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&tract-When crystalline slip is considered as the micromechanism of plastic deformation in poly- 
crystals, and the slip process is assumed to be rate-independent, the formation of a vertex is predicted on 
the current yield surface in stress-space. Experiments which were conducted to confirm the existence of 
such a vertex are known to have produced ambiguous results; e.g. a superimposed shear during com- 
pressive loading was found to produce an initially elastic response. If we consider that the crystalline slip 
process is slightly rate-dependent, however, then we can furnish a reasonable explanation for this elastic 
behavior in shear. We illustrate the point by considering first a single crystal model undergoing double slip. 
and then a potycrystal model based on the slip concepts of Batdorf and Budiansky. The results presented, 
baaed on the assumption that the slip process is not rate-independent, but rather at least slightly rate- 
dependent, give qualitative agreement, and reasonable quantitative agreement, to experimental results for 
superposed shear during compressive loading. They also suggest that the actual rate sensitivity of plastic 
flow may be central to understanding the ambiguous conclusions from experimental attempts to find yield 
surface vertices. 

I. INTRODUCTION 

The principal micromechanism of plastic flow in metals at low temperatures is crystalline slip 
via dislocation motion. Furthermore, it seems normally reasonable to adopt a Schmid-like 
description such that the slip rate on a given crystalline slip system, or the average dislocation 
velocity on that system, depends on the current existing stress state only through a dependence 
on the resolved shear stress on that system. In the rate-independent idealization of plastic flow, 
this Schmid description reduces to the local “yield criterion” that a given slip system within a 
given element of crystal yields when a critical resolved shear stress is attained. Now, as Hill[ 11 
has remarked, theories of macroscopic rate-independent plasticity of polycrystals, based on the 
concept of Schmid-like crystalline slip in each grain, lead inevitably to the prediction of a 
pointed vertex on the current yield surface in (macroscopic) stress space. This contrasts with 
the classical rate-independent plasticity formulations (such as J2 flow theory or, equivalently, 
the PrandtI-Reuss equations and their generalizations) which postulate a smooth yield surface 
at the current loading point. The reason for the generality of the predicted vertex structure, 
when flow occurs by the slip micromechanism, is easy to understand. An explanation is given in 
Appendix 1. Essentially, the macroscopic yield surface can be regarded as the inner envelope of 
an unbounded number of planar yield surfaces, representing critical shear conditions for each 
slip system at each (locally crystalline) element of material; see Fig. 1. At conditions well into 
the plastic range, the collection of planes passing through the current stress state (i.e. 
corresponding to plastically active locations and slip systems) encompasses a wide range of 
orientations, and hence a vertex develops as indicated. 

Experiments, however, have not led to an unambiguous resolution of the question as to 

whether vertices exist. Some workers have interpreted their results as being supportive of 
vertex formation, others as being not so; see the reviews by Paul[Z] and, more recently, 
Hecker[3]. The experiments divide into two types. In one, a vertex is sought directly on the 
yield surface. In the other, one looks at how the direction of the plastic strain increment relates 
to that of the stress increment for a zigzag loading path, for example, in a combined 
torsion-compression test. 

We show that a very small plastic strain-rate sensitivity, of a magnitude which could go 
essentially unnoticed in direct tension or shear testing over a modest range of rates, is sufficient 
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Fig. I. The macroscopic yield surface in stress space is the inner envelope of all (planar) yield surfaces 
corresponding to critical shear stress conditions on individual crystalline slip systems at local points of a 
polycrystalline array. All local surfaces corresponding to points and systems which are plastically active 

must contain the current stress stale, and hence a pointed vertex structure is developed. 

to alter significantly some consequences of the vertex formation predicted by the rate- 

independent models. We note that it is now generally accepted that, as expressed in dislocation 
dynamics studies of Johnston and Gilman[4,5] and others, plastic deformation in metals is an 
inherently rate-dependent process. Rice[6,7] has established a rigorous mathematical frame- 
work, analogous to that of Hill [ 11 for the rate-independent case, for the incorporation of the 
dislocation dynamics viewpoint of slip in constitutive modelling for general stress states and 
loading paths. He shows further that if the Schmid-like assumption is made that the shearing 
rate on a given slip system depends on the local stress state only through the shear stress 
resolved onto that system, then at each instant in a history of deformation, the current 
(macroscopic) plastic strain rate depends only on the current stress, and is derivable from a 
scalar “flow potential” by differentiation with respect to the corresponding stress component. 
As remarked by Rice[6], the macroscopic plastic strain rate is a continuous function of stress if 
the local slip system shearing rates vary continuously with resolved shear stresses and, 
consequently, a sudden change of a stress rate C+ will not alter the plastic strain rate ip 
abruptly. This suggests that rate-dependence, even if slight, cannot lead to a sharp vertex 
structure. 

