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Abstract. We present a procedure for modeling 
the initially quasi-static upward progression of 
a zone of slip from some depth in the lithosphere 
toward the earth's surface, along a transform 
plate margin, culminating in a great crustal 
earthquake. Stress transmission in the litho
sphere is analyzed with a generalized Elsasser 
model, in which elastic lithospheric plates under
go plane stress deformation and are coupled by an 
elementary foundation model to a Maxwellian visco
elastic asthenosphere. Upward progression of 
rupture over a finite length of plate boundary, 
corresponding to a seismic gap along strike, is 
analyzed by a method based on the 'line-spring' 
concept, whereby a two-dimensional antiplane ana
lysis of the upward progression provides the re
lation between lithospheric thickness-averaged 
stress and slip used as a boundary condition in 
the generalized Elsasser plate model. The formu
lation results in a nonlinear integral equation 
for the rupture progression as a function of time 
and distance along strike. A simpler approximate 
single degree of freedom analysis procedure is 
described and shown to lead to instability results 
that can be formulated in terms of the slip
softening slope at the boundary falling below the 
elastic unloading stiffness of the surroundings. 
The results also indicate a delay of ultimate 
(seismic) instability due to the stiffer short 
versus long time asthenospheric response and pre
dict a final period of self-driven creep toward 
instability. The procedures for prediction of 
rupture progression and instability are illus
trated in detail for an elastic-brittle crack 
model of slip zone advance, and parameters of the 
model are chosen consistently with great earth
quake slips and stress drops. For example, an 
effective crack fracture energy of the order 
4 x 10 6 J/m2 at the peak, 7 to 10 km below surface, 
of a Gaussian bell-shaped distribution of fracture 
energy with depth, with variance of the order 5 km, 
simulating strength build-up in a seismogenic 
layer, leads to prediction of nominal seismic 
stress drops of 30 to 60 bars and slips of 2 to 
5 m in great strike slip earthquake ruptures 
breaking 100 to 400 km along strike. Precursory 
surface straining in the self-driven stage is 
predicted to proceed at a distinctly higher rate 
over time intervals beginning 3 to 10 months 
before such an earthquake, this interval being 
greater for longer distances along strike over 
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which the preseismic upward rupture progression 
takes place. 

Introduction 

It seems plausible that zones of slip or of 
concentrated shear strain along a plate boundary 
initiate at considerable depth in the lithosphere 
and spread upward, in a generally aseismic manner, 
toward the earth's surface. Ultimately, the 
slipping zone must traverse the shallower parts 
of the crust (seismogenic layer) if overall plate 
motion is to occur, and thi~ traversal is some
times accomplished in the form of a great crustal 
earthquake. The concept that crustal earthquakes 
result from the loading of a shallow crustal zone 
by slip at depth has been adopted by many authors 
[e.g., Savage and Burford, 1973; Turcotte and 
Spence, 1974; Prescott and Nur, 1981]. It has 
been discussed particularly by Stuart [1979a, b], 
Stuart and Y.avko [1979], Nur [1981], and Dmowska 
and Li [1982] in a manner that includes account 
of the time-dependent, initially aseismic, upward 
progression of a slip rupture zone, possibly ter
minating in a great earthquake instability, that 
we attempt to model in this paper. 

We assume that because of the increase of 
pressure and temperature with depth, plate bound
ary slip, or concentrated shear deformation, can 
be accomplished in the mid-lithosphere and lower 
lithosphere without the requirement that some 
significant strength barrier to deformation first 
be overcome, that is, without a significant 
strength drop with ongoing slip. In contrast, 
the upper crust responds in a brittle manner. In 
many regions of the earth, it remains effectively 
locked until some large stress builds up to 
initiate slip, and then slip proceeds at what one 
infers to be a lower strength level. This 
lowering, with ongoing slip, of the stress re
quired to sustain slip allows the possibility of 
earthquake instabilities, provided that the 
elastic stiffness of the fault surroundings is 
sufficiently low. 

Different models have been constructed to study 
the various phases of the earthquake cycle, in
cluding elastic strain accumulation, coseismic 
release, and postseismic readjustment. A real
istic model for the study of the strain accumu
lation phase, and particularly for the study of 
related effects precursory to a major earthquake, 
should take into account the possibility of 
aseismic slip zone progression, since such pro
gression not only alters surface deformation but 
also causes the unslipped ligament to carry an 
increasing amount of tectonic load. Hence 
physical processes associated with (rapid) loading 
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Fig. 1. (a) Upward quasi-static progression of a slip rupture at a seismic gap zone 
along a transform plate boundary. (b) Two-dimensional antiplane model of rupture pro
gression; provides basis for relation of equation (10) between thickness-averaged stress 
0" and slip 6 at the section x = const. (c) Two-dimensional generalized Elsasser 
plane stress model of elastic lithospheric plate coupled to Maxwellian viscoelastic 
asthenosphere; discontinuity over -L < x < +L corresponds to gap zone over which rupture 
is occurring. 

rate would manifest themselves as a result of the 
spreading of such a slip zone. 

Stuart [1979a] and Stuart and Mavko [1979] 
postulate a slip-weakening relation between shear 
strength and slip displacement on the fault and 
analyze two-dimensional problems of indefinitely 
long antiplane strain (mode III) strike slip 
faults in a lithospheric plate (e.g., as in 
Figure lb). Stuart [1979b] also presented an 
analogous study of plane strain (mode II) slip 
for thrust faulting. Their relation of strength 
to slip is chosen to exhibit the greatest poten
tial strength drop at the center of a bell-shaped 
strength distribution, where the peak of the 
distribution is assumed to lie in the seismogenic 
layer, e.g., at depths of order 10 km. Stuart 
and Mavko [1979] enforce displacement boundary 
conditions at the sides of a region like that 
shown in Figure lb in a manner intended to simu
late remotely imposed plate motions and calculate 
the progression of slip with increasing displace
ment. Depending on whether the strength drop in 
slip weakening occurs with relatively large or 
small amounts of displacement, the slip process 
may take place simultaneously over the entire 
plate boundary or may involve the crack like pro
gression of a single slipping zone or zones. 
Dynamic, seismic instability occurs when, and if, 
the effective, overall slip-softening slope (in a 
plot of thickness-averaged stress versus thickness
averaged slip at the rupturing plate boundary) 
falls below the elastic unloading stiffness of the 
adjoining plates. 

\fuile procedures in such modeling seem sound 

from the standpoint of basic rupture mechanics, 
the models addressed do not include two signifi
cant features of the tectonic environment. We 
discuss these with reference to Figure la, and 
our work here aims at approximate inclusion of 
both. First, the surface trace along the plate 
boundary of the region active in a given great 
earthquake rupture is finite, of length of the 
order of only a few lithospheric thicknesses. 
For example, Sykes and Quittmeyer [1981] and 
Scholz [1982] tabulate rupture lengths in 14 
great strike slip earthquakes that range from 30 
to 450 km and in 12 recent (1952 to 1978) great 
thrust ruptures that range from 80 to 1000 km. 
The length is, presumably, often dictated by the 
size of a high stress zone or series of zones 
isolated, as a seismic gap, by previous ruptures 
of adjacent portions of the plate boundary; why 
plate boundary rupture occurs in this heteroge
neous mode is not of itself fully understood. 
The second feature of the tectonic environment 
which has not been"fully accounted for in the 
models discussed is that the lithosphere is 
coupled to the rest of the earth, in particular, 
to the astehenosphere and mantle at its base. 
Such coupling may presumably be neglected because 
of viscous relaxation in the asthenosphere on 
long time scales, perhaps comparable to earth
quake repeat times. But the coupling must be 
important on the relatively short time scale of 
events leading up to instability. (Stuart and 
Havko [1979] do take some account of this cou
pling by comparing their results to those of a 
calculation by Stuart [1979a] for which rigid 
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displacement boundary conditions are imposed at 
the base of the lithospheric plate as well as at 
its sides.) 

A previous attempt to allow for the finite 
surface trace of the rupture and, at the same 
time, a different perspective on modeling of 
aseismic slip progression has been given by Nur 
[1981]. He proposes an upward propagating dis
location segment, pinned low in the lithosphere 
at the ends of the region to be ruptured and 
accomplishing slip of constant Burgers vector in 
a strike slip mode. The dislocation moves under 
action of the applied stress and an attractive 
image stress; this image stress becomes indefi
nitely large as the dislocation line comes near 
to the earth surface. Nur represents the 
retarding effect of the finite length of the dis
location segment by a line tension approximation. 
While the model thus involves an attempt to 
include finite along strike length of the rupture, 
it does not include coupling to an asthenosphere 
of time-dependent rheology. 

Nur's method of representing slip progression, 
by upward motion of a single, constant slip dis
location, is not developed to the point where 
contact can be made with some constitutive rela
tion between stress and slip on the rupturing 
surface. However, the approach does potentially 
represent an opposite limiting case to the slip
weakening model used by Stuart [1979a, b] and 
Stuart and Mavko [1979]. In the latter, once slip 
of sufficient magnitude has occurred, strength is 
degraded and all subsequent slip takes place at 
the degraded strength level; there is no healing 
or other strength recovery. By contrast, the 
constant slip dislocation model can perhaps be 
thought of as representing approximately an 
opposite extreme, in which rehealing to full, 
coherent strength follows very quickly after 
progression of a slip offset. 

