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ABSTRACT 

AN EXACT asymptotic analysis is presented of the stress and deformation fields near the tip of a quasi- 
statically advancing plane strain tensile crack in an elastic-ideally plastic solid. In contrast to previous 
approximate analyses, no assumptions which reduce the yield condition, n priori, to the form of constant in- 
plane principal shear stress near the crack tip are made, and the analysis is valid for genera1 Poisson ratio 1~. 
Specific results are given for v = 0.3 and 0.5, the latter duplicating solutions in previous work by L. I. Slepyan, 
Y.-C. Gao and the present authors. The crack tip field is shown to divide into five angular sectors of four 
different types; in the order in which these sweep across a point in the vicinity of the advancing crack, they 
are: two plastic sectors which can be described asymptotically (i.e., as r + 0, where r is distance from the crack 
tip) in slip-line terminology as ‘constant stress’ and ‘centered fan’ sectors, respectively; a plastic sector of non- 
constant stress which cannot be described asymptotically in terms ofslip lines; an elastic unloading sector; 
and a trailing plastic sector of the same type as that directly preceding the elastic sector. Further, these four 
different sector types constitute the full set of asymptotically possible solutions at the crack tip. As is known 
from prior work, the plastic strain accumulated by a material point passing through such a moving ‘centered 
fan’sector is O(ln r) as r + 0; it is proved in the present work that the plastic strain accumulated by a material 
point passing through the ‘constant stress’ sector ahead of a growing crack must be 6ess sinyular than In r as 
r -+ 0. As suggested also in earlier studies, the rate of increase of opening gap 6 at a point currently at a 
distance r behind, but very near, the crack tip is given for crack advance under contained yielding by 

1 . 
h = aJ/r~~+~(o,/E)ci ln(R/r) 

where a is crack length, o. is tensile yield strength, E is Young’s modulus, J is the value ofthe i-integrai taken 
in surrounding elastic material, and the parameters c( and R are undetermin~ by the asymptotic analysis. 
The exact sohttion for v = 0.3 gives g = 5.462, which agrees very closely with estimates obtained from finite 
element solutions. An approximate analysis based on use of slip line representations in all plastic sectors is 
outlined in the Appendix. 

1. INTRODUCTION 

INITIAL investigations of plane strain crack growth in elastic-ideally plastic materials 
(RICE, 1968, 1974; CHEREPANOV, 1974) elucidated some prominent features of the 
problem, most significantly that the strain possesses a weak singularity proportional to 
the logarithm of distance as the crack tip is approached. A full asymptotic solution for a 
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growing crack in an elastic-ideally plastic solid under plane strain conditions was first 
obtained by SLIZPYAN (1974) for a Tresca material, and solutions for a Huber-Mises 
material were developed later but independently by GAO (1980a) (for Poisson ratio 
v = 0.5 only), and by RICE, DRUCAN and SHAM (1980). The latter work extended and 
corrected, by inclusion of an elastic unloading zone, the earlier RICE and SORENSEN 
(1978) analysis, which assumed the stationary Prandtl configuration to be maintained 
at a growing crack. However, as commented by RICE (1982), some errors remain in the 
Rice, Drugan and Sham results presented for v # 0.S ; the fully correct solution is given 
here. Slepyan and Gao treated the steady-state crack growth problem only; Rice, 
Drugan and Sham considered general, non-steady growth and amplified their 
asymptotic results by estimating some parameters that are left undetermined in the 
asymptotic analysis, via comparison with a numerical finite element solution. 

