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3. Fracture Theory and Its Seismological Applications 

3.1 INTRODUCTION 

Fracture phenomena pose significant geophysical problems over a vast 
range of size scales. These encompass the atomistic and microstructural 
scales of interest for an understanding of cataclastic rock deformation 
and friction in the manner of materials science, the laboratory scale at 
which study of "macroscopic" crack growth and friction phenomena 
is usually attempted, and, finally, the field scale which may range from 
mining rockbursts to large crustal earthquakes extending over hundreds 
of kilometers. In this review we emphasize the study of fracture through 
methods of continuum mechanics and discuss applications to pre-seismic 
and dynamic earthquake rupturing. 

The presentation is organized around theoretical models of the fracture 
process that envision rupture to occur along a planar zone of displacement 
discontinuity within a surrounding continuum, usually taken to be elastic. 
The "ruptured" portion, which we may call the crack, may be subject 
either to boundary conditions of a fixed stress drop, in which case some 
fracture energy must be ascribed to processes occurring at the crack tip, 
or it may be subject to boundary conditions which are themselves a consti­
tutive relation between local stress and relative displacement across the 
crack. In the latter case, the constitutive relations must generally exhibit 
a reduction of strength with rapidly imposed displacement. In more elabo­
rate but more realistic versions they may also exhibit a dependence of 
strength, at least for shear cracks, on slip rate and surface state, where 
the state itself evolves with ongoing slip in a manner that is consistent 
with weaking in rapidly imposed slip and with restrengthening in stationary 
or near-stationary contact. While the surroundings of the crack zone 
are normally taken to be elastic, as mentioned, some progress has been 
made with more complicated rheologies, such as general linear viscoelastic, 
non-linearly viscous Maxwellian, rate-insensitive elastic-plastic, and fiuid­
infiltrated poro-elastic. Research on the first three of these has been exten­
sive in technologically-oriented fracture mechanics; probably, their wider 
examination in the earthquake context would be productive, although 
we do not discuss the topics here. 

Other theoretical models of the fracture process examine a non-elasti-
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cally deforming mass and seek to determine conditions under whicb it 
becomes unstable. This instability may OCCur dynamically, i.e. by lack 
of a continuio.g quasi-static solution to boundary conditions of slowly 
imposed stress or displacement. 1t may alternatively. Or additionally, 
be in tbe form of a concentration of subsequent defot'tt\.'ltioD increments 
ioto a narrow zone or shear band, as a result of what would be a bifurca­
tion in a uniformly deformed system. Ideally, ooc might like to combine 
concepts and to imagine a complete fracture model in which inelastic 
deformation occurs in some region at a crack tip, and in whicb tbis deforma­
tion locaUy reaches conditions for concentration of deformatioo into 
a narrow zone which joins ooto the crack and ultimately becomes a prolon­
gation of the crack itself. At present there seems to be no complete and 
mechanicaJly self-consistent analysis of a fracture process along these 
lines, although various ad-hoc roodels have been attempted to address 
initiation of cracking from an inelastically deforming region. 

tn comparing the fracture models around which we organize this 
review to reality, it is perhaps important to remember that fracture processes 
are strongly sensitive to heterogeneities. For exaruple, what might be 
described at the laboratory scale as stable inelastic compressive deforma­
tion of a confined brittle rock specimen may involve, at the grain scale, 
R series of unstable tensile cracking and frictional slip events. Further, 
these give readily detected acoustic emissions. Similarly. in application 
of fracture models to the much larger scale of earthquakes, it is important 
to remember that local instabilities may be occurring over a range of size 
scales while the overall processes of, say, slip along n fault or stressing 
of some region may he stahle when judged at an appropriately large size 
scale. Thus, what is descrihed as stable, quasi-static advance of a crack­
Iik.e zone of slippage over the size scale of large crustal earthquakes may, 
at a smaller size scale, involve dynamic instabilities in the form of back­
gro und seismicity or perhaps foreshocks to a coming instability at the 
large crustal scale. Ohviously, the local dynamic instabilities may occur 
over a range of magnitudes, some of which may involve sizes of too large 
a scale to be considered "microscopic" hy comparison to the large crustal 
scale examined. 

Among other sources, the makrial which foDows in this chapter draws 
extensively on a review by Druowska (1983) on crack. dynamics and its 
seismological applications, and Oil portions relati ng to fracture modelling 
in geological materia1s in an article by Rice (1980) o n the mechanics of 
earthquake rupture. These references and their extensive bibliographies, 
(Q some extent updated here, may be consulted for a fuller treatment. 
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3.2 ELASTICBRITTLE CRACK. MECHANICS 

By an "elastic-brill!e" crack model, we shall llnderstand a model in which 
material outside the crack remaios ideally elastic and in which there is 
an abrupt drop ill stress fllJ on the plane of the crack (taken as Xl - 0) 
as the cracked region is entered (see Fig. 3.2.1). In the case of tensile cracks 
(mode [, possibly in combination with II and/or Ill) the stresses (llJ (j 
- 1,2.3) drop to zero on the crack plane (or to a value consistent with 
tbe pressure of some crack-filling fluid). For shear cracks (modes II and/or 
nt), which arc of interest for earthquake processes, the 5treiS <Ill and 
displacement U1 afe continuous across the crock, whereas the shears Cl'll, 
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0ll are assumed to drop abruptly to constant or slowly varying frictional 
values oJ I. of3 on the crack surface, there being associated discontinuities 
in Ill' "3' The abrupt drop of resisting stress on such a crack plane, em­
bedded within an otherwise elastic solid, leads to singular stress and strain 
fields at the crack tip. Hence, the actual flow of energy to inelastic processes 
near the tip of an advancing rupture, leading to breakdown of strength. 
is represented within the elastic-brittle crack model by the elastic energy 
G tbat is released per unit area of new crack surface as the singular crack 
tip stress and strain field advances through the material. That is, in the 
model the entire rupture process is confined to an arc (crack tip) of singu­
larity surrounding the (crack) surface of previously ruptured material; 
the material outside the crack has its undisturbed elastic properties. This 
elastic-brittle crack model, however unrealistic in detail, seems to provide 
an adequate approximation of many seismological problems (e.g. static 
and dynamic models of earthquake rupture, described as one planar crack 
and/or its development). Other models of cracks are also used, allowing the 
rupture process to occur in an annular zone, rather than an are, surround­
ing the crack surface. This group of models, considered in Section 3.4, 
gives an explicit, if oversimplified, representation of the breakdown process 
in shear, in terms of a reduction from some high peak strength a P to the 
residual frictional strength a' within a zone of strength degradation at the 
crack tip. 

3.2.1 Static crack tip .stre.s.sjield.sl.stre.s.s intensity factor.s 

In elastic-brittle crack models the strain field in general is highly concen­
trated at the crack front, which is the site of a strain singularity, while 
the strain en and all displacement derivatives OUj/OXl (where here Xl 

has heen chosen in a direction that is locally tangent to the crack front 
at the point considered; Fig. 3.2.1) necessarily remain bounded and small 
due to constraint of surrounding material. Consider the implications 
of this remark in terms of the governing equations of an elastic field in 
terms of displacements. These equations follow within the usual assump­
tions of linear and isotropic elasticity from 

Oa'J/aX; _ eo2ujlot1 

a'j - A(J'JOUh/OXII+P(OUt/oxj+ouJ/ox,) 
(3.2.1) 

(A, p are the Lame elastic moduli, e is the density), and hence have the 
Navier form 
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(3.2.2) 

Evidently, for asymptotic solution for the crack tip singular field from 
these equations, all terms involving 8/8xJ can be deleted on grounds 
that they either are bounded or are one order less singular than the remaining 
terIDS with spatial derivatives. Also, in the case of a stationary or only 
slowly advancing crack, the inertia terms e8lUj/8t2 may be di sregarded 
Dear the tip by comparison to the spatial derivative terms (see Section 
3.2.4 to follow (or inclusion of dynamic effects in rapid crack growth), 
and hence the near-tip singular field satisfies the statical equations 

[ a a 1 ( au, au, ) (a' a') (A+p) -a-' -a-' O -a +-a- + p -a ' +-a ' 
Xl Xl XI Xl Xl ''(2 

(3.2.3) 

These equations, valid asymptoticaJly for tbree-dimensional crack problems, 
ate the same equations which govern two-dimensional elastic plane strain 
(for III and u2 ) and anti-plane strain (for u3) fields . Hence their solutions 
may be written througb well-known methods of two-dimensional elasticity 
(Muskbelisbvili, 1953) in terms of analytic functions 9'(0, 'P(e), w(C) 
of the complex variable' "'" Xl + ix1 

2p(u, +iu,) ~ (3-4')~«()-(~'«()-~(C) 

2ipu, - w«()-wW (3.2.4) 

wbere i is the unit imaginary number, v is Poisson's ratio, and the overbar 
denotes complex conjugation. The resulting stresses are 

0'11+0'22 - (J33 / 'II = 2cp'(C)+2tp'(C) 

O'U-O'll +2ion - lC1p"(C) +2V1' (e) 

O'n+ i0'31 = w'CC) 

(3.2.5) 

Following the method of Rice (l968a), based on analytic function 
theory, the only singular solution of these equations consistent with bounded 
tractions on the crack faces aDd giving finite displacements is 

~«() - (K,-iK,)((J2.)' " 

~(,) ~ (K, + 3iK,)(( /S . )'" 

w(C) '- 2KJCC/2rr)I/2 
(3.2.6) 
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where Kl> K1 • K" are real quantities chosen to coincide with standard 
definitions of Irwin's crack tip stress intensity factors (e.g. Paris and Sib, 
1965). Here, however, the K's have been given subscripts such that KJ 
corresponds to a crack displacement discontinuity /1uj, where 

!luj = uJ(x1,O+, x3)-uiXl,O-, Xl) - UJiB _"-uJi& __ ,,, 

the latter with reference to Fig. 3.2.1, and induces concentrated stress (J2J 

along the Xl X3 plane ahead of the crack tip. Thus K2 corresponds to mode 
I, Kl to mode II, and K" to mode III; i.e. with the usual method of denoting 
modes by Roman numerica1s, Fig. 3.2.1, 

[KII,K"KIUJ= [K1 , K 2 ,K,,] 

In particular, the stress distribution acting on the plane () - 0 directly 
adjacent to the crack front is 

o';vlo_o = K)/(21trif2 + O"L + O(rlf2) (3.2.7) 

where the r- 1/2 singular term is calculated from the equations for the 
analytic functions above, where the bounded term o1J is the limiting value 
of the traction acting on the crack surfaces (J = ± 7t as r -+ 0, and where 
the additional terms, denoted by the order symbol, vanish at the crack 
tip. Similarly, the displacement discontinuity along the crack is 

l:!.uj - [(1-v)Kj +vllJ3 K3](8rj1t)1/1 /,u + O(r3f2) , (3.2.8) 

where v is the Poisson ratio ).j2(A.+,u). 
The full angular distribution of tbe r- 1/2 singular stress field, and 

resulting rl/2 displacement field, may be determined by substitution of the 
solutions for cp, 'P, w above into the equations for au and u/ in terms of tbese 
functions. The results are given in many sources (e.g. Paris and Sih, 1965; 
Rice, 1968a; Lawn and Wilshaw, 1975, which contains plots of various 
components against 0) and are not reproduced here. 

Many solutions to elastostatic crack problems have been developed, 
and extensive tabulations of solutions are given by Paris and Sib (1965), 
Tada et of. (1973), and in a series of books edited by Sih (1973, 1975). 
Certain features of solutions are now cited for some simple problems 
of planar cracks, on X 2 = 0, wbich are well isolated from boundaries 
of the crack-containing body. Suppose the loadings on the body are such 
that a stress field o'?Ax1 , x 2 , x 3 ) would exist in tbe body if the crack surfaces 
were constrained to have zero relative displacement, but that a stress 
o'{J is actually transmitted across the crack plane in the natural cracked 
state. The stress drops l:!.o'j (variable with positions Xl, X3 along the crack 
plane in general) are defined by 

(3.2.9) 
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Now, for a "tunnel" crack, extending indefinitely in the ± X3 directions 
and with edges at Xl = fa, which sustains ul1iform stress drops, the relative 
displacements along the crack surfaces are given by 

(3.2.10) 

whereas the stress acting on the crack plane outside the crack (lxII > a) 
is given by 

0'2J(XI , 0, x3) = O'~j(Xl' 0, X3) +6.dj [Ixll (xi - al )-112 - 11 (3.2.11) 

By comparison of either of these results to the previous expressions for 
near tip fields in terms of stress intensity factors, it is evident that 

(3.2.12) 

Another problem which has a simple but useful solution is that of the 
circular crack, with front at xi+x~ = a2 along X 2 - 0, subject also to a 
uniform stress drop. In this case the relative displacements of the crack 
faces are 

(3.2.13) 

and the stress intensity factors at the point Xl = a, Xl - X3 = 0 along the 
crack front are given by 

[KI' K 2, K 3] = [26.dl /(2-v), !:::..d2, 2(1 -v)!:::..a3/(2-v)] (4a/rr/'1 
(3.2.14) 

(this corrects eq. (5.13) of Rice (1980), where the factor (1 -v) for K3 
is missing). 

The results given thus far could be derived from the result of Eshelby 
(1957): A homogeneous ellipsoidal inclusion, embedded in a homogeneous 
elastic body subject to remotely uniform stress, undergoes a state of uni­
form strain. By specialization to an inclusion of vanishing moduli, and 
then letting one principal axis of the ellipsoid approach zero so that the 
ellipsoid degenerates to a crack, we conclude that for uniform stress drops 
!:::..aj on an elliptical crack occupying the region 

xflal+x~/c2 ~ 1 on X2 "'" 0 

the relative displacements must be given by 

!:::..u! = AIJ6.O'J{1-xi/a2-xi{cl )1fl /IJ (3.2.15) 

where the matrix Alj of coefficients, necessarily diagonal for the given 
choice of axes, is homogeneous of degree one in a and c, and dependent 
also on the Poisson ratio 1'. Values of the A lj ean be obtained either by 
specialization of the results by Eshelby (1957), e.g. Budianskyand O'Con-
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nell (1976), Budiansky and Rice (1978), or by an energy-based argument 
stemming from work of Irwin (1962) and given by Hoenig (1978). Pre­
suming a > c, 

All - 2(l-Jl)ckl {(k2 -v)E(k)+v(l-k2)K(k)}-1 

A" ~ 2(1-')'IE(k) 

A" - 2(l-,),k' {[k' +,(l-k')]E(k)-,(l-k')K(kW' 

Au = A21 = A23 = Al2 = A31 = An - 0 (3.2.16) 

where k2 = 1- c2 1a2
, and where K(k) and E(k) are the complete elliptic 

integrals of first and second kind, respectively. 
As an application of the foregoing solution for l:luJ under uniform 

stress drops, we apply an elegant theorem by Madariaga (1979; see also 
Rice, 1980) based on elastic reciprocity to state the following: Let the 
elliptical crack considered above be subjected to an arbitrary, non-uniform 
distribution of stress drop,.6.aAx1 , x]). Then the components oftbe moment 
tensor MJl of the relative displacement distribution are given by 

MJj ;;;; '" ~ (1l'26.11)+ 1l}26.IIJ)dx1 dxJ , 
- (JJ2Akj+J}2AkJ) ~6.O'k(Xl' x3)(I-xUa2-xUc2)lf2dXtdx3 (3.2.17) , 

where S denotes the surface of the elliptical crack and !5 i2 enters as the j 

component of unit normal to this surface. Thus, for example, if only the 
stress drop component 6.0'1 is non-zero, the non-vanishing components 
of MIj are 

M12 = M21 = '" ~6.uldS , 
- All ~ 6.O'I(Xl, x3)(1-xffa2 _XUC2)1/2d.x1 dX3 , 

and for the special case of a uniform stress drop this reduces to 

M12 = M21 - (27t'/3)acA l1 6.0'1 

[= 16(1-v)aJ6.ud3(2-v) when c = 0] 

(3.2.18) 

(3.2.19) 

The result above for M12 is used extensively to estimate 6.0'1 (which should 
perhaps be called the nomin.al shear stress drop) from seismically observed 
moments when some independent means (aftershock zone size, surface 
breakage, geodetic changes, comer frequency of spectrum) is available to 
estimate the size oftbe rupture. The nominal stress drops estimated thereby 
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for large crustal earthquakes generally fall in the range of 1 to 10 MPa, 
with values in the 3 to 6 MPa range being most representative (Kanamori, 
1977), 

However, it should be understood that only very smooth rupture propa­
gation on a uniform fault surface would be approximated successfully 
by a uniform stress drop model, and, in reality, it should be expected that 
local stress drops fluctuate highly along the rupture surface and such a model 
would give onJy the (weighted, e.g. as in eq. (3.2.18)) average value of a 
real stress drop (see Aki, 1979; Madariaga, 1979; Rice, 1980; Rudnicki 
and Kanamori, 1981). It might be also noted here that many large shallow 
earthquakes represent "multiple events" ratber than tbe development 
of one planar crack, and thus more sophisticated crack models should 
be used to approximate the real source proeess. For example, rupture 
models with harriers along a single fault surface, Section 3.3, show that 
propagation may be slowed or stopped completely at some barrielli on 
the way, perhaps starting again on a disconnected fault surface in the 
latter case. 

