

‘ i Thus, if we let x approach the plane S of the crack in eq. (3.2.29), thereby

{ evaluating stress components o,,(x) for x on S, and if we note that then
‘ 0,5 = 0f; = 69,—Ag,, where Ao, is the stress drop, there results after
. some computation the set of integral equations (see Weaver, 1977, or the
| ' low frequency limit of Budiansky and Rice, 1979, for details of the compu-
\ tation)

|
|
l
I 8reu(A+2p)
|
|
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- p#O+m) (R, 2
Bos) = — s SS e hn(dEdts
__ uA+p B [ Rabgy—Rg8, )
Aop®) = SS[H,‘ ( B 252
3R, Ry R,

0
R ]7&: Au(B)dE, dé&;

for x on S, where R, = £;—x,, R = |[E—x|, and where Greek indices
«, f and y range over 1 and 3 only. In cases for which the stress drop is
given, these are singular integral equations which can be solved numeri-
cally ; an effective procedure has been developed and illustrated by Weaver
(1977).

When the region considered contains boundaries or surfaces of dis-
continuity in elastic moduli which are not distant from the crack site,
the Green’s function can be written as

Urn(": E) = i\]rn(x—g)‘i'Hrn(x: g) (3233)

where the first term is the Green’s function for an unbounded homogeneous
solid with elastic properties identical to those, presumed locally uniform,
in the region where the crack occurs and the second, bounded term accounts
for finite boundaries or other nearby discontinuities. Then it is evident
that the integral expression relating stress drop Aoy(x) to Au,(x) are the
same as in egs. (3.2.32) above, except that the right-hand side of the equation
for Ac;(x) contains the additional term, calculated from eq. (3.2.25),

az}I-rn ’
- SCZIncmnpz ox g; g) Aup(g)del dEB
s sVCm

where the ¢’s here are moduli in the vicinity of the crack site, and hence
given for an isotropic material by eq. (3.2.30) in terms of the local 4 and u.
This addition to the integral equations has a bounded kernel and should
pose no special problems in numerical solution. To our knowledge, a
formulation like the one outlined here has not yet been applied for three-
dimensional crack problems in other than unbounded bodies. Some details
of the formulation require modification when the crack surface S intersects
a boundary because the transformation from egs. (3.2.28) to (3.2.29)
assumes that Au, vanishes on the boundary of S, and this would not be true
for a surface-breaking crack. A detailed analysis of the two-dimensional
(plane strain) integral equation formulation for a surface-breaking crack
has been given in the paper by Dmowska and Kostrov (1973).
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Another leature noted in that paper for cracks near houndaries (or
other discontinuities) is the following: Slip displacements Aw, and/or
Au, alter not only the shear stresses o,, and a,; along the crack plane
but, in general, also alter tbe normal stress o;,;. (Equations (3.2.32) show
that this same coupling of shear displacement to normal stress does not
ocecur for isolated cracks in homogeneous unbounded bodies), Hence, if
the boundary condition on shear stress along the crack is coupled to normal
stress, as will normally be the case for sliding friction, the shear stress
drops Ao, cannot he specified a priori. Suppose, for example, that one is
concerned with slip Au, along a shear crack under conditions for which
the resistive shear stress of, is not itself prescribed but, rather, an expression
of the kind 04, +nof, (where v is a friction coefficient) is prescribed along
the crack surface. In this case we can regard the linear combination of stress
drops

Ao, +nAc, = (03, +702,)—(af, +n0f;) (3.2.39)
as a given function along the crack. Thus, if we write the integral relations
between stress drops and relative crack surface displacements discussed
above in the symbolic form

Aaf(x) = La(x, §)+Auy(E) (3.2.35)
tbe integral equation Acg, = L,;+Aw, which would govern the case
without normal stress effects is replaced by the equation

Aoy +nA0y = (L +9L;,)e0u, (3.2.36)
for the given quantity in this case, where the coupling operation L, »
vanishes for an unbounded homogeneous body, eq. (3.2.32), and, in a
finite or non-uniform body, involves an integral operation on Aw, with
a hounded kernel,

Analogously to the static representation of eq. (3.2.24), we have the
well-known dynamical representation

ux, ) = | | ZOEEITD (@ @00, aEdr

-0 5(3) aE‘
(3.237)

where the dynamic Green’s function G,,(x,E,?) is the k component of
displacement at x, at time ¢, due to a unit point impulse applied in the
J-direction at § at time 0. Here the notation S(z) denotes the rupture surface
at time 1. By calculating o,,(x, 1)—ofy(x, 1) = c14q(x) u,(x, 1)/éx, from
tbe above expression it is possibie at least formally to develop integral
relations represented symbolically by

Aoy(x,t) = Ly(x,E, t—1)«AufE, 1) (3.2.38)
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and to interpret these as governing integral equations of crack problems
for which Ao, is prescribed. Budiansky and Rice (1979) have outlined
such a formulation for the case of planar cracks of fixed size subjected
to time harmonic Ao’s and responding in steady state with time harmonic
Au's,

However, the integral formulation of dynamic crack problems which
has thus far found most use in applications is that due to Hamano (1974),
developed and applied extensively by Das (1976, 1980, 1981) and Das
and Aki (1977a,b). In this formulation the solution for time-dependent
loading on the surface of a homogeneous elastic half-space (with boundary
at, say x, = 0) is used to construct an integral representation of the form

om0

Aux, ) =2 § § | Gux—E, 1-0Aa(E, 1)dt, dEsdv  (3.2.39)

- —@ =00

where x and E in this equation are field and source points, respectively,
on the planes x, = 0 and £, = 0, and G, (which is translationally invariant
for such choices of x and E) is the dynamic Green’s function for the clastic
half-space. In this case Ao, (E, 7), for example, is regarded as given over
the region S(7) occupied by the crack at time 7, and the condition Ax, (x, 7)
= 0 for x outside S(¢) converts the above representation into an integral
equation for Aoy (E, t) at points E lying outside the rupture. These points
extend to infinity in the &,- and &;-directions hut, in dynamical applications,
the necessity to deal numerically with an unbounded region is avoided
hecause waves have carried displacement signals only a finite distance
beyond the (typically enlarging) crack surface.

3.2.3 Energy release in crack growth; path independent integrals

Consider quasi-static growth of an elastic-brittle crack, Fig., 3.2.2, which
currently occupies a surface S (with bounding contour L, denoting the
crack front); we describe infinitesimal crack advance by the local length

" da (local erack
'l advance}
]

']

L{crack front)

Fig. 3.2.2. A three-dimensional crack surface S; bounding contour L denotes the crack
front and Jocal advance by amount dz (variable with position along L) is shown.
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of crack expansion da measured perpendicular to the crack front at each
point of L. The infinitesimal éa is a function of position along L, and
it is reparded as an arbitrary non-negative function for purposes of the
present discussion. A local energy release rate per unit area of crack advance,
namely G, is defined at each point along L by requiring that

8Wery = OE+ {niof)8(Au)dS+ {GoadL (3.2.40)
-4 L

for arbitrary distribution along L of crack growth da. Here the & quantities
are associated with the considered crack growth, W, is the increment
of work by applied forces (e.g. gravity) acting on tbe body during tbis
growth, and E is the elastic strain energy stored in the body. The equation
thus states tbat tbe excess of 8 W,,, over SE accounts for the sum of energy
dissipated by work of the (frictional) resistive stresses m;0f; acting on the
crack surfaces and by tbe energy flow GG per unit new crack area to break-
down processes at the advancing crack front,

If the external forces are conservative, as we suppose, the difference
between (E—E®) and W,,, Where superscript “0” denotes tbe “uncracked”
state (precisely, the arbitrarily chosen state for which we choose to say
that Ay, = 0 on S and identify the stress field then acting in the body
as ofy) and where W, is measured from zero at this “uncracked” state,
is given by tbe work of quasi-statically reducing the stress acting on the
crack from m o, to m0f), so that the relative displacements Ay, develop.
Hence (E— E°)—W,,, has no dependence on tbe particular process by
which the current crack surface S and distribution of n,o{. over it were
attained, but depends only on the location of that surface and current
stress distribution on it, If the crack surroundings and any displacement
dependent external loadings are modelled as linear elastic, we have

(E—E%)~Weu =—1 { (ol +mol)Au,ds (3.241)
s
Here the 1/2 results from linearity and the negative sign from the convention
adopted previously for .
Hence the equation defining G is

6[&S(n;dﬂ+nia{_,)Au1dS]—Snta{Jd(AuJ)dS= {GdadL (3242
5 5

L
The left-hand side of this equation is phrased exclusively in terms of quanti-
ties defined on the crack surface S. Further, by introducing the stress drops
Aoy along S, defined by

&UJ =n U?_,—n;d'{, (3.2.43)

AL
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and substituting for n;of; in the above relation, we can rearrange the left
side to

8( § miof, tuy+3A0,8u,dS| = § n,f, 6(Au)ds
5 5

= { 8(naf) Ay as+6 [3 § Ag,Au,ds] (3.2.44)
5 5

Noting now that of; is a fixed stress distribution, the variation in resistive
stress &(m;of;) along the crack surface during a growth increment is just
the negative of variation in stress drop Ag,, and thus the equation defining
Gis
3[4 §a0,au,ds] - § (A0 Au,ds = § GoadL (3.2.45)
§ s L

We recall from the various integral relations of the last section that,
for a given elastic body, the Au’s are determined uniquely by the distribution
of stress drops, Ag, on any given surface S. Hence the last equation shows
that G is determined, at each point along the crack front, by the position
of the crack surface, S, and by the distribution of stress drops along this
surface,

It is now advantageous to remember that the state which we denote
by “0” can be chosen rather arbitrarily. This is the state from which we
choose to measure relative displacements Aw; along the crack (i.e. we
say that v; = 0 at state “0"), and the only requirement for validity of our
formulae is that m;of; be identified as the stresses acting along S in the
state which we have chosen. For purposes of a certain calculation that
follows, we will make the choice of “0” as the state when the crack occupies
surface S, Fig. 3.2.2, just hefore the infinitesimal growth by da takes place.
Then Au; has temporary interpretation as the additional displacement
of the crack surfaces during the advance da and, indeed &(Aw) = Au.
In the circumstances, the second integral on the left in eq. (3.2.45), involving
3(Aoy) [ = —8(miof))], goes to zero faster than da and the portion of the
first integral that is carried out over all the crack surface except the part
newly created by the advance da likewise goes to zero faster than da.
Hence, just as in the classical calculation by Irwin (1960), the integral
involving $Ao;Au;, need be carried out only over the mewly generated
crack surface to have the requisite accuracy to first order in da. Further,
if the growth increments da are directed such that the crack surface is
continuously curved, without abrupt kinking (i.e. discontinuity in direction
of the normal p), the near tip expression for Au, at the tip of a locally
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planar crack applies, eq, (3.2.8), so long as r is measured from the advanced
crack tip. Thus, using eqgs. (3.2.7) for Ag; and (3.2.8) for Ay, in eq. (3.2.45),
which defines G along the crack front, we have (thinking now of the x,
direction as being locally normal to L, in the direction of growth da, and
x, locally tangent to L, so that X,, K,, K, retain their respective mode II,
I and TIT meanings)

1 SS K,  (-"K,+93,:K; | 8(ba—x)) ‘”dx dr
 Crx))'7? 7 7 !

L
- S GéadL (3.2.46)
L

Here we have noted that the Aco; appropriate for the present purposes is
the a,,ls0 Of €q. (3.2.7), given as X,/(2rx,)}!/* plus other non-singular terms
which we have not included since they make no contribution to first order
in fa; similarly, consistent with the required accuracy, we have not included
the alterations dX of the K’s in the expression for Aw; after growth. Thus,
doing the integration on xy,

S. 10 —0) (K2 + K2)+ K2 badL = SGc‘iadL (3.2.47)
L 2” L

and since this holds for arbitrary distributions of da along L, the local G
is related to the local K’s by Irwin’s {1960} well-known expression

G = i [(1—%) (K24 KD + K] (3.2.48)

Another perspective on the calcnlation of energy release rates, now
not limited to the quasi-static case, is given by evaluating the flow of energy
into some small tuhe surrounding the crack tip (Fig. 3.2.3a shows a two-
dimensional cross section of such a tube, with area 4 and contour I in
the x, x, plane). Part of this energy flux results in changes of strain energy
and of kinetic energy of material within the tuhe, part is dissipated against
resistive forces ¢4, on the portion of crack intersected by the tube, and
the remainder flows to the crack tip, thereby accounting for the G per
unit area of crack advance. Since the near tip singular fields are two-dimen-
sional in character, and since the tube is ultimately to be shrunk onto the
crack tip, we can address this calculation as a locally two-dimensional
calculation. Hence if & is the local speed of crack advance at the portion
of crack front considered, we have
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-
gn*unfgdr = %S (W+3pityit)dA + S ol Aiydx, +Ga  (3.2.49)
r A —b
where W is the energy density, i.e. 8 W = g;;8(2u;/dx,). In the limit when
I'is shrunk to zero length the term involving o{, vanishes and, after a trans-
formation of the integral over A and observation that for terms singular
at the crack tip one may write {8t = —ad{2x,, this becomes (see Chere-
panov, 1968; Atkinson and Eshelby, 1968; Kostrov and Nikitin, 1970;
Freund, 1972a, for details)

T 1 ., Oy Bu,)
¢ —j];l_]E'IDJS-l:ﬂ; (W+—2-Q e X, 0%, My ua—- dl’ (3.2.50)

where the limit indicates that the contour is shrunk onto the crack tip.

la) *2] (5] 2

Fig. 3.2.3. (@) Two-limensional cross section, with area 4 and contour I', of small tube
surrounding crack tip for calculation of energy flux. (4) Contours I'p, I'g for J integral
in two-dimensional fields.