The present paper provides an exact asymptotic analysis, within ‘small strain’ theory 
(neglect of deformation effects on stress measures and equilibrium equations), of the 
stress and deformation fields near the tip of a growing tensile crack under plane strain 
conditions in an elastic-ideally plastic isotropic Huber-Mises solid for general V, 
obtaining specific results for the v = 0.3 and v = 0.5 cases. The analysis presented 
utilizes a framework developed by RICE (1982) for determining the class of stress and 
deformation rate fields which are admissible, asymptotically, at a quasi-statically 
advancing crack tip. That work was done for arbitrary deformation modes (plane 
stress, plane and anti-plane strain; tension and/or shear) in materials of arbitrary yield 
condition and associated flow rule, including anisotropic response. Here we present 
concisely the results of Rice’s asymptotic analysis for the present case of plane strain, 
isotropic response obeying the Huber-Mises yield condition and the {associated) 
Prandtl-Reuss Row rule. We then show how the various near-tip sectors are assembled 
to solve the tensile crack problem. 

Figure 1 illustrates the geometry of the problem. Cartesian coordinates x ,, .x2, .yj are 
chosen so that .x1 points in the direction of crack growth, with a being the measure of 
crack length, and .Y~ is parallel to the crack front. Polar coordinates r, 0 lie in the .x1, x2 
plane, are centered at the crack tip and move with it through the material, B being 
measured from the line ahead of the crack. This polar system has the corresponding 
unit vectors e in the radial direction and h in the angular direction. Evidently then 

where 

&/2x, = r,. tvf(?x, = hJP, (I.11 

ei = h, = cos 0, ez = - 12, = sin 8, Q3 = h, = 0. (1.2) 

FIG. 1. Cartesian coordinates xl, x2, x3 are fixed in the body ; polar coordinates I, 0 are centered at the tip and 
move with it through the material during crack growth. 
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Greek indices CI, j3, y, 6, used here and subsequently, have range 1,2 only; Latin 
indices i,j, k, 1 will be understood to have the range 1,2,3 ; both types ofindex follow the 

summation conventjon and are always understood to index Cartesian (but never polar) 
components of various vectors or tensors. 

2. FORMULATION FOR PLANE STRAIN ASYMPTOTIC ANALYSIS 

In this section the equations describing plane strain deformation of an isotropic 
elastic-ideally plastic solid are presented in the forms to which they reduce very near 
the tip of a quasi-statically extending crack, by specializing the results of RICE (1982). 
For plane strain deformation, uj = 0, sji = 0 and gSa = 0, where ui are the displace- 
ment components, sij is the infinitesimal strain tensor and oij (= aji) is the stress tensor. 

The equations of plane equilibrium, 

aa.8/axp +f, = 0, 

phrased in terms of the crack tip polar coordinate system via (l.l), are 

(~~~~/~~~(~~/~) + (~~~~/~~)e~ +fa = 0 (2.1) 

wheref, is the body force vector. Multiplying (2.1) by r, it is evident that r(&,P/3r)eS + 0 
and I-~ + 0 as r + 0, the former since stresses are necessarily bounded in the elastic- 
ideally plastic model being treated. Thus equilibrium very near the crack tip (1. --+ 0) 
requires 

where 
ha& = 0, (2.2) 

and thus restricts only the ~-variations of stress components. Using (1.2) these 
equilibrium conditions can be written out as 

ezflil = e,&, ezo;2 = ei&, 

or in terms of the polar coordinate stress components as 

(2.3) 

(irr - @@@ + r3:e = 0, 2cr,,+& = 0. (2.4) 

Expression of the three independent components (11, 12,22) of a& in terms of any 
one is possible by (2.3), and this enables one to show (RICE, 1982) that the scalar product 
of an arbitrary tensor Hij with oij is expressible as 

OijHij = (~‘&ie&Y,,+&H33 L= (c)Ii +&JH,,+&,H,,, (2.5) 

whenever Crij satisfies the equilibrium equations, where H,, = eiejHij is the radial, on- 
diagonal component of Hip (Note that the repeated P indices do not imply summation : 
r denotes radial direction.) 
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2.2 Elastic-plastic stress-strain relations 

Material points near the tip of a growing crack are subjected to a highly non- 
proportional loading history, necessitating the use of an incremental plasticity theory 
which is expressed here in terms of rates. The rate of deformation is defined as 