It is expected that uniform stress drop& models might provide better 
approximations for deeper earthquakes than for shallow ones, because 
events deeper than approximately 40 km seem to exhibit relatively smooth 
spectra, possibly reflecting a greater uniformity of stress and material 
conditions at such depths. 

3.2.2 Integral representations for elastic-brittle cracks and integral eqUlltions 

Returning to the case of the tunnel crack, another solution (which will 
be useful for analysis of slip weaken.ing models in Section 3.4) is that which 
corresponds to a stress drop dOl which is not uniform but, rather, which 
varies with Xl over the width -a < XI < +a of the crack; i.e. twJ 
- duix ,). Further, suppose that the region Xl < -a, Xl - 0 (i.e. the 
portion of the crack plane lying to the left of the crack itself) is cut and 
given the uniform relative displacements 6.uJ = DI , where D 1, Dl , D3 
are given constants. lbese constants represent the net Burgers vector 
of displacements within the crack. This problem is formulated conveniently 
by singular integral equations (Muskhelishvili, 1953a. b; Bilby and Eshelby, 
1968). Thus, observing that -d6.U1(x 1)fdx l can be regarded as the density 
of continuously distrihuted line dislocations along the plane Xl = 0, and 
recalling that a line dislocation at XI - E creates stresses elsewhere on the 
Xl axis proportional to 1/ (x1 -E), One has the integral representation 
of the alteration of stress field 0 11 on Xl - 0 in terms of relative displace­
ments 
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• 
"2'=>(\'-';- '' ') l X,~, d~ [t.uJ«)-,6"t.u'(')]d, -. 

Here the integral is to be interpreted in principal value sense if IXll < a, 

and the relative displacement au} must be consistent with the stress drop 
distribution. such tbat 

for -0 < 41 < +a (3.2.20) 

and must, fUrther, be consistent with the given net dislocations DJ within 
the crack 

•• l d~ "'",«)d, = -D, (3.2.21) -. 
Regarding the stress drop distribution as given. tbe second to last equation 
is a singular integral equation with Cauchy kernel, lind the supplementary 
condition given by the last equation cubles its unique solution 

(3.2.22) 

The associated stress intensity factors may be determined by comparing 
the above result, near XI - ±a, to the asymptotic expression for tJ.Uj 

near II crack tip (eq. (3.2.8» . Hence, at the respective crack tips ± 0, 

(3.2.23) 

Several comments are in order on possible generalizations oftbe solution 
metbod just outlined. First, consistently with the elastic-brittle crack model, 
it bas been assumed that the stress drop !:::.ai= a¥J-a{J) is some given 
quantity. More elaborate crack models would, however, relate a{J (and 
hence !:::'uJ also) to the current relative displacements !:::.Uk or perhaps, more 
generally, to their recent time history iQ the manner of a functional relation 
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(see Section 3.4). In that case the integral eq. (3.2.20) remains valid but 
now the Au's appear on the left also, in a generally non-linear manner. 
Solutions must then be developed numerically as in work by Qeary (1916), 
Stuart (1919a, b) and Stuart and Mavko (1919), some results of which 
will be discussed subsequently in connection with slip-weakening models. 
The basic formulation outlined above must also be modified for cracks 
that are near to external boundaries, e.g. as in the Dmowska and Kostrov 
(1913) analysis ofa dip-slip fault. In this case the basic 1/(x1 -~) dependence 
of the stress field of a line dislocation in eq. (3.2.20) is modified, at least 
for two-dimensional elastic fields, to 

[1/(x, -<JJ+h(x" n 
where h(Xl'~) is non-singular within the body coruidered. Hence the 
integral eq. (3.2.20) contains a kernel with a regular term in addition 
to the Cauchy singular term. Efficient numerical solution methods in 
terms of Tchebychev polynomials (e.g. Erdogan and Gupta, 1912) are 
available for this case. 

Analogous integral equation procedures can be formulated for three­
dimensional crack problems. For example, let UtiX,~ be the elastostatic 
Green's function for the region considered, ie. the k component of dis­
placement at x due to a unit point force in the j direction at ~, and let CIJpq 

be the modulus tensor [dCl'IJ" cIJpQd(8u,/8xQ)]' By reciprocity, Uk./(x, ~ 
- UJk (;, x). Then by a well-known representation theorem, the change Ut 

in displacement field due to imposed relative displacements tl.up along 
some surface S is 

(3.2.24) 

Here, if the sides of S are labelled + and -, then tl.up = ut - up and lZq 
is the unit normal to S pointing in the direction from - to +. The asso­
ciated stress field is given by 

O'f)(X) = 0'?;(x)+cl),.(x)8u,(x)/8x, 

= a?Ax)+ ~ClJr~(X) 82~:~~~ ~ cmnPQ(~lZq(~tl.u,(~d2~ 
S 

(3.2.25) 

Now, consider the special case for which all external boundaries are remote 
for the crack surface S and for wbich the modulus tensor CIJpq is spatially 
uniform. In such a case the Green's function is translationally invariant, 

(3.2.26) 
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Further, assume that S lies in the plane Xz = 0 so that nq = I5qZ , let the 
Greek index IX range over the values 1 and 3 (Le. over coordinates in the 
plane of the crack), and, following an observation by Budiansky and 
Rice (1979) for an analogous dynamical problem, note that by symmetry 
of the modulus tensor and by the equilibrium equations satisfied by the 
Green's function, 

_o_ [aulI,(I;-X) 1 _a_[ 8U.,(;-x) ] = 0 
8~z 8~m cmnpz. + a~IX a~m emnpIX (3.2.27) 

when; :F x. The second derivative of the Green's function in eq. (3.2.25) 
can be written as -azUn,~-x)/a~sa~m, and the sum on the repeated 
index s in that equation is done first as a sum over 1 and 3 (with s repre­
sented by IX) and then by adding the additional term with s = 2, but simpli­
fied by eq. (3.2.27) above. Thus one obtains 

C11j(X) = C1?J(X) - (e'J'IX CmnPZ 

) \ 8Z
U",(!;-x) D. (t: dl: l: 

-cljrZe_PrJ J 8E a~ up ':I) S"l dS"3 
s IX m 

(3.2.28) 

which can be integrated by parts to give, since D.up vanishes at the crack 
front, 

C1,J(X) = C1?J(X) - (C'J'IX CmnPZ 

(3.2.29) 

This last equation is the three-dimensional version of the representation 
given just before eq. (3.2.20) for two-dimensional elastic fields. 

For elastically isotropic materials, 

CIjl'S = .il~I)!5rs+I"(!5I,I5JS+I5'st5Jr) 

and 

VA ( ) 1 [(1 3) !5.r (1 )xnx,] 
nr X = 87tp{,1.+2p) 11.+ p lXI- lI.+p W 

(3.2.30) 

(3.2.31) 

Thus, if we let x approach the plane S of the crack in eq. (3.2.29), thereby 
evaluating stress components O'zAx) for x on S, and if we note that then 
au = O'{) = O'~/-D.UJ> where flO') is the stress drop, there results after 
some computation the set of integral equations (see Weaver, 1977, or the 
low frequency limit of Budiansky and Rice, 1979, for details of the compu­
tatIOn) 
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(3.2.32) 

3Ra.RpR.,,] 0 + RS a~f1. .du,,(~d~l M3 

for x on S, where ~ = ~Il-XC" R = \;-x\, and where Greek indices 
a, p and I' range over 1 and 3 only. In cases for which the stress drop is 
given, these are singular integral equations which can be solved numeri­
cally; an effective procedure has been developed and illustrated by Weaver 
(1977). 

When the region considered contains boundaries or surfaces of dis­
continuity in elastic moduli which are not distant from the crack site, 
the Green's function can be written as 

V,n(x, ~ = Urn(x-;)+Hrn(x, ~. (3.2.33) 

where the first term is the Green's function for an unbounded homogeneous 
solid with elastic properties identical to those, presumed locally uniform, 
in the region where the crack occurs and the second, bounded term accounts 
for finite boundaries or other nearby discontinuities. Then it is evident 
that the integral expression relating stress drop .dGJ(x) to ~up(x) are the 
same as in eqs. (3.2.32) above, except that the right-hand side of the equation 
for t1O'J(x) contains the additional term, calculated from eq. (3.2.25), 

where the c's here are moduli in the vicinity of the crack site, and hence 
given for an isotropic material by eq. (3.2.30) in terms of the local;' and p. 
This addition to the integral equations has a bounded kernel and should 
pose no special problems in numerical solution. To our · knowledge, a 
formulation like the one outlined here has not yet been applied for three­
dimensional crack problems in other than unbounded bodies. Some details 
of the formulation require modification when the crack surface S intersects 
a boundary because the transformation from eqs. (3.2.28) to (3.2.29) 
assumesthat~up vanishes on the boundary of S, and this would not be true 
for a surface-breaking crack. A detailed analysis of the two-dimensional 
(plane strain) integral equation formulation for a surface-breaking crack 
bas been given in the paper by Dmowska and Kostrov (1973). 



200 PIlAClUlU nu;oay "NO SBUMOLOOfCAL Al'PLiCAnON'S 

Another feature noted in tbat paper for cracks near boundaries (or 
other discontinuities) is the following; Slip displacements .6.u, and/or 
dUJ alter oot only the sbear stresses al l and an along tbe crack plane 
but, in gcneraJ, aJso sHu the nomwi stress au. (Equations (3.2.32) sbow 
tb at this same coupling of sbear displacement to normal stress does not 
occur for isolated cracks in homogeneous unbounded bodies), Hence, if 
the boundary condition 00 shear strcss along the crack is coupled to no rmal 
stress, as will normally be the case for sliding friction, tbe sbear stress 
drops !J.d. cannot be specified a priori. Suppose, fo r example, that one is 
concerned with slip .6.u1 wong a ,bear crack under conditions for which 
the resistive sbear stress ail is not itself prescribed but, rather, an expression 
of tbe kind at +'1a12 (where '1 is a friction coefficient) is prescribed along 
tbe crack surface. In this case we can regard tbe linear combination of stress 
mops 

~UI +'16Ul ., (ail +1jO!l)-(U{1 +'1u{J (3.2.14) 

as a given function along tbe crack. Thus. if we write cbe integral relatioDs 
between stress drops and relative crack surface displacements discussed 
above in tbe symbolic form 

6.,(,) - L,,(x.Ii) • .w.(1i) (3.2.35) 
tbe integral equation ~UI - LII .6.u1 whicb would govern the case 
without normal stress effects is re placed by tbe equation 

~UI +'16Ul - (LII +'1L11).~&l1 (3.2.36) 

for the given quantity in this case, where tbe coupling operation ~I • 

vanisbes for an unbounded homogeneous body. eq. (3.2.32), and, in a 
finite or nooMuniform body. involves an integral operation On 6 111 with 
a bounded kernel. 

Anal ogously to tbe static representation of eq. (3.2.24), we have the 
well-known dynamicaJ representation 

• 
( ) r r .JG.,(' . ~ . I-T) ("'-"" r< , . 

1111 S , t - J J C¢ e'l" 'II"/I\; '6.u,\ .. , 1')d ; d1' 
-II> S(T) I 

(3.2.31) 

where the dynamic Green's function GIIJ(x, ~ ,/) is tbe k component of 
displacemeot at X, at time I, due to a unit point impulse applied in tbe 
J..wrection at ~ at time O. Here tbe notation S(1") denotes the rupture surface 
at time 1'. By calculating U,J(lC , t)-crMx, t ) _ ['",,(X)811,(X, t)18x. from 
tbe above expression it is possible at lenst rormally to develop integral 
relations represented symbolically by 

(3.2.38) 
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and to interpret these as governing integra] equations of crack problems 
for which tlaJ is prescribed. Budiansky and Rice (1919) have outlined 
sucb a formulation for the case of planar cracks of fixed size subjected 
to time hacmoaic 6.u's and responding in steady state with time harmonic 
tJ.u's. 

However, the integral formulation of dynamic crack problems which 
bas thus far found most use in applications is that due to Hamana (1974), 
developed and applied extensively by Das (1976. 1980, 1981) Bnd Das 
and AId (1977a, b). In this formuJation tbe solution for time-depcDdent 
loading 00 the surface of a homogeneous elastic half-space (with boundary 
at, say Xl "'" 0) is used to construct an integral representation of the form 

I += +00 

~J(X' I) - 2 ~ ~ ~ GJ'(X:-~' t-T)60'.(~. T)dE1d'JdT (3.2.39) 

where x and ~ in this equation are field aod source points, respectively. 
on tbe planes Xl - 0 and ~, ~ 0, and ~t (which is translationally invariant 
for such choices of x and ~ is the dynamic Green's function for tbe elastic 
balf-space. In this case 6.O'I~' T), for example, is regarded as given over 
tbe regioD SeT) occupied by the crack at time T, and tbe condition 6.u j (x, t) 
_ 0 for x outside Set) converts tbe above representation into an integral 
equation for 6.(1t(~, T) at points ~ lying outside tbe rupture. These points 
extend to infinity in tbe .f,- and ~3-directions but, in dynamical applications, 
tbe necessity to deal numerically witb an unbounded region is avoided 
because waves have carried displacement signals owy a finite distance 
beyond the (typically enlarging) crack surface. 

3.2.3 Energy re/eale in crock growth.' path independent integrals 

Consider quasi-static growth of an elastic-brittle crack, Fig. 3.2.2, which 
currently occupies a surface S (witb bounding contour L, denoting tbe 
crack front); we describe infinitesimal crack advance by the local length 

5 
Icreek) 

\ "a (locol crock 
II odya~J 

J 

L lcraclc front) 

Fig. 3,2.2. A three-dimensional crack SUrflce Sj boundins contour L denote! tbe ctaclt: 
rrant aDd JocaI advance by amount &1 (variable with position alOOi L) is shown. 
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of crack expansion 6a measured perpendicular to the crack front at each 
point of L. The infinitesimal da is a function of position along L, and 
it is regarded as an arbitrary non-negative function for purposes of the 
present discussion. A local energy release rate per unit area of crack advance, 
namely G, is delined at each point along L by requiring that 

6WeEI = 6E+ ~nla{)6(6.uJ)dS+ ~GdadL (3.2.40) 
S L 

for arbitrary distribution along L of crack growth da, Here the d quantities 
are associated with the considered crack growth, 6Wcu is the increment 
of work by applied forces (e.g. gravity) acting on tbe body during tbis 
growth, and E is the elastic strain energy stored in the body. The equation 
thus states tbat the e;II;C(SS of 6 WUI over 6£ accounts for the sum of energy 
dissipated by work of the (frictional) resistive stresses fI'u{J acting on the 
crack surfaces and by tbe energy flow G per unit new crack area to break­
down processes at the advancing crack front. 