A number of experiments in the form of torsion-compression tests on thin-walled tubes have 
been carried out. Those by Budiansky et a/.[81 have received particular attention in the 
literature. Those investigators found that, during compressive loading, an imposed shear 
produced an initially elastic response. The elastic response suggests that the current yield 
surface, in the framework of rate-independent plasticity, may be smooth. The lack of an evident 
vertex effect has been interpreted by some as a failure of the slip-based concepts. However, by 
considering the material’s plastic strain rate sensitivity, we offer an alternative explanation 
which suggests that the slip-based concepts may themselves be sound and do, when im- 
plemented in a rate-dependent framework, lead to the conclusion that initial shear response, 
superposed on tension or compression loading, is elastic. 

2. A DOUBLE SLIP MODEL FOR SINGLE CRYSTALS 

It is commonly observed that a double slip deformation pattern develops under simple 
tension loading of a single crystal. To illustrate simply vertex formation on the yield surface 
within a rate-independent approach, and to demonstrate later the effects of rate sensitivity, we 
consider a single crystal which has been deforming in a (symmetrical) double slip pattern under 
simple tension stress (r,, and imagine that a small shearing stress uIz is superposed. Asaro[9] 
used this double slip model to study the stability of rate-independent plastic flow in crystals. He 
comments on the “geometrical softening”[lO, 111 that can arise in single crystals, e.g. from 
rotation of the lattice due to grip constraint in tensile loading. The schematic picture of 
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the double slip system is shown in Fig. 2(a). This figure shows the idealized two-dimensional 
double-slip model which has the slip vectors s, and s2, and the slip plane normals, a1 and n2, on 
the plane of the drawing. However, when the real crystal undergoes double slip with the tensile 
axis along the xl direction, both the slip vectors sI and s2 are in the plane of the drawing, but the 
slip plane normals, nl and n2, are tilted outward. 

We consider the two-dimensional model and idealize the problem such that rotations of 
lattice directions are neglected. A more precise analysis that includes the rotations is given in 
Appendix 2. It leads to conclusions which are similar to those following, and reduces to the 
following when the crystal hardening modulus exceeds greatly the stress level. Thus the 
resolved shear stresses 71 and 72 on the two systems and their rates are given by 

Ti=ni’U’Si,i’1,2 

ii = ni * & ’ Si, i = 1,2 

where u is the true or Cauchy stress, and ci is its time rate. 

(1) 

(2) 

t 

(a) 

Fig. 2(a). The idealized two-dimensional model of a single crystal undergoing a double slip pattern. 
(b). The crystal response in stress space at the inception of shear is shown. The lines marked TZ = const. and 

‘I, = const. &hoe the yield surface. 
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In terms of the angle 2# between the slip planes as depicted in Fig. 2(a), eqn (2) can be 
expressed as: 

iz = !j ci,, sin 26 + cilz cos 2& (2b) 

Since the deformation is assumed to be homogeneous, the plastic strain rate ip is reiated to 
crystalline slip rates +i by 

in component form this becomes 

r: P, = f sin 2&(?, + jz) (?a) 

.P _ 1 
(3b) 

.P ,P 
E22= --El,* 

The rate-independent constitutive law governing multi-slip processes in single crystals is 
given by (e.g. Hillfl2]) 

where the hii are hardening moduli; h,, and /I?: are seif-hardening moduli, and h,? and hz, are 
cross-hardening (or latent hardening) moduli. Equality holds when the ith slip system is active 
and inequality otherwise. Consistently with the presumed symmetrical double slip, we assume 

h,, = h22= h >o 

At the instant of tensile loading u ,, that is being considered, before shear application, both 
systems have identical strengths and hence the yield surface has the vertex structure (formed 
by surfaces Q = constant and T? = constant) illustrated in Fig. 2(b). We assumed that # < 45”. 

We now investigate loading regimes in the o , ,, ult plane corresponding to continued double 
slip and to single slip, respectively, presuming that the considered stress increments &,,, o,* form 
a vector pointing outward from the yield surface (otherwise, they cause only elastic response). 
Suppose, for example, that after the inception of shear loading o12, slip system 2 is active and 
slip system I is inactive; of course, both slip systems were activated by the tensile stressing ul, 
before u12 was applied. From i, s hlzvz = II,~&/II~~ = h’idh, which follows from (4), there 
results the inequality 

(5) 

when eqns @a) and (2b) are used. 
Similarly, for the case that slip system I is active and slip system 2 is inactive, one must 
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have iz I h’i,lh, or 
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1 h-h’ 
6,2= -~tan2$hd,, 

On the other hand, the condition for both 1 and 2 to be active, obtained by writing (4) as an 
equality, solving for +,, +?, and requiring that +, > 0, ?t> 0 is that simulatneously (hi, - 
h’iJ(h* - h’*) 2 0, (hi2 - h’+,)/(h* - h’*) L 0. From eqns (2a) and (2b) these are equivalent to the 
continued inequality 

h+h’ 
-~tan2dn+,,6h_h’o,2B~tan2&,, (7a) 

which can be met only if I?, ,z 0 and 

(7b) 

The domains of the o,,, u12 plane delineated by inequalities (5), (7b) and (6) are distinct 
bordering regions, if h > h’. But the regions overlap when h < h’. This overlap means that when 
h < h’, a specification of the stress rates & ,,, c+,* does not determine uniquely whether single or 
double slips result; the character of the slip is, however, determined uniquely by specification 
of c+,,, c+,~ when h > h’ since there is then no overlap. 