Closely related to crack energy release rates is the J integral defined
for quasi-static two-dimensional deformation fields hy (Rice, 1968a, b)

j = S [nl W—noy —?i‘-?-] dr (3.2.51)
s ox 1

for any path I” that begins on the lower crack surface, encircles the tip
(but no other singularities), and ends on the upper crack surface, If the
crack surface is traction-free (i.e. if ¢f; = 0) this integral is independent
of the path chosen. More generally, if ¢4, # 0, then when we evaluate
the integral for two separate paths such as I'p and Iy in Fig. 3.2.3b, asso-
ciated with points P and Q along the crack, we have

(x1)p
0
J-Q—Jp-f‘ S ﬂ{J'g;—]"AUde1=O (3-2-52)

(g
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Here, e.g. Jy is the value of J for any path of type Iy, beginning
at [(x,)q, 0] and ending at [(x,)q, 0*], and J, has the same value for all
such paths,

Evidently, if I'; is shrunk onto the crack tip, Jp coincides with the
quasi-static version (delete pa® term) of the expression in eq. (3.2.50)
for G, so that for two-dimensional quasi-static crack growth,

2
G = .IQ"‘ S o‘{,—éi-Aqux, (3253)

(x1)g

The sum of terms on the right side is, of course, independent of the point
chosen as Q.

In elastic-brittle crack mechanics, the agssumption is made that cracks
can grow when G attains a critical value, G,, which may itself he dependent
on crack velocity. Rudnicki (1980), Rice (1980) and Wong (1982) have
reviewed various attempts to infer fracture energies. For temsile cracks,
standard fracture mechanics test specimens and techniques apply and
G = 3 to 50 J- m~2 is representative for mode I fracture of brittle rocks.
On the other hand, direct laboratory measurements of G for shear cracks
have not been possible and, only recently, such G values have been inferred
from triaxial rock compression tests in stiff machines through a procedure
(Rice, 1980) based on the theory of slip-weakening crack models (Section
3.4). Experiments on granite (Wong, 1982) suggest values of G for shear
fracture in the range from approximately 5x 10? to 5x 10* J - m~2, depend-
ing on source of the granite and on confining pressure and temperature,
Direct seismological inferences of G for natural earthquakes have limited
reliability, but have been attempted by Husseini et al. (1975) and otbers
(see Wong, 1982). The techniques used by Husseini ez al. led these authors
to suggest that G values in tbe range 1 to 10* J: m~? were appropriate
for “frictional sliding” and 10* to 10° J- m~? for “fresh fracture”. Choices
of G necessary to make quasi-static earthquake instability predictions,
based on large tectonic scale crack models, fit seismological constraints
such as slip offset and nominal stress drop have in two cases (Rudnicki,
1980; Li and Rice, 1983) led to inferred values of order 4x 105 J-m~2,
Probably, values much in excess of tbose inferred from laboratory data,
involving a single rupture plane, are due to geometric irregularities such
as segmentation and en echelon discontinuities of natural faults (e.g. Aki,
1979; Segall and Pollard, 1980).

i1
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3.2.4 Elastic crack tip fields in dynamic crack growth

To obtain the structure of crack tip singular fields for rapidly propagating
cracks, we observe that just as in the static case, derivatives involving
d/dx; can be neglected by comparison to other spatially differentiated terms.
Also, the accelerations 8%u;/21* can be replaced by ©22%u,/dx? for purposes
of analysing the singularity, where v is the speed of crack advance, so
that eq. (3.2.2) reduce to the following equations to be solved asymp-
totically:

é 2 du au
2_ a2 1 2
e US)[aﬁ " Ox, ’0]( 0%, * 33:2)

i@ 2? a2
+Q‘U' ( axf o axg ) [uls LET) u3] == sz axi [ﬂl, Uy, u3] (3.2.54)
Here
vy = [(A+2m)/0]',  ©, = (uf0)"/? (3.2.55)

are the P- and S-wave speeds.

Following Kostrov and Nikitin (1970) one may rewrite the governing
equations in terms of two displacement fields u{ and #}, where u, = ul+
+uj, oulfdx,—duslox, = O [dx,+ 0wy [8x, =0, and 14 = 0, The result-
ing equations are then

a!. 32 32 32
2 - n | == 2. B0 e BT —

("’ o7t oxd )"* % (" oxi T oxd )”'* ? (3.2:56)
where

rp= (L-22fod)'2,  r, = (1-o2fp2)1/? (3.2.57)
and have solutions in terms of analytic functions UF(L), UH() as

ui = Re[Uf(x; +ir,x;)] with Uf =ir,U},Uf{ =0 (3.2.58)
and

ui = Re [Ul(x; +ir,x,)] with r,U§ = iU} (3.2.59)

The singular solutions for these functions are then given by
—pl(1+r) UL+ 2UH(0)] = K, (C/8m)!/?
Gplrd 2rer, USO+Q +12) U] = K, (Z/8m)12 (3.2.60)
ipr, U3() = K5((/8m)'/2

Here the notations K,, K,, K5 for stress intensity factors are consistent

with respective modes II, I, III as in the static case, and retain the inter-
pretation that stresses ahead of the crack on # = O are given by

Oagloco = K (@rx )2+ ... (3.2.61)
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However, if the X’s are chosen in this way, relating the stress o, directly
ahead of the crack to K| in the same manner as in the static case, no matter
what the crack velocity, then the relative displacements Au; of the crack
faces at a given K are necessarily dependent on v. These have the form

Auy = (1=9)fu(W) Ky (—8x,fr)' Pu+ ...
Auy = (1-)fi(®) Ko(—Bxy/m)' 2 fu+ ... (3.2.62)
Auy = f1, (0} K3 (=8x, [m) 2 fu+ ...

where the functions fi, fi1, fu; of speed v all have the property fi(0) = 1,
and are defined by

Ju=rvt(l-vAv}, A =r2*/(1-AZ, fumm=1/r (3.263)

with A = 4r,7,— (1+r7)* being the Rayleigh function. All three functions
increase monotonically with crack speed and become unbounded as certain
limiting speeds are approached. This limiting speed is seen to be the Rayleigh
speed v, (& 0.92v,, for which A = 0 if ¥ = 0.25) for mode I and II, and
the shear wave speed v, for mede III.

The energy release rate can be calculated from eq. (3.2.50) and the
result 1s (Kostrov and Nikitin, 1970)

G = 5 =D K KD +inK3) (3.264)

3.3 DYNAMIC CRACK MODELS OF EARTHQUAKE SOURCE PROCESSES

As suggested by the analysis of elastic wave fields generated hy earthquakes,
the source process represents a sudden stress drop in some local region,
and the deformation process propagates through the Earth in a form
similar to the dynamic development of a crack, usually along some pre-
viously existing fault surface (shallow earthquakes), and perhaps in the
form of non-stationary development of a narrow deformation zone under
conditions of high pressure and temperature (deep earthquakes), It is
usually assumed that for the majority of earthquakes the deformation
process in the source is concentrated onto only one plane, though this
is not true for many cases, especially for major earthquakes, where the
deformation occurs simultaneously or successively on more than one
fault plane (multiple events).

Moreover, it may be assumed that the existence of tensile (open) cracks
is limited to at most the highest few kilometers of the upper crust (see,
e.g. Dmowska et al,, 1972) and that for all other regions conditions of
pressure and temperature aliow for shear cracks only. In order to recover
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information about the fracture process contained in the radiated wave
field, it is necessary to assume some model describing the process in a
realistic manner, although for practical reasons with the use of a small
number of parameters. Because of the character of deformation in the
earthquake source it seems plausible that such a process could be modelled
satisfactorily with the use of dynamic crack models, in particular by prop-
agation of a shear crack. We discuss here dynamic crack solutions and
their seismological implications.

Analytical solution of the general problem of propagation of a crack
for any given initial and boundary coaditions is extremely difficuit and
existing solutions describe idealized cases that incorporate simplifying
assumptions.

One of basic simplifying assumptions is that the developing crack
moves in the same plane as at the beginning of its motion. Also, to eliminate
or simplify the prohlem of multi-diffraction of waves emitted by the other
end of developing crack, most of works are [imited to cases of effectively
semi-infinite or self-similar cracks. Such assumptions, stemming from
reasons of mathematical tractahility, limit essentially the physical utility
of results obtained.

Many further dynamic crack problems have heen solved with the use
of numerical methods and these methods, or the comhination of analytical
and numerical approaches, will prohably dominate in future research
in this field.

3.3.1 Analytical solutions for steady and unsteady crack motion

We now review analytical solutions for dynamic crack propagation. For
modelling earthquake source processes the most important class of solutions
are cases with variable crack speed, but we will briefly discuss here also
some prohlems with constant crack speed. The first such work was presented
by Yoffe (1951), who emphasized the dependence of the stress distrihution
around the tip of a moving crack on the crack velocity. Yoffe analysed
the case of a crack with finite, constant length, rupturing with constant
speed at one end and healing at the other, under plane strain conditions
in an infinite medium under remotely uniform stress ¢, (hence the stress
drop Ag, = 0%,). In hrittle materials, tensile cracks with higher speeds
have a tendency to hifurcate from their initial plane, and the interpretation
of this phenomenon had been sought in the distribution of stress around
the tip of a moving crack. The solution showed that oy, close to the crack
tip (0 is the angle measured as in Fig. 3.2.1) had its maximum for 6 = 0°
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only when the crack speed was less than approximately 0.6v;5, and for
higher speeds the maximum was located close to § = 60°. As shown by
Yoffe, and confirmed in greater generality by analyses reviewed in Section
3.2.4, the angular dependence of the stress distribution did not depend
on the crack length, so that the change in g, was not associated with some
particular length. Yoffe (1951) suggested that her ohservations could be
the reason for crack bifurcation at sufficiently high speed.

Subsequent analyses of crack growth in the shear modes showed (e.g.
as discussed by Rice, 1980) that stresses encouraging fracture on planes
other than the main crack plane become indefinitely large, compared to
those associated with the main plane, as limiting crack speeds are ap-
proached. An aspect of this distortion of the stress field is discussed in
Section 3.4.2 where it is suggested that such effects may be important to
promoting non-planarity in rupture propagation.