If the external forces are conservaLive. as we suppose, the difference 
between (£-£0) and WU1 ' where superscript "0" denotes tbe "uncracked" 
state (precisely, the arbitrarily chosen state for which we choose to say 
that fuJt = 0 on S and identify the stress field then acting in the body 
as a?J) and where Wen is measured from zero at this "uncracked" state, 
is given by tbe work of quasi-statically reducing the stress acting on the 
crack from nIO'~} to n,a{Jo so tbat the relative displacements !:J.u} develop. 
Hence (E-£O)- W ... has no dependence on tbe particular process by 
which the current crack surface S Ilnd distribution of " , u{J over it were 
attained, but depends only on the location of that surface and current 
stress distribution on it. If the crack surroundings and any displacement 
dependent extemalloadings are modeJled as linear elastic, we have 

(E-£O)- W~II = -, ~ (11, afJ+II,O'{}!:J.uJdS (3.2.41) 
S 

Here the 1/2 results from linearity and the negative sign from the convention 
adopted previously for Ilk. 

Hence the equation defining G is 

15 [-!- ~ (nI O'fJ+ nlu{j)l:J.uJdS] - ~nJa{JI5(!:J.lIJ)dS = ~ GoodL (3.2.42) 
S S , 

The left-hand side of this equation is phrased exclusively in terms of quanti­
ties defined on the crack surface S. Further, by introducing the stress drops 
l:J.aj along S, defined by 

(3.2.43) 
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and substituting for nIO'?) in the above relation, we can rearrange tbe left 
side to 

6 [ ~ nl c1{)lYl) + J.dO'J.du)dS] - ~'" Q{;6(.du)dS 
, s 

-1b(n,.{,)<luJdS+6[t \ <laJ<luJdSJ (3.2.44) 
s , 

Noting; now tbat 01') is a fixed stress distribution, tbe variation in resistive 
stress 6("lu(,) along the aacle. surface during a growth increment is just 
the negative of variation in stress drop .dO',1' and thus the equation defining 

Gis 

6[t IMJLluJdsJ-\6(M,)<luJdS - \GoodL 
, , L 

(3.2.4S) 

We recall from tbe various integral relations of the last section tbat, 
for a given elastic body, the .du's are determined uniquely by the distribution 
of stress drops, .dO', on any given surface S. Hence tbe last equation shows 
that G is detennined, at each point along tht: crack front. by the position 
of tbe crack surface, S, and by tbe distribution of stress drops along tbis 
surface. 

It is now advantageous to ~member that the state which we denote 
by "0" can be chosen rather arbitrarily. Tbis is the state from which we 
choose to measure relative displacements .duJ aJong tbe crack (i.e. we 
say that uJ .., 0 at state "0"), and the only requirement for validity of Our 
formulae is that nJu?) be identified as the stresses acting along S in tbe 
state wbich we have chosen. For purposes of a certain calculation that 
foUows, we will make the choice of "0" as the state when the crack occupies 
surface S, Fig. 3.2.2, just before the infinitesimal growtb by tJa tale.es place. 
Then .dUj has temporary interpretation as tbe additionaJ displacement 
of the crack surfaces during the advance lJa and, indeed lJ(.du) - .du. 
In the circumstances, the second integral on the left in eq. (3.2.45), involving; 
lJ(Aa J) [ = - 6(n, aD)], goes to zero faster than da and the portion of the 
first integral that is carried out over all the crack surface eXCI!pt the part 
newly created by the advance lJa Ji'kewise goes to zero faster tban 00. 
Hence, just as in the classicaJ calculation by Irwin (1960), tbe integral 
inVOlving l-.dO'j.duJ need be carried out only over the newly generated 
crack surface to have the requisite accuracy to first order in 00. Further, 
if the growth increments lJa are directed such tbat the crack surface is 
continuously curved, without abrupt kinking (Le. discontinuity in direction 
of the normal D), the near tip expression for .duJ at the tip of a locally 
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planar crack applies, eq. (3.2.8), so long as r is measured from the advanced 
crack tip. Thus, using eqs. (3.2.7) for A(]j and (3.2.8) for Au; in eq. (3.2.45), 
which defines G along the crack front, we have (thinking now of the Xl 

direction as being locally normal to L, in the direction of growth Ja, and 
x310cally tangent to L, so that Xl' Kz , K3 retain their respective mode II, 
I and III meanings) 

= ~ GdadL 
L 

(3.2.46) 

Here we have noted that the AUj appropriate for the present purposes is 
the 0'2j lo~o of eq. (3.2.7), given as KJ/(2nxl)IJl plus other non-singular terms 
which we have not included since they make no contribution to first order 
in 6a; similarly. consistent with the required accumcy, we have not included 
the alterations ~K of the K's in the expression for Au) after growth. Thus, 
doing the integration on Xl, 

~;;; [(1-~)(K~+KD+K~]6adL "" ~GljadL 
L L 

(3.2.47) 

and since this holds for arbitrary distributions of tJa along L, the local G 
is related to the local K's by Irwin's (1960) well~known expression 

G = 2~ I(I-l')(K~+KD+Kn (3.2.48) 

Another perspective on the calculation of energy release rates, now 
not limited to the quasi~static case, is given by evaluating the flow of energy 
into some small tuhe surrounding the crack tip (Fig. 3.2,3a shows a two~ 
dimensional cross section of such a tuhe, with area A and contour r in 
the XIX] plane). Part of this energy flux results in changes of strain energy 
and of kinetic energy of material within the tuhe, part is dissipated against 
resistive forces q~) on the portion of crack intersected by the tube, and 
the remainder flows to the crack tip, thereby accounting for the G per 
unit area of crack advance. Since the near tip singular fields are two~dimen~ 
sional in character, and since the tube is ultimately to be shrunk onto the 
crack tip, we can address this calculation as a locally two~dimensional 
calculation. Hence if b. is the local speed of crack advance at the portion 
of crack front considered, we have 
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,-
~ nktftJuJdF = ~l ~ (W+teuJuJ)dA + ~ a{JdUJdxl +Gti (3.2.49) 
r A -6 

where W is the energy density, i,e, 6W - aJjtJ(oUJIOX1). In the limit when 
r is shrunk to zero length the term involving a{j vanishes and, after a trans­
formation of the integral over A and observation that for terms singular 
at the crack tip one may write alat = -aalaxl , this becomes (see Chere­
panov, 1968; Atkinson and Eshelby, 1968; Kostrov and Nikitin, 1970; 
Freund, 1972a, for details) 

(3.2.50) 

where the limit indicates tbat the contour is shrunk onto the crack tip. 

101 " Ibj " 

r;4- Y" ~ V )' 
"\" 

A " Q P, -;;:/ " 
r 

Fig. 3,2.3. (0) Two-dimeoskMlal cron xclton, wilh lltC3 A and contour r, of smallillbe 
lWToundins aack lip for calculation of energy fhn. (6) Conlours rr, r~ for J in.tegral 
In two-dimensional fields. 

Closely related to crack energy release rates is the J integral defined 
for quasi-static two-dimensional deformation fields hy (Rice, 1968a, b) 

J ~ ~ [n t W-nk~kJ :;~ ] dF 
r 

(3.2.51) 

for any path r tbat begins on the lower crack surface, encircles the tip 
(but no other singularities), and ends on tbe upper crack surface. Ir the 
crack surface is tracti on-free (i.e. if a{J = 0) this integral is independent 
of the path chosen. More generally, if q{J ':I- 0, then when we evaluate 
tbe integral for two separate paths sucb as rp and ra in Fig. 3.2.3b, asso­
ciated with points P and Q along tbe crack, we have 

(-",),. 

Ja-Jp + ~ a{J O~l auJdx t = 0 
(-"')0 

(3.2.52) 
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Here, e.g. Jo is the value of J for any patb of type ro , beginning 
at [{x do. 0-] and ending at [(x1)a,O+], and Ja bas tbe same value for all 
such paths. 

Evidently, if r, is shrunk: onto the crack tip, J, coincides with the 
quasi-static version (delete eol term) of the expression in eq. (3.2.50) 
ior G, so that for two-dimensional quasi-static crack growth. 

• 
G '=' Jo+ ~ a{ra~l ~U'Jdxl 

(.o:,~ 

(3.2.53) 

The sum of terms on the right side is, of course, independent of the point 
chosen as Q. 

In elastic-brittle crack mechanics, tbe assumption is made that cracks 
can grow when G attains a critical value, G~. which may itself he dependent 
on crack velocity. Rudnicki (1980). Rice (1980) and Wong (1982) have 
reviewed various attempts to infer fracture energies. For tensile cracks, 
standard fracture mechanics test specimens and techniques apply and 
G == 3 to 50 J . m- 1 is representative for mode I fracture of brittle rocks. 
On the other hand, direct laboratory measuremeots of G for shear cracks 
have not been possible and, only recently, such G values have been inferred 
from triaxial rock compression tests in stiff machines tbrough a procedure 
(Rice, 1980) based on the theory of slip-weakening crack models (Section 
3.4). Experiments on granite (Wong, 1982) suggest values of G for shear 
fracture in the range from approximately 5 x 103 to !i x 10" J . m- 2, depend­
ing on source of the granite and on confining pressure and temperature. 
Direct seismological inferences of G for natural earthquakes have limiled 
reliability, but have been attempted by Husseini ~t af. (197!i) and others 
(see Wong, 1982). The techniques used by Husseini et af. led these authors 
to suggest that G values in the range I to 104 J. m- 1 were appropriate 
for "frictional sliding" and 1()4 to 106 l' m- 1 for "fresb fracture". Choices 
of G necessary to make quasi-static earthquake instability predictions, 
based on large tectonic scale crack models, fit seismological constraints 
such as slip offset and nominal stress drop have in two cases (Rudnicki, 
1980; Li and Rice, 1983) led to inferred values of order 4 x 10' J. m- 1 . 

Probably, values much in excess of tbose inferred from laboratory data, 
involving a single rupture plane, are due to geometric irregularities such 
as segmentation and en echelon discontinuities of Datural Caults (e.g. Aki, 
1979; Segall and Pollard, 1980). 

I 
I 

I-
• 
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3.2.4 E/aftic crack tip fields in dynamic crack growth 

To obtain the structure of crack tip singular fields for rapidly propagating 
cracks, we observe that just as in the static case, derivatives involving 
al8x3 can be neglected by comparison to other spatially differentiated terms. 
Also, the accelerations a2uJ/at2. can be replaced by v2.a 2uJ/8xf for purposes 
of analysing the singularity, where 'V is the speed of crack advance, so 
that eq. (3.2.2) reduce to the following equations to be solved asymp­
totically: 

( ' ,)[a a ](au, au,) 
e v,-'V3 ax

l
' ax2 'o ax! + aX2. 

( a' a') a' +etI: -a' +~a 2 [Ul,U2.' &13] =ev2.-a 2 [U 1 .U2.,U31 
Xl X2 Xl 

(3.2.54) 

Here 

v, = [(..t+2.u)/e]1/2, v~ _ (P/e)1/2 (3.2.55) 

are the P- and S-wave speeds. 
Following Kostrov and Nikitin (1970) one may rewrite the governing 

equations in terms of two displacement fields u= and u:. where Uk - ut+ 
+14. aur:.laX2-8u~/aXl - a~/aXl +a~/aX2 - 0, and u~ .. O. The result­
ing equations are then 

(r~ ::f + ::l )U: as 0, (3.2.56) 

where 

r, = (l_v2.lv~)lf2., r. "'" (1_V2./f}:)l/l (3.2.57) 

and have solutions in terms of analytic functions Uf(C), U;(O as 

uf = Re[UC(x1+irl'x2)] with U~ = ir"UL Uf = 0 
and 

U: = Re [U:(xl+ir~x2)] with r~Ui = iU~ 

The singular solutions for these functions are then given by 

-1'[(I+,i)UHCl+2U!(OI - K,(C{8.)'I' 

(i.ulr~)[2r.rp Uf(O+ (1 +r;) Ut(C)] .. Kl (C/81t)1/2 

iW. U~(C) = K3(C/8'IT:)1/2 

(3.2.58) 

(3.2.59) 

(3.2.60) 

Here the notations Kl , K2, K3 for stress intensity factors are consistent 
with respective modes II, I, III as in the static case, and retain the inter­
pretation that stresses ahead of the crack on (J .,. 0 are given by 

a2JI~ .. o = KJ/(21tXl)1/2.+ ... (3.2.61) 
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However, if the X's are cnosen in this way, relating the stress aZl directly 
ahead of the crack to XJ in the same manner as in the static case, no matter 
what the crack velocity. then the relative displacements Au) of the crack 
faces at a given XJ are necessarily dependent 00 v. These have the form 

.6.u1 = (I -)l)jjl(v)Kl(-8xdTI:)1{l~+ .. . 

.6.Ul "" (I - 'II)jj(v)Kz( -8xdTt)1/2/fJ+ .. . (3.2.62) 

.6.U3 "" J.'l(v)Kl( - 8xdrr::)lf2 /fJ + ... 
where the functions /1, fll' fill of speed v all have the property ft(O) = I, 
and are defined by 

(3.2.63) 

with d = 4r,r.-(1 +r:)2 being the Rayleigh function. AU three functions 
increase monotonically with crack speed and become unbounded 3..5 certain 
limiting speeds are approached. This limiting speed is seen to be the Rayleigh 
speed v, (;::: 0.92v •• for which D. = 0 if 11 - 0.25) for mode I and II, and 
the shear wave speed v. for mode III. 

The energy release rate can be calculated from eq. (3.2.50) and the 
result is (Kostrov and Nikitin, 1970) 

(3.2.64) 

3.3 DYNAMIC CRACK MODELS OF EARTIIQUAKE SOURCE PROCESSES 

As suggested by the analysis of elastic wave fields generated hyearthquakes, 
the source process represents a sudden stress drop in some local region, 
and the deformation process propagates through the Earth in a form 
similar to the dynamic development of a crack. usually along some pre­
viously existing fault surface (shallow earthquakes), and perhaps in the 
form of non-stationary development of a narrow deformation zone under 
conditions of high pressure and temperature (deep earthquakes). It is 
usually assumed that for the majority of earthquakes the deformation 
process in the source is concentrated onto only one plane, though this 
is not true for :rruu:ty cases, especially for major earthquakes. where the 
deformation occurs simultaneously or successively on more than one 
fault plane (multiple events). 

Moreover, it may be assumed that the existence of tensile (open) cracks 
is limited to at most the hlghest few kilometers of the upper crust (see, 
e.g. Dmowska et 01., 1972) and that for all other regions conditions of 
pressure and temperature allow for shear cracks only. In order to ra::over 
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joformation about the fracture process contained io tbe radiated wave 
field, it is necessary to assume some model describing tbe process in a 
realistic manner, although for practical reasons with the use of a small 
number of paramete~. Because of tbe character of deformation in the 
earthquake source it seems plausible that such a process could be modelled 
satisfactorily with tbe use of dynamic crack models, in particular by prop­
agation of a sbear crack. We discuss here dynamic crack solutions and 
tbeir seismological implications. 

Analytical solution of the general problem of propagation of a crack 
for uny given icitia] and boundary conditions is extremely difficult and 
existing solutions describe idealized cases tbat incorporate simplifying 
assumptions. 

One of basic simplifyiog assumptions is tbat the developing crack 
mOves in tbe same plane as at the beginning of its motion. Also. to eliminate 
or simplify tbe problem of multi~diffractioD of waves emitted by tbe other 
end of developing crack, most of works are limited to cases of effectively 
semi-iofinite or self-similar cracks. Such assumptions, stemming from 
reasons of mathematical tractability, limit essentially the pbysical utility 
of results obtained. 