Dij = ~(i3ui/axj + ihj/axJ, (2.6) 

where ui are the components of material velocity. For material which is currently 
experiencing elastic-plastic deformation, the rate of deformation is assumed to be given 
by the Prandtl-Reuss flow rule 

(2.7) 

where E is Young’s modulus, v is Poisson’s ratio, the superposed dot denotes time rate 
at a material point, A > 0 is an undetermined parameter and sij = ciij--bija,,/3 is the 
deviatoric stress tensor. For material which currently experiences only elastic 
deformation, whether or not it has previously deformed plastically, (2.7) applies with 
A = 0. Writing oij k aij(r, 8, t), the stress rate may be calculated as 

6ij = (aoij/atl)8+ (aa,pt+)i+cb,jat 
= (a~ij/ae)(ezci/v)-(ao,j/aP)(e,ti)+c?ffij/at, VW 

since due to crack growth and hence translation of the crack tip polar coordinate 
system, 0 = e,b/r and 3 = -e,L Multiplying (2.8) by r and assuming further that 
raoij(r, 0, t)/& --, 0 as r -+ 0, one obtains 

rciii -+ &e@ as r -+O. (2.9) 

This result shows also that in near-tip angular sectors in which Cartesian stress 
components vary with 0, stress rates and thus elastic strain rates are singular as d/r. Use 
of (2.9) permits the Prandtl-Reuss flow rule (2.7) to be written in the asymptotic form 

r(Dij-Asij) --) 
l+V 
E o{~- JL &,c& ii sin 0 as r + 0. 

E 1 
(2.10) 

2.3 Yield condition 

The Huber-Mises yield condition is assumed, namely 

f(Oij) = s,s,J2 - k2 = 0 (2.11) 

where k is the shear strength. The analysis is clarified by adopting a differential form of 
this yield condition 

s,j(ao,j/as) = 0, (2.12) 

which also holds in all plastic regions of the body. As I --)r 0, this condition requires 

sijo:j = 0, (2.13) 
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which can be rewritten via (2.5) as 

@;I +Q’,,)s,,+&s,, = 0, 

to be satisfied in all near-tip angular regions of plastic response. 
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(2.14) 

2.4 Restrictions on the asymptotic deformation rate$elds 

2.4.1 Plane strain condition. The plane strain condition ~~~ = 0 (or D,, = 0) permits 
determination of out-of-plane deformation quantities. Since es3 = F& + s;,, the 
condition requires that 

showing that cg, must be bounded everywhere. Furthermore, DsJ can be determined by 
taking the material time derivative of (2.13, which, via (2.9), becomes 

rDP,, = ~69~ --+ -[aT;3-v(~;1 +a&)]d sin 0/E as r --+ 0. (2.16) 

Thus Dp33 N G/r as r + 0 even though we have shown .ss3 to be bounded. This suggests 
that if DC - d/r as Y + 0 in a plastj~ally deforming sector, the contribution to the 
corresponding ~5 from that sector will be bounded (except if D$ - h/r as r -+ 0 along 
U = 0). That this is indeed true is easily proved by integrating lI$ = &Fij(EI)/r [Fij(0) 
arbitrary] at a material point when a is increasing continuously with applied loading; 
this integration is accomplished (RICE, 1974) by using t? = e,d/r to substitute for d 
(when H # 0): 

s;= S’D$dT=S’ s [LiFij(@)/r] dr = [Fij($)/sin 41 d4 

which is evidently bounded as r + 0. 