To summarize the modeling concepts which we 
present here, great plate boundary earthquakes 
are analyzed as instabilities in the upward pro
gression of zones of slip or of concentrated 
shear from some depth in the lithosphere toward 
the earth's surface (Figure la). The precise 
manner of representing the local physics of 
rupture progression, whether according to a slip
weakening model or a dislocation model or an as 
yet not well-developed model inclusive of slip 
weakening, healing, and possibly other rate or 
time effects on the fault surface, can be left 
open as regards the general description of our 
procedure. We do, however, illustrate it later 
by specific calculations for an elastic-brittle 
crack model of rupture progression, which can be 
regarded as a limiting case of the slip-weakening 
approach, valid when strength degrades signifi
cantly with only a small amount of slip. In the 
case of a transform boundary as we consider here 
(Figure la), slip zone progression at every 
vertical slice x = const is modeled as the 
advance, under local two-dimensional antiplane 
strain conditions, of a mode III rupture in an 
elastic strip (Figure lb). The strip is identi
fied as the elastic lithosphere, and the rupture 
advances into a region of nonuniform fracture 
resistance, having greatest potential strength 
drop in the seismogenic layer. Stress trans
mission in the lithosphere itself is analyzed by 
a generalized Elsasser model, in which elastic 

plates sustain plane stress deformation and are 
coupled at their base in an elementary way to a 
Maxwellian viscoelastic asthenosphere; this litho
spheric model was introduced by Rice [1980] and 
further developed by Lehner et al. [1981]. Of 
course, actual slip zone progression of a geome
try as illustrated in Figure la provides a 
complicated three-di~ensional problem. Our method 
in this paper is to retain its essential features 
but to reduce it to a more tractable two
dimensional plane stress problem for the general
ized Elsasser plate, in which the progression of 
the slip zone enters as a nonlinear boundary 
condition relating thickness-averaged stress to 
thickness-averaged slip along the trace, in the 
two-dimensional plate mode (Figure lc), of the 
ruptured boundary. Full details are given in the 
next section. The procedures are similar to those 
of the 'line spring' model of fracture mechanics 
[Rice and Levy, 1972; Rice, 1972], used widely 
for the analysis of part-through surface cracks 
in elastic plates or shells; see Parks et al. 
[1981], Parks r198l], and Delale and Erdogan 
[1982] as examples of recent applications. 

Our analysis of the model described shows that 
instability occurs, if at all, when the rupturing 
zone has advanced such that the lithospheric 
thickness-averaged stress at the rupturing bound
ary is decreasing at a critical rate with ongoing 
thickness-averaged slip. This critical rate is 
equal to an appropriately defined elastic un
loading stiffness of the lithosphere-asthenosphere 
system. The stiffness is greater for short-time 
response, in which the asthenosphere responds 
elastically, than for long-time response in which 
the asthenosphere is relaxed. Hence once the 
instability point corresponding to a relaxed 
asthenosphere is passed, the system enters a 
self-driven state and proceeds toward final 
(dynamic) instability at a rate controlled by 
plate boundary rupture resistance properties and 
by asthenospheric rheology. Although thickness
averaged stresses decrease as instability 
approaches, the continual advance of the slip 
zone leads to nonlinearly increasing stress at 
the earth's surface along the soon-to-be ruptured 
trace of plate boundary. 

Our rupture modeling procedures extend the 
type of work reported, e.g., by Stuart [1979a, b] 
and Stuart and Mavko [1979], by adding a more 
realistic assessment of the tectonic conditions, 
notably by incorporating finiteness in along
strike length of the rupturing region, possibly 
due to stress heterogeneity, and especially by 
including the effects of lithospheric coupling to 
a viscoelastic asthenosphere. 

Stress Transmission and Rupture Progression in 
a Coupled Elastic Lithosphere and 

Viscoelastic Asthenosphere 

To model the interaction of the lithosphere 
with a viscously relaxing asthenosphere, we adopt 
a model in the spirit of Elsasser's [1969] but 
generalized as in recent work of Rice [1980] and 
Lehner et al. [1981]. This model treats the 
lithosphere as an elastic plate of thickness H 
which can undergo general elastic 'plane stress' 
deformations and which rides on a Maxwellian 
viscoelastic asthenosphere to which it is coupled 
in an elementary way. Hence if x,y are coordi-
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nates in the plane of the plate and 0xx' 0XY' 
0yy are the thickness-averaged in-plane stress 
components, i.e., 

H 

o .. (x,y,t) = -HI I 1i .(X,y,z,t) dz 
~J 0 J 

i ,j=x ,y (1) 

where 1ij(x,y,z,t) denotes the three-dimensional 
stress distribut~on, equilibrium requires that 

aO. lax+Clo. lay = 1./H 
~x ~y ~ 

i=x,y (2) 

where 1i =-lz i(x,y,H,t) is the resistive shear 
shear stress at the base of the lithosphere. The 
plate model is completed by assumption of the 
following constitutive relations between 0·· 1· 

~J' ~ 
and the thickness-averaged (like for 0ij in (1) 
above) in-plane displacements ui = ui (x ,y, t) ; 
here i,j =x,y. First, thickness-averaged in
plane stress and strain components are related to 
one another in the manner appropriate for states 
of elastic plane stress, 

(3) 

where i ,j = x ,y, 6ij is the Kronecker delta and 
G and v are the elastic shear modulus and 
Poisson ratio for the lithosphere. Second, in 
the spirit of elementary foundation models, a 
Maxwell coupling of 1i to ui is postulated, 

(4) 

Here i" x ,y, h can be interpreted as the thick
ness of an asthenosphere of uniform viscosity n, 
and [see Lehner et al., 1981] an appropriate 
estimate of b is bFl:$(TI/4)2H if the elastic 
shear modulus of the asthenosphere is also 
approximately equal to G. By substituting these 
constitutive equations into the equilibrium 
equation one obtains as governing equations for 
the thickness-averaged displacement field 

(5) 

for j .. x,y, where a" hHG/n and B" bH. Note 
that Bla - (nIh) I (G/b) is the characteristic 
relaxation time of the viscoelastic foundation. 
Choosing h"lOOkm [Cathles,1975; Stacey, 1977], 
G" 5.5 X 1010 Pa as a lithosphere average shear 
modulus [Stacey, 1977], H" 75 km as a representa
tive thickness of the lithosphere, and 
n = 2.0 x 1019 Pa s as the viscosity of the founda
tion (see the discusion of different estimates by 
Lehner et a1. [1981)), and by using b FI:$ (TI/4)2H, 
the relaxation time B/a FI:$ 5 years. 

It is, in general, too complicated to solve 
the two coupled equations represented by (5). 
Lehner et al. [1981] show that for purposes such 
as those that we have here, namely, of relating 
thickness averaged slip motions 

(6) 

to shear stress alterations 

O(x,t) = a (x,O,t) xy 

along a strike slip plate boundary, the simpler 
physically motivated model equation 

[ 
2 2 1 a 2 a u a u au 

(a+B at) (l+v) ----T + ----T = a: 
ax ay 

(7) 

(8) 

may be used with associated shear stress given by 
0xy = G auxtay. Lehner et a1. [1981] demonstrate 
that solutions to the model equation (8) repro
duce closely solutions to the more exact coupled 
set (5) relating arbitrary slip distributions 
6(x,t) to associated stress distributions o(x,t) 
and do so exactly in the limits of short and long 
spatial wavelength disturbances as well as for all 
wavelengths when the foundation is relaxed. This 
was demonstrated by calculating the ratio of 
D(w,s) to E(w,s), where these are the Fourier 
and Laplace transformations of 6(x,t) and o(x,t), 
respectively, from both the model equation (8) and 
the exact set (5). The ratio DIE from (8) was 
shown to be numerically close to that from (5) for 
all real wand s, and the ratios were shown to 
coincide exactly in the limits discussed. lience 
no significant error is introduced by using (8) 
rather than (5) as a basis for relating 6(x,t) 
to a(x,t). 

To emphasize that stress transmission in the 
lithospheric plate is being modeled by a two
dimensional theory, dealing only with thickness 
averages of stress and displacement, we have 
redrawn the three-dimensional configuration of 
Figure la as the two-dimensional surface in the 
x,y plane shown in Figure lc. The rupturing 
plate boundary appears as a line of discontinuity 
extending over -L < x < +L in this two-dimensional 
surface, where we assume that upward progression 
of rupture in a given earthquake sequence occurs 
over the along-strike segment of length 2L. 