Many furtber dynamic crack problems have been solved with the use 
of numerical methods and tbese methods, Or tbe combination of analytical 

and numerical approaches, will probably dominate in future researcb 
in this field . 

3.3.1 AnalytiC4/ solutions f&r .1teady and unsteady crack Il1oti&n 

We now review analytical solutions for dynamic crack propagation. For 
modelling eartbquake source processes tbe most important class of solutions 
are Calles witb variable crack speed, but we will brieOy discuss bere also 
some problems witb constant crack speed. The first sucb work was presented 
by Yolfe (195]), who empballized the dependence of tbe stress distribution 
around tbe tip of a moving crack on the craclc. velocity. Yoffe analysed 
the case of a crack witb finite, constant leogtb, rupturing witb constant 
speed at one end and healing at the otber, under plane strain conditions 
in an infinite medium under remotely uniform st~ss G~l (bence the stress 
drop 6.<12 "" G~l)' In brittle materials, tensile cracks witb higher speeds 
bave a tendency to bifurcate from tbeir initial plane, aod the interpretation 
of tbis phenomenon had been. sougbt in the distribution of stress around 
the lip of a moving crack. The solution showed t1Jat Gel close to tbe crack 
tip (6 is the angle measured as in Fig. 3.2.1) bad its maximum for 0 = 00 
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only when the crack speed was less than approximately O.6vs• and ror 
higher speeds the m:u:imum was located close to 8 _ 60", As shown by 
Yolfe, and confirmed in grealer generality by analyses reviewed in Section 
3.2.4, tbe angular dependence or tbe stress distribution did not depend 
on the crack length, so that the change in Uti was not associated with some 
particular length. Yaffe (1951) suggested that her observations could be 
the rcason for crack bifurcation at sufficiently high speed. 

Subsequent analyses of crack growth in the shear modes showed (e.g. 
as discussed by Rice, 1980) that stresses encouraging fracture 00 planes 
other than the maio crack plane become indefinitely large, compared to 
tbose associated with the main plane, as limiting crack speeds are ap· 
preached. An aspect of tbis distortion or the stress 6eld is discussed in 
Section 3.4.2 where it is suggested that sucb effects may be important to 
promoting non-planarity in rupture propagation. 

The model presented by Yaffe, though very unrealistic (constant crack 
length), was usefw in finding the geometry of the stress 6eld around tbe 
edge of a moving crack. However other results of the model are less plausible. 
For example, tbe dynamic stress intensity tactor calculated by ber turned 
out to be independent on crack speed and equal to the analogous static 
stress intensity factor. eq. (3.2.12). Using the Griffith- Irwin-Orowan 
theory of a constant value of G necessary to maintain propagation, we 
&eC: from eqs. (3.2.63) and (3.2.64) that the stress drop Aa1 necessary wowd 
diminish to zero with crack speed increasing towards tI" tbe speed 
fo Rayleigb waves. This pbysically unrealistic result is associated with the 
steady state crack solution and an interpretatioa has been discussed hy 
Rice (1968), who observes tbat hecause the dynamic stress intensity factor 
is here independent of crack velocity, the principal stress 0'21 near to the 
tip, perpendicular to the crack plane, is finite for every finite load (or 
stress drop). The ratio of principal stresses O'll to aLi (aLi acts parallel 
to the prospective fractu~ plane) diminishes to zero at the Rayleigh speed, 
which means that stresses q J J tben hecome unbounded; that is, each finite 
region around the crack tip has infinite strain and kinetic energy. Thus 
tbe above result could be interpreted in the way that it the crack is moving 
in a medium able to supply an enormous amount of energy near the tip, 
then very little load is required to maintain the crack speed. 

A similar type of problem to that addressed by Yaffe was solved by 
Craggs (1960), who analysed semi-infinite cracks subjected to surface 
loads with points of application moving at the same speed as the crack. 
He also obtained a dynamic stress intensity factor independent of speed, 
and tbe remarks concerning the work of Yoffe apply to this case too . 
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Some limiting features of these analyses were removed by Broberg 
(1960) and Baker (1962). Broberg (1960) analysed the two·dimensional 
plane strain case of a self·similar tensile crack growing symmetrically 
from zero length with constant velocity io an infinite elastic medium. 
The medium had been subjected to uniform stress far from the crack 
hence the stress drop .6.0;l( - O¥l) was uniform on the crack surface. The 
dynamic stress intensity factor depended on crack velocity in the form 

K, (~ K,) - ".)6., v';;W (3.3.1) 

where 8(0) ",. I and the function g(u) diminished monotonically to zero 
at tI,. The motion is not consistent with a constant energy release rate, 
but the expression for G has the form (combine eqs. (3.3.1) and (~.2.64» 

G - .(I-.).tf,(o) [i(.)6a,J'/2p (3.3.2) 

and this expression has the property that G ..... 0 as v ..... v" Presuming 
that some non·z.ero G must be supplied for rupture, this suggests that the 
stress necessary to drive a crack increases without limit as f) ..... v,. Broberg 
found that tbe crack deformed into an ellipse, just as in the static case; 
i.e . .6.111 is as given by eq. (3.2.10) with J = 2, except that the expression 
on the right in eq. (3.2.10) should be multiplied by {.(v}i(tI) and a replaced 
by vI. Baker (1962) analysed a related problem in which, at I = 0, a semi· 
infinite tensile crack has its surfaces subjected to uniform stress drop and 
propagates with constant speed f); bis solution is likewise consistent with 
G ..... 0 as v ..... vr . Baker also remarked that the stn:ss component (7" 

on whicb Yoffe based ber analysis or the bifurcation process represents the 
maximum principal stress onJy for (J = 0 or ± 1:, and that the ma.'I.imum 
principal stress OCCurs in the range 60° < (J < 100<> (with direction coinci· 
dent with neither 0 nor r) for all crack speeds. The problem solved by 
Baker is equivalent to the case of spontaneous crack propagation caused 
by arrival of a plane homogeneous stress wav~, a case treated in detail later 
by Achenbach and Nuismer (1970). 

A problem similar to that solved by Broberg (l960), namely tbe problem 
of a self·similar circular tensile crack, developing with constant speed, 
was solved independently by Kostrov (19640) and Craggs (1966), and 
analogous ftsults were obtained on the limiting nature of the Rayleigh 
speed. 

Shear crack versions of the above problems are, of course, more relevant 
ror modeUing earthquake source processes. The simplest self·similar 
shear crack problem which is appropriate for seismological application 
has been presented by Kostrov (l964b), who solved the case of a circular 
crack growing rrom zero size with constant speed in a field of shear stress 
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and sustaining uniform stress drop. This case, although similar to that 
previously solved by Kostrov (I 964a) for tensile cracking, is Dot an axially­
symmetric ODe because of the shear stress field. InterprelatioD of crack. 
propagation in terms of a limiting speed is in this case more difficult, 
because, depending on local conditions at the crack tip, the tip is either 
in plane-strain, anti-plane strain or in some mixed conditions and the 
limiting speeds are different for different strain situations (v. [or plane 
strain and v, for anti-plane strain). This suggests that a crack model with 
slightly different principal radii, say elliptical with ale proportional to 
v.lf), Z 1.1 during growtb, might be more realistic. 

Some of the previously solved cases have been extended to ani~tropic 
media. Broberg's solution has been generalized by Atkinson (1967) to a 
case of crack propagation on a material-symmetry plane of an anisotropic 
body. This case has been generalized further to arbitrarily situated cracks 
developing self-similarly in arbitrarily anisotropic bodies in works by 
Burridge (1968) and Burridge and Willis (1969). The latter work represents 
the most general problem of this class and solves for self-similar motion 
of an elliptical crack, starting from zero size, with uniform stress drops. 

Modelling an eartbquake source process as a self-similar crack prop­
agating witb constant speed seems to be a serious oversimplification 
of observed pbenomena because, e.g. it cannot include ultimate rupture 
arrest. However, as remarked by Burridge (1968) and Burridge and Willis 
(1969), tbe analysis o( such models could have seismological utility because 
first seismic motions depend only on crack motion in the early stages 
of crack existence. As shown by Burridge and Willis (1969), for conditions 
of uniform sbear stress drop tla I the far field waves emitted by the self­
similar elliptical crack have the same angular orientation as for a double 
couple (see. e.g. Akl and Richards, 1980) but multiplied by tbe factors 

{I - (vjyf +tJ~yD/f1; }-2 and {l- (vfyf +fJiyDlv: }-2 

for P- and S·waves, respectively. Here "t and Vl ace (he constant velocities 
of rupture advance along the principal XI aDd x) axes, respectively, of the 
ellipse on Xl - 0 and y = (Y1o Yl, Y3) is a unit vector from the crack 
centre to tbe observation point. 

Figures 3.3.la and 3.3.1h show, in stereographic projection, the far wave 
fields for a double couple, and Figs. 3.3.lc and 3.3.ld show the above 
modifying factors, (or V t - O.909v. and V3 - O.5v~. For VI close to the 
velocity of S-waves the modifying factor is bigbly directional and it has 
strong maxima in direction of ± XI axis, which strongly deforms the S-wave 
pattern. The P-wave pattern appears little deformed, because vt and O'J 
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are well below tJ~ and beeause the maximum of tbe raetor modifYing the 
P·wave field coincides with the zero or the P·wave field for a double couple. 
Thus the above mults suggest that the S·wave field contaias more discern· 
ible information about tbe propagation process in the earthquake source 
thaD docs the P-wave field, as is evident aJso rrom geoeral analysis or effects 
or propagation in the source region on rar field radiation (Aki and Ricbards. 
1980). 

2 

2 2 

P modiliectiol\ ~ S modiliection IIXtor 

F". 3.3.1. (4, b) Far·6dd angular orientation o{ seismic motioru.. In siereoarapbic pro­
jettloo, {ot double couple point touree represe.otadon oilhear' stresa drop dal (reductioo 
ID lIzl) 00 pilltle ... z - O. (c, d) Modifiauion {acton [0 double COtIpkI fk:ld lor leU·similar 
ClIpanNon of an clliptjcal c:radt 00 .rz .,. 0 wilh 111 - 0.909 v. and 1J1111 - 0.50 •. Flom 
Bunidge aod Willis (1969). 



• 

214 FRACIlJRB THEORY AND SEISMOLOGICAL APPLICATIONS Ch. 3 

The Craggs (1960) crack solution has been generalized by Willis (1967) 
to the case of a crack with a strength degradation zone close to its moving 
tip, and sm:h a zone bas also been included in the Broberg crack model 
in works by Barenblatt et al. (1962) and Atkinson (1967); see Section 
3.4.2 for discussion of related considerations. An interesting analytical 
method, similar to that used by Kostrov (1964) and allowing the reduction 
of many problems of self-similar propagating cracks to standard boundary 
problems for complex functions, has been used by Cherepanov and Ara­
nas'ev (1974); see also Cherepanov (1979, Chapter 10). With this approach 
they reconstructed elegantly the solutions of Broberg and Baker as well 
as those to other crack problems. 

To model the earthquake source processes in a realistic way one needs, 
however, solutions to problems of unsteady crack motion, and few have 
been solved analytically as yet. The first developments were for the mode 
III case, anti-plane shear, whicb is simpler because it is governed by a single 
scalar wave equation for U3. Tbus Kostrov (1966), using analytical tech­
niques developed for supersonic fluid flow, and independently Eshelby 
(1969) solved the problem of determining the stress field for arbitrary 
non-uniform motion and distribution of stress drop along tbe surface 
of a semi-infinite crack. Such provides also a short time solution for finite 
cracks, valid near one crack tip up to the moment when stress waves first 
arrive from the other tip. Two particular cases were discussed in detait 
by Kostrov. In tbe first, stress drop (i.e. loading) was localized to a poine 
along the crack surface, in which case the crack was predicted to propagatl 
and, ultimately, arrest. In the second, a uniform stress drop was applied 
at the crack surface, in which case the crack was found to accelerate towards 
its limiting speed tI~. 

Freund (1972b) and later Fossum and Freund (1975) developed the 
analogous solutions for arbitrary motion of effectively (Le. limited hy 

incoming wave arrival times) semi-infinite cracks in modes I and II, re­

spectively. There is found to be a common form of solution, regardless 

of mode, to the following problem, first enunciated in this form by Eshelby 

(1969): Let a static, finite crack exist in a body, and suppose the stress 

distribution along the prospective rupture plane Xl = 0 is a~}(xl' 0). 
The crack tip is initially at XI = 0 as in Fig. 3.2.1. Suppose that if rupture 

extends to a point at xi on ·this plane, the stress there will fall to aLex 1, 0), 

and define the stress drop t:J.a} "'" a~J-a{} as earlier. Note that if the crack 

were to extend by a distance a, the static solution for stress intensity factor 

would be (e.g. Rice 1968a., eqs. (95), (98» 
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K K '( ) - v' 2 l t.a,(x,) d J'"" J a - - - Xl 
'It va-xl 

(3.3.3) 

if the same stress drop distribution were to act along the prolongation 
a of a semi·infinite crack. This formula cvaluated as a -+ OT is easily shown 
to reproduce the stress intensity factors at the original crack tip, contained 
in the stress distributions a~J(x I, 0). The conclusion of the different analyses 
cited above by J(ostrov, Eshelby, Freund, and Fossum and Freund (see 
also Kostrov, 1975; Freund, 1976) is that regardless of mode, the dynamic 
stress intensity factor at the tip of a crack which has grown arbitrarily 
with time to the amount a, and has instantaneous velocity tI( = dD/dt), 
is of the simple multiplicative form . 

XJ - kAv)KJ(a) [no sum here on 11 (3.3.4) 

provided no waves have yet arrived from the other crack tip. The functions 
kJ(tI) can be extracted from the references cited; each begins as unity af 
tI 0: 0 and decreases monotonically to zero at the limitiog speed v = v, 
or v~. The expression for mode III is (Eshelby, 1969) 

k ,(v) ~ (I-o(oj'" . (3.3.S) 

Thus, for example, in the case of mode III crack growth the energy release 
rate is (eq. (3.2.64) 

G - fill(v)KU21l - J.II(V) [k3(tI) Kj(a)l2 /21S 

~ [(I-o(oJ(1 +v(vJ]"'[K'l(a)]'(21' (3.3.6) 

Thus if one regards G as a given constant for rupture propagation 
or instead, to include spatial heterogeneity and/or rate dependencc of 
fracture resistance, regards G as a function of a and/or v for rupture propa­
gation, eq. (3.3.6) becomes a differential equation describing crack 
motion. The form makes it evident at once, e.g. that if G is constant for 
propagation and if dKflda always is greater than some positive number, 
then the cmck speed accelerates toward tI •. On the other hand if K1(Q) 
diminishes sufficiently with a, crack arrest will occur; tb..is corresponds 
to a case such as the localized loading discussed above. 

The structure of eq. (3.3.6) implies that the effective inertia of a crack 
tip is zero; a discontinuity in the requisite G along the fracture path causes 
a discontinuous change in ". This change may possibly be to v - 0, i.e. 
cracle arrest, if the discontinuity has the form. of a large increase in G, 
but more generally either discontinuous increases or decreases of v may 
occur. Husseini et 01. (1975) have used considerations of crack arrest 
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as discussed above, based on either increases of fracture resistance or 
decreases of driving force (e.g. localized zone of significant stress drop) 
to estimate the range of G values cited earlier, Section 3.2.3, from data 
on Dominal stress drops and rupture areas of natural earthquakes. 