2.4.2 Consequences of plastic incompressibility and the yield condition. Deformation 
rates near the growing crack tip are given by the asymptotic form (2.10) of the Prandtl- 
Reuss flow rule, which in plastically deforming sectors contains the undetermined 
parameter A. Restrictions on the near-tip deformation rate field which do not involve 
this unknown parameter are sought. RICE (1982) showed that two such restrictions can 
be found, which, in the present case, specialize to 

~~~/~~ + ~(rv~)/~r + (1 - 2~)~~~~ sin G/E as r + 0, (2.17) 

r(~v~/~r)(~~ 1 + ~7;~) -+ [(CT; I -t c+& - 2v((i; 1 + (~)2&& 

+(&)*]d sin B/E as r + 0. (2.18) 

Condition (2.17) arises from plastic incompressibility (inherent in the adoption of the 
Prandtl-Reuss flow rule), and is obtained by taking the trace of (2.10). Condition (2.18) 
results from first multiplying (2.7) by raaij/a8, noting that the term rAsijdoij/dO = 0 
always (because A = 0 in elastic regions and because (2.12) holds in plastic regions), and 
then by letting r --, 0 and making repeated use of (2.5). 
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3. CHARACTERIZATION OF NEAR-TIP ANGULAR SECTORS 

3.1 Stress and dgformation-rate,fieids in currently elastic sectors 

The governing equations for an asymptotic sector whose current response is purely 
elastic are the equilibrium equations (2.3), the plane strain condition D,, = D;3 = 0, 

the deformation rate expression (2.10) with A = 0, and since the formulation is in terms 
of deformation rate, the requirement that the deformation rate field be compatible with 
a velocity field, 

i;2D,,/i3x~ +L7’Df ,/3x; = 22’D,,/?_x,~x,. (3.1) 

Since cij varies with 8 at the tip and Dij is proportional to &ij in an elastic sector, it is 
evident (see 2.10) that vDij approaches a bounded function of 8 at the tip, i.e., that 
Dij N liFij(0)/r as r + 0. RICE (1982) showed [equivalent results were first obtained by 
SLEPYAN (1974), and later, but independently, by GAO (19XOa) and by RICE, DRUGAN 
and SHAM (1980)] that the most general expression of this type satisfying (3.1) must be 
such that F,, (= e,ejFij) satisfy d2F,JdU2 + F,,. = 0, and that the most general possible 
form of velocity and stress fields in a currently elastic sector is therefore 

VI = &A, In /r sin @/I?/ -~~~~~~(~)/sin N]dtl, 

21~ = &A, In /r cos H/R/ + &JIFzz(tl)/cos @Jd0l, 
(3.2) 

to within arbitrary rigid motion, where A, and A, are constants, R is an undetermined 
length parameter, 

and 

FII(Q) = (cos2 0-v)(A, cos B+A, sin a)/(1 -v), 

F,,(O) = (sin’ 8-v)(A, cos H+A, sin fl)/(l -v), 

MC 11 = 4A, In/sin 01 +A, cos 2~+A~(2~+sin 28)+C,,, 

Ma 12 = A,(20+sin 20)-A, cos 211+C,,, 

MU 22 = -A, cos 28+A,(2Gsin 28)+C,,, 

033 = ~(~11 +cr,,)+d 

(3.3) 

(3.4) 

where M z 4(1 -v’)/E and C, 1, C12, C,, and d are constants of integration. 

As noted by RICE (19821, it is convenient to divide consideration of plastically 
deforming near-tip sectors into two classes: sectors in which ss3 + 0 as T -+ 0, and 
sectors in which sX3 # 0 at r = 0. (This analysis was developed to permit exact 
asymptotic treatment of the general case of elastic compressibility ; for the special case 
of elastic, as well as plastic, incompressibility (v = l/2), .sj3 = 0 everywhere.) 

3.2. t Plastically deforming sectors in which sS3 --t 0 as r -+ 0. RICE and TRACEY (1973) 
showed that in asymptotic plastic sectors in which sX3 -+ 0 as r + 0, the equilibrium 
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equations (2.4) and the Huber-Mises yield condition (2.11) permit only two types of 
plastic sector. This is obvious immediately from (2.14), which now reduces to 