The nature of the response at the inception of shear loading is illustrated in Fig. 2(b). The 
two lines marked 7* = const., 71 = const. define the yield locus and the domain of elastic 
response is indicated; it is the region for which both i, < 0 and i2 < 0. Region II is the domain of 
the stress plane compatible with double slip when h > h’; its boundary as indicated is based on 
eqn (7b). Regions I1 and 12 correspond to single slip on systems 1 and 2, respectively, in the case 
h > h’; the regions corresponding to single slip when h <h’ are denoted by Zl’ and Z2’, 
respectively, and exhibit the overlap noted above. For the case h’ = 0 (the slip systems harden 
independently), the double slip region ZZ becomes the region where the resolved shear stress 
rates of both slip systems are positive, i.e. the region between the dashed lines. As the h’ value 
grows from zero, region ZZ shrinks and regions Z 1 and 12 of single slip expand. When h’ = h, 
region ZZ degenerates to a line and then only a pure tensile load can activate both systems. As 
h’ grows larger than h, a region ZZ of different character expands from the line and, according to 
eqns (5) and (6), the regions of single slip, now denoted by Z 1’ and Z2’, overlap region II. Hence, 
the crystal responds nonuniquely in this new region II. For example, if we arbitrarily assume 
that for a stress rate in this region ZZ both slip systems are activated, then the plastic shear 
strain rate ipz is found to be of opposite sign to the applied shear stress rate c+,*, since it is easy 
to show (Asaro[9]) 

kp2 = cos* 2@,,/(h - h’) 

when both systems are active. On the other hand, one may verify that an alternate single slip 
solution exists such that if c?,,, d,2 is directed into region ZZ and d,2>O(<O), then only system 
2(l) is active, 9, = O($* = 0), and $2 > O( < 0). This non-uniqueness of response to a given 
stress-rate direction is not resolvable within the rate-independent model although we show later 
that the rate-dependent model, phrased in a manner consistent with h’ > h, tends to select the 
single-slip mode. As the full analysis of Appendix 2 shows, when ull is not negligible compared 
to h, the switch from unique to non-unique response in region ZZ occurs when h’ > h/K, in 
terms of the rotational factor K introduced there, and this may be rewritten as the condition 

h’ > h + 20,~ sin* I#, cos 24. 

When 4 = 45”, the shear stress ui2 makes no contribution to the resolved shear stress on 
both systems. This is the trivial case. Since in this case the lines ‘I~ = const. and t? = const. are 
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colinear and all the vertex structures shown in Fig. 2(b) will degenerate to a vertical line, the 
yield surface is smooth. 

When I#J > 45”, the relative positions of the lines labelled T? = const. and 7l = const. in Fig. 
2(b) change. The inequality for the case that slip system 2 is active and that slip system 1 is 
inactive is 

(5a) 

and the inequality for the case that slip system 1 is active and that slip system 2 is inactive is 

(64 

If we plot the crystal’s response in stress space, we will have the reflection of Fig. 2(b) through 
the uIl axis. The qualitative results are the same as those for C$ < 45”. 

Now, within the rate-dependent Schmid-like framework, we assume that for a given slipped 
state, the rate of plastic shearing Ti on slip system i (of group i = 1.2,. . . , n) depends on the 
current stress state only through the shear stress Ti resolved onto system i. Symbolically, 

+i = ji(ri, current state), i = 1,2.. . , n. (8) 

Prior plastic shearing of all slip systems intersecting a given point may affect the current 
response of a particular slip system at that point. As a specific basis for calcualation, not 
necessarily having a direct microphysical foundation, we consider the power-law non-linear 
viscous form 

( ) 
I/m 

$ = hi Ti 

g;(current state) ’ (9) 

Here the constants di may be regarded as reference shearing rates, such that if the crystal is to 
be deformed with each +i set equal to ri,, then T, = g; describes the requisite shear stress 
resolved on the ith slip system. The functions gi, by analogy with eqn (4), are then supposed to 
be given by 

ii = $, hij-jli, i = I, 2,. . . , II. 

The exponent l/m is consistent with a plastic strain rate sensitivity parameter defined as 

a In 7 

m=aIn 

In our analysis, M is taken as a small positive constant, which is the same for all slip systems. 
For the double slip model i = 1,2 and we write 

S, = h$ + h’T2 (11) 

& = h’j, + hj2. (12) 

For small shears yI and y2 beyond a state to which the crystal was loaded by uniaxial tension 
up to the stress oy,, with both slip systems responding at the fixed rate ci, = ci2 = d, we can write 

gr = i a?, sin 24 + hy, + h’x (13) 

g2 = !2 uy, sin 24 + h’y, + hy? (14) 
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(these are valid for arbitrary y, and y2 if h and h’ are constant). The integration constant 
(1/2)u!, sin 24 is the resolved shear stress on both slip systems at the initial state considered, 
which we take to be that just before the inception of loading by u12. A superscript “0” denotes 
the quantity at the instant just before the inception of u12 loading. 