Similar conclusions on tbe existence of a limiting speed and lack of 
effective crack tip inertia follow for rupture dynamics based on tbe dynamic 
stress intensity factor, regarded either as constant or as a function of a 
and \7 (to include heterogeneity sod rate dependence) for rupture propaga~ 
tion. Sucb may be regarded as a fracture criterion based on critical stress 
levels ahead ofthc crack, cq. (3.2.61). HoweVer, details of crack acceleration 
are not tbe same as for a criterion based on the energy release rate G, 
as may be seen by comparing the expression for mode III stress intensity 
factor 

(3.3.1) 

(from eqs. (3.3.4), (3.3.5}) with eq. (3.3.6) for G in the same mode. 
Burridge and Halliday (I971) and Achenbach and Abo-Zena (1973) 

have analysed dynamic crack models of processes occurring in the source 
of shallow tectonic earthquakes of strike-slip type, analysed as anti-plane 
strain. Burridge and Halliday (1911) analysed the case of infinite strike­
slip fault developing dynamically in a plane perpendicular to the frc:c 
surface of homogeneous elastic half-space. In their model the CJ1lck develops 
along a plane of material weakness (Le. pre-existing tectonic fault). Before 
the initiation of the motion tbe fault plane is characterized by some distribu­
tion of stress 0'~3' variable witb depth. The half-space is subjected to bydro­
static pressure (from gravity) and anti-plane shear stresses (tectonic stresses) 
which increase quasi-statically in time. The initiation of the motion happens 
loallly as a result of a local irregularity of the stress field or coefficient 
of friction, and sudden slip initiation oceurs in the weakened plane. The 
slipped region develops in both directions (up and down) from the line 
of slip nucleation. The slipped region reaches tbe Earth's surface above 
and stops helow at some depth, blocked by tbe increasing friction. The 
fracture energy is taken as zero (or negligible) so tbat from the moment 
of nucleation both edges of the crack move with the speed of an S-wave. 
In their work Burridge and Halliday (1971) analyse the motion of both 
crack edges, assuming that stress drop on a crack surface changes quadrat­
ically with depth, so as to tum negative at greater depths. (Negative 
stress drop means merely that <t{l > ug 3 • i.e. that tbe local stress necessary 
for slip at a point is greater tban the stress whtch acted at tbat point when 
rupture initialed elsewhere), They also determine the displacement field 
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on the crack surface as well as deformation field far from the crack, and its 
dependence on tbe depth of tbe nucleatioD line. 

Acbenbo.cb and Abo-Zena (1973) analysed two dynamic crack models 
with geometry and stress fields similar to tbose modelled. by Burridge 
aDd Halliday (1971). The fint model described tbe dynamic propagation 
of an anti-plane shear crack initiated by a sbear wave approaching the 
fault plane. This type of pro hi em might model a shallow earthquake irtitiatcd 
by another earthquake or an underground explosion. The second model 
described the case solved by Burridge and Halliday (1971), hut for a crack 
with finite lengtb . ]0 botb papers the solutions describe the motion of the 
crack edges and tbe maximum depth of tbe slipped region. Also the shear 
stress distribution on the crack plane after tbe motion ceased was deter­
mined, as well as the displacement along the Earth's surface just above 
tbe fault. Comparison of the deptb of maximum penetration of tbe slipped 
zone for the dynamic case with that obtained in static calculations by Walsb 
(1968) and Berg (1968) sbowed that the dynamic analysis gave a sligbtly 
greater slip deptb . 

33.1 Nume.rical dynamlc made.l/ing oj source proceUl!S 

The matbematical complexity of crack dynamics limits the usefulness 
of conventional analytical metbods; we review be~ numerical solutions 
to such problems lind discuss tbeir applications in analysis of eartbquake 
source processes. 

It might he advisable in the beginning to notice that tbere are diffen:nccs 
between these two classes of solutions. stemming from requirements 
of tractability and practicality. The analytical solutions are usually developed 

witb the use of Griffith's theory (i.e. a critical G for propagation, within 
tbe assumptions of elastic-brittle crack theory), and under tbe assumption 
tbat in the body analysed tbere exists one crack in Ii elose-to-critical state, 
the fracture of the body being described by development of this particular 
crack. In tbis approacb the presence of other cracks in the material is 
accepted but not necessary, and usually not taken into account. Crack 
velocities derived from tbe elastic-brittle approach are limited to being 
smaller tban the S-wave velocity and, as bas been seen. the cracks amenable 
to analysis are usually semi·infinite or self-similar. 

In numerical solutions cracks are usually less large compared to grid 
size than might be desired, whicb is the consequence of computer limita· 
lions. and, naturally, all quantities are discretized. Some discrepancies 
between solutions are associated with tbe fact of discretization, i.e. tbey 
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depend on the fact that basic equations or quantities at a morc advanced 
level of solution are discretized. Also, some differences stem from the 
manner of discretization. Moreover, stress concentrations at crack lips 
are, of course, finite, and the numerical fracture criteria of different kind 
correspond ooly approximately, in ways Dot yet precisely understood, to 
fracture criteria discussed previously. Section 3.2, in the elastic-brittle 
context and subsequently, Section 3.4, for more general models. Presumably 
the process in tbe earthquake source should not generally be modelled 
by one crack (and its dynamic development) only. hut rather, to the extent 
feasible, Doe should account for the presence of other cracks (faults) in the 
medium, as well as for the interaction of cracks hetween themselves and 
with the inhomogeneities of material of the Eartb and its free surface. 
Further, non-elasticity of the medium as well as non-ideal (i.e. otller 
thanelastic-briltle) fracture mechanics should alleast sometimes be involved. 
In principle. numerical solution methods can accommodate such con­
siderations. although practical computer limitations havt: not yet allowed 
investigation of all in detail. 

A simpler class of numerical solutions is that for which crack motion 
is specified a priori (Le. no fracture criterion is imposed at the advancing: 
tip) and the (dynamic) stress drop is prescribed aJong the ruptured surface. 
For example, Burridge (1969) examined two-dimensional anti-plane and 
in-plane shear cracks moving at prescribed velocity, and used an integral 
relationship analogous to eq. (3.2.37) to calculate stress in terms of slip 
on the crack surface, thereby to formulate an integral equation, discretized 
and solved numerically, for the slip as a function of position and time. 
Hanson el al. (1974) modelled numerically an analt)gous problem of uni­
lateral expansion ofa two-dimensional shear crack, propagating at consUlnt 
speed and then stoppjng. 

Also, Madariaga (1976) solved by a three-dimensional finite difference 
method problems of circular shear cracks in an unbounded elastic medium. 
In one model a crack witb futed finite dimensions was introduced instan­
taneously. In another tbe crack developed from a small nucleation oentre 
with constant speed and then stopped abruptly at some finite radius. 
Madariaga discussed in detail the wave field far from the moving crack 
and its dependence on model parameters and the stopping mechanism. 
No reversal of slip velocity was allowed, in order to simulate the effects 
of friction, Rod because of this Madariaga finds that the displacements 
overshoot those estimated statically, e.g. by eq. (3.2.13) with n.1TJ identified 
as tbe dynamic stress drop. Nevertheless, he finds the spatial distribution 
over the slip plane to be similar to eq. (3.2.13), the primary difference 
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being tbat the displacements e\'erywhere are about 15 to 21)010 larger in 
the case of a crack growing from a small Ducleation centre, and 34% for 
that introduced instantaneously. Madariaga's work, extended to other 
applications (Madariaga. 1979; Virieux and Madariaga, 1982) that we 
discuss subsequently. employs staggered finite.difference grids for particle 
velocity and stress compenents, 

We consider in the rest of this section numerical dynamic rupture 
models for whicb a definite fractUl'e criterion is imposed for crack advance, 
so tbat crack mouon is not prescribed a priori. A formulation for doing 
this was outlined by Hamano (1974). Basing his Dumerical procedure 
on discretization of the integral equation following from the representation 
of eq. (3.2.39), Hamano prescribed the critical stress level of material 
along the fault plane. This procedure is particularly simple for numerical 
applications; it assumes that tbe crack extends one grid point when tbe 
st~ss at a grid point outside the crack. and nearest to tbe crack. tip exceeds 
tbe critical value. A si milar critical stress criterion, phrased in the context 
of a two-dimensional finite difference analysis of dynamic tensile crocking, 
h s been proposed by Shmuely and Alterman (1973), The critical stress 
level within this procedure cannot be interpreted as a true material property. 
Rather, it is grid·size dependent and must be interpreted in terms of an 
average of the singular analytical solution over the grid length immediately 
ahead of the crack tip. as commented by Des (1976) and Des and Aid 
(1977). In this sense the procedure can be seen as an Ilttempt to simulate 
numerically the critical stress intensity ractor criterion for rupture dynamics 
discussed in connection with eq. (3.3.7). 

However. a detailed study of the critical stress criterion and its numerical 
applications by Virieult and Madariaga (1982) shows that the procedure 
duplicates closely the continuum results based on a critical stress intensity 
factor only over a certain range of parameters. For example. the Das 
and Aki (1977) dimensionless strengtb parameter is 

S = (0.-0,)/(0, - 0,) (3.3,8) 

wbere 00 is the remotely applied stress, (/, the residual friction strength 
of ruptured portions of the fault, and rI. is the grid.size dependent critical 
stress, Virieux and Madariaga find agreement between tbe numerical 
critical stress result and that for a continuum witb critical stress intensity 
factor, in the ease of Kostrov's (1966) problem of a semi-infinite crack 
suddenly su bjected to the stress drop rio-a'. only for the range 3 < S < 7. 
They attribute the lower limit to poor numerical resolution of tbe stress 
concentmtion in the then too large grid spacing ahead of tbe craclc.; the 
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upper limit apparently reflects the inadequacy of numerical results on a finer 
grid, at one grid spacing ahead of the crack, to duplicate adequately the 
near tip elastic singular stress field. Outside these limits the numerical 
critical stress criterion must be regarded as a separate criterion from those 
phrased for continuum crack dynamics. However, as pointed out by Vireux 
and Madariaga (1982), the applicability limits of their numerical rupture 
criterion are intimately related to the properties of their numerical method 
(finite difference method) and it may happen that other numerical methods 
proposed in the literature have different limits of applicability. 

Andrews (1976) combined a finite difference technique with the slip­
weakening fracture criterion of Ida (1972) and Palmer and Rice (1973) 
to solve for the rupture propagation of a finite, two-dimensional shear 
crack in an infinite medium. The criterion is discussed in Section 3.4.1 
and is consistent with a Griffith-like criterion of critical fracture energy G 
when the slip-weakening zone is small compared to all other scale lengths 
in the prohlem. For the case of in-plane shear crack Andrews showed that 
the terminal rupture velocity could be smaller than the Rayleigh velocity 
or higher than the shear wave velocity, depending on the strength of the 
material on the fault plane. The same was confirmed in subsequent three­
dimensional finite difference implementations of the criterion by Day 
(1982b). Burridge et al. (1979) observe that for a mode II crack propagating 
at speeds near v, consistently with a slip-weakening zone at its tip, large 
shear stresses exists on the prospective rupture plane ahead of the slip­
weakening zone and, as found numerically by Andrews, these stresses 
may be of sufficient magnitude to exceed the peak stress necessary to 
initiate slip. In that case a disconnected zone of slip develops ahead of the 
main rupture, coalescing with it in an unsteady manner and allowing, 
ultimately, the steady spread of rupture at speeds exceeding approxi­
mately 1.5v •. 

Similar features appear in numerical simulations of in-plane shear 
rupture based on the critical stress criterion. However, as pointed out 
by Virieux and Madariaga (1982), such features, including transonic 
rupture velocities, are intrinsic to the numerical method only, and would 
not appear in analytical solutions based on a critical K criterion, which 
the numerical stress criterion is intended to simulate. The numerical stress 
concentration at the rupture front represents actually a numerical coales­
cence of the crack stress concentration and that of the strong S-wave peak 
ahead of the crack tip. As noted earlier, analytical solutions are not 
necessarily in simple correspondence with numerical solutions, and the 
differences can become particularly notable when prediction of rupture 
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propagation is included. For example, in the case under discussion, it 
happens that in the analytical approach the rupture front siogular stress 
coocenlration is separated from the S-wave peak and only the rupture 
front stress concentration is used in the ca1culatioo of the maximum rupture 
~Iocity. In !.he numerical method, at high rupture velocities of in·plane 
cracks, the S·wave stress peak coalesces with the rupture front stress 
concentration, giving rise to transonic rupture velocities. 

An e~tensive numerical study of the development of shear cracks as 
applied to the analysis of earthquake source mechanisms has been presented 
by Ons (1976). The author considers consecutively three important problems, 
namely the process of uniiateraJ spontaneous development of a finite 
sbear crack in an infinite elastic body, the inftuence of barriers (obstacles) 
laying in tbe plane of the developing crack on tbe shape of near- and far· 
displacement fields, and the stopping mechanisms for finite sbear cracks 
moving in an infinite ~astic body. As a fracture criterion tbe postulate 
of a critical stress, as introduced by Hamano (1974) aod ruscussed. above, 
was used. Work by Oas (1976) bas been extended in studies by Oas and 
Aki (1977a. b) aod Aki (1979). For the first time in the modelling of earth­
quake source processes the possibility of the propagation of not only one, 
but a few cracks. developing consecutively (model with barriers) was taken 
into accounL Also, a detailed aoalysis of tbe inftuence of stopping mech· 
anisms on tbe deformation field near and far from the developing crack 
was presented. The above results are particularly interesting for tbe mech­
anics of earthquake SOW'Ce processes, thus we will discuss them here 
in some detail. 

AnaJysing numericaJly bilateral dynamic development of an in·plane 
shear crack starting from the Griffith critical length and controlled by 
tbe critical stress fracture criterion. Das (1976) and Das and Aki (1977) 
found that, depending on the strength of the material (given by tbe critical 
stress jump) and the instantaneous length of the crack, the propagation 
velocity of tbe crack-Lip could be sub-Rayleigh or super-sbear, and. for 
low strengtb materials, could even reach the P·wave velocity. This phenom· 
coon is caused by the fact ruscussed above that the value of critical 
streu-jump could be overstepped by the dynamic stresses caused by p. 
and S-waves travelling in front of the developing crack-tip which could 
cause the increase of crack velocity to values higher than tbe S-wave veloc­
ity, as obtained also by Andrews (1976) with the slip-weakening model. 
It is interesting to note that a tensile (opening) crack developing under 
ideotica1 conditions could not reach velocities higher than Rayleigh wave 
velocity in numerical simulations, because the stress field before the crack 
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tip tends to close the crack, which arises from the Green's function for 
that problem (see Hamana, 1974). 

Das (1976) and Das and Aki (1977) also show that in the case of smooth 
crack development (that is, with no barriers of higher material strength 
in the crack plane) the crack starts with some small velocity hut then 
accelerates rapidly to its terminal velocity, determined by strength distribu­
tion in the crack plane, and thus the average rupture velocity over an entire 
length of fault cannot be much smaller than the terminal velocity. Only 
the presence of barriers along the path of the developing crack could 
decrease the average rupture velocity significantly. 

Using the model of dynamic propagation of an in-plane shear crack 
with finite dimensions and the information that for most earthquakes 
studied so far the rupture velocity is less than the shear wave velocity 
(see Tsai and Patton (1972), Eaton (1967), Kanamori (1970a, 1970h, 
1971, 1972), Takeuchi and Kikuchi (1973), Wu and Kanamori (1972), 
Niazy (1975), Aki (1968), and others), Das (1976) estimates the fracture 
energy for the case of strong shallow earthquakes with long ruptures and 
obtaind the value of 101 J. m- 2 • A similar value has heen estimated by 
Ida (1973), from the observed maximum seismic motion due to an earth­
quake. Independently, Takeuchi and Kikuchi (1973) also proposed a similar 
value, based on a rough estimate of the time needed for the rupture velocity 
to approach the terminal velocity. 