(0; I + &)s,, = 0 so that solutions are of the types (i) Q; 1 + G& = 0 and (ii) s,, = 0. 
After a little analysis these are seen easily to correspond to : 

(i) constant stress sectors, in which flI1 = constant, or2 = ~~~ = constant, and 
flz2 = constant, 033 = (c-~rr +0,,)/2, where these constants must satisfy the yield 
condition, and 

(ii) centered fan sectors, in which 

B r@ = kk, 

o- ,r = (T** = 633 = constant + 2kOi. 
(3.5) 

The sectors are so named because their (asymptotic) stress fields are the same as those of 
constant stress and centered fan sectors, respectively, in plane strain rigid-plastic slip 
line theory. 

Following RICE (1982), the structure of the velocity field in a centered fan sector can 
be determined from (2.17) and (2.18) since oij are completely specified by (3.5) [choosing 
the sign appropriate for a crack under Mode I tension, i.e., c&, = (cT;~ +&)/2 = 
- 2k]. Regarding (2.17) and (2.18) as equalities sufficiently close to the crack tip, they 
may be integrated to give (apart from rigid motions) 

u, = (5 - 4v) (k/E)h sin 0 In (R/r) + $(0, t)/S, 

~0 = -(5 -4v)(k/E)ci[(l/J2)-cos 81 ln(R/r) (3.6) 

+ C-5 -4~) - 6( I- 2v)] (k,‘E)h[( l/,/2) - cos 0-j --f(S, t), 

where f(@,t) is a function of integration that is undetermined by the asymptotic 
analysis; (3.6) are valid for a fan beginning at 0 = z/4, which will be the case in our 
solutions. These equations permit determination of the deformation rates to 0(1/r) in a 
centered fan sector which begins at 0 = n/4: 

D,, = &Jar = -(5 -4v)(k/E)(@)sin 0, 

Dee = (l/~)(a~~/a~ + Y,) = [(5 - 4~) - 6( 1 - 2v)] (k/~)(~~r) sin 8, 

D,, = (1/2~)(~~~/~e - vs) + (1/2)(~~~/~r) (3.7) 

= [(5 - 4v)/d2](k/E)(+2r) ln (R/r) 

+ 6( 1 - 2v)(k/E)(ti/2r) [( l/42) - cos (II+ (l/24 ra2f(e, t)/802 +f(O, t)], 

D,i = 0. 

RICE and SORENSEN (1978) and RICE, DRUGAN and SHAM (1980) have calculated the 
velocities and deformation rates in such a centered fan sector, and although their forms 
are the same as those presented here, their coefficients are incorrect due to an erroneous 
limit calculation, as discussed by RICE (1982). Namely, they have 2(2-v) instead of the 
correct value of (5 - 4v), and in their expressions a factor of 4 precedes (1 - 2v), while the 
correct factor is 6. [Note that for v = l/2, (5 -4~) = 2(2-v) and (1-2~) = 0, meaning 
that the aforementioned results reduce to the correct expressions in the case v = l/2.] 
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3.2.2 Plastically deforming sectors in which s 33 # 0 at r = 0. In such sectors the plane 
strain condition D,, = 0 facilitates immediate determination of the parameter A from 
the 33 component of (2.7) 

A = -[&33- v(&, 1+ ~z*M~%3) 

so that the in-plane deformation rates satisfy 

(3.X) 

-(vJxp +s,~/s~~)cJ~~]~~ sin O/E as r + 0. (3.9) 

It is therefore evident that D,, - b/r as Y -+ 0, so that by the arguments of Section 2.4.1, 
only bounded contributions to the plastic strain will accrue from ss3 $ 0 sectors. RICE 
(1982) showed, through an argument analogous to that preceding (3.2), that for (3.9) to 
be compatible, that is, to satisfy (3.1), the stresses must satisfy, as r -+ 0, 

[ 1+ v(sr,/s3 Jj (c& + o&J - [IJ + (s,,./s~~)]cT;~ = [B, cos N/sin Q + BJ E (3.10) 

where B, and B, are constants. Thus the four independent, non-zero stress components 
in a sector with sgJ # 0 are governed by four first-order ordinary differential equations 
as r -0: the equilibrium conditions (2.4), the yield condition (2.14), and the 
compatibility condition (3.10). If B, = B, = 0, it is straightforward to prove that the 