The completion of our formulation requires 
combination in the spirit of the 'line spring' 
model of two inputs. The first comes from the 
generalized Elsasser model just discussed. Recog
nizing that this model is linear, it is clear that 
solutions to (5) or (8), relating arbitrary slip 
distributions 6(x,t) to alteration of stress 
o(x,t), can be put in the form 

a(x,t) = 00(x,t) 

-11 a26(x' ,t') g(x-x' ,t-t') - dx' dt' ax'()t' 
(9) 

where 00(x,t) is the stress that would be trans
mitted to the boundary in the absence of slip 
(Le., if 6 = 0), due to overall tectonic processes 
resulting in remote plate motions, and where g(x,t) 
is an appropriate Green's function. In fact, 
g(x,t) is the thickness-averaged shear stress at 
x, t due to sudden introduction at t = 0 of a 
dislocation in thickness-averaged slip of unit 
Burgers vector over -00 < X < O. The explicit form 
for g(x,t) is not necessary for our present 
purposes, but it can be developed by solution 
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methods of Lehner et al. [1981] and has been given 
by Li [1981]. 

The second input comes from the modeling of 
rupture progression in the two-dimensional anti
plane strain configuration of Figure lb. Because 
of this rupture progression, the thickness-averaged 
stress 0 transmitted across the boundary in 
Figure lb can be regarded as a function of (or 
functional of, for time- or rate-dependent con
stitutive response in the rupture zone) the 
thickness-averaged slip <5. Symbolically, 0 = f (<5), 
and we show how to construct explicitly this rela
tion for the elastic-brittle crack model of 
rupture progression two sections henceforth. We 
therefore assume that the thickness averages 
O'(x,t) and <5(x,t) at any section x = const 
along the rupturing plate boundary are related to 
one another in the same way, namely, 

O'(x,t) = f[<5(x,t),x] (10) 

which is understood to be based on the antiplane 
strain analysis depicted in Figure lb, using the 
distribution of fracture or slip constitutive pro
perties with depth z as appropriate for the 
slice x = const. Hence the explicit x dependence 
in (10) allows for possible nonuniformity along 
strike of the distribution of fracture properties 
with depth, and Dmowska and Li [1982] remark that 
such an explicit dependence allows the modeling of 
strength asperities. 

The heavy curve in Figure 2 shows a schematic 
0' versus <5 relation, appropriate when rate 
dependence of the process of rupture progression 
is ignored so that the result of the underlying 
mode III analysis of rupture progression is to 
define 0' as a function of <5. (The zero level 
for 0' and 00 can be chosen arbitrarily; we 
measure 0' from the stress at the end of the 
previous great earthquake cycle at the section of 
plate boundary considered.) A significant feature 
of the curve shown, consistent with our later 
modeling by elastic brittle crack theory, is that 
0' rises to a peak value and then decreases with 
increasing <5. Of course, the 0 and <5 shown 
represent averages over the lithospheric thickness; 
the actual local stress near the earth's surface 
increases significantly, according to our crack 
calculations, in the later stages of rupture as 
the slip zone grows upward toward the surface, 
even though the thickness-averaged 0 is then 
decreasing. 

The result of the two inputs, summarized as (9) 
and (10), is to provide an explicit integral equa
tion governing the time evolution of <5(x,t) when 
O'(x,t) in (9) is replaced by the function or 
functional in (10) relating it to <5(x,t). The 
driving function in the integral equation is 
00(x,t), which represents the stress that overall 
tectonic processes would have caused to be trans
mitted across the plate boundary had there been no 
slip <5(x,t) there. 

This use of results from two two-dimensional 
analyses, one for plane stress in the lithospheric 
plate (x,y plane) and the other for mode III 
rupture progression (y,z planes), when combined 
as explained so that the latter analysis provides 
boundary conditions along the cut -L < x < +L in 
Figure lc, is the essence of the 'line spring' 
procedure of Rice and Levy [1972]. Its initial 
development was for part-through tensile cracks 

8 

Fig. 2. Representative relation between thickness
averaged stress 0 and slip <5. Constructions 
show determination of instability points I (insta
bility of uncoupled lithosphere) and D (dynamic, 
seismic instability for coupled lithosphere
asthenosphere system) for single degree of freedom 
approximation. 

penetrating inward from the surface of elastic plates 
subject to tension and bending loads relative to 
the crack line. In that case the line spring, 
representing a cut in a two-dimensional plane like 
that in Figure lc, responds by both opening dis
placement and rotation, where these are connected 
by a constitutive equation to local tensile stress 
and bending moment; the constitutive relation is 
then derived from the plane strain solution for 
tension and bending of an edge-cracked strip. 
Recent applications of the model and comparisons 
against three-dimensional numerical crack solutions 
[Parks, 1981; Parks et al., 1981; Delale and 
Erdogan, 1982] have shown that it is remarkably 
accurate in determination of crack tip stress 
intensitieS, even when the surface length of the 
crack is of the order of plate thickness. 

An essential new feature that we have intro
duced here is the coupling of the plate to a 
foundation, done with the generalized Elsasser 
model. We present a calculation in Appendix A 
which is intended to test this new feature by 
applying our model to the calculation of the 
stress intensity factor at the tip of an infinitely 
long (in the x direction) mode III crack, of 
depth a, that is introduced into a lithosphere 
which iS,coupled to a wholly elastic asthenosphere 
of the same shear modulus. An exact solution is 
available also for this problem. The agreement 
between the two is shown to be reasonably good and 
hence to support our modeling procedure. 

The procedure that we have outlined and summa
rized in (9) and (10) is rather general and is 
open to wide variations in the modeling of rupture 
as well as to generalizations of the Elsasser-like 
plate model described, e.g., so as to include 
depth-dependent linear viscoelastic rheological 
properties of the lithospheric plates. The full 
modeling procedure as outlined has, thus far, been 
carried through in detail [Li, 1981] only for the 
case in which the lithospheric plate is decoupled 
from the asthenosphere. In this case the plate 
equations revert to those of classical elastic 
plane stress theory, and the Green's function 
g(x,t) becomes time independent, 

g(x,t) = (1+v)G!2nx (11) 
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Hence, when coupling to the asthenosphere can be 
neglected, the integral relation of (9) becomes 

o(x,t) = 00(x,t) 

(1+v)G 
- ---z;-

+L 

1_1- ao(x' ,t) 
x-x' ax' -L 

dx' (12) 

L1 [1981] used numerical procedures to generate a 
number of solutions for this uncoupled model, 
using a form 0= f (0 ,x), as in (10), consistent 
with the elastic-brittle crack model that we 
describe two sections hence. He also examined 
along-strike nonuniformity of strength, reflected 
in an explicit x dependence of f(o,x), in order 
tb examine strength asperity effects on rupture 
progression, as discussed by Dmowska and Li [1982]. 
We show some of his results (for uniformity of 
strength along strike) in a subsequent figure. 

However, it appears that when the advance of 
the rupture front is not strongly nonuniform along 
strike, so that o(x,t) is nearly uniform in x 
along -L < x < +L (except, of course, near the 
ends), a much simpler but approximate analysis can 
be employed. This is described in the next sec
tion and shown later to produce reasonable agree
ment with Li's results when implemented for the 
uncoupled case. 

Approximate Single Degree of Freedom Description 
of Deformation and Instability 

Here, rather than dealing with point wise along
strike o(x,t} and o(x,t) distributions we 
analyze the stress as if it were uniform along the 
zone -L < x < +L. This zone represents a seismic 
gap in which upward progressing rupture occurs 
over the time scale analyzed. Hence we write 
o(x,t) = o(t) for x within the gap zone, and if 
00(x,t) = 00(t) also within this zone, the cut of 
length 2L in Figure lc can be regarded as a 
crack in a two-dimensional Elsasser sheet subject 
to uniform stress drop 00 - 0. The relative dis
placement o(x,t) of the crack surfaces, given 
by solving the Elsasser plate equations, is then 
not strictly uniform along strike. But to retain 
simplicity, we define o(t) as the average of 
o (x, t) over the gap zone -L < x < +L, and we 
further insist that the constitutive relation 
0= f(o), descriptive of rupture progression at a 
representative section, applies so as to relate 
o(t) to o(t). The result is to reduce effec
tively the model of rupture progression to a 
single degree of freedom system. 

Considering a stress drop 00(t) -o(t) along a 
crack of length 2L in the generalized Elsasser 
plate and recognizing that the plate is visco
elastic, it is clear that the resulting o(t) can 
be given by the representation 

t 

o(t) = L C(t-t') d~' [oO(t') -o(t')] dt' (13) 

This is just the single degree of freedom version 
of (9), but now with 0 expressed in terms of 
00 -0 rather than the converse; C(t) is the com
pliance of the generalized Elsasser plate and 
represents the (average) slip displacement along a 

crack of length 2L at time t due to imposition 
of a uniform, unit stress drop on the crack sur
faces at time t = O. A Laplace transform expres
sion for C(t) developed from the approximate 
simulation of a finite crack by Lehner et al. 
[1981] is given by equation (B7) in Appendix Band 
used for our calculations here. 