The model presented by Yoffe, though very unrealistic (constant crack
length), was useful in finding the geometry of the stress field around the
edge of a moving crack. However other results of the model are less plausible,
For example, the dynamic stress intensity factor calculated by her turned
out to be independent on crack speed and equal to the analogous static
stress intensity factor, eq. (3.2.12). Using the Griffith-Irwin-Orowan
theory of a constant value of G necessary to maintain propagation, we
sce from egs. (3.2.63) and (3.2.64) that the stress drop Ao, necessary would
diminish to zero with crack speed increasing towards v,, the speed
fo Rayleigh waves. This physically unrealistic result is associated with the
steady state crack solution and an interpretation has been discussed hy
Rice (1968), who ohserves that hecause the dynamic stress intensity factor
is here independent of crack velocity, the principal stress ¢,, near to the
tip, perpendicular to the crack plane, is finite for every finite load (or
stress drop). The ratio of principal stresses ¢,, to o, (0,, acts parallel
to the prospective fracture plane) diminishes to zero at the Rayleigh speed,
which means that stresses ¢,, then hecome unbounded; that is, each finite
region around the crack tip has infinite strain and kinetic energy. Thus
the above result could be interpreted in the way that if the crack is moving
in a medium able to supply an enormous amount of energy near the tip,
then very little load is required to maintain the crack speed.

A similar type of problem to that addressed by Yofle was solved by
Craggs (1960), who analysed semi-infinite cracks subjected to surface
loads with points of application moving at the same speed as the crack.
He also obtained a dynamic stress intensity factor independent of speed,
and the remarks concerning the work of Yoffe apply to this case too.
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Some limiting features of these analyses were removed by Broberg
(1960) and Baker (1962). Broberg (1960) analysed the two-dimensional
plane strain case of a self-similar tensile crack growing symmetrically
from zero length with constant velocity in an infinite elastic medium.
The medium had been subjected to uniform stress far from the crack
hence the stress drop Aa,(= ¢9%;) was uniform on the crack surface. The
dynamic stress intensity factor depended on crack velocity in the form

Ki(= K)) = g(©)Ac, Yot (3.3.1)
where g(0) = 1 and the function g(v) diminished monotonically to zero

at v,. The motion is not consistent with a constant energy release rate,
but the expression for G has the form (combine egs. (3.3.1) and (3.2.64))

G = (1 —¥»)utf,(v) [5(v)A0,)*2u (3.3.2)
and this expression has the property that G — 0 as v — ov,, Presuming
that some non-zero G must be supplied for rupture, this suggests that the
stress necessary to drive a crack increases without limit as v —+ v,. Broberg
found that the crack deformed into an ellipse, just as in the static case;
i.e. Au, is as given by eq. (3.2.10) with j = 2, except that the expression
on the right in eq. (3.2.10) sbould be multiplied by f;(¢)g(v) and a replaced
by vt. Baker (1962) analysed a related problem in which, at 1 = 0, a semi-
infinite tensile crack has its surfaces subjected to uniform stress drop and
propagates with constant speed o; his solution is likewise consistent with
G -0 as v —+ v,. Baker also remarked that the stress component o4
on which Yoffe based ber analysis of the bifurcation process represents the
maximum principal stress only for & = 0 or +m, and that the maximum
principal stress occurs in the range 60° < & < 100° (with direction coinci-
dent with neither  nor r) for all crack speeds. The problem solved by
Baker is equivalent to the case of spontaneous crack propagation caused
by arrival of a plane homogeneous stress wave, a case treated in detail later
by Achenbach and Nuismer (1970),

A problem similar to that solved by Broberg (1960), namely tbe problem
of a self-similar circular tensile crack, developing with constant speed,
was solved independently by Kostrov (1964a) and Craggs (1966), and
analogous resuilts were obtained on the limiting nature of the Rayleigh
speed.

Shear crack versions of the above problems are, of course, more relevant
for modelling earthquake source processes. The simplest self-similar
shear crack problem which is appropriate for seismological application
has been presented by Kostrov (1964b), who solved the case of a circular
crack growing from zero size with constant speed in a field of shear stress
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and sustaining uniform stress drop. This case, although similar to that
previously solved by Kostrov (1964a) for tensile cracking, is not an axially-
symmetric one because of the shear stress field. Interpretation of crack
propagation in terms of a limiting speed is in this case more difficult,
because, depending on local conditions at the crack tip, the tip is either
in plane-strain, anti-plane strain or in some mixed conditions and the
limiting speeds are different for different strain situations (v, for plane
strain and v, for anti-plane strain). This suggests that a crack model with
slightly different principal radii, say elliptical with afc proportional to
vyfv, & 1.1 during growth, might be more realistic.

Some of the previously solved cases have been extended to anisotropic
media, Broberg’s solution has been generalized by Atkinson (1967) to a
case of crack propagation on a material-symmetry plane of an anisotropic
body. This case has been generalized further to arbitrarily situated cracks
developing self-similarly in arbitrarily anisotropic bodies in works by
Burridge (1968) and Burridge and Willis (1969). The latter work represents
the most general problem of this class and solves for self-similar motion
of an elliptical crack, starting from zero size, with uniform stress drops.

Modelling an earthquake source process as a self-similar crack prop-
agating with constant speed seems to be a serious oversimplification
of observed phenomena because, e.g. it cannot include ultimate rupture
arrest, However, as remarked by Burridge (1968) and Burridge and Willis
(1969), the analysis of such models could have seismological utility because
first seismic motions depend only on crack motion in the early stages
of crack existence. As shown by Burridge and Willis (1969), for conditions
of uniform shear stress drop Ag, the far field waves emitted by the self-
similar elliptical crack have the same angular orientation as for a douhle
couple (see, e.g. Aki and Richards, 1980} but multiplied hy the factors

{I-@iri+viydiol}? and {(1-(eiyi+odyd/ei}?

for P- and S-waves, respectively. Here v, and w; are the constant velocities
of rupture advance along the principal x; and x; axes, respectively, of the
ellipse on x; = 0 and vy = (¥, ¥2, ¥3) is a unit vector from the crack
centre to the observation point.

Figures 3.3.1a and 3.3.15 show, in stereographic projection, the far wave
fields for a douhle couple, and Figs. 3.3.1¢ and 3.3.14 show the above
modifying factors, for v; = 0.90%, and v; = 0.5v,. For o, close to the
velocity of S-waves the modifying factor is highly directional and it has
strong maxima in direction of + x, axis, which strongly deforms the S-wave
pattern. The P-wave pattern appears little deformed, hecause v} and v}

" T—
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are well below v; and because the maximum of the factor modifying the
P-wave field coincides with the zero of the P-wave field for a double couple.
Thus the above results suggest that the S-wave field contains more discern-
ible information about the propagation process in the earthquake source
than does the P-wave field, as is evident also from general analysis of effects
of propagation in the source region on far field radiation (Aki and Richards,
1980).

(@l (b}

A2 A2
{c) la)

25\15} 50 0

£ medification factor S modificotion factor

Fig. 3.3.1. (a, b) Far-field angular orientation of seismic motions, in stereographic pro-
jection, for double couple point source representation of shear stress drop Ae, (reduction
1n o33) on plane x; = 0. {¢, d) Modification factors to double couple ficld for self-similar
expansion of an elliptical crack on x; == 0 with v; = 0.909 v, and v; = 0.5 v,. From
Burridge and Willis (1969).




214 FRACTURE THEORY AND SEISMOLOGICAL APPLICATIONS Ch. 3

The Craggs (1960) crack solution has been generalized by Willis (1967)
to the case of a crack with a strength degradation zone close to its moving
tip, and such a zone bas also been included in the Broberg crack model
in works by Barenblatt et al, (1962) and Atkinson (1967); see Section
3.4.2 for discussiom of related considerations. An interesting analytical
method, similar to that used by Kostrov (1964) and allowing the reduction
of many problems of self-similar propagating cracks to standard boundary
problems for complex functions, has been used by Cherepanov and Afa-
nas’ev (1974); see also Cherepanov (1979, Chapter 10). With this approach
they reconstructed elegantly the solutions of Broberg and Baker as well
as those to other crack problems.

To model the earthquake source processes in a realistic way one needs,
however, solutions fo problems of unsteady crack motion, and few have
been solved analytically as yet, The first developments were for the mode
I1I case, anti-plane shear, which is simpler because it is governed by a single
scalar wave equation for w,, Tbus Kostrov (1966), using analytical tech-
niques developed for supersonic flud flow, and independently Eshelby
(1969) solved the problem of determining the stress field for arbitrary
non-uniform motion and distribution of stress drop along tbe surface
of a semi-infinite crack. Such provides also a short time solution for finite
cracks, valid near one crack tip up fo the moment when stress waves first
arrive from the other tip. Two particular cases were discussed in detait
by Kostrov, In the first, stress drop (i.e. loading) was localized to a poine
along the crack surface, in which case the crack was predicted to propagatl
and, ultimately, arrest. In the second, a uniform stress drop was applied
at the crack surface, in which case the crack was found to accelerate towards
its limiting speed v,.

Freund (1972b) and later Fossum and Freund (1975) developed the
analogous solutions for arbitrary motion of effectively (i.e. limited hy
incoming wave arrival times) semi-infinite cracks in modes I and I, re-
spectively, There is found to be a common form of solution, regardiess
of mode, to the following problem, first enunciated in this form by Eshelby
(1969): Let a static, finite crack exist in a body, and suppose the stress
distribution along the prospective rupture plane x, =0 is o3,(x;, 0).
The crack tip is initially at x, = 0 as in Fig. 3.2.1. Suppose that if rupture
extends to a point at x; on this plane, the stress there will fall to of,(x,, 0),
and define the stress drop Aoy = 0%,— 04, as earlier. Note that if the crack
were to extend by a distance g, the static solution for stress intensity factor
would be (e.g. Rice 1968a, egs. (95), (98))
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2 acu(xo ‘
= K2(d) = I/ e dx (3.3.3)

if the same stress drop distribution were to act along the prolongation
a of a semi-infinite crack. This formula evaluated as a —+ 0% is easily shown
to reproduce the stress intensity factors at the original crack tip, contained
in the stress distributions ¢3,(x,, 0). The conclusion of the different analyses
cited above by Kostrov, Eshelby, Freund, and Fossum and Freund (see
also Kostrov, 1975; Freund, 1976) is that regardless of mode, the dynamic
stress intensity factor at the tip of a crack which has grown arbitrarily
with time to the amount @, and has instantaneous velocity 2(= da/dt),
is of the simple multiplicative form '

K; = k)@)K}(@) [o sum here onj] . (3.3.4)

provided no waves have yet arrived from the other crack tip. The functions
k,(©) can be extracted from the references cited; each begins as unity at
v = 0 and decreases monotonically to zero at the limiting speed v = o,
or v,. The expression for mode I is (Eshelby, 1969)

ks@) = (1-vjo)'? _ (3.3.5)

Thus, for example, in the case of mode III crack growth the energy release
rate is (eqg. (3.2.64))

G = fin(@}K3/2u = fin(©) [k (2) K§()F* /24 _

= [(I-v/o)/(1+v/v)]' P [KS@) 2 (3.3.6)

Thus if one regards G as a given constant for ruptore propagation
or instead, to include spatial heterogeneity and/or rate dependence of
fracture resistance, regards G as a function of  andjor ¢ for rupture propa-
gation, eq. (3.3.6) becomes a differential equation describing crack
motion. The form makes it evident at once, e.g. that if G is constant for
propagation and if dX3/da always is greater than some positive number,
then the crack speed accelerates toward »,., On the other hand if K3(a)
diminishes sufficiently with a, crack arrest will occur; this corresponds
to a case such as the localized loading discussed above,

The structure of eq. (3.3.6) implies that the effective inertia of a crack
tip is zero; a discontinuity in the requisite G along the fracture path causes
a discontinuous change in w, This change may possibly be to v = 0, i.e.
crack arrest, if the discontinuity has the form of a large increase in G,
but more generally either discontinuous increases or decreases of v may
occur., Husseini et al. (1975) have used considerations of crack arrest
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as discussed ahove, based on either increases of fracture resistance or
decreases of driving force (e.g. localized zone of significant stress drop)
to estimate the range of G values cited earlier, Section 3.2.3, from data
on nominal stress drops and rupture areas of natural earthquakes.