If the stress rates ti,,, ti,2 remain constant after the inception of shear, eqn (9) becomes 

+, = ci 
( 
(l/2)0?, sin 24 + ((1/2)b,, sin 24 - tij12 cos 24)t (,‘m) 

(1/2)uY, sin 24 + hy, + h’y2 ) 

~2 = d 
( 
(1/2)uY, sin 24 + ((l/2)&,, sin 24 + o,2 cos 2f$)t (“m’ 

(1/2)uy, sin ~C#J + h’y, + hyr ) 

where t is time since inception of shear loading. 
We rearrange eqns (15) and (16) to a dimensinless form as 

dr, 1 + B(l - 2(du,Jdu,,)cot 2$)8 (urn) 
de= 1 + I, t (h’/h)I-, 

dr?= 1+ B(l + 2(duJdu, ,) cot 2#)0 (I/m) 

de 1 t l-2 t (h’/h)T, 

(15) 

(16) 

(17) 

(18) 

where 

’ = (1/2)aY, sin 24' 
B = (1/2)ci,, sin 24 by, 

hd 
=-&l+ h’lh). 

Equations (17) and (18) show that results depend only on du,Jdu,,, h’/h, and B for a given 
slip angle 24. For the numerical solutions, we arbitrarily choose 26 = 70” to be representative 
of the slip angle of a face centered cubic crystalI (we note that the slip angle 2d~ may be 
nearer to 120” for a body centered cubic crystalpI). We also keep the tensile stress rate 
constant along the deformation history (i.e. c+, = by, = constant, so that B = 1 t h’lh). 

Equations (17) and (18) have been integrated numerically. The results are plotted in Figs 
3(a-c) and 4. In Fig. 3(a), the case of du,r/du,, = 1.0 and h’lh =0 is investigated. The loading 
direction du,,/du,, is chosen so that both the slip systems are activated according to eqn (4). 
The normalized plastic shearing rates j,2/d are plotted as a function of the normalized shear 
stress u12/u~, in Fig. 3(a). The curves marked m = 0 in all figures represent the rate-independent 
solution. In Fig. 3(a), we can see that, as m gets smaller, the rate-dependent +,.r approaches the 
rate-independent +,,Z faster with increasing load. 

Figure 3(b) shows the numerical results for du,Jdu,, = 2.0 and h’lh = 0. The stress ratio 
du,Jdu,, is chosen so that only slip system 2 is activated according to the rate-independent 
analysis. Figure 3(b) shows that the rate-dependent 9, approaches zero and the rate-dependent 
i2 approaches the corresponding rate-independent T2 as load increases. 

In Fig. 3(c), the numerical results are plotted for dut2/du,, = 0.05 and h’/h = 1.1. This is the 
case that should result in the non-unique response of the crystal from eqn (4) since h’ > h. This 
non-uniqueness is not exhibited for the rate-dependent analysis. In Fig. 3(c), +,dd is plotted as 
a function of ~,~/a~,. The limit, as m approaches zero, of the +,,2’s predicted from the 
rate-dependent analysis indicates that the crystal chooses the single slip response. Note that the 
two straight lines marked m = 0 are plotted according to Jo, = i2/h and +, = 0. 

In Fig. 4, the normalized shear stress u,~/u?, is plotted as a function of the quantity rr2h/uy, 
for du,?/du,, = 1.0 and h'lh = 0. Because of the viscous nature of the rate-dependent con- 
stitutive law, +,.z undergoes a smooth change-after the inception of shear, as shown in Fig. 3(a), 
in contrast to the abrupt change of +,.2 predicted by the rate-independent analysis. This 
continuous change in +,.t results in the elastic behavior (in shear) which is shown in Fig. 4. We 
can see that, as m gets smaller, the rate-dependent results approach the much softer response 
(in shear) of the rate-independent analysis. 

When h' is taken as zero, eqns (17) and (18) can be integrated exactly. If we further assume 
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du,Jdo,,=l.O , h'/h=O.O 

2 # , ( , 

t 
doddcl,=2.0 a h'/h=O.O 

3 

0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.w 0.08 0.1 
ffle/UIIO ff19/~u0 

(a) !b) 

du,$du,,=O.O5 , h'/'h-1s 

31 

Fig. 3(a). The normalized piasttc shearing rate $.:/d is plotted as a function of the normalized shear stress 
~r~/o’ir for do&dorr = 1.0 and It’ih = 0. This stress ratio activates both slip systems according to eqn (4). 
(b) The normalized plastic shearing rate $r.~/d is plotted as a function of the normalized shear stress 
n&r:‘, for doIZfdo,, = 3.0 and h/h = 0. This stress ratio activates only slip system 2 according to eqn (4). 
(c)The normalized plastic shearing rate Y1.2/d is plotted as a function of the normalized shear stress oIz/o~, 
for do,r/do,, = 0.05 and h’/h = 1.1. According to eqn (4). the crystal responds non-uniquely. However. the 
rate-dependent analysis clearly indicates that the crystal chooses the single-slip response at the limit III = 0 

that till equals (;jl, and restrict the stress ratio d~~~~du,, so that both slip systems would be 
activated in the m = 0 limit, we may then expand the exact solutions around fl = 0. The initial 
crystal response in shear can therefore be obtained as 