When the relation 0= f(o) describing rupture 
progression is additionally imposed, (13) becomes 
an integral equation describing the evolution of 
o(t) in response to a given tectonic stress 
variation 00(t). It is straightforward to under
stand the general nature of the solutions when the 
relation 0 = f(o) has a form like that shown in 
Figure 2. 

Consider first the regime for which all stress 
and displacement variations are sufficiently slow 
that coupling of the elastic lithosphere to the 
asthenosphere may be neglected, i.e., for which 
the time scale is long compared to the relaxation 
time of the cracked Elsasser plate. In this case 
the source of time-dependent compliance is irrele
vant and (13) simplifies to 

(14) 

Here C(oo), the longtime compliance, corresponds 
to that of a cracked plate decoupled from its 
foundation. It is given by (Appendix B) 

C(oo) = 8L/n(1+v)G (15) 

Equation (14) is related to (13) as is (12) to 
(9). With reference to Figure 2, (14) shows that 
° and 0 are constrained to lie on a line of 
slope -l/C(oo) cutting the stress axis at 00. 
Since ° and 0 must likewise satisfy the rela
tion 0= f(o), the system traverses states A, B, 
etc. shown as 00(t) increases through the values 
at A', B', etc. Point I represents the instabil
ity point or at least what would be the instabil
ity point if the lithosphere were actually de
coupled from the asthenosphere. 

The situation developing in the vicinity of 
point I is a familiar one, closely analogous to 
instability analyses developed by Rice [1979] and 
Rice and Rudnicki [1979] for cases in which pore 
fluids provide a source of unrelaxed constitutive 
response. In the present case the high rates of 
o predicted in the vicinity of point I imply that 
coupling to the asthenosphere can no longer be 
neglected. The viscoelastic integral relation of 
(13) is then followed rather than its relaxed 
limit in (14), and the system can be considered to 
be self-driven when 00 exceeds the value at I'. 
This is because no relaxed equilibrium state can 
then exist, even if 00 is held constant, as is 
obvious from the graphical construction, and the 
imposed load can be supported only by continual 
creep motion so as to generate supporting stresses 
of viscous origin. 

To characterize final instability of this range 
of self-driven quasi-static response, observe that 
increments of 0 and ° corresponding to very 
rapid deformation are related by 

do = -C(O)do (16) 

where C(O) is the unrelaxed, or instantaneous, 
compliance of the lithosphere-asthenosphere syste~ 
It corresponds to full coupling of the lithosphere 
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to the asthenosphere, with the latter undergoing 
only instantaneous elastic response. It is given 
by (Appendix B) 

H 2 2 lL/H 
C(O) = (l+v)LG [erf~] d$ (17) 

and, of course, C(O) < C("'). lienee, no further 
quasi-static solution exists when the system de
forms beyond the point labeled D in Figure 2, at 
which the slope of the relation 0 = f(o) equals 
-l/C(O). Thus point D marks the point of dynamic 
instability for the system, which we take to be 
the analog of a great crustal earthquake. 

The self-driven transition range from I to D 
is one in which rapid increases of deformation in 
time are expected. This is confirmed by detailed 
calculations in a future paper (V. C. Li and J. R. 
Rice, unpublished manuscript, 1983), which focuses 
on the time evolution of slip zone progression 
implied by our model and on the associated time
dependent precursory surface strains. mlile the 
thickness-averaged stress 0 is decreasing in the 
postpeak range before instability, stress and 
strain near the fault trace at the earth's surface 
increase rapidly in time by comparison to rates 
well prior to instability, since the origin of the 
slip softening in Figure 2 is the progression of 
the ruptured zone toward the earth's surface. 

The discussion thus far has been carried out on 
the presumption that f(o) actually has a form 
like that shown in Figure 2. The form in that 
figure has, in fact, been drawn to comply with the 
elastic-brittle crack model of rupture progression, 
derived in the next section. But the relation 
f(6) is dependent on the way that rupture is 
modeled, and it is evident, e.g., from results of 
o versus 6 presented by Stuart and Mavko [1979, 
Figures 2 and 3] for their slip-weakening model of 
a plate boundary, that the geometry of the curve 
0= f(6) may be altered greatly by variation of 
the parameters that describe the slip-weakening 
process and its depth dependence. The appearance 
of a peak in f(o), beyond which softening occurs, 
would seem to be a general feature. But it is 
possible for some range of parameters that the 
slope f'(6) never falls beneath -l/C("'), in 
which case the rupture process is completely stable 
and would be even in the absence of asthenospheric 
coupling. In that case, no point like I is en
countered, and rupture or slip of the gap zone is 
accomplished aseismically. Alternatively, it may 
be possible that f'(o) falls below -l/C("') over 
some range of 0 but never falls below -l/C(O). 
In this case, dynamic, or seismic, instability is 
not possible, but the self-driven creep range is 
entered, and this may be detected as a relatively 
rapid but aseismic deformation event at the 
earth's surface. 

Finally it should be recalled that o(t) is 
expressible as a direct function of o(t), as in 
Figure 2, rather than as a functional of prior 
6 (t '), -ex> < t' .;;;; t, only when the rupture process at 
the plate boundary is considered to be described 
locally by time and rate insensitive deformation 
and fracture properties. Such descriptions are 
plainly of an approximate character. They are not 
general enough to include fault surface healing or 
other processes of restrengthening in relaxational 
contact, as required of any description versatile 

enough for arbitrary numbers of consecutive rather 
than just single great earthquake cycles. 

Elastic-Brittle Crack Model of Rupture Progression 

Here we derive the relation 0 = f(6) on the 
assumption that the rupture process depicted in 
Figure lb can be described by elastic-brittle crack 
mechanics. In this case the local antiplane shear 
stress 'yx on the plate boundary vanishes over 
the ruptured segment H -a < z < H (we may measure 
local stress from zero at its value at the end of 
the previous earthquake cycle). The boundary is 
unslipped for 0 < z < H - a. Advance of the slip 
zone occurs when the crack tip energy release rate 
~ , expressible in terms of the mode III crack tip 
stress intensity factor 

K = lim N2 (H-a-z), (z,y·O)} 
z-+(H-a)- yx 

(18) 

by 
(19) 

attains a critical value ~c. We assume that ~c 
varies with depth or, as is equivalent, that 
~c - ~c(a). 

The mode III solution for an edge crack of depth 
a in an elastic strip is well known [Paris and 
Sih, 1965; Tada et al., 1973] and the stress in
tensity factor is 

K = OYZH tan(naI2H) (20) 

Further, from the analysis of this solution by 
Tada et al. [1973, section 2.5] the thickness
averaged slip 0 (which Tada et al. call 6) at 
the ruptured boundary, which is interpretable 
alternately as that part of the remote shear dis
placement of one side of the strip in Figure lb 
relative to the other due to the presence of the 
rupture, and the local relative slip wb (which 
Tada et al. call 0) at the base of the litho
sphere are 

o '" (40H/nG)tn[1/cos(naI2H)] 

(40H/TIG)cosh-l[1/cos(naI2H)] w '" b 

(21) 

Thus by requiring that 0 be of magnitude that 
just meets the fracture advance criterion at crack 
depth a, we obtain 

o [G~ (a) IH tan (naI2H) ] 1/2 
c 

o = (4H/nG)[G~ (a)/H tan(naI2H)]1/2 
c 

x tn[1/cos(naI2H)] 

(22) 

These two equations together constitute a rela
tion 0 = f (6), as in (10) and Figure 2. where the 
relation is expressed parametrically in terms of 
crack depth a. 

Following Stuart [1979a, b] and Stuart and 
Mavko [1979]. we assume for our subsequent calcula
tions that 

2 2 
(23) ~ (a) = ~ exp[-(H-a-zO) Ib ] c max 

This defines (Figure 3) a bell-shaped distribution 
with peak at depth zOo which we take to be in the 
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drawn lot zo/H =0.10, b/H =0.13 
(e.g., H 075 km, Zo=7.5km. b=10km) 
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Fig. 3. Assumed fracture energy variation. 

range of 5 to 15 km; and variance width b/V! 
where we take b in the range 5 to 10 km. These 
choices serve to induce great earthquake instabil
ities when cracks have propagated aseismica1ly to 
an extent that their tips are within approximately 
5 to 15 km of the earth's surface, i.e., in the 
seismogenic layer. The maximum W, W is 
h 'k c max', c osen to ma e predicted seismic stress·drops and 

slips fall into a range appropriate for great 
earthquakes, and as supported by our subsequent 
illustrations, this suggests that we choose 
Wmax R:l4 x 106 J /m2. (For given Zo and b, ail 
predicted critical stress levels and stress drops 
are directly proportional to Wl/2, as is evident 
from (22).) max 

This estimate of Wmax is consistent as regards 
order of magnitude with the value 107 J/m2 

suggested by Ida [1973] from analysis of stron2 
mot:\.on data and coincides with the 4 x 106 J/m'l 
estimate made by Rudnicki [1980] in considering 
plate motion and earthquake recurrence for the 
San Andreas fault. However, the estimate is con
siderably higher than laboratory shear fracture 
values inferred from failure tests on initially 
intact triaxial specimens sustaining a single 
macroscopic shear fracture in the postpeak regime. 
For example, Wc results summariz~d by Rice [1980] 
and Wong [1982] for granites under confining 
pressures of 50 to 300 MPa (0.5 to 3 kbar) are in 
the range of lO~ to lOS J/m2

• Perhaps the 
significantly higher field-based estimates mean 
that the actual rupture process, although repre
sented mathematically as taking place on a ,single 
continuous plane, actually involves several non
coplanar rupture fronts that are separated by more 
coherent material which must also be broken for 
rupture advance to take place on the megascale 
under consideration here. 