Similar conclusions on the existence of a limiting speed and lack of
effective crack tip inertia follow for rupture dynamics based on the dynamic
stress intensity factor, regarded ecither as constant or as a function of a
and v (to include heterogeneity and rate dependence) for rupture propaga-~
tion, Such may be regarded as a fracture criterion based on critical stress
levels ahead of the crack, eq. (3.2.61}. However, details of crack acceleration
are not the same as for a criterion based on the energy release rate G,
as may be seen by comparing the expression for mode III stress intensity
factor

K; = (1-v/fv)'?K3(a) (3.3.9)

(from egs. (3.3.4), (3.3.5)) with eq. (3.3.6) for G in the same mode.
Burridge and Halliday (1971) and Achenbach and Abo-Zema (1973)
have analysed dynamic crack models of processes occurring in the source
of shallow tectonic earthquakes of strike-slip type, analysed as anti-plane
strain. Burridge and Halliday (1971) analysed the case of infinite strike-
slip fault developing dynamically in a plane perpendicular to the free
surface of homogeneous elastic half-space. In their model the crack develops
along a plane of material weakness (i.e. pre-existing tectonic fault), Before
the initiation of the motion the fault plane is characterized by some distribu-
tion of stress ¢35, variahle with depth. The half-space is subjected to hydro-
static pressure (from gravity) and anti-plane shear stresses (tectonic stresses)
which increase quasi-statically in time. The initiation of the motion happens
locally as a result of a local irregularity of the stress field or coefficient
of friction, and sudden slip initiation oceurs in the weakened plane, The
slipped region develops in both directions (up and down) from the line
of slip nucleation. The slipped region reaches the Earth’s surface above
and stops helow at some depth, blocked by the increasing friction. The
fracture energy is taken as zero (or negligihle) so that from the moment
of nucleation both edges of the crack move with the speed of an S-wave.
In their work Burridge and Halliday (1971) analyse the motion of hoth
crack edges, assuming that stress drop on a crack surface changes quadrat-
ically with depth, so as to turn nepative at greater depths, (Negative
stress drop means merely that 03 > 035, i.e. that the local stress necessary
for slip at a point is greater than the stress which acted at that point when
rupture initiated elsewhere). They also determine the displacement field
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on the crack surface as well as deformation field far from the crack, and its
dependence on the depth of the nucleation line.

Achenbach and Abo-Zena (1973) analysed two dynamic crack models
with geometry and stress fields similar to those modelled by Burridge
and Halliday (1971). The first model described the dynamic propagation
of an anti-plane shear crack initiated by a shear wave approaching the
fault plane. This type of prohlem might model a shallow earthquake initiated
by another earthquake or an underground explosion. The second model
described the case solved by Burridge and Halliday (1971), but for a crack
with finite length. In both papers the solutions describe the motion of the
crack edges and the maximum depth of the slipped region. Also the shear
stress distribution on the crack plane after the motion ceased was deter-
mined, as well as the displacement along the Earth’s surface just above
the fault. Comparison of the depth of maximum penetration of the slipped
zone for the dynamic case with that ohtained in static calculations by Walsh
(1968) and Berg (1968) showed that the dynamic analysis gave a slightly
greater slip depth.

3.3.2 Numerical dynamic modeliing of source processes

The mathematical complexity of crack dynamics limits the usefulness
of conventional analytical methods; we review bere numerical solutions
to such problems and discuss their applications in analysis of earthquake
source processes,

It might be advisable in the beginning to notice that there are differences
between these two classes of solutions, stemming from requirements
of tractability and practicality. The analytical solutions are usually developed
with the use of Griffith’s theory (i.e. a critical G for propagation, within
the assumptions of elastic-brittle crack theory), and under the assumption
that in the body analysed there exists one crack in a close-to-critical state,
the fracture of the body being described by development of this particular
crack. In this approach the presence of other cracks in the material is
accepted but not necessary, and usually not taken into account. Crack
velocities derived from tbe elastic-brittle approach are limited to being
smaller than the S-wave velocity and, as has been seen, the cracks amenable
to analysis are usually semi-infinite or self-similar.

In numerical solutions cracks are usually less large compared to grid
size than might be desired, which is the consequence of computer limita-
tions, and, naturally, all quantities are discretized. Some discrepancies
between solutions are associated with tbe fact of discretization, i.e. they
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depend on the fact that basic equations or quantities at a more advanced
level of solution are discretized. Also, some differences stem from the
manner of discretization. Moreover, stress concentrations at crack tips
are, of course, finite, and the numerical fracture criteria of different kind
correspond only approximately, in ways not yet precisely understood, to
fracture criteria discussed previously, Section 3.2, in the elastic-brittle
context and subsequently, Section 3.4, for more general models. Presumably
the process in tbe earthquake source should notr generally he modelled
hy one crack (and its dynamic development) only, hut rather, to the extent
feasible, one should account for the presence of other cracks (faults) in the
medium, as well as for the interaction of cracks hetween themselves and
with the inhomogeneities of material of the Earth and its free surface.
Further, non-elasticity of the medium as well as non-ideal (i.e. other
than elastic-brittle) fracture mechanics should at least sometimes be involved.
In principle, numerical solution methods can accommodate such con-
siderations, although practical computer limitations have not yet allowed
investigation of all in detail,

A simpler class of numerical solutions is that for which crack motion
is specified a priori (i.e. no fracture criterion is imposed at the advancing
tip) and the (dynamic) stress drop is prescribed along the ruptured surface,
For example, Burridge (1969) examined two-dimensional anti-plane and
in-plane shear cracks moving at prescribed velocity, and used an integral
relationship analogous to eq. (3.2.37) to calculate stress in terms of slip
on the crack surface, thereby to formulate an integral equation, discretized
and solved numerically, for the slip as a function of position and time.
Hanson et al. (1974) modelled numerically an analugous problem of uni-
lateral expansion of a two-dimensional shear crack, propagating at constant
speed and then stopping.

Also, Madariaga (1976) solved by a three-dimensional finite difference
method problems of circular shear cracks in an unbounded elastic medium.
In one model a crack with fixed finite dimensions was introduced instan-
taneously, In another the crack developed from a small nucleation ccntre
with constant speed and then stopped abruptly at some finite radius.
Madariaga discussed in detail the wave field far from the moving crack
and its dependence on model parameters and the stopping mechanism.
No reversal of slip velocity was allowed, in order to simulate the effects
of friction, and because of this Madariaga finds that the displacements
overshoot those estimated statically, e.g. by eq. (3.2.13) with Aa, identified
as the dynamic stress drop. Nevertheless, he finds the spatial distribution
over the slip plane to be similar to eq. (3.2.13), the primary difference
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being that the displacements everywhere are about 15 to 209 larger in
the case of a crack growing from a small nucleation centre, and 34% for
that introduced instantaneously. Madariaga’s work, extended to other
applications (Madariaga, 1979; Virieux and Madariapa, 1982) that we
discuss subsequently, employs staggered finite-difference grids for particle
velocity and stress components,

We consider in the rest of this section numerical dynamic rupture
models for which a definite fracture criterion is imposed for crack advance,
s0 that crack motion is not prescribed a priori. A formulation for doing
this was outlined by Hamano (1974). Basing his numerical procedure
on discretization of the integral equation following from the representation
of eq. (3.2.39), Hamano prescribed the critical stress level of material
along the fault plane. This procedure is particularly simple for numerical
applications; it assumes that tbe crack extends omne grid point when the
stress at a grid point outside the crack and nearest to the crack tip exceeds
the critical value. A similar critical stress criterion, phrased in the context
of a two-dimensional finite difference analysis of dynamic tensile cracking,
has been proposed by Shmuely and Alterman (1973). The critical stress
level within this procedure cannot be interpreted as a true material property.
Rather, it is grid-size dependent and must be interpreted in terms of an
average of the singular analytical solution over the grid length immediately
ahead of the crack tip, as commented hy Das (1976) and Das and Aki
(1977). In this sense the procedure can be seen as an attempt to simulate
numerically the critical stress intensity factor criterion for rupture dynamics
discussed in connection with eq. (3.3.7).

However, a detailed study of the critical stress criterion and its numerical
applications by Virieux and Madariaga (1982) shows that the procedure
duplicates closely the continuum results based on a critical stress intensity
factor only over a certain range of parameters. For cxample, the Das
and Aki (1977) dimensionless strength parameter is

S = (ay—0oo)/(eo—ay) (3.3.8)

where o, is the remotely applied stress, o, the residual friction strength
of ruptured portions of the fault, and e, is the grid-size dependent critical
stress. Virieux and Madariaga find agreement between the numerical
critical stress result and that for a continuum with critical stress intensity
factor, in the case of Kostrov’s (1966) problem of a semi-infinite crack
suddenly subjected to the stress drop oy —ay, only for therange 3 < § < 7.
They attribute the lower Kmit to poor numerical resolution of the stress
concentration in the then too large grid spacing ahead of the crack; the
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upper limit apparently reflects the inadequacy of numerical results on a finer
grid, at one grid spacing ahead of the crack, to duplicate adequately the
near tip elastic singular stress field. Outside these limits the numerical
critical stress criterion must be regarded as a separate criterion from those
phrased for continuum crack dynamics. However, as pointed out by Vireux
and Madariaga (1982), the applicability limits of their numerical rupture
criterion are intimately related to the properties of their numerical method
(finite difference method) and it may happen that other numerical methods
proposed in the literature have different Hmits of applicability,

Andrews (1976) combined a finite difference technique with the slip-
weakening fracture criterion of Ida (1972) and Palmer and Rice (1973)
to solve for the rupture propagation of a finite, two-dimensional shear
crack in an infinite medium. The criterfon is discussed in Section 3.4.1
and is consistent with a Griffith-like criterion of critical fracture energy G
when the slip-weakening zone is small compared to all other scale lengths
in the prohlem. For the case of in-plane shear crack Andrews showed that
the terminal rupture velocity could be smaller than the Rayleigh velocity
or higher than the shear wave velocity, depending on the strength of the
material on the fault plane. The same was confirmed in subsequent three-
dimensional finite difference implementations of the criterion by Day
(1982b). Burridge et al. (1979) observe that for a mode II crack propagating
at speeds near v, consistently with a slip-weakening zone at its tip, large
shear stresses exists on the prospective rupture plane ahead of the slip-
weakening zone and, as found numerically by Andrews, these stresses
may be of sufficient magnitude to exceed the peak stress necessary to
initiate slip. In that case a disconnected zone of slip develops ahead of the
main rupture, coalescing with it in an unsteady manner and allowing,
ultimately, the steady spread of rupture at speeds exceeding approxi-
mately 1,5v,,

Similar features appear in numerical simulations of in-plane shear
rupture based on the critical stress criterion. However, as pointed out
by Virieux and Madariaga (1982), such features, including transonic
rupture velocities, are intrinsic to the numerical method only, and would
not appear in analytical solutions based on a critical X criterion, which
the numerical stress criterion is intended to simulate. The numerical stress
concentration at the rupture front represents actually a numerical coales-
cence of the crack stress concentration and that of the strong S-wave peak
ahead of the crack tip. As noted earlier, analytical solutions are not
necessarily in simple correspondence with numerical solutions, and the
differences can become particularly notable when prediction of rupture
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propagation is included. For example, in the case under discussion, it
happens that in the analytical approach the rupture front singular stress
concentration is separated from the S-wave peak and only the rupture
front stress concentration is used in the calcuiation of the maximum rupture
velocity. In the numerical method, at high rupture velocities of in-plane
cracks, the S-wave stress peak coalesces with the rupture front stress
concentration, giving rise to transonic rupture velocities.