Das (1976) and Das and Aki (1977) introduce the concept of a shear 
fault developing dynamically through obstacles (barriers) in the plane 
of the growing rupture, consisting of material of some higher strength. 
After the passage of the fault the barriers could be left intact, or they 
could break either during the fault motion, or some time after it (very 
short time aftershocks), depending on the ratio of the strength of barrier 
to the tectonic stress acting in the region. The model offers an explanation 
for a variety of observations of processes in earthquake sources. These 
include, among others, fault segmentation observed at the time of some 
earthquakes and in regions of rockbursts in mines, some characteristics 
of seismograms which could not be explained as effects of wave propagation 
in the medium only, and also discrepancies of observations of seismic 
wave spectra from the spectrum based on similarity of earthquakes of differ­
ent magnitudes. Also, the model explains why in some particular cases 
the simple Volterra dislocation constitutes a better model of source process 
than a crack model without barriers. The model predicts that earthquakes 
with low average stress drop could generate more waves with higher frequen­
cies than earthquakes with high stress drops. Also, an important conclusion 
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stemming from the concept ofa fault with barrie" is the possibility of predic­
tioll of aftershocks based on analysis of tbe sbape of the seismic pulse 
generated by the main sbock. 

In their model of a fault with obstacles (barriers) Das (1976) and Vas 
and Aki (1977b) consider tb.e problem of unilateral propagation of an 
in-plane sbear crack in an unbounded bomogeneous elastic medium, 
using the criterion of critical stress jump introduced by Hamano (1974). 
The medium is initially under a unirorm shear stress 00; the fault slip starts 
as the shear stress across the fault plane exceeds some value 0"", and th~n 
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Fig. 3.3.2. The value of (I + S), a measure of material strenJth relative to lectonic stress 
as ddiaed in eq. (3.3.51), is shown as a function of distance Xl lllollJ 1M path of rupture 
ptop~glliioo at tho top of the figure. This is case P-SV-O, in which no barriers exist on 
the fault plane. At the bottom snapshots of the panJle1 wmpooent displacement 011 the 
crack surface U,{XI. 0, r) are shown as a function of XI; "I Is normilliud by factor 
L (rlo-rl,)/31', and the number beside exit curve indicates lime I measured in the unit 
of 0.5 LIl1p • where L it the lellllh of the fault, Vp is the comprCS5ionai wave ... elOOty, 
1£ Is tbe rigjdity. rio il the initiaitectonic strns. and rlr is the dynamic friction of the fault 
plane (lifter DiS and Ald. 15I77b; copyrighted by the American Geophysical Union). 
Fig. l .3.3. Cue P·SY-l. in which one batr)u exists 00 the laull plane. Sec Fig. 3.3.1 
Iq:f;od fot details. 1hc cl1llclc t ip skips tbe barrier without bceakina it (after Dn and AIti , 
19TIb ; copyri&t!ted by the American Ocoph)'!oical Union). 
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its value drops to the dynamic frictional stress flf- The slip motion is frozen 
once the slip velocity begins to change sign, 

The authors introduce the oon-dimensional parameter S of eq. (3.3.8), 
being a measure of materilll strength relative to tectonic stress, and par· 
ameterize rupture resistance in terms of 

1 S 
ff.-(1f 

+ - --­
f1o-fff 

(3,3,9) 

Barriers aJong the fault plane afC characterized by high values of par· 
ameter (I +S). In their simulations Das (1976) and Das and Aki (1977b) 
considered anJy cases where S - 0 everywhere over the region to be rup­
tured except on barriers. The crack starts from a point and is stopped 
after IO grid points. They consider the rcnawing four cases of barrier 
distribution: 

P-SY.Q: No barriers, as shown in Fig. 3.3.2. 
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Fig. ].3.4. Case P-SII·l, in which two barrier, exist on thl: fault plane. See Fia. 3.3.2 
leiCnd (or details. The enck tip skips the barriers without breaking them (after Das and 
Mi, 1971bj copyrl&hled by tile American Geophysical Union). 
Fi,. :D.S. case P-SV-3, in whicb two barriel1l with a smaller value of (I+S) than WILS 
used in P-SY-) Or' P-SJI-2 exist. Sec Fig. 3.3.2 legend (or details. In this case the barriers 
arc eventually broken (aIter Dn and Ak.i. 1917bi copyrighted by the AmeriCIUI. Geophy­
sical Union). 
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P-SV-l: One barrier with 1 + S = 5 exists at a grid point on the fault 
plane (Fig. 3.3.3). The crack leaves the barrier unbroken. 

P-SY-2: Two barriers with 1 + S = 6 exists at two separated grid 
points. The barriers are unbroken (Fig. 3.3.4). 

P-SY-3: Two barriers with I+S - 2.5 exist at the same grid points 
as in the previous case (Fig. 3.3.5). Tbe barriers are not broken 
at the time of passage of the rupture front but are broken 
before completion of the rupture process. 

The crack develops along the xcaxes; Figs. 3.3.2, 3.3.3, 3.3.4 and 
3.3.5 represent the displacement UI(X1 , 0, t) on the crack surface as a func­
tion of Xl for a fixed time t for different cases of barrier distribution. The 
number by each curve indicates the time in the unit of O.5L/vp, where L 
is the fault length and 'lip is the compressional wave velocity. Displacement 
U1 is normalized by the factor L«(10-(1j)/3p.. In all cases the crack tip 
propagates with a velocity vp because S = 0 at all grid points except barriers. 
Let us note that in the case when barriers are left unbroken (Figs. 3.3.3 
and 3.3.4), the displacement field is somewbat similar to that of a Volterra 
dislocation model (Haskell model). In tbe case when barriers are broken 
(Fig. 3.3.5) the bistory of the deformation process is more complex and 
the final slip is reached after a slightly longer time. 

The influence of presence as well as strength of barriers on far-field 
wave forms is illustrated in Figs. 3.3.6-3.3.9 for comparison, the dashed 
lines show the curves for case P-SY..O (without barriers). 

The excitation of high-frequency waves is relatively greater in cases 
when tbe barriers remain unbroken, in comparison with cases when barriers 
break. However, the amplitude spectrum does not clearly reveal the com­
plexity of damage processes occurring in the rupture plane in presence 
of barriers and it does not show clearly any difference between particular 
cases. These differences however could be detected by studies of shape 
of the seismic pulse; in the case witbout barriers (Fig. 3.3.6) the pulse 
is smootb except for the sudden arrival of stopping phase generated by 
the moving crack edge, and in case P-SV-3 (Fig. 3.3.9) it is highly disturbed 
by many small ripples, observed in all directions. Note that these differences 
are not seen clearly when comparing the amplitude spectrum only (Das 
and Ald, 1977). 

The analysis performed by Das (1976) and Das and Aki (1977) suggests 
that if the barriers are unbroken, the directivity of tbe seismic radiation 
is somewhat stronger than that for the rupture witbout barriers. Also 
tbey argue that the presence of barriers might cause the slowdown of the 
rupture process as well as a slight decrease of comer frequency averaged 
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over a1l directions, which bappens in cases when barriers remain unbroken 
with the passage of rupture front but eventually break, too, They thus 
associated the corner frequency more with the amount of time needed for 
the completion of rupture process than with the total length of the broken 
region. 

The numerical modelling of the earthquake source process as performed 
by Das (1976) and Das and Aki (1977) offers the possibility of leaving one 
or more intact regions along the path of the developing rupture (fault 
segmentation). Although when examining the surface traces of faults 
produced by shallow strong earthquakes, it is difficult to estimate the 
complex structure of subsurface layers, in some cases fault segmentation 
might be associated straightforwardly with surface kinks or segments 
of the main fault itself (see, e.g. Imperial Valley earthquake of 1940, 
Richter (1958), Trifunac and Brune (1970); Dasht-e Bayaz earthquake 
of 1968, Tchalenko and Berberian (1975». Also examination of the first 
unearthed rockhurst fault from a deep gold mine in South Africa (Spottis­
woode and McGarr, 1975) reverued clear segmentation of the fracture 
areas. Thus the barrier model offers a simple mechanical basis for so­
called "multiple ruptures" (Stoneley, 1937; Usami, 1956; Wyss and Brune, 
1967; Trifunac and Brune, 1970; Kanamori and Stewart, 1976). Of course, 
the physical basis for segmentation may not be related to such strong 
initial non-uniformity of material strength properties. Possibly, dynamic 
ruptures in a simple planar form are configurationally unstable, e.g. Rice 
(1980) and Section 3.4.1. 

The barrier model ruso offers a basis to interpret small impulses ohserved 
in some cases in the early parts of seismogram5 (Kasahara, 1956; Rulyov, 
1975), which cou1d not be attrihuted to wave transmission properties 
of the medium alone. These impulses are prohably associated with the 
rupture front passing through the barrier, which was suggested by Rulyov 
(1975) when interpreting seismograms of one of earthquakes from Garm 
(Tadzhikistan) region. 

One conseq uence of the idea of a fault plane with barriers is the creation 
of a physical basis for description of the faulting process in such a way 
that the average slip along a long fault is of similar magnitude everywhere. 
Considering a long fault with strong (unhreakahle) barriers distributed 
in a more or less uniform way along the fault, we ohtain a locally hetero­
geneous slip distrihution which in average is similar to the classical disloca­
tion model. This would resolve the situation that the simple dislocation 
model of a source process, introduced hy Ben-Menahem (1961) and Haskell 
(1964) and subsequently criticized for its insufficient physical basis (Sato 
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and Hirasawa. 1973; Molnar rt al., 1973), in some cases explained much 
beUer the existing observational data than the crack model witbout barriers 
(see e.g. Park:field Qrthquue of 1966, Aki, 1968; An::huleta and Brune, 
1975). Recently BouchoR (1977) oh<>erved that in the case of the 1971 
San Fernando earthquake, a crack model without barriers is not able 
to explain observed far-field wave recordings. whereas a model with unbro­
ken barriers (of type P-SV-! or P-SV-2) gives a wave field similar to that 
generated by a Volterra dislocation model and compatible with recordings 
of this earthquake. 

Thc barrier model of the source process allows also prediction of after­
sbock occurrence, with tbe use of analysis of the shape of tbe seismic 
pulse generated by the main shock. Unbroken barriers lire naturally regions 
of stress concentration and possible sources of subsequent shocks (after­
sbocks). If the barriers were completely broken during tbe main rupture 
process, then it is possible that aftershocks (or at least strong ones) would 
not occur at aU within the main rupture zone. The lack of artershocks 
of medium-deep and deep earthquakes might thus be caused by homo­
geneity of strength distrihution in the region of fracttJre (see Das and Aki, 
1977). 

One of the important problems of the physics of an earthquake source 
is the understanding of the stopping process for an earthquake rupture. 
Analysing the development of semi-inli.n.ite longitudinal shear cracks in 
an infinite elastic medium Husseiru et 01. (1975) proposed two differtnt 
stopping mechanisms, as remarked in Section 3.3.1. The first one, caJled 
tbe "fracture energy barrier mechanism", operatcs when the developing 
crack encounters on its way a region (barrier) with bigber fracture energy 
(material with higher strength). The second mecbanism, called the "seismic 
gap mechanism" , operates when the initial higher tectonic stress field is 
limited to some finite region, so that when the rupture travels outside 
that region into area with comparatively lower initial stress levels, it slows 
down and stops completely. 

Both mechanisms of rupture arrest were investigated and compared in 
work by Das (1976) for a case of a finite shear crack. The author analysed 
the one- aad two-directional development of shear CI1lCks of both kinds 
(transverse and longitudinal shear), showing how both stopping mechanisms 
operate in the case of finite cracks. For the "seismic gap" mechanism the 
crack. encountering the region with lower stresses, moves for some time 
into it and then stops. Th e comparison of results for finite cracks with 
those for semi-infinite ones (Hussciru et 01., 1975) suggests that the rtlation 
between fracture energy, stress drop On a crack and its dimensions proposed 
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by Husseini et al. (1975) corresponds only approximately to the finite 
crack results (see Das, 1976). Such may, however, be due to the difference 
in fracture dynamics for critical G versus critical K criteria, compare eqs. 
(3.3.6) and (3.3.7), or to discrepancies between the latter criterion and the 
numerical critical stress criterion. The stopping mechanism of a fracture 
"energy barrier" type operates also for finite cracks (Das, 1976) and for 
a given initial crack length and given position of the barrier, the difference 
between strength of material of the barrier and that of the crack plane 
determines if the crack would stop or not. 

It is interesting to compare both mechanisms for the same initial crack 
length, as was done by Das (1976). In the "seismic gap" stopping model 
the crack edge slows down and then stops, the stopping process being 
irregular and generating high frequency waves. In the case when the crack 
encounters a barrier with higher strength, the stopping part of the process 
is quite sudden and only the very last phase generates bigh frequency 
waves. Also the final displacement at crack's edge is larger than in the 
"seismic gap" stopping model. On the other hand, the stopping mechanism 
doesn't influence significantly the value of displacement in the middle 
regions of the ruptured zone (Das, 1976). 

A gradual, slower stopping process gives a lower comer frequency 
value than for a smooth rupture with sudden crack arrest. Normalized far 
field spectra for both stopping mechanisms are shown in Fig. 3.3.10, where 

1.01----__ 
8 .. 00 

09==900 

0.01 1.0 0.01 1.0 

Fig. 3.3.10. Far-field spectra for the case when the tip stops abruptly (solid line) and 
when it stops gradually (dotted line) for different values 6 (after Das, 1976). 
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the solid line denotes the case when the crack tip stops abruptly (energy 
harrier mechanism) and the dotted line results from the case when it stops 
gradually (seismic gap mechanism). Because the final value of displacement 
at the crack's edge is different for different mechanisms, the factors normal­
izing the amplitude spectra are different too. The high frequency asymptote 
of the amplitude spectrum decays as w- 2 in case of sudden arrest and as 
w-1 in case of gradual stopping (Das, 1976). Madariaga (1976) has shown 
on theoretical grounds that a spectrum decay as w- 2 must accompany the 
sudden stopping of a crack. 

Let us return now to the maximum stress criterion as used by Das and 
Aki (1977), and, also, by Shmuely and Peretz (1976), Mikumo and Miyatake 
(1979), Day (1979), Das (1981) and Miyatake (1980). It has been pointed 
out hy Das and Aki (1977) that the criterion is equivalent to a critical 
stress intensity criterion through a relation of the form 

(3.3.10) 

where a" is the grid-size dependent critical stress, UJ is the residual friction 
strength, d is the grid-size, and Kcr is the critical stress intensity factor. 
Thus implicit in the definition of the maximum critical stress there is a scale 
length that Das and Aki (1977) took as the grid spacing d. Virieux and 
Madariaga (1982) emphasized in the analysis of spontaneous propagation 
of finite cracks, that the sewing relation for the maximum stress, in terms 
of the non-dimensional critical stress intensity factor Kt ",. Kcr/u~V/l, 

can he rearranged as 

(f" = a,+2a~K,(L/21td)1/l (3.3.11) 

where L is the length of crack and a~ is effective stress (a. ",. (fo-aJ). 
The form of eq. (3.3.11) makes it clear that for a finite crack the maximum 
stress criterion depends on the number of grid points inside the crack 
(LId). Thus, as pointed out by Virieux and Madariaga (1982), for a given 
maximum stress intensity, the finer the numerical mesh, the higher the 
maximum stress that has to be adopted. 

Because of their complexity, three-dimensionw crack models of the 
earthquake source process were attempted only recently and, obviously, 
only numerically. A major difficulty (but not the only one) with three­
dimensional numerical solutions is the need of large computer capacity; 
some authors avoided this problem by studying models possessing a certain 
symmetry, as Madariaga (1976) did in the case of circular cracks or by 
making approximations (Mikumo and Miyatake, 1979) in order to reduce 
the three-dimensionw problem to a two-dimensionw one. The truly three-
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dimensional solutions have been determined by Archuleta and Frazier 
(1978), Archuleta and Day (1980), Das (1980) and Day (19824), who 
studied shear cracks developing with arbitrarily assigned rupture velocities, 
with the use of finite difference techniques, or, in case orDas (1980), applying 
boundary integral equations, Spontaneous three-dimensional solutiom have 
been proposed by Day (1979), Miyatake (1980), Das (1981), Yirieux and 
Madariaga (1982) and Day (1982b). This last class of solutions is most 
valuable for realistic modelling of the earthquake source process since 
dynamic development of the crack is not prescribed in advance. hut rather 
controlled by the rupture criterion. 