To make further contact with the slip-weakening 
description of rupture by Stuart [1979a, b) and 
Stuart and Mavko [1979], we note that these 
authors assumed a relation between local shear 
strength T(=Tyx) and local antiplane slip dis
placement w in the form 

According to the theory of slip-weakening shear 
failure developed by Ida [1972] and Palmer and 

Rice [1973]~ ~hen A is sufficiently small, this 
slip-weaken~ng apprQach to failure coincides with 
an elastic-brittle crack model as developed above 
with 

Le., with 

r;max 

Wc(a) ... ! T(z"H-a,w) dw 

r; in (23) given by 
max 

S I exp(-.w
2

/A2) dw = rn SA/2 

(25) 

(26) 

Further, according to estimates of the size w of 
the zone of strength degradation near the tip bf 
crack like slip-weakening zone (Palmer and Rice 
[1973] and Rice [1980], eqs. 6.11 and 6.12 adapted 
to antiplane strain) 

W R:I (1 to 2)GW /S2 
max (27) 

at the peak ~qc" Wmax , and the elastic-brittle 
crack approach is justified when w is small 
compared to a, H-a,'and the length scales such as 
b over which ~c changes appreciably. We have 
no highly reliable choice of parameters but 

10 ' taking G-5.5xlO Pa~ Wmax .. 4xl06 J/cm2 as 
earlier, and S ... 5 x 10 Pa'" 500 bars (note that 
S should be significantly larger than typical 
great earthquake stress drops and represents the 
largest peak strength level, attained very near 
the rupturing front), we have w R:llOO to 200 m 
from (27) and A R:l90 mm from (26). These numbers 
are of the order of 200 or so times the corre
s~onding wand A values that would be inferred 
from laboratory fractures [Rice, 1980; Wong, 1982] 
but the range for w is stili sufficiently small 
compared to a, H-a and b (all typically greater 
than several kilometers) that the elastic-brittle 
crack moael would seem to be justified. Still, 
it must be noted that the parameter choices are 
uncertain, and, e.g., an estimate of S one fifth 
as large, S - 100 bars, would give w values 25 
times larger (i.e., 2.5 to 5 km) and fall outside 
of a reasonable range for validity of the elastic
brittle crack approach. 

The a = f (6) relation based on (22) and (23) 
is shown as Figure 4. The dimensionless stress 

trIG 
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/ ~ 
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,,~ ~ 

IH°0.90 

,,;' for Zo'H =0.10, i 8/H 
__ -" b/H=0.13. i l~lGH 

O~o~-~-~~--~~----~------L-~'~~ 
0.6 0.8 

Fig. 4. Thickness-averaged stress versus slip 
relation for elastic-brittle crack model of the 
antiplane rupture progression depicted in Figure lb. 
Based on (22) and fracture energy distribution as 
in Figure 3 and (23). 
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and displacement as plotted depend only on a/H, 
b/H and zO/H, and since the first of these is 
just the parameter which generates the curve, the 
resulting stress-displacement curve depends only 
on zO/H and b/H. That drawn, with zO/H=O.lO, 
b/H = 0.13 is consistent, for example, with 
Zo = 7.5 km, b .. 10 km in a lithosphere of thick
ness H = 75 km; the shape of the curve is not 
greatly altered by other Zo and b choices 
within the ranges given earlier. Point P marks 
the peak strength point and corresponds to 
a/H = 0.84 in this illustration. Increase of 
a/H to 0.90 reaches the point }1 of maximum 
displacement. Further increases of a/H toward 
unity actually correspond to the dashed branch of 
the curve which loops back toward the origin; this 
branch is not physically meaningful because it 
corresponds to extensive back slip on the crack 
surfaces in the lower portions of the lithosphere. 
In any event, it is evident from Figure 2 that 
dynamic instability will occur before point M is 
reached, and we can think of the actual a versus 
o curve as exhibiting an unstable vertical drop 
at M, as illustrated by the dashed and dotted 
line. 

The instability points I and D of Figure 2 must 
lie between points P and M in Figure 4 and thus 
occur within a range bounded, for the present 
choice of parameters, by 0.84 < a/H < 0.90. For 
H = 75 km, this range corresponds to advancing the 
front of the rupture upward from 12 to 7.5 km 
below the earth's surface. Hence instability and 
the associated time-dependent processes that 
precede it occur over a range of crack length 
shortly prior to reaching the location of peak 
fracture resistance in Figure 3, i.e., at 7.5 km 
depth in this case. 

Using '9max=4xl06 J/m2 and G=5.5 X IQ1Q Pa, 
H = 75 km as previously. the peak value of thickness
averaged stress in the lithosphere in this illustra
tion is ap" 1. 0 X 106 Pa = 10 bars; the corresponding 
average stress on the unruptured ligament, H-a, is 
62.5 bars. Also, the thickness-averaged slip dis
placement at the plate boundary at peak strength is 
op = 1. 8 m. 

versus 0 relations 
choices of ~c(a) 

Overall features of the a 
implied by (22), for general 
possibly different from that 
by the following procedure. 

in (23), can be found 
We define 

p p (a) == 1I'B H(a) 
c 

d'B (a) __ c __ 
da 

(28) 

and plot it versus a/H. 
is represented in Figure 
along the vertical axis, 
negative slope) 

For example, this function 
5~ with p values given 
by the straight line (of 

p = (2H/1Ib) {[ (H-zO) - a] /b} (29) 

corresponding to the bell-shaped ~c of (23), 
plotted again for zO/H=O.lO, b/H=0.13. Observe 
that the p versus a/H plot must always cross 
the level p = 0 with negative slope at the loca
tion of a peak in the fracture energy ~c' 

From (22) and the definition of p in (28) one 

2 

o 

-1 

0.7 0.8 
o/H 

0.9 

Fig. 5. Procedure for determining dimensionless 
crack size a/H corresponding to various critical 
points of a versus 0 relation: P for peak 
strength, I for initial instability, D for 
dynamic instability, R for incipient reverse slip 
at lithosphere base, M for vertical tangent of a 
versus 0 relation. 

may calculate that 

da / da = (1Ia /2H) [p - 1/ sin (7Ta/H) ] 
(30) 

do/da = (2a/G){ [p -l/sin (7Ta/H) ]Q,n [1/ cos (7Ta/2H)] 

+ tan (1Ia/2H) } 

Hence it is seen that the peak strength point P, 
at which da/do = 0, is given by 

p l/sin(7Ta/H) (31) 

The right side of this equation plots as the upper 
solid curve in Figure 5, and its intersection with 
the plot of p versus a/H defines a/H at peak. 
Similarly, the maximum displacement point M 
corresponds to da/do = _<XI, which is equivalent to 

p = l/sin(1Ia/H) -tan(7Ta/2H)/Q,n[1/cos(na/2R)] (32) 

The right side of this equation plots as the lowest 
curve in Figure 5 and its intersection with the 
plot of p versus a/R defines a/H at M. 

Another point of interest is that for which the 
crack model first predicts reverse slip. Presumably, 
the predicted form of the a versus 0 relation 
loses validity for any greater aiR, since it is 
expected that a tendency for reverse slip would be 
resisted by locking of the crack surfaces deep in 
the lithosphere, and this effect is not included 
in the calculation leading, e.g., to the a versus 
o relation in Figure 4. The crack surface dis
placement wb at the base of the lithosphere is 
given in (21), and reverse slip first occurs there 
when dWb/da = 0, which one may show to be equi-
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TABLE 1. Depth of Crack Tip at Peak Stress and at Dynamic Instability, 
Lithospheric Thickness-Averaged Slip and Stress at Instability, 
Estimated Maximum Seismic Slip and Nominal Seismic Stress Drop 

H-75 km R-35 km 
z·0=7.5 km zO-15 km zO-3.5 km zO-7 km 

b=5 km b=lO km b=5 km b-lO km b=5 km b-lO km b-5 km b-lO km 

H-ap , km 8.63 11. 97 15.97 
H-aD, km 7.68 9.58 15.32 
0D' m 2.20 2.12 1.90 
0D ::60, bars 6.86 7.52 9.50 

ws ' m 4.4 4.2 3.8 
I:ns' bars 45 39 31 

Entries based 6 2 and on 'B = 4 x 10 J/m max 

valent to 

p = l/sin(TTa/H) 
-1 -1/[cos(TTa/2H)]{cosh [sec(TTa/2H)]} (33) 

This equation defines point R in Fi6ure 5, giving 
the maximum a/R before reverse slip is predicted. 