An extensive numerical study of the development of shear cracks as
applied to the analysis of earthquake source mechanisms has been presented
by Das (1976). The author considers consecutively three important prohlems,
namely the process of unilateral spontaneous development of a finite
shear crack in an infinite elastic body, the influence of barriers (obstacles)
laying in the plane of the developing crack on the shape of near- and far-
displacement fields, and the stopping mechanisms for finite shear cracks
moving in an infinite elastic body. As a fracture criterion the postulate
of a critical stress, as introduced by Hamano (1974) and discussed ahove,
was used. Work by Das (1976) has been extended in studies hy Das and
Aki (1977a, b) and Aki (1979). For the first time in the modelling of earth-
quake source processes the possibility of the propagation of not only one,
but a few cracks, developing consecutively (model with barriers) was taken
into account. Also, a detailed analysis of the influence of stopping mech-
anisms on the deformation field near and far from the developing crack
was presented. The above results are particularly interesting for the mech-
anics of earthquake source processes, thus we will discuss them here
in some detail.

Analysing numerically bilateral dynamic development of an in-plane
shear crack starting from the Griffith critical length and controlled by
the critical stress fracture criterion, Das (1976) and Das and Aki (1977)
found that, depending on the strength of the material (given by the critical
stress jump) and the instantaneous length of the crack, the propagation
velocity of the crack-tip could be sub-Rayleigh or super-shear, and, for
low strength materials, could even reach the P-wave velocity. This phenom-
enon is caused by the fact discussed above that the value of critical
stress-jump could be overstepped by the dynamic stresses caused by P-
and S-waves travelling in front of the developing crack-tip which could
cause the increase of crack velocity to values higher than the S-wave veloc-
ity, as obtained also by Andrews (1976) with the slip-weakening model.
It is interesting to note that a tensile (opening) crack developing under
identical conditions could not reach velocities higher than Rayleigh wave
velocity in numerical simulations, because the stress field before the crack
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tip tends to close the crack, which arises from the Green’s function for
that prohlem (see Hamano, 1974),

Das (1976) and Das and Aki (1977) also show that in the case of smooth
crack development (that is, with no barriers of higher material strength
in the crack plane) the crack starts with some small velocity hut then
accelerates rapidly Lo its terminal velocity, determined by strength distribu-
tion in the crack plane, and thus the average rupture velocity over an entire
length of fault cannot be much smaller than the terminal velocity. Only
the presence of barriers along the path of the developing crack could
decrease the average rupture velocity significantly,

Using the model of dynamic propagation of an in-plane shear crack
with finite dimensions and the information that for most earthquakes
studied so far the rupture velocity is less than the shear wave velocity
(sece Tsai and Patton (1972), Eaton (1967), Kanamori (1970a, 1970h,
1971, 1972), Takeuchi and Kikuchi (1973), Wu and Kanamori (1972),
Niazy (1975), Aki (1968), and others), Das (1976) estimates the fracture
energy for the case of strong shallow earthquakes with long ruptures and
obtaind the value of 107 J- m~2. A similar value has heen estimated by
Ida (1973), from the observed maximum seismic motion due to an earth-
quake. Independently, Takeuchi and Kikuchi (1973) also proposed a similar
value, based on a rough estimate of the time needed for the rupture velocity
to approach the terminal velocity. ’

Das (1976) and Das and Aki (1977) introduce the concept of a shear
fault developing dynamically through obstacles (barriers) in the plane
of the growing rupture, consisting of material of some higher strength.
After the passage of the fault the barriers could be left intact, or they
could break either during the fault motion, or some time after it (very
short time aftershocks), depending on the ratio of the strength of barrier
to the tectonic stress acting in the region. The model offers an explanation
for a variety of observations of processes in earthquake sources. These
include, among others, fault segmentation observed at the time of some
earthquakes and in regions of rockbursts in mines, some characteristics
of seismograms which could not be explained as effects of wave propagation
in the medium only, and also discrepancies of observations of seismic
wave spectra from the spectrum based on similarity of earthquakes of differ-
ent magnitudes. Also, the model explains why in some particular cases
the simple Volterra dislocation constitutes a better model of source process
than a crack model without barriers, The model predicts that earthquakes
with low avera ge stress drop could generate more waves with higher frequen-
cies than earthquakes with high stress drops. Also, an important conclusion
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stemming from the concept of a fault with barriers is the possibility of predic-
tion of aftershocks based on analysis of the shape of the seismic pulse
generated by the main shock.

In their model of a fault with obstacles (barriers) Das (1976) and Das
and Aki (1977b) consider the problem of unilateral propagation of an
in-plane shear crack in an unbounded homogencous elastic medium,
using the criterion of critical stress jump introduced by Hamano (1974).
The medium is initially under a uniform shear stress o, ; the fault slip starts
as the shear stress across the fault plane exceeds some value a,, and then

P=5v=0 P=5k-1
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Fig. 3.3.2, The value of (14 S), a measure of material strength relative to tectonic stress
s defined in eq. (3.3.9), is shown as a function of distance x, along the path of rupture
propagation at the top of the figure. This is case P-SV-0, in which no barriers exist on
the fault plane, At the boltom snapshots of the parallel component displacement on the
crack surface w;(x,,0,r) are shown as a function of x;; u; is normalized by factor
L{vo=0,)/3u, and the number beside each curve indicates time ¢ measured in the unit
of 0.5 Lfv,, where L is the length of the fault, v, is the compressional wave velocity,
u is the rigidity, o, is the initial tectonic stress, and g is the dynamic friction of the fault
plane (after Das and Aki, 1977b; copyrighted by the American Geophysical Union).
Fig. 3.33. Case P-SV-1, in which one barrier exisis on the foult plane, See Fig. 3.3.2
legend for details. The crack tip skips the barrier without breaking it (after Das and Aki,
1977b; copyrighted by the American Geophysical Union).
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its value drops to the dynamic frictional stress oy. The slip motion is frozen
once the slip velocity begins to change sign.

The authors introduce the non-dimensional parameter § of eq. (3.3.8),
being a measure of material strength relative to tectonic stress, and par-
ameterize rupture resistance in terms of

18w =% (3.3.9)
Tp—0y

Barriers along the fault plane are characterized by high values of par-

ameter {1+S). In their simulations Das (1976) and Das and Aki (1977b)

considered only cases where § = 0 everywhere over the region to be rup-

tured except on harriers. The crack starts from a point and is stopped

alter 10 grid points, They consider the following four cases of barrier
distribution:

P-SV-0: No barriers, as shown in Fig. 3.3.2.
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Fig. 3.3.4, Case P-SV-2, in which two barriers exist on the fault plane. See Fig. 3.3.2
legend for details. The crack tip skips the barriers without breaking them (after Das and
Aki, 1977b; copyrighted by the American Geophysical Union).

Fig. 3.3.5. Case P-§V-}, in which two barriers with a smaller value of (1+.S) than was
used in P-SV-1 or P-SV-2 exist. See Fig. 3.3.2 legend for details. In this case the barriers
are eventually broken (after Das and Aki, 1977b; copyrighted by the American Geaphy-
sical Union).
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P-SV-1: One barrier with 145 = 5 exists at a grid point on the fault
plane (Fig. 3.3.3). The crack leaves the barrier unbroken.

P-SV-1: Two barriers with 1+S5 = 6 exists at two separated grid
points. The barriers are unbroken (Fig. 3.3.4).

P-SV-3: Two barriers with 14+.5 = 2.5 exist at the same grid points
as in the previous case (Fig. 3.3.5). The barriers are not broken
at the time of passage of the rupture front but are broken
before completion of the rupture process.

The crack develops along the x,-axes; Figs. 3.3.2, 3.3.3, 3.3.4 and
3.3.5 represent the displacement w, (x,, 0, ) on the crack surface as a func-
tion of x; for a fixed time ¢ for different cases of barrier distribution. The
number by each curve indicates the time in the unit of 0.5L/v,, where L
is the fault length and v, is the compressional wave velocity, Displacement
#, is normalized by the factor L(oy—oy)/3u. In all cases the crack tip
propagates with a velocity v, because § = 0 at all grid points except barriers.
Let us note that in the case when barriers are left unbroken (Figs. 3.3.3
and 3.3.4), the displacement field is somewbat similar to that of a Volterra
dislocation model (Haskell model). In tbe case when barriers are broken
(Fig. 3.3.5) the bistory of the deformation process is more complex and
the final slip is reached after a slightly longer time.

The influence of presence as well as strength of barriers on far-field
wave forms is illustrated in Figs. 3.3.6-3.3.9 for comparison, the dashed
lines show the curves for case P-SP-0 (without barriers),

The excitation of high-frequency waves is relatively greater in cases
when tbe barriers remain unbroken, in comparison with cases when barriers
break. However, the amplitude spectrum does not clearly reveal the com-
plexity of damage processes occurring in the rupture plane in presence
of barriers and it does not show clearly any difference between particular
cases, These differences however could be detected by studies of shape
of the seismic pulse; in the case witbout barriers (Fig. 3.3.6) the pulse
is smootb except for the sudden arrival of stopping phase generated by
the moving crack edge, and in case P-S¥-3 (Fig. 3.3.9) it is highly disturbed
by many small ripples, observed in all directions, Note that these differences
are not seen clearly when comparing the amplitude spectrum only (Das
and Ak, 1977),

The analysis performed by Das (1976) and Das and Aki (1977) suggests
that if the barriers are unbroken, the directivity of tbe seismic radiation
is somewhat stronger than that for the rupture witbout barriers. Also
they argue that the presence of barriers might cause the slowdown of the
rupture process as well as a slight decrease of corner frequency averaged
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over all directions, which happens in cases when barriers remain unbroken
with the passage of rupture front but eventually break, too. They thus
associated the corner frequency more with the amount of time needed for
the completion of rupture process than with the total length of the broken
region.

The numerical modelling of the earthquake source process as performed
by Das (1976) and Das and Aki (1977) offers the possihility of leaving one
or more intact regions along the path of the developing rupture (fault
segmentation). Although when examining the surface traces of faults
produced by shallow strong earthquakes, it is difficult to estimate the
complex structure of subsurface layers, in some cases fault segmentation
might be associated straightforwardly with surface kinks or segments
of the main fault itself (see, e.g. Imperial Valley earthquake of 1940,
Richter (1958), Trifunac and Brune (1970); Dasht-e Bayaz earthquake
of 1968, Tchalenko and Berberian (1975)). Also examipation of the first
unearthed rockhurst fault from a deep gold mine in South Africa (Spottis-
woode and McGarr, 1975) revealed clear segmentation of the [racture
areas, Thus the barrier model offers a simple mechanical basis for so-
called “multiple ruptures” (Stoneley, 1937; Usami, 1956; Wyss and Brune,
1967, Trifunac and Brune, 1970; Kanamori and Stewart, 1976). Of course,
the physical basis for segmentation may not be related to such strong
initial non-uniformity of material strength properties. Possibly, dynamic
ruptures in a simple planar form are configurationally unstable, e.g. Rice
(1980) and Section 3.4.1.

The barrier model also offers a basis to interpret small impulses ohserved
in some cases in the early parts of seismograms (Kasahara, 1956; Rulyov,
1975), which could not be atiributed tc wave transmission properties
of the medium alone. These impulses are prohably associated with the
rupture front passing through the barrier, which was suggested by Rulyov
(1975) when interpreting seismograms of one of earthquakes from Garm
{Tadzhikistan) region,

One consequence of the idea of a fault plane with barriers is the creation
of a physical basis for description of the faulting process in such a way
that the average slip along a long fault is of similar magnitude everywhere.
Considering a long fault with strong (unhreakahle) barriers distributed
in a more or less uniform way along the fault, we ohtain a locally hetero-
geneous slip distrihution which in average is similar to the classical disloca-
tion model. This would resolve the situation that the simple dislocation
model of a source process, introduced hy Ben-Menabem (1961) and Haskell
(1964) and subsequently criticized for its insufficient physical basis (Sato
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and Hirasawa, 1973; Molnar et al., 1973), in some cases explained much
better the existing observational data than the crack model without barriers
(see e.g. Parkfield earthquake of 1966, Aki, 1968; Archuleta and Brune,
1975). Recently Bouchon (1977) observed that in the case of the 1971
San Femando earthquake, a crack model without barriers is not able
to explain observed far-field wave recordings, whereas a model with unbro-
ken barriers (of type P-SV-1 or P-SV-2) gives a wave field similar to that
generated by a Volterra dislocation model and compatible with recordings
of this earthquake.