P _cos22+ sin24 
‘I’- 4~(dff,~~d~,,) 

(19) 



Rate sensitivity of plastic BOW and implications for yield-surface vertices 981 

duu/dq,=l.O . h'/h-0.0 

0 0.056 0.01 0.016 
%aW~~1° 

Fig. 4. The normalized shear stress UI:/U’~I is plotted as a function of the normalized plastic shear strain 
~:#a:‘, for do12/doI I = I.0 and h’ih = 0. The rate-dependent analysis show the elastic response in shear at 

the inception of shear. 

Equation (19) gives the initial curvature in the plot of cl2 versus e$ after the inception of shear. 
The curvature is larger for smaller m, but the quantity der2/dalz at o12 = 0 is always zero which 
indicates that initial shear response is elastic. 

Figures 3(a) and 4 show the results for darz/dcr,, = 1.0 and h’lh = 0. This is a case for which 
both slip systems are activated in the rate independent limit. Figure 3(a) shows that the 
~tede~~nt +13 approaches the rate-independent Jo faster for smaIler m as deformation 
proceeds. There exists a steady state - + become a constant after some time. This steady-state 
j13 is denoted as +f; which is easily obtained from eqns (15) and (16) as 

if” _ p~l/l+m) 

d * 
for pi > O(i = I ,2) 

= 0 for pi CO 

where pi = ii/i:. This steady state rate is essentially independent of m for M 4 1. Also, there are 
steady states seen in Fig. 3(c) for h’lh # 0. In Fig. 4, the elastic behavior in shear and the 
parabolic features of the curve before reaching the steady state are observed for the rate- 
dependent results. We can see the qualitative characteristics, that the curvature becomes small 
as m gets large, described in eqn (19) for the rate-dependent analysis at the inception of shear. 

3. SLIP THEORY AND VERTEX YIELD EFFECTS IN POLYCRYSTALS 
Bat&f and 3u~~sky[~31 have proposed the so-called “slip theory”, the simplest physical 

plasticity theory for polycrystals which considers crystalline slip as the principal mechanism 
for plastic deformation. This version of a slip-based theory does not consider the requirements 
of compatibility between adjacent grains, or, stated alternatively, it neglects the residual 
stresses which develop due to the diierent slip states of each of the plastically deformed gains. 
(To meet the ~mpatib~ty and eq~b~um conditions on the microscale, Lin and Ito[14, IS] 
used the point force so&n for an infinite elastic solid in their treatment of plastic strain 
gradient as an equivalent body force: whereas Kroner[l6J, Budiansky and Wu[ 171 and Hill [ 181 
developed the self-consistent models which take account of grain interactions by employing 
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Eshelby’s solution for an ellipsoidal inclusion undergoing shape transformation in an infinite 
elastic solid[ 191.) 

The simple Batdorf-Budiansky slip theory[l3], which we adopt here for analysis of the 
rate-dependent case, assumes that each individual grain carries the same stress as the macros- 
copic stress V. Thus, the resolved shear stress T on a slip system having slip plane normal n and 
slip vector s is 

Since it lies within the framework of the classical “small strain” approach, slip theory ignores 
rotation of the slip systems and shear stress rates i are given by n. 6 . s. Each slip system in a 
polycrystal is assumed to harden independently and plastic shearing of a given system is stress 
state dependent only through the resolved shear stress on that system. Symbolically. for the 
rate-independent model, 

y = F(i) (21) 

where y represents the plastic shear strain of the slip system, $ is the maximum value of the 
resolved shear stress in the loading history, and F(T) is a monotonically increasing functin 
which may be set equal to zero for r less than a stress TV, at which yielding is assumed to begin. 

The macroscopic plastic deformation of the polycrystal is then obtained by summing F(i) 
over all the possible slip systems in orientation space. We have 

P- e - ynp i (ns + sn) dR d/3 (‘2) 

where l p is the macroscopic plastic strain tensor, -ynp represents the plastic shear strain of a 

differential element referred to the direction n and s in orientation space, dR is the differential 
solid angle about the normal n, and d/3 is the differential angle about the slip vector S. The 
integration is performed over a hemisphere H swept out by n, and a semicircle S swept Out 
by s. 

The function F(T) employed in the rate-independent model can be obtained from the 
stress-strain curve of a simple tension test. The approximate method of [13] is to expand F(T) 
as a Taylor series in T - TV, integrate over the orientation space for the tensile plastic strain, and 
determine the desired number of coefficients in the series by fitting a corresponding number of 
points in the stress-strain curve. 