Even though dynamic instability typically occurs 
before point R is reached for the range of para
meters that we have examined here, the tendency for 
reverse slip may be of considerable importance in 
determining characteristics of the seismic rupture 
event itself. In particular, this reverse slip and 
attendant locking tendency at depth may be impor
tant to determining how deeply slip motions extend 
downward, during the seismic event, beneath the 
ligament of dimension H - aD that was still un
ruptured just before dynamic instability. 

The manner of plotting in Figure 5 nicely 
isolates the effect of any particular assumption 
about the distribution of critical fracture energy 
with depth. This distribution affects only the p 
versus a/H plot; the other curves so far dis
cussed are universal, and the additional dotted 
curves to be discussed soon are universal for a 
given 2L/H. Further, as regards the peak and 
postpeak range of 0 = f(O), only the portion of 
the p versus a/R plot just prior to p = 0 is 
significant. From (28), this part of the plot is 
seen to depend on the variation of 'Bc(a) with a 
just prior to the location of peak fracture 
resistance. 

Instability Conditions Based on Elastic-Brittle 
Crack Model of Rupture Progression 

Instability conditions within the single degree 
of freedom analysis discussed in connection with 
Figure 2 are now illustrated. The initial insta
bility point I, beyond which self-driven creep 
occurs, and the final dynamic instability point D 
are characterized by 

do/do = -l/C (34) 

where C = C(oo), the relaxed, uncoupled compliance 
of (15), for point I and C = C(O), the instanta
neous, fully coupled compliance of (17), for point 
D. By using (30), satisfaction of (34) is equi-

18.18 5.81 9.60 8.71 12.05 
15.79 4.47 6.03 7.59 8.71 
1.86 1.40 1.24 1.26 1.16 
9.52 10.74 11.58 14.12 14.84 

3.7 2.8 2.5 2.5 2.3 
30 56 45 43 40 

2L/H = 5. 

valent to 

p 1 tan (TTa/2R) (35) 
~n[1/cos(TTa/2H)]+TTGC/4H sin (TTa/H) 

This expression contains the term TTGC/4R, and 
hence to define point I, we write from (15) that 

nGC(oo)/4H = [2/(1+v)](L/R) 

and to define D, from (17), that 

2L/H 

nGC(0)/4H = 4(l:v) ~ ! 

(36) 

(37) 

Plots of the right side of (35) with the use of 
(36) and (37), respectively, define the upper and 
lower dotted curves in Figure 5, presented here 
for the case 2L/H = 5 and V = 0.25. Their inter
sections with the plot of p versus a/R thus 
defines the instability points I and D, as 
illust rated. 

Note that the instability points I and D occur 
over a relatively narrow range of a/H, where p 
is falling steeply toward zero. Again, the struc
ture of p versus a/H in this range is deter
mined by the form of the rise of fracture resis
tance toward peak; the remainder of the 'Bc versus 
a relation is not particularly relevant to pre
diction of instability. (Evidently the elastic
brittle crack model always predicts an instability 
for any meaningful choice of 'Bc variation; this 
contrasts with predictions of more general slip
weakening models of rupture progression.) 

The construction in Figure 5 allows inference 
of the dependence of the I to D transition on 
fracture parameters. For example, the p illus
trated corresponds to a brittle zone thickness 
b = 10 km in a lithosphere with H = 75 km. In 
this case the crack extension from I to D is 
aI .... D = 1 km. But the slope of the p line is pro
portional to 1/b2 and hence is steeper for 
smaller b. Thus for b = 5 km one finds a I .... D = 
0.3 km. 

A numerical tabulation of instability results 
is given in Table 1 for two choices of lithosphere 
thickness and for several different choices of the 
depth Zo to peak strength and width b of the 
brittle zone. The first row shows the depth H-ap 
to the crack tip at peak strength and the second 
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the depth H-aD at onset of the final seismic in
stability. The second row and further entries in 
the table depend on the along-strike size of the 
rupturing zone but only slightly so when 2L/H is 
large since the right side of (37) approaches the 
constant value TI/2{1+v) at large 2L/H; the table 
is based on 2L/H .. 5. The third and fourth rows 
show the lithospheric thickness averaged slip 6D 
at final instability and the thickness-averaged 
stress aD' which we equate to the drop ~o in 
the thickness-averaged stress during the earth
quake. The entries in the thir~ ~nd fourth rows 
are directly proportional to ~m~~; the numerical 
values are given for ~ = 4 x 106 J /m2

• 

Since our model poes W3f describe the seismic 
rupture itself, some estimates must be made of the 
associated values of seismic slip Ws at and near 
the earth's surface and of the nominal seismic 
stress drop ~Ts, as conventionally reported. To 
estimate Ws simply, we note that just prior to 
instability the plate boundary is still locked 
against slip in the near-surface region and has 
maximum relative slippage wb near the base of 
the lithosphere. From the expressions for Wb 
and 6 in (2l), (wb)D ~ 1.5 6D for aD/H in 
the vicinity of 0.85, which is typical. We should 
also recognize that 6D as it enters the one 
degree of freedom model represents an average slip 
over the rupture length 2L. Assuming for simplic
ity that the actual slip profile is of elliptical 
form along strike, the maximum slip is approxi
mately 1.5 times the average, and hence the maximum 
base slip wb just before instability is 
approximately 26D• If it is now assumed that the 
seismic event involves the near-surface portions 
of the plate boundary slipping so as to catch up 
with the accumulated slip at its base, we have 

(38) 

and such results for Ws are given in the fifth 
row of Table 1. 

To estimate the nominal seismic stress drop 
~Ts' we must convert the thickness-averaged stress 
drop ~cr to one over an appropriate effective area 
that can be assumed to slip during the earthquake. 
The ligament thickness H-aD, unruptured just 
before the event, can be assumed to slip during it. 
It would seem untenable, however, to assume that 
seismic slip does not also extend below this liga
ment. Rather arbitrarily, for purposes of assigning 
an area over which a nominal stress drop is 
reported, we assume that seismic slip extends 
downward an effective distance equal to half the 
ligament thickness at instability and hence 
associate a nominal seismic stress drop with the 
event by 

(39) 

The resulting seismic stress drops are shown in 
the last row of Table 1. 

The estimates of Ws and ~Ts thus given 
cover a reasonable range for great crustal earth
quakes. Of course, both are proportional to ~;~~, 
and the 4 x 106 J /m2 value has been chosen 
accordingly. Perhaps any value in the range of 1 
to 4 x 106 J /m2

, the lower value halving the Ws 
and ~Ts values from those in the table, could be 
considered equally reasonable as a representation 

of typical behavior. For example, the average 
surface slip is about 3 m for 11 large shallow 
earthquakes listed by Geller [1976] with seismic 
moment MO ~15 x 1027 dyne em, with the exception 
of the Chilean earthquake, which has an exception
ally long rupture length. Also, the same 11 
events give an average value of about 30 bars for 
stress drop, and Kanamori and Anderson [1975] 
suggest this value as being typical of interplate 
earthquakes. 

Our model implies an approximate insensitivity 
of the nominal stress drop to the surface length 
2L of the rupture. This is because the stress 
drop depends only on the parameters of point D. 
As remarked, the instantaneous elastic compliance 
which enters into the calculation of point D in 
Figure 5 and (35) and (37) becomes insensitive to 
2L for large rupture length, but there is not a 
strong variation even for a much shorter rupture 
length such as 2L/H = 1. Consider, for example, 
the case H - 75 km, b = 10 km, zO" 7.5 km. For 
2L/H = 5, as in Figure 5 and Table 1, we obtain 
H-aD=9.58 km and ~Ts"39 bars. When the same 
calculation is done for 2L/H" 1, there results 
H-aD=8.63 km and M s ·4l bars. Thus for a given 
distribution of fracture properties with depth, the 
model predicts a nominal seismic stress drop that 
is essentially independent of the size along strike 
of the gap zone which ruptures. 

The seismic slips as we estimate them are like
wise not strongly dependent on 2L. However, it 
may be the case (as suggested recently by Das 
[1982]) that very large 'crustal' earthquakes 
actually involve some seismic slip over the entire 
lithospheric thickness. In this case, Ws would be 
greater than what is necessary merely to catch up 
with the preseismic base slip wb • An analysis of 
this possibility is beyond the scope of our work 
but, as Das [1982] remarks, it may be a source of 
the apparent scaling of Ws with 2L discussed 
by Scholz [1982]. 

Comparison lVith Numerical Solution of Integral 
Equation for Along-Strike Slip Distribution 

Instability predictions in the previous section 
have been based on the single degree of freedom 
model, introduced as a simple means of understand
ing phenomena described more accurately by the 
integral equation in x and t for 6{x,t) 
given by (9) and (10). No full solutions to that 
integral equation have yet been computed, but as 
mentioned previously, Li [1981] has presented 
solutions to the simpler integral equation based 
on (12) rather than (9) and corresponding to 
rupture progression in an elastic lithosphere that 
is decoupled from the asthenosphere. 