The barrier model of the source process allows also prediction of after-
shock occurrence, with the use of analysis of the shape of the seismic
pulse generated by the main shock. Unbroken barriers are naturally regions
of stress concentration and possihle sources of subsequent shocks (after-
shocks). If the barriers were completely broken during the main rupture
process, then it is possible that aftershocks (or at least strong ones) would
not occur at all within the main rupture zone. The lack of aftershocks
ol medium-deep and deep earthquakes might thus be caused by homo-
geneity of strength distrihution in the region of fracture (see Das and Aki,
1977).

One of the important prohlems of the physics of an earthquake source
is the understanding of the stopping process for an earthquake rupture.
Analysing the development of semi-infinite longitudinal shear cracks in
an infinite elastic medium Husseini et al. {1975) proposed two different
stopping mechanisms, as remarked in Section 3.3.1. The first one, called
the “fracture energy barrier mechanism”, operates when the developing
crack encounters on its way a region (barrier) with higher fracture energy
(material with higher strength). The second mechanism, called the “seismic
gap mechanism”, operates when the initial higher tectonic stress field is
limited to some finite region, so that when the rupture travels outside
that region into area with comparatively lower initial stress levels, it slows
down and stops completely.

Both mechanisms of rupture arrest were investigated and compared in
work by Das (1976) for a case of a finite shear crack. The author analysed
the one- and two-directional development of shear cracks of both kinds
(transverse and longitudinal shear), showing how both stopping mechanisms
operate in the case of finite cracks. For the “seismic gap” nrechanism the
crack, encountering the region with lower stresses, moves for some time
into it and then stops. The comparison of results for finite cracks with
those for semi-infinite ones (Husseini ef al., 1975) suggests that the relation
between fracture energy, stress drop on a crack and its dimensions proposed
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by Husseini et al. (1975) corresponds only approximately to the finite
crack results (see Das, 1976). Such may, however, be due to the difference
in fracture dynamics for critical G versus critical X criteria, compare eqs.
(3.3.6) and (3.3.7), or to discrepancies between the latter criterion and the
numerical critical stress criterion. The stopping mechanism of a fracture
“energy barrier” type operates also for finite cracks (Das, 1976) and for
a given initial crack length and given position of the barrier, the difference
between strength of material of the barrier and that of the crack plane
determines if the crack would stop or not.

It is interesting to compare both mechanisms for the same initial crack
length, as was done by Das (1976). In the “seismic gap” stopping model
the crack edge slows down and then stops, the stopping process being
irregular and generating high frequency waves. In the case when the crack
encounters a barrier with higher strength, the stopping part of the process
is quite sudden and only the very last phase generates high frequency
waves, Also the final displacement at crack’s edge is larger than in the
“seismic gap” stopping model. On the other hand, the stopping mechanism
doesn’t influence significantly the value of displacement in the middle
regions of the ruptured zone (Das, 1976).

A pgradual, slower stopping process gives a lower corner frequency
value than for a smooth rupture with sudden crack arrest. Normalized far
field spectra for both stopping mechanisms are shown in Fig. 3.3.10, where

A 1\
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normalized amplitude spectrum
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Fig. 3.3.10. Far-field spectra for the case when the tip stops abruptly (solid line) and
when it stops gradually (dotted line) for different values 8 (after Das, 1976).
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the solid line denotes the case when the crack tip stops abruptly (energy
harrier mechanism) and the dotted line results from the case when it stops
gradually (seismic gap mechanism). Because the final value of displacement
at the crack’s edge is different for different mechanisms, the factors normal-
izing the amplitude spectra are different too. The high frequency asymptote
of the amplitude spectrum decays as w2 in case of sudden arrest and as
@™ ! in case of gradual stopping (Das, 1976). Madariaga {1976) has shown
on theoretical grounds that a spectrum decay as w~2? must accompany the
sudden stopping of a crack,

Let us return now to the maximum stress criterion as used by Das and
Aki (1977), and, also, by Shmuely and Peretz {1976), Mikumo and Miyatake
(1979), Day (1979), Das (1981) and Miyatake (1980). It has been pointed
out hy Das and Aki (1977) that the criterion is equivalent to a critical
stress intensity criterion through a relation of the form

o, = ar+2K,(2nd)~/? (3.3.10)

where o, is the grid-size dependent critical stress, gy is the residual friction
strength, d is the grid-size, and K., is the critical stress intensity factor,
Thus implicit in the definition of the maximum critical siress there is a scale
length that Das and Aki (1977) took as the grid spacing d. Virieux and
Madariaga (1982) emphasized in the analysis of spontaneous propagation
of finite cracks, that the scaling relation for the maximum siress, in terms
of the non-dimensional critical siress intensity factor X, = K, fo.L'?,
can he rearranged as b

a, = a,+20.K,(L{2nd)'1? (3.3.11)

where L is the Iength of crack and o, is effective stress (o, = gg—ay).
The form of eq. {3.3.11) makes it clear that for a finite crack the maximum
stress criterion depends on the number of grid points inside the crack
(L}d). Thus, as pointed out by Virieux and Madariaga (1982), for a given
maximum stress intensity, the finer the numerical mesh, the higher the
maximum stress that has to be adopted.

Because of their complexity, three-dimensional crack models of the
earthquake source process were attempted only recently and, obviously,
only numerically. A major difficulty (but not the only one} with three-
dimensional numerical solutions is the need of large computer capacity;
some authors avoided this problem by studying models possessing a certain
symmetry, as Madariaga (1976) did in the case of circular cracks or by
making approximations (Mikumo and Miyatake, 1979) in order to reduce
the three-dimensional problem to a two-dimensional one. The truly three-
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dimensional solutions have been determined hy Archuleta and Frazier
(1978), Archuleta and Day (1980), Das (1980) and Day (1982a), who
studied shear cracks developing with arbitrarily assigned rupture velocities,
with the use of finite difference techniques, or, in case of Das (1980), applying
houndary integral equations. Spontaneous three-dimensional solutions have
heen proposed hy Day (1979), Miyatake (1980), Das (1981), Virieux and
Madariaga (1982) and Day (1982b). This last class of solutions is most
valuable for realistic modelling of the earthquake source process since
dynamic development of the crack is not prescribed in advance, but rather
controlled by the rupture criterion.

Numerical solutions for prescrihed rupture velocities on dynamic
faults, although not heing very realistic in modelling real earthquake
source processes, have satisfactorily quantified some important three-
dimensional geometrical effects such as the influence of fault width on
the slip function. For example, Day (1982a) obtained closed-form approxi-
mations for the dependence of final slip, slip rise time, and slip velocity inten-
sity (i.e. the strength of the crack-edge velocity singularity) on fault width
and length. By means of such relationships, the fixed rupture velocity
dynamic models help establish physical interpretations for the purely
kinematic parameters associated with the dislocation earthguake models
used more routinely in seismology.

Numerical three-dimensional solutions of spontaneous rupture propaga-
tion, though still few in number, are presumahly the best approximations
to real earthquake source processes. The most complex model has been
presented recently by Day (1982b), who studied the effects of non-uniform
prestress on spontaneous development of shear cracks with the use of the
slip-weakening failure criterion (as in Ida, 1972; Palmer and Rice, 1973
or Andrews, 1976) and a finite difference method. As for two-dimensional
numerical simulations of spontaneous propagation of shear cracks, he
obtained super-shear rupture velocities for three-dimensional cracks in
directions for which mode IT (in-plane) crack motion dominates, and sub-
shear velocities for directions of predominantly mode III (anti-plane)
crack motion. Introduction of even relatively simple stress heterogeneities
on the plane of the developing crack made the rupture histories fairly
complex (as did barriers in the two-dimensional analysis of Das and Aki,
1977) and in all cases studied, it was sufficient to reduce the average rupture
velocity to less than the § velocity, although locally super-shear rupture
velocities were occurring in regions of high prestress. As proposed by Day
(1982), results of this numerical simulation of the earthquake source
process could be used to synthesize the radiated seismic wave field with
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the use of slip histories obtained; this would shed some light on understand-
ing rupture histories of real earthquakes.

3.4 INSTABILITY IN RELATION TO THE CONSTITUTIVE DESCRIPTION
OF FAULT SLIP

In this section we examine an approach to fracture analysis which recognizes
that the tractions o; on a rupturing fault surface should not be regarded
as specifiable, @ priori, but rather should be regarded as being given by
some suitable constitutive relation between them and the fault slip Au,,
An attribute of such a constitutive relation, if it is to describe processes
normally understood as shear fracture, is that the resistive stress g,, (say,
for the mode II crack, Fig. 3.2.1) must decay from some relatively high
peak strength, necessary to get slip started, down to some reduced stress,
of the sort we have denoted by o%,, on well-slipped segments of fault.
This strength decay is, after all, what is meant by fracture, In the simplest
group of models, namely, those called “slip-weakening” models, the stress
o,y at a given location along a fault is assumed to be some decreasing
function of the amount of slip, Auy, at that place, at least for slip at constant
effective normal stress. More generally, however, it is evident that rate
and/or time dependence must be a feature of a suitably complete constitu-
tive description. For example, earthquakes do recur on the same portions
of faults, and this suggests that some process of regaining strength can
take place on a segment of fault surface in stationary, or nearly stationary,
contact. The same regaining of strength can be inferred on the laboratory
scale, where repeated stick-slip instabilities can be induced on, say, a saw-
cut surface in a continually shortened triaxial specimen within a sufficiently
soft loading apparatus. Thus, after consideration of slip-weakening models
in the next sections we examine more comprehensive “slip-rate and surface-
state” dependent constitutive models and discuss their implications for
instability.

The viewpoint adopted in this section is distinct from that of elastic-
brittle crack mechanics. In the elastic-brittle approach, the resistive stress
is assumed to drop instantaneously, at all points behind the advancing
crack tip, to the constant or perhaps slowly varying value of, (again for
the mode I crack) and to be unbounded at the tip, the admissible magnitude
of the tip singularity being specified by assumption of a critical value G
or K, which may include some rheological features through a presumed
dependence on speed ». Nevertheless, it is to be expected that the more
detailed approach outlined in this section is consistent with elastic-brittle
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analysis procedures in the limiting case when severe drops in resistive
strength o,, occur over a zone near the advancing crack tip that is some
small fraction of overall crack size, This expectation is confirmed, at least
in the context of slip-weakening models, and in the process one obtains
an interpretation of the critical G quantity of the elastic-brittle approach.

The approach of this section continues to represent the fault as a plane
of discontinuity in Ay, (precisely, in its slip components Aw, , Aus), and the
constitutive relations to be discussed relate o,;, 0,5 along the fault to
these slips. In principle, the material outside the fault could have any
particular consiitutive character, Most studies have been limited to the
assumption of elastic behaviour and the same assumption is made here.
As commented in the Introduction, however, the study of a wider range
of rheological models may have significance for earthquake phenomena.

Figure 3.4.1 shows a slipping region along a fault and, in enlarged
view, there is shown a small area segment of the fault along which stress
and other constitutive parameters can be considered as heing sensihly
uniform at the continuum scale adopted. The fault surface is regarded as

dh{==a3)

Ti=a, or o)
S
P——b”}:w
T"’ 3{=Auy or Ay

Fig. 3.4.1. Slipping region along fault surface and enlarged view showing parameters
entering constitutive description.

a plane of discontinuity of amount & in sliding displacement, where &
is to be understood as representing, in different circumstances, either
Awu, or Au, or some linear combination of the two. The shear stress trans-
mitted across a given segment of fault is denoted by 7, which may represent
either o;; or 635 or some linear combination. Other parameters of interest
to a constitutive description are normal stress 6,{= — o3,) and, in cases for
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which it is sensibly defined, the pore-fluid pressure p along the fault surface.
Temperature is, of course, also relevant but is considered only implicitly
here.