Budiansky et al. conducted an experiment in which thin-walled cylinders of 14S-T4 
aluminum alloy were used[8]. Those cylinders were stressed into the plastic range in axial 
compression and then twisted. As the twist was applied, the compression was varied in such a 
manner that the ratio of the increments of shear stress to the increments of compressive stress 
was approximately constant for a given cylinder. Figure 5 shows a portion of the compressive 
stress vs plastic strain relation for the material. Some of the results of the superposed shearing 
are shown in Figs. 6-8. In these figures, uI1 denotes the compressive stress, o. denotes the yield 
stress, E:, denotes the plastic compressive strain, u12 denotes the shear stress, +yP?( = 2~:~) is the 
engineering plastic shear strain, and A@:, denotes the increase of the plastic compressive strain 
after the inception of shear. Comparison with the predictions of the rate-indepe’ndent models of 
J2 flow theory, Jz deformation theory and slip theory were made by Budiansky et al. For the 
positive dolz/dall (Figs. 6 and 7), J2 flow theory correctly predicts the initial elastic response in 
shear, but it underestimates the plastic shear strain; slip theory predicts a plastic shear strain 
very close to that predicted by J2 deformation theory, but both theories overestimate the plastic 
shear strain; the predictions of all three theories are in good agreement with the experiments for 
the compressive plastic strain ep,. For the negative du12/dull (Fig. 8, plastic deformation 
occurs well before the elastic-plastic boundary, T,[ = constant (?ccl = (213Ko:r + 3u%“?, of the 
simple flow theory is reached. Slip theory gives excellent agreement with the experimental 
shear strain, but underestimates the compressive plastic strain by a small amount of “creep”[8]. 
AI] rate-independent plasticity theories that are based on crystalline slip as the mechanism for 
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%1@ 

Fig. 5 The experimental results of the compression test by Budiansky et ol.[S] is shown. The numerical 
results which are calculated from the assumed g(y) for the rate sensitivity m = 0.03 are also shown. 

plastic deformation lead to the prediction of the vertex formation on the current yield surface. 
Furthermore, for the compression-shear loading path, these physical plasticity theories predict 
less stiffness in shear under continuous loading; the stiffness in shear approaches the elastic 
shear modulus as the loading direction moves from the axial compressive load to the dirqction 
in which no slip systems of the polycrystalline aggregate are activated, However, the ex+ 
mental results showed the elastic stiffness at the onset of shear for all values of da,,/do,r. +j’his 
etastic behavior in shear plainiy con~dicts the predictions of all shp-based plasticity &e&es. 
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Figs. 6-8. The experimental results of the combined compression and torsion test by Budiansky et nl. [8] 
are shown. The stress ratios da,,/dor: are 1.91. 1.18, and - 1.13 for Figs. 6. 7 and 8. respectively. The 
predictions by various theories are compared. The rate sensitivity rn of the rate-dependent slip theory is 
0.03 for all cases. The elastic response (in shear) predicted by the rate-dependent slip theory is noted. Also. 

the “creep” compression strain is predicted by the rate-dependent slip theory. 

Now, if we assume that the slip processes are rate-dependent and that the slip rates,vary 
continuously with the resolved shear stresses, we can predict the elastic response in shear for 
the above-mentioned compression-torsion tests by the argument of Rice[6]. Within the context 
of slip theory, the non-linear viscous form is again used to describe the slip process of a slip 
system, viz, 

. ( ) 
I/m 

Y’d &) (23) 

where + is the plastic shearing rate, ci is the reference plastic shearing rate, rn represents the 
plastic strain rate sensitivity, and g(y) is the function of the current state which is taken as the 
plastic shear strain y of the slip system because of the assumption of independent hardening 
(Note that T = g(y) when i = d.) The plastic shear strain y of each slip system is thus obtained 
by integrating eqn (23) incrementally. The macroscopic plastic strain is then obtained by 
integrating the plastic shear strain of all the slip systems in the orientation space as in eqn (22). 

For a given rate sensitivity m, the function g(y) is found by fitting the numerical results of 
the pure compression curve, Fig. 5, to the experimental data. Several assumptions are made in 
the numerical calculations. Here, the compressive stress rate &,, is assumed to be a constant to 
simplify calculation of the material response in pure compression, whereas the compressive 
strain rate was kept constant in the experiments. A monotonically increasing function g(y) with 
g(0) = 7L is guessed; the load is applied, and when the value of the shear stress T resolved on 
the slip system at an integration point is first detected to be larger than TV, which is equal to half 
the value of the yield stress in the pure compression test, the plastic shear strain y of this slip 
system is assumed to equal g-‘(r) (the inverse function of g(y)) which is a very small value 
near zero. The reference shearing rate d of this slip system is then assumed to be g-“(r)+ 
(where‘g-“(7) means the derivative of g-‘(r) with respect to T) such that the constitutive law, 
eqn (23), can be satisfied at this moment. The plastic shear strain y of the slip system is then 
integrated incrementaIly according to eqn (23) as deformation proceeds. For those integration 
points at which the resolved shear stress T is never larger than TV, the plastic shear strain y is 
simply taken as zero. The above assumptions are justified by the fact that plastic deformation is 
very small below the “yield stress” (from the viewpoint of rate-independent plasticity) in an 
ordinary compression test. Therefore, we assume that the amount of slip can be neglected until 
T reaches TV. For a fixed value of m, a g(y) can be found such that the compression plastic 
response matches the experimental compression test. In Fig. 5, the experimental plastic 
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compressive strain is plotted as a solid line, and the well-matched numerical results which are 
claculated by the guess g(y) are also plotted for m = 0.03. 