These solutions were done for the cr versus 6 
relation constructed for the elastic-brittle crack 
model, equations (22) and (23). The method of 
numerical solution involves discretization of the 
Cauchy singular integral operator in (12) at 
collocation points based on roots of Chebychev 
polynomials [Erdogan and Gupta, 1972] and iterative 
incremental solution of the resulting nonlinear 
discrete system for 6 in response to small in
crements in 00, which is taken as uniform along 
strike. Full details and a discussion of results, 
including those for along-strike fracture strength 
asperities (which Li simulated by letting Wmax 
in (23) vary with x), are to be reported elsewhere. 
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Fig. 6. Results from method of Li [1981], showing 
successive positions of crack front along strike, 
for rupture progression by elastic-brittle crack 
mode in an elastic lithospheric plate that is de
coupled from the asthenosphere (i.e., based on 
numerical solution of the integral equation based 
on (12) rather than on (9». 

We show in Figure 6 the result of Li's calcula
tion for a case in which fracture properties are 
uniform along strike, so that there is no explicit 
x dependence in (10), with the following para
meters: 2L/H "5, H = 75 km, zO = 15 km, b = 10 km, 
and ~max = 106 J /m2

• The figure shows successive 
positions of the fracture front; the number 
attached to each curve is the value of 10600 / G• 
Final instability occurs, in the sense that no 
further quasi-static solution exists and 
al5 (x,OO) /aoO -+00, at 10600 / G - 10.7. At this load 
the maximum a/H, occurring at the crack center, 
is 0.78 and the average value of a/H over the 
middle half of the rupturing zone lies between 
0.76 and 0.77 (for the parameters of this problem 
ap/H = o. 757). Indeed we observe that a/H is 
fairly uniform along strike, and this implies that 
o is also close to uniform. 

The last statement lends support to the approxi
mation inherent in our single degree of freedom 
model, at least in the decoupled case. Instability 
predictions from the single degree of freedom model 
can be read from Figure 5, and in this case in
stability is at point I rather than D since we now 
compare to calculations for a plate that is de
coupled from its foundation. To obtain a/n at 
instability, we first translate the line repre
senting p versus a/H in Figure 5 so that p 
vanishes at 0.8, corresponding to zO/H=0.2 in 
the present example rather than 0.1 as in Figure 5. 
The point I thus determined corresponds to 
a/H" 0.772 at instability, and this is close to 
the results cited above from Li's calculation. 
We can compute 0 and 6 at a/H = o. 772 by (22) 
and (23), and then using (14) with C(oo) given by 
(15), we can compute the value of 00 at insta
bility. The result is 10600 / G = 11.6, which 
differs only by 8% from the result of Li's calcu
lation. The stress prediction is perhaps not that 
close, however; it may be argued that use of the 
exact compliance expression (Appendix B) for a 
cracked plate in plane stress provides the 
suitable basis for comparison with Li's calcula-

tion, and then we find a/H = 0.778 at instability 
point I and 10600 / G = 13.3. 

Time-Dependent Processes Prior to Instability 

As remarked, coupling to the asthenosphere 
becomes important as instability is approached, 
and self-driven creep develops after point I is 
passed. Equation (13) in combination with 0 = £(0), 
e.g., as constructed from the elastic-brittle crack 
model, describes this process. The time dependence 
of the compliance C(t) in (13) is shown by the 
solid curves in Figure 7 for 2L/H = 1 and 5. These 
curves were obtained by numerical inversion of the 
Laplace transform expression in Appendix B, and 

h = [C(t) - C(O)] / [C(oo) - C(O)] (40) 

is plotted as a function of t/tr where tr = f3/a 
defines the Maxwell relaxation time of the 
asthenosphere material. 

For most of our numerical work we have used the 
dashed line approximations to h in Figure 7, 
which are based on the standard linear model shown 
as an inset and are given by 

-t/ytr 
h = l-e 

Here y-5 for 2L/H=1 and y=18.5 for 

(41) 

2L/H = 5. The term yt r corresponds to an effec
tive relaxation time of the coupled plate
asthenosphere system and, assuming tr = 5 years, 
as previously, this relaxation time is 25 years 
and 90 years for 2L/H -1 and 5, respectively. 

The use of similar approximation based on a 
standard linear model by Rice [1979] and Rice and 
Rudnicki [1979] for fluid interactions with fail
ing rock was found to lead to numerically close 
results, and we have found the same in this case. 
The accuracy was checked by performing limited 
numerical solutions of the integral equation based 
on (13) and 0 = f(6) for the elastic-brittle 
crack model, using the numerically inverted C(t) 
given by the solid curves in Figure 7 and by 
comparing the solution to that using the standard 

Fig. 7. Solid lines: time dependence of compliance 
C(t) of lithosphere-asthenosphere system entering 
single degree of freedom analysis of rupture pro
gression (equation (13»; t = f3/a is the Maxwell 
relaxation time of asthenosp6ere material. Dashed 
lines: approximations based on fit by standard 
linear model. 
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linear mode approximation. The latter procedure 
required much less computer time but gave results 
for 0 versus t, which were typically within 1% 
for the cases examined, which is remarkable in 
view of the relatively poor fit in Figure 7. 

When the standard linear model approximation 
is used for C(t), (13) may be rewritten as the 
differential equation: 

yt ....!!. [0 -C(O)(a -a)] + [0 -C(oo)(a -a)] =0 (42) 
r dt 0 0 

and when 0= f (0) is written, e. g., representing 
the elastic-brittle crack relation defined by (22) 
and (23), this becomes a nonlinear equation of 
first order for doldt expressed as a function 
of 0, 00' and 00 , where 00 is a prescribed 
function of time. We start-off solutions at peak 
strength or sometimes at an earlier crack size 
aO (it seems to make no significant change in 
results) by assuming that the system is completely 
relaxed at the start, i.e., tha~ the initial values 
of 00, a, and 0 are related as along A'A in 
Figure 2, and then we set daoldt = 00 = constant 
henceforth and integrate forward. 

In the solution procedure it proves most con
venient to express both 0 and a parametrically 
in terms of a by (22) and (23), &0 th~t (42) 
becomes an equation for daldt, conveniently 
regarded as one for dt/da. Omitting details, the 
dimensionless form taken by the equation is 

where the parameter R upon which function F 
depends is a dimensionless measure of tectonic 
stressing rate given by 

R = t 00lhG'B IH r max 

(43) 

(4l,) 

Based on related work (V. C. Li and J. R. Rice, un
published manuscript, 1983) it may be argued that 
o =0.006 to 0.1 barlyr is a representative rangeof 
tR~ckness-averaged tectonic loading rates for the 
later portions of a great earthquake cycle, and 
using t r =5 years, 'B&ax=4 x l0 6 J/m2 ,andH=75 km, 
the range of R is tHus 0.001 to 0.02. 

Equation (43) has been integrated in alH 
starting at peak in several cases, and (t - tp) Itr 
is computed as aiR is increased in incremental 
steps to aD/H, the final instability point. 
Results for the evolution of a with time are 
shown in Figure 8 for 2L/H=5, b/H=0.07, 
zO/H = 0.10, and for two values of R within the 
range cited above. Points I and D are marked. 
The self-driven creep regime initiates at I, and 
the rate of fracture extension is seen to acceler
ate in its vicinity and· to grow toward large 
values as the dynamic instability point D is 
neared. Note that tI~D is 0.3 t and 0.5 t r , 
i.e., approximately 1.5 years and 2.5 years if 
tr = 5 years, for the two cases shown. These are 
much shorter than the effective relaxation time of 
the coupled lithosphere-asthenosphere system. 

Since the crack is accelerating in this transi
tion from I to D, one expects that rates of 
straining at the earth's surface, near the ruptur
ing plate boundary, will become much larger than 

0.2 0.4 0.6 0.8 
TIME 

for 2L/H-5 
lo/H-O.IO 
b/H = 0.07 

..!.:.!.e... 
Ir 

1.0 1.2 1.4 

Fig. 8. Time dependence of rupture progression 
in postpeak regime, based on single degree of 
freedom analysis with standard linear model fit 
of viscoelastic compliance and on elastic-brittle 
crack model of rupture progression. 

nominal tectonic strain rates like 00IG during 
this period. This could have significance for the 
generation of detectable precursors to the forth
coming instability. A future paper (V.C. Li and 
J.R. Rice, unpublished manuscript, 1983) presents 
an extensive analysis of this time dependence and 
of the surface deformation patterns in space and 
time implied by the model. For example, we estimate 
that the time scale of distinct precursory increase 
in surface deformation rate for the two cases shown 
in Figure 8, based on 2L/H = 5 and other para
meters as cited above, would be about 10 months for 
the slower loading rate R = 0.005 and about 5 
months for the faster R = 0.01. The time scales 
are shorter for smaller along-strike lengths of 
the rupture, mainly because point I moves closer 
to D in that case. For example, estimated periods 
of accelerated precursory strain rate for 2L/H = 1 
and other parameters as above are about 6.5 months 
for R=0.005 and 3.5 months for R=O.01. For a 
given 2L/H, the ptedicted precursor times are 
found to vary roughly in proportion to R-l.3 
over the practical range. 