3.4.1 Slip-weakening fault instability models

Figure 3.4.2a illustrates a rate independent constitutive relation between 7
and 8. This incorporates slip-weakening, and response is of the rigid-plastic
type in that unloading and reloading occur along a vertical line segment
as shown. As indicated, v? denotes the peak slip resistance and ©/ the
residual frictional resistance which results after suitably large slip, say,
of amount ds. Figure 3.4.2b emphasizes that 7, 7/ and the level of
at any slip 6 must be regarded as being dependent on the effective normal
stress @,(= 0,—p). Presumably, the difference between ” and ¥/ should
be assumed to decrease with increasing temperature, and to first increase
but later decrease with increasing @, (transition from cataclastic to ductile
flow). Thus recognizing that g, and temperature both increase witb depth

:ﬂ
totd
<

u‘f,..{-a,.—p)’

Fig, 3.4.2, Slip-weakening model. (@) T = (&) for continued slip at &, constant; (b)
the td curve depends on @,.

(anomalous local pore pressure zones may cause @, not to do 50 mono-
tonically) and assuming that the rate independent constitutive framework
adopted is an appropriate approximation for all deptbs of interest, the
difference 77—t/ should first increase with depth and then diminish with
greater depth. The zone of high brittleness (i.e. substantial =¥ — z/) thereby
defined models the seismogenic layer of tbe Earth’s crust.

Simple descriptions of instability according to the slip-weakening
constitutive model can be given in the two limiting cases of essentially
uniform slip and of highly non-uniform slip, the latter being so much so
that results for the slip-weakening model become coincident with those
of elastic-brittle crack mechanics. We discuss both limiting cases here
in the simple circumstances of failure at fixed effective normal stress o,.
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The presumption of essentially uniform slip everywhere on a given
fault segment is evidently inconsistent with the fact that natural [lault
segments have ends at which slip must diminish to zero. Further, it is
not the type of rupture mode exhibited for large systems, which tend
towards non-uniformity of slip approaching crack-like response. However,
such essentially uniform slip could, for example, be exhibited if a small
enough segment of fault were cut [ree, as in the enlargement in Fig. 3.4.1,
and subjected to laboratory test as a specimen with a throughgoing fault.
Also, the description of instability that results based on this assumption
of uniform slip finds application in less restricted analyses of failure in
slip-weakening or other deformation-weakening systems (Jaeger and
Cook, 1979; Rudnicki, 1977; Rice, 1979; Stuart 1979a, b; Stuart and
Mavko, 1979; Li and Rice, 1983).

From a dynamical viewpoint, an elastic system that either exbibits
or is idealized as exhibiting uniform slip motion can be regarded as a
single degree of freedom elastic system, and can be represented schemati-
cally by a spring-slider system as in Fig. 3.4.3a. There 8 denotes the slip,
and the force T per unit base area of the slider, exerted on it by imposed
displacement &, of its surroundings, is represented by the linear spring
force

T = k(b,—d) (3.4.1)

whbere k is the elastic stiffness, For quasi-static response of the spring-
slider system, r = T. In some circumstances it is more appropriate to
regard 7, as the prescribed quantity where 7., replacing kd,, is the stress
exerted on the slider in the absence of slip. Then one writes, for quasi-
static conditions

T=1=15—k5 (3.4.2)

which may be regarded as the one-dimensional form of the general relation
between stress and slip in eq. {3.2.25).

Figures 3.4.3b and 3.4.3c illustrate the solution under increasing imposed
displacement d,. The straight lines are plots of eq. (3.4.1), with T = z,
for various values of &;. Their intersections with the 7 versus § relation
define the state of the system. Thus, as &, is increased, slip is stable in
a stifl system, Fig. 3.4.3b, but becomes unstable in a softer system, Fig.
3.4.3c, when the z versus 4 relation falls at a slope greater than the spring
stiffness,

Figure 3.4.3d shows (as points B, C, D, E) possible final states of the
system after an instability. Their range is determined by the conditions
that
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Fig. 3.4.3. (a) Spring-slider representation of single degree of freedom clastic system,
appropriate for uniform slip. (5) and (¢) Successive stress and displacement states en-
countered as load-point displacement &, is incremsed; stable for high stiffness in (&),
unstable for low stiffness in (¢). (@) Points B, C, D, E show possible final states after
dynamic instability, depending on amount of energy radiated away; point E is such that
the area under line AE equals that under the 7 versus d relation between &, and d.

(i) the final state be a possible equilibrium state, and

(ii) the energy lost from the system (in representation of radiated energy
losses, not included explicitly in the model depicted in Fig. 3.4.3a) be
non-negative.

The first condition is met if the final state lies on or below, on a rigid
unloading branch, the v versus & relation in 2 manner that is consistent
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with eq. (3.4.1). This shows that the final state lies on the spring unloading

line at or beyond point B of Fig. 3.4.34. The second condition requires
that the final state satisfy
&

Haa+ (3-8 > § 2(8)a¥ (3.4.3)

da

where © = (&) denotes the 7 versus & relation for continued slip, = and &
denote the final state, and subscript A denotes that at instability, Evidently,
equality puts an upper limit on the final slip. The condition at that upper
limit, denoted by E in Fig. 3.4.3d, is chosen so that the area under the
straight line AE equals that under the curve T = 7(8) between 8, and Jg.
Of course, there may exist systems for which a construction like that in
Fig. 3.4.3c applies at least approximately up to instability, but for which
the same gquasi-static T versus 6 relation becomes an inadequate model
during the dynamic instability, Such would seem to be the case in the typical
applications in references cited above of the stiffiness based instability
concept to faulting in deformation weakening systems, not just because
of rate effects but because the dynamic development of slip may be kine-
matically different from the quasi-static development especially in large
systems where slip regions spread at speeds pear limiting wave speeds.
Such systems cannot be described accurately as single degree of freedom
systems.

The opposite limit from essentially uniform slip is illustrated with
reference to Fig, 3.4.4. There the slipping region (x; < 0) is shown ad-
vancing into a portion of the fault that has not yet slipped (x; > 0), and
the sbear stress o, and slip An, are plotted schematically. These are related

Aoy

F w

/ P

| L2

H | -

slipping [ stifl tocked
L3

xy

YAy

Fig. 3.4.4. Slip-weakening fanlt model, with zone w of strength degradation confined
to region near the advancing fault tip; see Fig. 3.4.2a for significance of 77, t‘ and ds.
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to one another by a;; = T{Aw,) in the slipping region, and an application
of eq. (3.2.53), recognizing that there is now no singularity at the crack

tip, i.e.,

dx, = (3.4.4)
1

(refer to Fig. 3.2.3), shows that
&%
Jo—tlhu)g = § (H(®—v]ds (3.4.5)
i)
when point @ is chosen sufficiently far from the front of the slipping zone
that the stress 0, has reduced to the residual friction value 4, Here Awu,
has been replaced by 8 and it is recalled that d+ is the slip at which T(8)
has decreased to tf, Fig, 3.4.2a,

The quantity J,—t/(Au,), is invariant to the location of point @
so long as it is chosen sufficiently far from the front of the slipping zone
that o,; = /. When the linear extent w of the zone of strength degradation
in Fig. 3.4.4 occupies only a small fraction of the overall size of the slipping
region, the invariant quantity can be evaluated from the elastic-brittle
crack solution, formulated for the prohlem in which uniform resistive
stress 1/ acts everywhere on the fault up to the tip. That problem has the
conventional mode 11 elastic singularity, and if its associated energy release
rate is denoted by G, then another application of eq. (3.2.53), valid under
tbe presumption that w <« overall fault size, shows that

Hence, by comparison to eq. (3.4.5), the critical G of elastic crack mechanics
is shown to have the interpretation, from slip-weakening concepts,

L]
G = | [3(5-11ds (3.4.7)
o
This shows tbat in the limit considered, for which the linear extent @ of the
zone of strength degradation is small, the predictions of slip-weakening
fault models coincide with those of elastic-brittle crack mechanics with G
defined as above (Ida, 1972; Palmer and Rice, 1973); see also Rice (1980)
for further details, It sbould be emphasized that the above expression
for G assumes ideally elastic behaviour of the surrounding material; inelastic
response there provides another source for energy dissipation in the fracture
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process. Yamashita (1980) discusses slip-weakening crack growth with
a linear viscoelastic model for the surroundings.

Palmer and Rice (1973) discuss estimates of the size w of the zone
of strength degradation. This actually depends on the detailed form of the
7 versus J relation, hut not strongly so, and an approximate estimate
is given by (Rice, 1980, eq. (6.12))

wo = [9m/16(1 —»)]ud/(z"—1') (3.4.8)

for mode IT; the (1—v) is deleted for mode 111, Here 4 is a representative
slip in the weakening process, defined by
4%
6 = [1/(x* =N § [3(8)—/1dd (3.4.9)
1]

Rice (1980) and Wong (1982) discuss various estimates of G and w,
based on 7T versus & relations inferred from lahoratory data (on small
specimens with nearly uniform slip) and on possible extrapolations to the
tectonic scale. Values for G ranging from 5x 10® to 5% 10* J- m~? and
for wy of order 1 m are generally consistent with laboratory data. However,
as discussed by Li and Rice (1983), the effective G values of order
5% 10 J- m~2 inferred indirectly from large scale earthquake instability
models, and probably due to fault segmentation at some scale, imply
sizes w, that are of order 100 to 200 m if the strength drop t? — ¢/ is chosen
as 50 MPa, and scales inversely with (¥?—1/)? for a given G.

Interactions between pore fluids in surrounding rock and the spread
of slip zones along faults can be analysed with the aid of the slip-weakening
failure model and pore pressure effects on strength as in Fig, 3.4.2b. Rice
(1979, 1980) gives a review of these mechanisms. The effect of those dis-
cussed is to stabilize somewhat the quasi-static spread of a slip zone against
dynamic instability. However, processes or mechanisms which produce
increased pore pressure on the fault plane, such as rapid dehydration,
would have an opposite effect.

One effect of dynamic spread of a slip zone, at least under conditions
for which the linear extent @ of the strength degradation zone is small,
is to shorten w from its value for quasi-static conditions. Thus, if w, above
represents the quasi-static value, then in steady dynamic spread of the slip
zone (Rice, 1980, eq. (6.16))

w = wo/fu(v), @ = wy/fu(v) (3.4.10)
for modes IT and 111, respectively, where the functions f(v) are those defined

by eq. (3.2.63). This effect may be of significance for the configurational
stability of a single rupture plane; d«/w represents an average displacement
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gradient of type du,fdx, (mode II) or dus/¢x; (mode III) over the zone
of strength degradation, and induces stresses (of type o;, or a;3) which
are conducive to rupture on planes other than the main rupture plane.
Thus, denoting ¢o,,) and {o;,)> as averages of stress components along
the slip surface over the region w of strength degradation, and estimating
o+ = (9/4)8, Rice (1980, egs. (6.17), (6.18)) shows that

() = St (=)o) (341D
for mode IT and

() = st = (= i) (.412)

for mode III. Here o9, and of, are initial stresses acting before arrival
of the slipping zone and the alternating signs refer to upper and lower
surfaces of the zonmes. Since both fj, and f;; become unhounded as the
respective limiting speeds are approached, these results show that stress
alterations motivating fracture on directions off the main ruptute plane
become indefinitely large compared to those associated with the main plane
itself. Some of the strongly segmented structure of actual faults may be
due to effects of this type.