NllIllerical solutions ror prescribed rupture velocities on dynamic 
faults, although not being very realistic in modelling real earthquake 
source processes, have satisfactorily quantified some important three­
dimensional geometrical effects such as the: influence of fault width on 
the slip fUDction. For e:tample, Day (1982a) obtained closed-form approxi­
mations for the dependence of final slip, slip rise time, and slip velocity inten­
sity (i.e. the strength of the crack-edge velocity singularity) on fault width 
and length. By means of such relationships. the fixed rupture velocity 
dynamic models help establish physical interpretations for the purely 
kinematic parameters associated with the dislocation earthquake models 
used more routinely in seismology. 

Numerical three-dimensional solutions of spontaneous rupture propaga­
tion, though still few in number, are presumably the best approximations 
to real earthquake source processes. The most complex model has been 
presented recently by Day (l982b), who studied the effects of non-uniform 
prestress OD spontaneous development of shear cracks with tbe use of tbe 
slip-weakening failure criterion (as in Ida, 1972; Palmer and Rice, 1973 
or Andrews, 1976) and a finite difference method. As for two-dimensional 
numerkal simulations of spontaneous propagation of shear cracks, he 
obtained super-shear rupture velocities for three-dimensional cracks in 
directions for which mode II (in-plane) crack motion dominates, and sub­
shear velocities for directions of predominantly mode III (anti-plane) 
crack motion. Introduction of even relatively simple stress heterogeneities 
on the plane of the developing crack made the rupture histories fairly 
complex (as did barriers in the two-dimensional analysis of Das and Aki, 
1977) and io all cases studied, it was suffident to reduce the oW!roge rupture 
velocity to less than the S velocity, although locnUy super-shear rupture 
velocities were occurring in regions of high prestress. As proposed by Day 
(1982), results of this numerical simulation of the earthquake source 
process could be used to synthesize the radiated seismic wave field with 
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the use of slip histories obtained; this would shed some light on understand­
ing rupture histories of real earthquakes. 

3.4 INSTABILITY IN RELATION TO THE coNsnruTIvE DESCRIPTION 
OF FAULT SLIP 

In this section we examine an approach to fracture analysis wbich recognizes 
that the tractions (]2J on a rupturing fault surface sbould not be regarded 
as specifiable, a priori, but rather should be regarded as being given by 
some suitable constitutive relation between them and the fault slip 6.uJ • 

An attribute of such a constitutive relation, if it is to describe processes 
normally understood as sbear fracture, is that the resistive stress a ll (say, 
for the mode 11 crack. Fig. 3.2. 1) must decay from some relatively high 
peak strength, necessary to get slip started, down to some reduced stress, 
of the sort we have denoted by u{\, on weU~slipped segments of fault. 
This SlJ'ength decay is, after all, what is meant by fracture. In the simplest 
group of models, namely, those called "slip-weakening" models, the stress 
O'u at a given location along a fault is assumed to be some decreasing 
function of the amount of slip. 6.u l • at that place, a t least for slip at constant 
effective normal stress. More generally, however, it is evident that rate 
a nd/or time dependence must be a featutt of a suitably complete constitu­
tive description. For example, earthquakes do recur on the same portions 
of faults, and this suggests that some process of regaining strength can 
take place OD a segment of fault surface in stationary, or nearly stationary, 
contact. The same regaining of strength can be inferred on the laboratory 
scale. where repeated stick-slip instabilities can be induced on, say, a saw­
cut surface in a continually shortened triaxial specimen within a sufficiently 
soft loading apparatus. Thus, after consideration of slip-weakening models 
in the next sections we examine more comprehensive "slip-rate and surface­
state" dependent constitutive models and discuss their implications for 
instability. 

The viewpoint adopted in tbis section is distinct from that of elastic­
brittle crack mechanics. In the elastic-brittle approach, the resistive stress 
is assumed to drop instantaneously, at all points behind the advancing 
crack tip, to the constant or perhaps slowly varying value a{ I (again for 
the mode II crack) and to be unbounded at the tip, the admissible magnitude 
of the tip singularity being specified by assumption of a critical value G 
or K, which may include some rheological reatures through a presumed 
dependence on speed tI. Nevertheless, it is to be expected that the more 
detailed approach outlined in this section is consistent with elastic-brittle 
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analysis procedures in the limiting case when severe drops in resistive 
strength O'll occur over a zone near the advancing crack tip that is some 
small fraction of overall crack size. This expectation is confirmed, at least 
in the context of slip-weakening models, and in the process one obtains 
an interpretation of the critical G quatltity of the elastic-brittle approach. 

The approach of this sectioa continues to represent the rauIt as a plane 
of discontinuity in 6.uJ (precisely, in its slip COmponents 6.u1 • 6.ul ). and the 
constitutive relations to be discussed relate Un, O'u along the fault to 
these slips. In principle, the material outside the fault could have any 
particular constitutive character. Most studies have been limited to the 
assumption of elastic behaviour and the same assumption is made bere. 
As commented in the Introduction, however, the study of a wider range 
of rheological models may ha'f'e significance for earthquake phenomena. 

Figure 3.4.1 shows a slipping region along a fault and, in enlarged 
view, there is shown a smaIl area segment of the fault along which stress 
and other constitutive parameters can be considered as being sensibly 
uniform at the continuum scale adopted. The fault surface is regarded as 

I I I 
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" " AU ~. "" 
Fir. 3.4.1. Slipping region Iiong raul! surfltCe aoo enlarged view sbowing parame!cl"$ 
entering constitutive description. 

a plane of discontinuity of amount 6 in sliding displacement, where 6 
is to be understood as representing, in different circumstances, either 
/lUI or /luJ or some linear combination of the two. The shear stress trans­
mitted across a given segment of fault is denoted by T, which may represent 
either all or 0'13 or some linear combination. Other parameters of interest 
to a constitutive description are normal stress a.( = -all) and, in cases for 
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which it is sensibly defined, the pore-fluid pressure p aloog the fault surface. 
Temperature is, or course. also releyant but is considered only implicitly 

bere. 

3.4.1 Slip-weakening fault instability models 

Figure 3.4.20 illustrates a rate independent constitutive relation between. 
and ~. This incorporates slip-weakening, and response is of the rigid-plastic 
type in that unloading aod reloading occur along a vertical line segment 
as shown. As indicated, .' denotes the peak slip resistance and "(I the 
residua) frictional resistance which results after suitably large slip, say, 
of amount 6., Figure 3.4.2h emphasizes that .", ~ and tbe leyel or T 

at any slip 6 must be regnrded as being dependent on the effective Dormal 
stress a.{_ rT~-p). Presumably. the difference between T' and .1 should 
be assumed to decrease with increasing temperature, and to first increase 
but later decrease with increasing u. (transition from cataclastic to ductile 
flow), Thus recognizing tbat a. and temperature both increase witb depth 

, lal (bl t~ 

- ----------~:, ... 
=-p== ~------------------ -
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Iii" ~st ' ~I~ 

•• • 
l'la. 3.4.2. Slip-weakening model. (.:I) T - 9(6) for continued slip at if. coostantj (b) 
the fd cutVe depend! on u •. 

(anomalous local pore pressure zones may cause q~ not to do so mono­
tonically) and assuming tbat the rate independent constitutive Cramework 
adopted is an appropriate approximation for all deptbs oC interest, the 
difference -r'-T:I should first increase with deptb and tben diminish witb 
greater depth. Tbe lone of higb brittleness (Le. substantial T' - TI) thereby 
defined models the seismogenic layer of tbe Earth's crust. 

Simple descriptions oC instability according to the slip-weakening 
constitutive model can be given in the two limiting cases of essentially 
uniform slip and of highly non-uniform slip, the latter being so mucb so 
tbat results Cor the slip-weakening model become coincident with tho5t 
of el8..Stic-brittle crack mechanics. We discuss both limiting cases here 
in the simple circumstances of failure at fixed effective normal stress a. , 
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The presumption of essentially uniform slip everywhere on a given 
fault segment is evidently inconsistent with the fact that natural fault 
segments have ends at wbich slip must diminish to zero. Further, it is 
not the type of rupture mode exhibited for large systems, which tend 
towards non-uniformity of slip approaching crack-like response. However, 
such essentially uniform slip could, [or example, be exhibited if a small 
enough segment of fault were cut free, as in the enlargement in Fig. 3.4.1. 
and subjected to laboratory test as a specimen with a throughgoing fault. 
Also, the description of instability that results based on this assumption 
of uniform slip finds application in less restricted analyses of failure in 
slip-weakening or other deformation-weakening systems (Jaeger and 
Cook, 1979 ; Rudnicki, 1977; Rice, 1979; Stuart 1979a, b; Stuart and 
Mavko, 1979; Li and Rice, 1983). 

From a dynamical viewpoint, an elastic system that eitber exbibits 
or is idealized as exhibiting uniform slip motion can be regarded as a 
single degree of freedom elastic system, and can be represented schemati­
cally by a spring-slider system as in Fig, 3.4.30, There 6 denotes the slip, 
and tbe force T per unit base area of the slider, exerted on it by imposed 
displacement 00 of its surroundings, is represented by the linear spring 
force 

(3.4.1 ) 

wbere k is the clastic stiffness, For quasi-static response of the spring­
slider system, r ... T. In some circumstances it is more appropriate to 
regard ro as the prescribed quantity where roo replacing klJo , is the stress 
exerted on the slider in tbe absence of slip. Then one writes, for quasi­
static conditions 

(3.4.2) 

which may be regarded as the one-dimensional form of the genecal relation 
between stress and slip in eq. (3.2.25). 

Figures 3.4.3b and 3.4.3c iI1ustrate the solution under increasing imposed 
dlsplaccment 60 , The straight lines are plots of eq. (3.4.1), with T = r, 
for various values of 60 , Their intersections with the T versus 6 relation 
define the state of the system. Thus, as "0 is increased, slip is stable in 
a stiff system, Fig. 3.4.3b, but becomes unstable in a softer system, Fig. 
3.4.3e, when the r versus d relation falls at a slope greater tban the spring 
stiffness. 

Figure 3.4.3d shows (as points B. C, D. E) possible final states of the 
system after an instability. Their range is determined by the conditions 
that 
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FiJ. 3.4.3. (0) Spring-slider representation of single deil'ee or freed om elalltle system, 
apPropriate for uniform slip. (b) and (c) Suo.ess.ive stress and displacement states en· 
countered as load-poinl displacement do ~ increased; stable for high stilTness in (b), 
unstable fOl' low stiffne.ts In (c). (d) Points B, C, D, E show possible final IIW;5 ariel 
d ynamic but,hility, dcpendina on amount of enee,y radiated away; point E is such that 
t~ area uDder line AE equals that under the l' versus d rcla.tion between d, and "t. 

(i) tbe final state be a possible equilibrium stale, and 
(ii) tbe energy lost from the system (in representation of radiated energy 

losses, not included explicitly in the mode( depicted in Fig. 3.4.30) be 

non-negative. 
The first condition is met if tbe final state lies on or below, on a rigid 

unloading branch, the T versus ~ rel atioa in a manner that is consistent 
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with eq. (3.4.1). This shows that tbe final state lies on the spring unloading 
line at or beyond point B of Fig. 3.4.30'. The seoond condition requires 
that the final state satisfy 

• 
!(rA+r)(d-dA ) ~ ~ i(d')dd' (3.4.3) 

•• 
where r "" i-(6) denotes the T versus d relation for continued slip, T and d 
denote tbe final state, and sUbscript A denotes that at instability. Evidently, 
equality puts an upper limit on the final slip. The condition at that upper 
limit, denoted by E in Fig, 3.4.30', is chosen so that the area under the 
straight line AE equals that under the curve T = i-(d) between dA, and dB' 
Of course, there may exist systems for which a coa.struction Hk.e that in 
Fig. 3.4.3c applies at least approximately up to instability, but for which 
the same quasi-static T versus lJ relation becomes an inadequate model 
during the dynamic instability. Such would seem to be the case in the typical 
applications in rererences cited above or the stiffness based instability 
concept to rawting in deformation weakening systems, not just because 
of rate effects but because the dynamic development of slip may be kine­
matically different from the quasi-static development especially in large 
systems where slip regions spread at speeds Deat limiting wave speeds. 
Such systems cannot be described accurately as single degree of freedom 
systems. 

The opposite limit from essentially uniform slip is illustrated with 
reference to Fig, 3.4.4. There the slipping region (Xl < 0) is shown ad­
vancing into a portion of the fault that has not yet slipped (Xl> 0), and 
the sbear stress 0'21 and slip ~111 are plotted schematically. These are related 

0" 

r;-
, " , 

" , , , 
sl ipp'r>q 

V 
still loc.k~ " 

Au, 

FIS. 14.4. Slip-weakening fault model, with zon~ Q1 of strcnrth depadalioo confiDed 
to reaion. near the advaucing fault tip; see Fia. 3.4.2a for significance of 1:., 1:' and ~ •• 
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to one another by tJ'21 - T(.6.U1 ) in the slipping region, and an application 
of eq. (3.2.53), recognizing that there is now no singularity at the crack 
tip, i.e., 

(refer to Fig. 3.2.3), shows that 

" 
Ja-./(.6.u1 )a = ~ [T(a)-./lda , 

(3.4.4) 

(3.4.5) 

when point Q is chosen sufficiently far from the front of the slipping zone 
that the stress 0'21 has reduced to the residual friction value -rI. Here .6.u1 

has been replaced by !5 and it is recalled that 6. is the slip at which i( 15) 
has decreased to .1, Fig. 3.4.2a. 

The quantity Ja-.'(.6.u1 )Q is invariant to the location of point Q 
so long as it is chosen sufficiently far from the front of the slipping zone 
that 1721 = -rI. When the linear extent W of the zone of strength degradation 
in Fig. 3.4.4 occupies only a small fraction of the overall size of the slipping 
region, the invariant quantity can be evaluated from the elastic-brittle 
crack solution, formulated for the problem in which uniform resistive 
stress -rI acts everywhere on the fault up to the tip. That problem has the 
conventional mode II elastic singularity, and if its associated energy release 
rate is denoted by G, then another application of eq. (3.2.53), valid under 
tbe presumption that w <t( ovemll fault size, shows that 

(3.4.6) 

Hence, by comparison to eq. (3.4.5), the critical G of elastic crack mechanics 
is shown to have the interpretation, from slip-weakening concepts, .. 

G - I [T(6)-Tf]do (3.4.7) , 
This shows tbat in the limit considered, for which the linear extent w of the 
zone of strength degradation is small, the predictions of slip-weakening 
fault models coincide with those of elastic-brittle crack mechanics with G 
defined as above (Ida, 1972; Palmer and Rice, 1973); see also Rice (1980) 
for further details. It sbould be emphasized that the above expression 
for G assumes ideally elastic behaviour of the surrounding material; inelastic 
response there provides another source for energy dissipation in the fracture 
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process. Yamashita (1980) discusses slip-weakening crack growth with 
a linear viscoelastic model for the surroundings. 

Palmer and Rice (1973) discuss estimates of the size w or the zoo.t 
of strength degradation. This actually depends on the detailed rorm of the 
T versus 6 relation, but not strongly so, and an approximate estimate 
is given by (Rice, 198Q, eq. (6.12») 

"'. _ [9nfl6(1-')J~~/(T'_Tr) (3.4.8) 

for mode II; the (1-)1) is deleted for mode m. Here d is a representative 
slip in the weakening process, defined by .. 