The numerical results of the combined compression-torsion test based on the guess g(y) 
were obtained for m = 0.005, 0.01, 0.03 and 0.05. In those calculations, we assumed that 
u,, = L+!, = constant for a positive value of do,,/dalz, and &r, = - ti!, = constant for the 
negative value of do,I/du,2. The numerical results for M = 0.03 are shown with the cross 
symbols in Figs. Ml. 

In these figures, the rate-dependent results do show the elastic response in shear at the 
inception of shear. However, as the shear stress becomes large, the present numerical results 
overestimate the plastic shear strain for the positive values of du,Jdu12, and they under- 
estimate this strain for the negative value of du,,/du,2. The compressive plastic strain of the 
numerical results matches the experimental results well for the positive values of du,,/dulz; 
but, for the negative value of dulJdu12, the numerical results overestimate the compressive 
plastic strain by some amount of creep. However, the qualitative trend is consistent with the 
experimental data. 

Although the numerical results for m other than 0.03 are not shown here, these results are 
summarized in the following. The rate-dependent numerical results approach to those of the slip 
theory of Batdorf and Budiansky when m becomes small. The compressive plastic strain of the 
numerical results for all values of m matches the experimental data well for the positive du,,/dcrlz. 
This might be due to the fact that the input parameters to the rate-dependent slip model are 
obtained so that the stress-strain relation in pure compression of the rate-dependent slip model 
matches that of the experimental results. The compressive plastic strain of the numerical results 
for m = 0.01 matches the experimental data very closely for the negative dull/dulS As nr gets 
larger, the predicted amount of creep in compression becomes larger. However, the qualitative 
trend is still consistent with the experimental data as shown in Fig. 8 for m = 0.03. 

The initially elastic response in shear is shown for all values of m. For m as small as 0.005, 
the shear response of the numerical results is very close to that of the slip theory of Batdorf 
and Budiansky. This is due to the fact that the rate-dependent numerical results approach to 
those of the rate-independent slip theory when m becomes small. Consequently, the curvature 
at r$ = 0 becomes large as m gets small. This is consistent with the prediction of two- 
dimensional double slip model of a single crystal as expressed in eqn (19) and as shown in Fig. 
4. For the negative doiJdu12 the plastic shear strain of the numerical results for all values of m 
matches the experimental data except for some underestimation of ~7~ in the range where u12 is 
larger than 16 ksi. 

Apparently the value m = 0.03, chosen here as providing a reasonable fit to the data for 
14S-T4 aluminum alloy, is rather high. The rate sensitivity m of aluminum alloys is typically in 
the range of - 0.005-0.005 as reported in [21]. Nevertheless, our numerical results for m = 0.03 
shown in Figs. 6-8 demonstrate the qualitative features due to rate sensitivity of plastic Ilow for 
a polycrystalline material under a nonproportional loading condition. Perhaps a more elegant 
finite deformation model, which should take account of residual stress, rotation of the slip 
systems, and latent hardening of the slip systems, is needed to explore thoroughly the plastic 
behavior of the polycrystal under more complex loading conditions. 

4. DJSCUSSION 

When crystalline slip is considered as the principal mechanism for plasfic deformation, 
formation of a vertex on the current yield surface is predicted by a rate-independent analysis. 
We have shown that small material rate sensitivity, essentially ignorable in proportional loading 
experiments, can furnish a reasonable explanation of some experimental results, such as those 
of the combined compression-torsion tests, which have not demonstrated such a vertex structure. 

In the analysis of a single crystal deforming in a double slip pattern, assuming a 
rate-dependent slip process and allowing the material rate sensitivity to approach zero was 
shown to help to select a deformation mode, whereas this mode could not be determined 
uniquely through the rate-independent approach.. 

In the polycrystal model based on the slip concepts .of Batdorf and Budiansky, the function 
g(y) and the rate sensitivity m in the viscous slip law (eqn 23) is obtained from a trial-and-error 
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method by fitting the compressive plastic response of a compression test. The choices of g(y) 
and especially m are rather arbitrary; however, the effort we make here is to show that the 
plastic strain rate changes smoothly for the rate-dependent approach even though the stress 
rate has a jump, and that the elastic behavior in shear of the combined compression-torsion 
tests can be predicted with this simple rate-dependent model based on the slip theory of 
Batdorf and Budiansky. 