Concluding Discussion 

We have presented a general procedure for ana
lysis of large-scale processes of preseismic 
rupture progression through the lithosphere. The 
approach is based on the 'line spring' concept of 
fracture mechanics for part-through ruptures in 
elastic plates. It is extended here to include 
coupling, within the Elsasser model, to a visco
elastic asthenosphere and, at least in the general 
form represented by (9) and (10), is open to the 
inclusion of various concepts of the physics and 
geometry of preseismic plate boundary deformation 
processes and of along-strike variations of 
strength and tectonic stressing. The approach is 
developed for transform boundaries but could per
haps be extended to thrust or subduction zones at 
converging plate boundaries. 

Major implications of our modeling include the 
distinction between instability conditions for an 
asthenosphere-coupled versus decoupled lithosphere 
and the importance of the coupling in determining 
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Fig. 9. Stress intensity factors at the upper 
ends of mode III (antiplane) cracks in elastic 
lithospheric plates sustaining uniform stress 
drops ~T. Upper curve: exact resuit when plate 
is decoupled from foundation, which result also 
coincides with prediction by line spring concept. 
Lower curves: exact (solid, based on two-dimen
sional elasticity ·solution for crack in half 
space) and approximate (dashed, based on line 
spring concept with Elsasser plate coupled to 
elastic foundation) results when the lithospheric 
plate is attached to an elastic asthenosphere of 
identical elastic modulus. 

time-dependent processes of accelerating crustal 
deformation prior to great earthquake instabilities. 

A specific, quantitative description of pre
seismic rupture progression has been developed for 
the elastic-brittle crack model with a distribution 
of critical fracture energy that exhibits a 
peak in the seismogenic layer. This model cer
tainly oversimplifies the physics and local geo
metry of rupture progression, .but we have shown 
that with plausible choice of model parameters it 
is possible to produce reasonable predictions of 
hypocentral depths, seismic slips, and stress 
drops in great crustal earthquakes. Hence the 
model seems worthy of further examination as a 
basis for interpretation of precursory deformation 
processes. It may also serve usefully as a 
starting point for inclusion of such effects as 
rehealing and other rate dependence in rupture 
progression and for analysis of the effects on 
rupture progression, and perhaps associated seis
micity patterns, of along-strike nonuniformities 
of strength and tectonic stressing. 

Appendix A 

To evaluate the accuracy of our extension of 
the line spring concept in the case of an elastic 
lithospheric plate that is coupled to an elastic 
asthenosphere of identical modulus, we consider the 
mode III crack problem shown by the lower insert in 
Figure 9 and representing a crack on the surfaces 
of which there is a uniform stress drop ~T. 

The exact expression for the stress intensity 
factor at the upper crack tip, based on the two
dimensional antiplane strain elasticity solution 
is [Tada et al., 1973] 

K/b:rv'H = /[TT /0:(1-0:)(2-0:)] [E(k) /K(k) - (1-0:)2] (AI) 

where eX = a/H and K(k) a~d E (k) are the first 
and second, respectively, complete elliptic inte
grals of modulus k = 10:(2-0:). The result is shown 
as the lower solid curve in Figure 9. (The upper 
solid curve is based on (20) and shows the 
expression 

K/fiTlii = 12 tan(TTo:/2) (A2) 

which is the analogous result for a plate that is 
decoupled from the asthenosphere.) 

Now, for the line spring analysis, the stress 
drop ~T causes a K a~ given by (A2), but it 
also induces a (negative) thickness-averaged 
stress 0 at the boundary, which causes an 
additional contribution to K given by (20). 
Hence 

K = (~T+a)/2H tan(TTo:/2) (A3) 

To determine 0, observe first that the net 
thickness-averaged slip at the boundary is given 
by (21) with 0 replaced by fiT + 0, so that 

6 - [4(~T+a)H/TTG]tn[1/cos(no:/2)] (A4) 

But the relation between 0 and 6 must also be 
compatible with the generalized Elsasser model, 
reducing (from either (S) or (8), which give 
identical results in the present case) to 

2 2 S Cl u /Cly = u x x (AS) 

since there is no x dependence and the foundation 
is taken to be purely elastic. The solution con
sistent with boundary slip 6 is 

u = (6/2)e-Y/~ 
x (A6) 

so that 

0=0 1 xy y .. O G(Clu/Cly) 1 yeO 

= -G6/2/e = -2G6/TIH (A7) 

The last equation can be solved simultaneously with 
(A4) to determine 0 in terms of ~T, and when the 
result is substituted into (A3), there results 

K/fiTlif .. 12 tan(no:/2) (A8) 2 1+(8/n )tn[1/cos(TTo:/2)] 

This approximate result based on the line spring 
modeling is shown by the dashed curve in Figure 9. 
Its difference from the exact result is not very 
large, at least for the deep crack lengths of 
interest in modeling near-surface instabilities. 

Appendix B 

Let a> 

£(s) = ! f(t)e -st dt (Bl) 

denote Laplace transform of f(t) and obser~e that 
~fte·r traIJ.sformation, (2) to (8), relating 0ij. 
ui' and Ti' are formally identical to those of an 
elastic sheet in plane stress that is coupled 
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elastically to a foundation with spring constant 
K, i.e., Ti =KGi , where K =HG/(e+a/s). 

Now consider a crack of length 2L in the sheet, 
with ~niform 'stress' drop ~o(s) prescribed along 
the crack line. It is elementary to see that the 
leading singularity term in 0ij(X,y,s) at the tip 
has the ~ame inverse square root functional form as 
for classical elastic plane stress (this form is 
determined by the highest-order terms in the 
differential eq~ations transformed from (5) or (8) 
for Pi; these terms are independent of the pre
sence of the foundation). Thus a quantity K* 
analogous to a crack tip stress intensity factor 
and taldng the form 

(B2) 

may be defined. Further, by following Irwin's 
[1960] classical arguments, one may first observe 
that a quantity analogous to a crack tip energy 
release rate (with 'energy' now defined quadrat
ically in terms of Laplace transform quantities 
and having density 

per unit are~ of the sheet) is given in terms of 
K* by the usual elastic plane-stress expression 
K~/2(1+v)G; this arises from the 'work' of re
moving inverse square root singular 'stre~ses' 
over incremental distance d(2L) in crack exten
sion from 2L to 2L + d(2L), and thus the form of 
the expression is un~ffected by presence of the 
foundation. Next, one observes that Irwin's rela
tion between energy r~lease rate and compliance 
derivative applies as well in terms of the ana
logous transformed qUatntities, so that if 8(8) 
is the average 'slip' over the crack length 2L, 
then ' 

[ A] 1 A <l(2Ui) 
"2 /::;0 <l (2L) b.o fixed (B3) 

2(1+v)G 

Thus 

But the relation between 8(s) and ~o(s) can 
also be written as 8 (s) .. s(:(s)~8 (s) by using the 
representation of (13) and transforming both sides; 
b.o represents 00 - o. Comparing to (B4) , we 
derive that 

(:(s) = 2(1+~)GLS 1L [It(2L' ,s)]2 d(2L') (B5) 

Lehner et al. [1981] solve the crack problem 
for the generalized Elsasser model in the trans
form domain, using tqe model (8), and simulating 
approximately a crack of length 2L (they used 
the notation L where we use 2L here) having 
uniform stress drop as a semi-infinite crack 
having uniform stress drop over distance 2L 
behind the tip and zero stress drop at greater 
distances. They obtain (their eq. 42 with L 

replaced by 2L) 

k(2L,s) = 12/X(s) erf(~} (B6) 

where Xes) .,l/(1+v)/e+a/s, and thus the trans
formed compliance is 

(:(s) = (1+V)~LSX(S) t [erf(.l2X(S~L')]2 dL' (B7) 

The long and short time limits of the corresponding 
function C(t) are given by the limits of sees) 
as s ... 0 and 00, respective, resulting in (15) and 
(17). The full time variation of C(t) shown in 
Figure 7 is obtained by numerical inversion [Li, 
1981]. We have observed that (1+v)1a = (1+v)nH/4 

F>J l:I for tne chosen v - 0.25. 
The Lehner et al. approximate simulation of the 

finite crack leads to a long time compliance C(oo) , 
given in (15), which is actually l6/n2 times the 
exact result in that limit; the exact result is 
equal to sC(s) of (B5) when the well-known 
stress intensity expression k = IliL for an un
coppled plate with crack of length 2L is used. 
Of course, the Lehner et al. [1981] simulation of 
a finite crack is expected to be least accurate 
in this uncoupled limit but more accurate when 
there is substantial coupling to the foundation 
because then the poorly modeled state at the other 
end of the crack becomes irrelevant. A way of 
compensating for this, which we have not appealed 
to in the discussion within the paper, is to use 
the Lehner et al. simulation for a rupture length 
2L which is understood to be n2 /l6 times the 
~ctual length. 
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