;; - [1/(T' - T')J I [T(~)-TrJd~ (3.4.9) 

• 
Rice (1980) and Wong (1982) discuss various estimates of G and "'0 

based on T versus !5 relations inferred from laboratory data (on small 
specimens with nearly uniform slip) and on possible extrapolations to the 
tectonic scale. Values for G ranging from 5 x 103 to 5 X 104 J. m- 1 and 
forwo of order I m are generally consistent with laboratory data. However, 
as discussed by Li and Rice (1983), the effective G values of order 
5 x 106 I · m- l inferred indirectly from large scale earthquake instability 
models, and probably due to fault segmentation at some scale, imply 
sizes Wo that are of order 100 to 200 m if the strengtb drop T' - T' is chosen 
as SO MPa, and scales inversely with (T~_~" for a given G. 

rateractions between pore fluids in surrounding rock and the spread 
of slip zones along faults can be analysed with the aid of the slip-weakening 
failure model and pore pressure effects on strength as in Fig. 3.4.2h. Rice 
(1979, 1980) gives a review of these mechanisms. The effect of those dis­
cussed is to stabilize somewhat the quasi-static spread of a slip zone against 
dynamic instability. However, processes or mechanisms which produce 
increased pore pressure on the fault plane, such as rapid dehydration, 
would have an opposite effect. 

One effect of dynamic spread of a slip l.one, at least under conditions 
for which the linear elttent w of the strength degradation zone is small, 
is to shorten w from its value for quasi-static conditions. Thus, if Wo above 
represents the quasi-static value, then in steady dynamic spread of the slip 
zone (Rice, 1980, eq. (6.16») 

(3.4.10) 

for modes II and lIT, respectively, where the fun.ctionsf(v) are those defined 
by eq. (3.2.63). This effect may be of significance for the configurational 
stability of a single rupture plane; d_{w represents an average displacement 
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gradient of type audaxi (mode II) or aUl/aXI (mode Ill) over the zone 
of strength degradation. and induces stresses (of type all or all) whicb 
are conducive to rupture on planes other tban the main rupture plane. 
Thus, denoting ( au ) and (all) as averages of stress components along 
the slip sUiface over the region en of strength degradation, and estimating 
~. ~ (9{4)6, Rice (1980, eqs. (6.17), (6.18» shows 'hat 

( all ) = O'~I ±~ ('l"' - ~).f.I('V) • 
for mode II and 

(au ) = O'h±!. ('l"' - 'l"f).f.u(lI) • 

(3.4.11) 

(3.4.12) 

for mode tIl. Here: tTll and rTfl are initial stresses acting before arrival 
of tbe slipping zone and the alternating signs refer to upper and lower 
surfaces of the zones. Since both I .. and 1111 become unbounded as tbe 
respective limiting speeds are approached, these results show that stress 
alterations motivating fracture: 00 directions off the maio rupture plane 
become indefinitely Iargecomparcd to those associated with the main plane 
itself. Some of tbe strongly segmented structure of actual faults may be 
due to effects of this type. 

A related issue is that of when shear faults can exist as sucb. As is well 
known (e.g. Lawn and Wilshaw. 1975) laboratory attempts to simulate 
mode n or m ruptures generally result io local tensile cracking at crack 
t ips in brittle solids. The above condition suggests, for example, tbat such 
tensile con6gurationat destabilization of a mode n shear crack will not 
occur if (in quasi-static conditions) the initial stress 0'1 I is sufficiently small 
or negative to eDSure tbat 

, 4(. " 0'11+ - T-TJ ~ aT • (3.4.13) 

wbere C1r. possibly zero, is the tensile strengtb of the faulted material. 
Our discussion of the slip-weakening model in this SUb-section bas 

presumed unidirectional slip. Day (1982h) proposes a method for dealing 
with general slip patbs as encountered in 3-D numerical fault dynamics. 
His metbod is consistent with isotropic hardening notions in continuum 
plasticity theory and may be described as follows: We let T = T(6) represent 
tbe unidirectional slip rdation wbere now the interpretations T'" (a~1 
+a~3) l/l and 

6 _ ~ [(tuiJ)1 + (6uJrl]l /ldr , (3.4.14) 

I 
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are made and slip increments are distributed among the components 
accordiog to 

(3.4.15) 

3.4.2 COfIstitutl'l'e description. of rate and slate dependent frictional slip; 
instability condiliotU 

A promising area of fault mechanics, not yet well developed, attempts 
to incorporate the actual rate and state dependences of the frictional 
slip process as observed experimentally into the theoretical framework 
for instability. In fact, almost all progress as of this writing has been on 
formulating appropriate constitutive relations and exploring their con­
sequences for instability in the simplest context of the sprins-slider system 
in Fig. 3.4.3a. Thus we give here only a brief report on this evolving area. 

One characteristic of a constitutive relation intended for description 
of sequences of in~abilities on the same fault surface is that there can 
be no fundamental dependence of stress on displacement. The dependence 
of tbis type postulated in slip-wwening models is plainly intended to 
model a single instability sequence. More generally it can be postulated 
that the strength T(t) on a surface undergoing unidirectional slip of amount 
6(t) is a direct function of slip velocity ye'l [ ... d6(1)JdtJ and (effective) 
normal stress cr .. (I), and is a functional of the prior histories of both. Written 
symbolically 

«I) ~ f1Y(I), 0.(1); Ve,'), o.(t'), -co < I' < I) (3.4.16) 

Recent e;tperimental studies (Dieterich, 1978, 1979a. 1981 ; Ruina, 
1980, 1983) have documented the velocity dependence in slip at fixed 
normal stress, 0'.(1) "" constant. These show the foll owing features: When 
a step increase (decrease) in slip rate V(I) is imposed, there results a step 
ina-ease (dec~ase) in T(t). That is, aJOTV(t), ... 1/a V(t) > O. When slip 
at a constant rate Vet) is maintained for some time, the stress T(t) evolves 
towards a steady state value, denoted T'J(V), which is a function of Y 
only (for the given If.) and which is independent of prior slip history. 
Further, it is often observed that d"r'6(V)/dY < 0, I.e. that the ultimate, 
or steady state, strength decreases with increasing velocity ; e;tceptioos 
seem to exist in the early stages of slip on a given surface and for slip at 
elevated temperature (Dieterich, 1981 ; ruce and Ruioa, 1983; Ruina. 
1983). 

Ruina (1980, 1983), in furtber development of constitutive representa­
tions hy DIeterich (1978, 1979a), related in tum to proposals hy Rabinowicz 
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(1958). suggests that variables (say. 01 , 01 • . . . • 0,,) be introduced to describe 
the state of the slipping surface, that strength depends on Yand the Slate 
as thus characterized, and that tbe state itself evolves with ongoing 
slip. Symbolically. this constitutive description has the form. for slip at 
fixed CI", 

T - f(Y, 01> ... • 6.), dO, /dt - g,(V, 81> ...• 0,,), i-I • ... , n 

(3.4.17) 

Thus the functions " describe the evolution of state during slip, and may 
posubly describe an evolution of state with time when the slip rate is zero. 
The equations " :I 0, 1:1 I, ... , n, are presumed to have solutions 0, 
= I'W(V), whicb give the steady state appropriate to sustained slip at fixed 
speed Y; the steady state strength is 

.... (V) - !(Y, O\'(V), .. . , O;'(V)) (3.4.18) 

A specific two state variable form proposed by Ruina (1980. 1983) in 
order to fit results over a wide range of slip rates, approximately am 
to 1 I'm ' S-I. with polished quartzite surfaces is 

T - T.+Alo{VfV.)+B101+B:l0:l 

dO •. , jdt - - (VjL .. ,)[O",+ID(VIV.)] 
(3.4.19) 

where all of 0 •• A, B1 , iJ~ , V •• Ll WId ~ are positivecon.stan15. For example, 
to fit experiments with the quartzite under (1. = 10 MPa, the parameter 
choices are T. ICI" - O.sS when V. is chosen as I j.lm·s- '. A./a" II:: 0.011, 
iJ1 1A. - 1.00, BllA. - 0.84, Ll CI 0.25 j.lm, L:l = 5.2 (.Ull. As Gu et 01. 
(1984) comment, the same form seems to describe qualitatively experiments 
with various gouge layers (Dieterich, 1981), except that the LIs can be 
much larger. e.g. of the order of 100 I'm. The steady state stress is 

(3.4.20) 

and for BI + B1 > A. as above, this predicts velocity weakening in steady 
state slip. 

A simpler but related mathematical form, employed by Ruina (1980, 
1983) and Gu t t 01. (1984) in various stabitity analyses, and motivated 
originelly as a simplification of a friction law proposed by Dieterich 
(19713, 1981), involves a single Slate variable 0 and is 

, - ,.+Aln (VJV.}+1l6, d6 jdt - -(VjL}[8+ln(vJV.lJ (3.4.21) 

This is tbe form to whkh the two state variable law above reduces when 
Ll - L2 (- L). jf we define iJ - iJ1 + iJz• In this case 

.... (V) = ,.-(B-A}ln(YIV.} (3.4.22) 
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Primary experimental features fitted by such laws are approximately 
logarithmic variations of strength with velocity. with positive coefficient 
(A) in instantaneous and negative (Bl +B2 -A) in long term (steady state) 
response, and approximately exponential decay of T towards steady state 
with characteristic slip distances (the L's) that are independent of slip 
rate. In typical experiments of Dieterich and Ruina, slip is occurring in 
steady state at speed VI and the speed is suddenly changed to V1 . The 
general response found is illustrated schematically in Fig, 3.4.5, 

• 
Fig. 3.4.5. Shear stress • versus slip ~. with increase in slip rate" from VI to V1 ; T"Cn 
denotes the ste/ldy response for slip at rate V. 

As remarked, most stability results so far obtained apply to the spring­
slider system of Fig, 3.4.3a, Rice and Ruina (1983) examine tbe stability 
of steady state slip, enforced by imposed steady motion of tbe load point 
(ddo/dt - const - Vol, in response to small perturbations and show 
within linearized tbeory that sucb slip changes from stable to unstable 
as the spring stiffness k is reduced below a critical value, ko", expressed 
by them in terms of parameters of tbe constitutive law. Furtber, the linearized 
response at k _ kcr is oscillatory, and such oscillations decay or grow 
in tim e according to whether k > kor or k < km respectively. For example, 
with tbe one state variable law of eqs. (3.4.21) above it is found that the 
critical stiffness is 

k" - [(B-AlIL](l +mV'IAL) (3.4.23) 

wbere m is the mass of the slider per unit base area, and the circular fre~ 
quency of tbe oscillatory response at k = ker is 

'" ~ (VIL) y(B AliA (3.4.24) 

An extended study of the quasi~static (m = 0) motions of tbe spring 
slider system with full inclusion of non~linearity (Gu et al., 1984) for the 
one state variable law of eq. (3.4.21) shows that finite amplitude periodic 
oscillations of V about the imposed load point speed Vo are found at 
k = ker provided that tbe motion starts sufficiently close to tbe point 
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in state space corresponding to steady state slip. All motions with k < kcr 
are unstable in tbat Y - 00 in finite time (because inertia is here neglected). 
Motians with k > k ., are stable, in that Y -+ Yo witb increasing time, 
provided again that these begin sufficiently close to steady state. Sufficiently 
large disturbances induce instability (Y .... 00 in finite time) even wben 
k > k...: however, the magnitude of the necessary disturbance, e.g. in the 
form ofa suddenly increased imposed load point velocity onasysteminitially 
in steady state, is found to increase exponentially with k at large k. 

Similar ~sults are found by Gu el al. (19S4) for the two state variable 
law, except that now stable limit cycle oscillations of Yabout Yo arc found 
over a smaJl range of k vaJues just below k~,. These limit cycle motions 
are attractors for aU states starting sufficiently near to steady state slip 
with k in that range; tbose states Slarting further away become unstable. 

Special and explicit solutions are found by Gu el 01. (1984) for the 
one state variable law when the load point is stationary, Yo _ 0, This 
may, amons other possibilities, correspond to a clI.Se in which the load 
point is suddenly displaced and then held fiIed; T is then etpressed as in 
eq. (3.4.2) wbere T O is a given constant, representing the intensity of the 
suddenly applied loading. Such loading could, for eumple, simulate 
aftenhock inducing stress transmission to fault segments in the vicinity 
of an earthquake rupture. The situation envisioned could aJso represent 
a fault segment which is loaded by ongoing tectonic processes, but at 
a sufficiently slow rate by comparison to kY (where Y is the fault slip rate) 
that, for practical purposes, To in eq. (3.4.2) is constant. It is tben found 
tbat aJl systems brought to a state of stress and slip velocity such that 

T> T"(V)+kLBf(B-A) (3.4.25) 

are unstable, in that Yaccelerates continuously and Y -+ 00 in finite time, 
the time being shorter the more the equality is violated. Here T"'(V) is 
given byeq. (3.4.22). All sr-;tems brousht to a state of T and Y for which T 

is less tban tlle rigbt.hand side of eq. (3.4.25) a~ stable in that, ultimately, 
Y diminishes towards zero, aJthougb those brought to states with 

T"(y)+kL < T < T"(V)+kLBf(B-A) (3 .4.26) 

will first exhibit an increase in slip rate and only later a decrease. 
Figure 3.4.6 shows the response to a more complicated load point 

,alotion. A system slides in steady state at speed Yo, the imposed load point 
speed. Then tbe load point molion is stopped for some relaxation time 
tro after wwch motion is resumed again at the same speed Yo . For the 
case iUustrated. B - U and the stiffness k = 2k •• wbere now kc• = A/L. 
Ou d al. (1984) find that a critical relaxation time I, = 32LfYo divides 
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the unstable and stable range in this case, shorter times giving stability 
as illustrated. Similar analyses of elfec::ts of temporary relaxation of load 
point motion were made by Dieterich (1981) and Ruins (1983). The latter 
sbowed that peak stresses as predicted from tbe two stale variable model 
of eqs. (3.4.19), with parameters cbosen to fit velocity jump experiments 
on polished quartzite, gave a close fit to previous experimental results 
by Dieterich that had been interpreted as strengthening in stationary COntact. 
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Fig. 3.4.6. Friction slip initially in slcadystate .t speed "-0. then load point motion slOp­
ped fm- timo t., then load point motlon resumed at speed Yo. 

In fact, the constitutive model as presented does Dot predict strengthening 
in truly stationary contact, and it is tbe fact that continuing relautional 
Alip occurS, albeit at very slow rates, which leads to the evolution of state 
manifested in sharp strength peaks (i.e. apparent strengthening) in Fig. 
3.4.6. 

The cases discussed thus far aod also those treated elsewhere in the 
literature (Dieterich, 1979b, 1980, 1981; Mavko, 1980) ,how that the 
newly developed constitutive framework exhibits respOIlJe that model, key 
elements of the shear rupture process. For example, the ca]cuJations reported 
in Fig. 3.4.6 and other works referenced show that the constitutive relations 
can exhibit rapidly decaying strength with ongoing slip, a prerequisite 
for fracture instability. and can also exhibit effective regaining of a strength 
threshold necessary for future instabilities On the same surface. Abo, the 
discussion in connection with inequality (3.4.25) suggests mechanisms 



REFfftENCES '" 
of time-dependent failure for critically stressed systems, possibly related 
to allershocks and to processes precursory to earthquake instability. 

Some limited results for slip between deformable elastic continua 
(Ruina, 1980; Mavko, 1980; Rice and Ruina, 1983), ratber than simply 
for single degree of freedom systems, suggest spatial propagations of slip 
events which seem in some correspondence to results observed on larger 
laboratory specimens (Dieterich, 1978, 1979b). In adwtion, direct measure.. 
ment of st'ress versus slip bistories, as crack-like confined slip events spread 
by measurement points in large sawcut laboratory specimens (Dieterich, 
1980; Okubo and Dieterich, 1981; Lockner et 01., 1982), show 't" versus 6 
relatioas resembling slip-weakening. This occurs on surfaces ofa type which 
are known to exhibit frictional resistance described by constitutive laws 
of the general class discussed here, and suggests that there are cOMections 
yet to be drawn relating the new rate and state dependent constitutive 
framework to elastic-brittle crack mechanics and its slip-weakening exten­
sions_ 
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