A related issue is that of when shear faults can exist as such, As is well
known (e.g. Lawn and Wilshaw, 1975) lahoratory attempts to simulate
mode IT or IIT ruptures generally result in local tensile cracking at crack
tips in brittle solids. The above condition suggests, for example, that such
tensile configurational destabilization of 2 mode IT shear crack will not
occur if (in quasi-static conditions) the initial stress o9, is sufficiently small
or negative to ensure that

a?1+—:— (-1) g oy (3.4.13)

where oy, possibly zero, is the tensile streng'th of the faulted material,

Our discussion of the slip-weakening model in this sub-section has
presumed unidirectional slip. Day (1982h) proposes a method for dealing
with general slip paths as encountered in 3-D numerical fauit dynamics.
His method is consistent with isotropic hardening notions in continuum
plasticity theory and may be described as follows: We let 7 = T(0) represent
the unidirectional slip relattion where now the interpretations t = (o3,
+033)M? and

8 = § [(Ad)? + (i1 ar (3.4.14)
[+]




244 FRACTURE THEORY AND SEISMOLOGICAL APPLICATIONS Ch. 3

are made and slip increments are distributed among the components
according to

Aiy = 8ayyfr, Ay = 8a,af7 (3.4.15)

3.4.2 Constitutive description of rate and state dependent frictional slip;
instability conditions

A promising area of fault mechanics, not yet well developed, attempts
to incorporate the actual rate and state dependences of the frictional
slip process as observed experimentally into the theoretical framework
for instability. In fact, almost all progress as of this writing has been on
formulating appropriate constitutive relations and exploring their con-
sequences for instability in the simplest context of the spring-slider system
in Fig. 3.4.3a. Thus we give here only a brief report on this evolving area,
One characteristic of a constitutive relation intended for description
of sequences of instabilities on the same fault surface is that there can
be no fundamental dependence of stress on displacement. The dependence
of this type postulated in slip-weakening models is plainly intended to
model a single instability sequence. More generally it can be postulated
that the strength (¢) on a surface undergoing unidirectional slip of amount
d(t) is a direct function of slip velocity F(¢) [= dd(¢)/dt] and (effective)
normal stress ¢,(7), and is a functional of the prior histories of both. Written
symbolically
T(t) = F[V(1), 0,(1); V(t"), 0,(t), —0 < t' < 1] (3.4.16)
Recent experimental studies (Dieterich, 1978, 1979a, 1981; Ruina,
1980, 1983) have documented the velocity dependence in slip at fixed
normal stress, o,(t) = constant. These show the following features: When
a step increase (decrease) in slip rate F(r) is imposed, there results a step
increase (decrease) in =(r). That is, aF[F (1), ...)/aV(t) > 0. When slip
at a constant rate ¥{¢) is maintained for some time, the stress 7(7) evolves
towards a steady state value, denoted z*(¥), which is a function of ¥
only (for the given ¢,) and which is independent of prior slip history,
Further, it is often observed that d7*(¥V)/dV < 0, i.e. that the ultimate,
or steady state, strength decreases with increasing velocity; exceptions
seem to exist in the early stages of slip on a given surface and for slip at
elevated temperature (Dieterich, 1981; Rice and Ruina, 1983; Ruina,
1983).
Ruina (1980, 1983), in further development of constitutive representa-
tions hy Dreterich (1978, 1979a), related in turn to proposals hy Rabinowicz
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(1958), suggests that variables (say, &, , 8,, ..., 8,) be introduced to describe
the state of the slipping surface, that strength depends on V and the state
as thus characterized, and that the state itself evolves with ongoing
slip. Symbolically, this constitutive description has the form, for slip at
fixed o,,

T-f(V, ﬂ.h"" 8:]3 dﬂ,/dr=g¢(V, 81! ""al)i |= 1!“"“

(3.4.17)
Thus the functions g; describe the evolution of state during slip, and may
possibly describe an evolution of state with time when the slip rate is zero.
The equations g, =0, i=1,...,n, are presumed to have solutions §,
= 0*(V), which give the steady state appropriate to sustained slip at fixed
speed V; the steady state strength is

™) = f(V, 05(¥), ..., 0:1(N) (3.4.18)
A specific two state variable form proposed by Ruina (1980, 1983) in
order to fit results over a wide range of slip rates, approximately 0.01
to 1 um+s™!, with polished quartzite surfaces is

T = T,+Aln(V/V,)+B,6,+B,0,

db,,,/dt = —(V/L,,5)[0;,:+1a(V/V,)]

where all of 0, 4, By, B,, V,, L, and L, are positive constants. For example,
to fit experiments with the quartzite under o, = 10 MPa, the parameter
choices are 7,/0, = 0.55 when V,, is chosen as 1 pm-s5~!, 4/o, = 0.011,
ByJA = 1.00, B,/A = 0.84, L, = 0.25 pm, L, = 5.2 um. As Gu et al.
(1984) comment, the same form seems to describe qualitatively experiments
with various gouge layers (Dieterich, 1981), except that the L’s can be
much larger, e.g. of the order of 100 um. The steady state stress is

t = 1,— (B, +B,— A)In(V[V,) (3.4.20)

and for By+ B, > A as above, this predicts velocity weakening in steady
state slip.

A simpler but related mathematical form, employed by Ruina (1980,
1983) and Gu et al. (1984) in various stability analyses, and motivated
originally as a simplification of a friction law proposed by Dieterich
(1972a, 1981), involves a single state variable # and is

T =1,+Aln(V/V)+B0, dbjdt = —(VID)B+In(V[V,)] (3.4.21)

This is the form to which the two state variable law above reduces when
L, = L, (= L), if we define B = B, +B,. In this case

(V) = 14~ (B-A)n(V|V,) (34.22)

(3.4.19)
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Primary experimental features fitted by such laws are approximately
Ioparithmic variations of strength with velocity, with positive coefficient
(4) in instantaneous and negative (B +8,— 4) in long term (steady state)
respanse, and approximately exponential decay of v towards steady state
with characteristic slip distances (the L’s) that are independent of slip
rate. In typical experiments of Dieterich and Ruina, slip is occurring in
steady state at speed ¥, and the speed is suddenly changed to ¥,. The
general response found is illustrated schematically in Fig, 3.4.5

v - -
o d= ' d=kl>)

{ ﬁ>f"[l"ﬂ $r"('ﬁ]

Fig. 3.4.5. Shear stress 7 versus slip 8, with increase in slip rate d from ¥ to Vy; v (¥}
denotes the steady response for skip at rate V.,

¢

As remarked, most stability results so far obtained apply to the spring-
slider system of Fig. 3.4.3a. Rice and Ruina (1983) examine the stahility
of steady state slip, enforced by imposed steady motion of the load point
(dd,/dt = const = V), in response to small perturbations and show
within linearized theory that such slip changes from stahle to unstahle
as the spring stiffness & is reduced below a critical value, k.., expressed
by them in terms of parameters of the constitutive law. Further, the linearized
response at k = k.. is oscillatory, and such oscillations decay or grow
in time according to whether k& > k., or k < k., respectively. For example,
with the one state variable law of eqs, (3.4.21) above it is found that the
critical stiffness is

k.. = (B—4)/L](1 +mV?/AL) (3.4.23)

where m is the mass of the slider per unit base area, and the circular fre-
quency of tbe oscillatory response at k = k., is

w = (V/L) y (B—A4)/4 (3.4.24)

An extended study of the quasi-static (1 = 0) motions of the spring
slider system with full inclusion of non-linearity (Gu er al., 1984) for the
one state variable law of eq. (3.4.21) shows that finite amplitude periodic
oscillations of V about the imposed load point speed V, are found at
k = k.. provided that tbe motion starts sufficiently close to tbe point
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in state space corresponding to steady state slip. All motions with k < k.,
are unstable in that ¥ — oo in finite time (because inertia is here neglected).
Motions with k > k., are stable, in that ¥ — ¥, with increasing time,
provided again that these begin sufficiently close to steady state. Sufficiently
large disturbances induce instability (V' — oo in finite time) even when
k > k.; however, the magnitude of the necessary disturbance, e.g. in the
form of a suddenly increased imposed load point velocity on a system initially
in steady state, is found to increase exponentially with k at large k.
Similar results are found by Gu et al. (1984) for the two state variable
law, except that now stable limit cycle oscillations of ¥ about ¥, are found
over a small range of k values just below k.. These limit cycle motions
are attractors for all states starting sufficiently near to steady state slip
with k in that range; those states starting further away become unstable,
Special and explicit solutions are found by Gu er al. (1984) for the
one state variable law when the load point is stationary, ¥, = 0, This
may, among other possibilities, correspond to a case in which the load
point is suddenly displaced and then held fixed; 7 is then expressed as in
eq. (3.4.2) where 7, is a given constant, representing the intensity of the
suddenly applied loading. Such loading could, for example, simulate
aftershock inducing stress transmission to fault segments in the vicinity
of an earthquake rupture. The situation envisioned could also represent
a fault segment which is loaded by ongoing tectonic processes, but at
a sufficiently slow rate by comparison to k¥ (where V is the fault slip rate)
that, for practical purposes, 7, in eq. (3.4.2) is constant. It is then found
that all systems brought to a state of stress and slip velocity such that
T > t™(V)+kLB|(B—A) (3.4.25)
are unstable, in that ¥ accelerates continuously and ¥ —+ oo in finite time,
the time being shorter the more the equality is violated. Here (V) is
given by eq. (3.4.22). All systems brought to a state of ¥ and ¥ for which 7
is less than the right-hand side of eq. (3.4.25) are stable in that, ultimately,
V diminishes towards zero, althougb those brought to states with
(V)4 kL < © < v*(V)+kLB|(B—A) (3.4.26)

will first exhibit an increase in slip rate and only later a decrease.
Figure 3.4.6 shows the response to a more complicated load point
motion. A system slides in steady state at speed ¥V, the imposed load point
speed. Then the load point motion is stopped for some relaxation time
1,, after which motion is resumed again at the same speed V,. For the
case illustrated, B = 24 and the stiffness k¥ = 2k., where now k., = A/L.
Gu et al. (1984) find that a critical relaxation time ¢, = 32L/V, divides
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the unstable and stable range in this case, shorter times giving stability
as illustrated, Similar analyses of effects of temporary relaxation of load
point motion were made by Dieterich (1981) and Ruina (1983). The latter
showed that peak stresses as predicted from the two state variable model
of eqgs. (3.4.19), with parameters chosen to fit velocity jump experiments
on polished quartzite, gave a close fit to previous experimental results
by Dieterich that had been interpreted as strengthening in stationary contact.

—
A ugﬂ.’ for B=24,
2L k=2k_|=2A/L)
1 -
0
-k =10 "/VH
2k
1 -
0
) i =501/
_2 -
L - | 1 ! 1
0 5 10 15 20 AL

Fig. 3.4.6. Friction slip initially in steady state at speed V,, then load point motion stop-
ped for time #,, then load point motion resumed at speed V.

In fact, the constitutive model as presented does not predict strengthening
in truly stationary contact, and it is the fact that continuing relaxational
slip occurs, alheit at very slow rates, which leads to the evolution of state
manifested in sharp strength peaks (i.e. apparent strengthening) in Fig.
3.4.6.

The cases discussed thus far and also those treated elsewhere in the
literature (Dieterich, 1979b, 1980, 1981; Mavko, 1980) show that the
newly developed constitutive framework exhibits response that models key
elements of the shear rupture process. For example, the calculations reported
in Fig. 3.4.6 and other works referenced show that the constitutive relations
can exhibit rapidly decaying strength with ongoing slip, a prerequisite
for fracture instability, and can also exhibit effective regaining of a strength
threshold necessary for future instabilities on the same surface. Also, the
discussion in connection with inequality (3.4.25) suggests mechanisms
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of time-dependent failure for critically stressed systems, possibly related
to aftershocks and to processes precursory to earthquake instability.

Some limited results for slip between deformable elastic continua
(Ruina, 1980; Mavko, 1980; Rice and Ruina, 1983), rather than simply
for single degree of freedom systems, suggest spatial propagations of slip
events which scem in some correspondence to results observed on larger
laboratory specimens (Dieterich, 1978, 1979b). In addition, direct measure-
ment of stress versus slip histories, as crack-like confined slip events spread
by measurement points in large sawcut laboratory specimens (Dieterich,
1980; Okubo and Dieterich, 1981; Lockner et al., 1982), show * versus &
relations resembling slip-weakening. This occurs on surfaces of a type which
are known to exhibit frictional resistance described by constitutive laws
of the general class discussed here, and suggests that there are connections
yet to he drawn relating the new rate and state dependent constitutive
framework to elastic-hrittle crack mechanics and its slip-weakening exten-
sions.
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