Our study supports the idea of vertex formation on the current yield surface, in the sense 
that this does result in the rate-insensitive limit of a rate-dependent analysis. While deformation 
theory, some phenomenological corner theories, and the physical plasticity theories, which are 
all suggestive of the existence of a vertex (or corner) formed on the current yield surface, are 
extensively used in bifurcation or buckling analyses in the rate-independent sense, the retar- 
dation of instabilities due to material rate sensitivity should also be noted. 
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APPENDIX I 

The reason for the predicted yield surface vertex structure, when rate-independent crystalline slip is assumed as a 
micromechanism, is most readily seen when the problem is addressed within classical “small strain” concepts such that 
alternations of the local geometry of the polycrystalline array are ignored, local elastic response is linear, and local elastic 
moduli within each crystalline element are assumed to be unaffected by slip. Then (e.g. Hill[l]. Ricef6]) the local resolved 
shear stress 7 on any particular slip system. at any point of some crystalline element (grain) of the array has the form 

T = c + n,,cr,, 

where (T,, is the macroscopic stress state. Here n,i and c are independent of o,,, n,, depends only on the local point and 
system considered but not on the distribution of plastic shear within the array, whereas c depends additionally on the 
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distribution of shears (and represents the “residual” shear stress that would remain if o,i were reduced to zero under 
conditions for which the grains were constrained against further plastic shearing). According to the Schmid criterion, yield 
occurs at the point and on the system considered when r attains a critical value r, which may, in general. be a functional of 
the prior plastic shears experienced. Hence the local yield criterion T = r,, or 

c + ll,,ul, = T, 

maps as a plane in stress space with orientation II;;: as plastic distrotion of the polycrystalline array takes place, this plane 
may translate since vr ami c depend on the ongoing plastic shears, but it does not change orientation (air is constant). 
Evidently, the macroscopic yield criterion is the inner envelope of local planar yield surfaces for all possible slip systems 
and all points of the polycrystalline array. Further, during a general program of plastic distortion of the polycrystal. the 
(translating) planar yield surfaces for each plastically active slip system and point of the array must pass through the 
current stess point (Fig. I). At conditions well into the plastic range, this collection of planes encompasses a wide range of 
orientations R,,. and hence a pronounced yield surface vertex is developed. Specific calculations of subsequent yield 
surfaces for polycrystals. necessarily exhibiting the vertex structure, are given by Lin and Ito[l4, IS] and Hutchinson[?O]. 

APPENDIX 2 

When a rigid plastic single crystal deforms in a single slip pattern. the angle between the slip direction and the tensile 
axis, 6, decreases due to the constraints of the specimen grips. As in Asaro[9], we have the relationship 

4 = - tan de Y, = - sin’ I$+. (Al) 

At the inception of shear under double slip conditions, the resolved shear stress rates of both slip systems are 

fI =;&I sin2dI-iI~cos2d1 tu1&cos2d1 (A!) 

(A3) 

where 6, denotes the angle between the slip vector SI and the tensile axis XI, and 82 denotes the angle between the slip 
vector sa and the tensile axis xl. At the inception of shear, 4, is equal to 42 and is denoted as 4. 

When d < 45”. we consider the case that slip system I is active and slip system 2 is not active. Thus, 

4, = -sin’ $+r = - 42 

From eqns (AZ)-(A4). and (4). we obtain the inequality. 

(.A41 

I h - h’K 
01:s -jhth,Ktan2dcilI 

where 

K = I - (UI Jh’) sin’ b cos 2~5 

I +(mJh) sin-d cos 2d 

Similarly, we have another inequality for the case that slip system 2 is active and slip system I is inactive, viz. 

I h - h’K 
oi2Zj~tatan?&$~ 

(A0 

Equation (AS) and (A6) are similar to eqns (5) and (6) except that a factor K appears along with h’. Since h and h’ are 
larger than or comparable to uI r, the value of K is less than unity. When h and h’ are much larger than UI I, the value of K 
approximately equals I: thus. the rotationof the slip systems can be neglected. When h and h’ are comparable to o, ,. the 
value of K is no longer near to I. and the rotation of the slip systems should be considered. Without’consideration of the 
rotation of the slip systems. the conditions that a nonunique region in stress space exists is h’ > h. With consideration of 
the rotation of the slip systems. the condition mentioned above becomes h’K > h. Since K can be significantly less than I 
when stress UI I is of the same order as h (and cos 2d > 0). the crystal seems to be much more stable with respect to loss of 
uniqueness under those conditions. 

When d > 45”. the inequality for the case that slip system I is active and that slip system 2 is inactive is 

I h - h’K 
or?= --jhth’K’anZQti,, 

and the inequality for the case that slip system 2 is active and that slip system I is inactive is 

tA7) 

When h and h’ are much larger than UII, the value of K approximately equals I; the rotation of the slip system can be 
neglected. When h and h’ are comparable to UII, K can be larger than I (cos 24 < 0); the crystal is more unstable as far as 
loss of uniqueness (when h’K > h) is concerned. 