only solution form to these equations is @ii = constant; for (Bi, B,) different from (O,O), 
a closed form solution to these equations could not be found, necessitating numerical 
solution. The near-tip velocities in an s 33 # 0 sector were shown by RICE (1982) also to 

have the forms (3.2), with (B,, B,) replacing (A,, AZ) and with F, ,(N) and Fz2(t)) given 
not by (3.3) but, rather, by equating the 11 and 22 components of the right side of (3.9) to 
dE,,(8) and X,,(0), respectively. 

4. EXACT ASYMPTOTIC S~LUTIOWS FOR CRACK TIP FIELDS 

4.1 General re~aireme~ts 

An acceptable solution for the asymptotic stress and deformation fields near a crack 
tip must consist of a configuration of angular sectors, composed from the class of 
possible sectors enumerated in Section 3, and meeting certain symmetry, continuity 
and boundary conditions. In particular, since we consider Mode I (tension) loading, 
symmetry about the crack line requires 

c&(O) = ~~~(0) = &(O) = vi(O) = 0, G,@(O) = o,(O) = 0. (4.1) 

Tractions (i.e., cr,, and case) and displacements (1ci, tlz) must be fully continuous along 
radial sector boundaries, and the crack faces must be traction-free, 

cT,e(71) = a&j(n) = 0. (4.2) 

Furthermore, in all regions of ongoing plastic deformation, the resulting stress and 
deformation fields must produce non-negative plastic work, A 2 0. 

We first review the assembly of sectors when v = l/2. Then, following a critical 
observation by GAO (1981) (whose work in other respects we disagree with sub- 
sequently), we show the assembly for v < f/2 and give specific results for v = 0.3. 
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4.2 Exact solutions for v = 0.5 
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Asymptotic solutions of the near-tip fields for the special case of v = 0.5 (full 
incompressibility) were obtained by RICE (1967) for the stationary crack, and 
independently by SLEPYAN (1974) (for a Tresca material, which coincides with a Huber- 
Mises material when v = 0.5), GAO (1980a) and RICE, DRUGAN and SHAM (1980) for the 
growing crack. The near-tip field is in general comprised of only three types of 
asymptotic sector in this case since sj3 = 0 ; the yield condition (2.11) reduces to 

(oBO - 0,,J2/4 + n,$ = k2. (4.3) 

The two possible types of asymptotic plastic sector are centered fan and constant 
stress. The stress fields in these sector types are as given in Section 3.2.1 whether the 
crack is stationary or growing quasi-statically, since in both cases these stress fields are 
statically determinate, being governed by equilibrium (2.4), yield (4.3), and sj3 = 0. The 
stress field in an elastic sector near a stationary crack may in general be of different form 
from that in an elastic sector near a growing crack. 

4.2.1 Stationary crack solution. If in addition to the requirements of Section 4.1, it is 
assumed that yielding completely surrounds the stationary crack tip (i.e., no elastic 
sectors as Y -+ 0) a possible asymptotic solution is given by the Prandtl field of Fig. 2 
(RICE, 1967). Regions A and C are constant stress sectors, and Region B is a centered fan 
sector. This is the only possible near-tip solution for a stationary crack with Mode I 
tension loading ahead of the crack (azz > 0 on 8 = 0), if attention is limited to filly 
continuous stress fields (i.e., err continuous as well as ~~~ and a,,) and ifit is assumed that 
yield is met at all angles about the tip. The Prandtl field seems to be reasonably 
substantiated as the limiting asymptotic field for well-contained yielding by its close 
correlation to the finite-element numerical small-scale yielding results of LEVY et al. 
(197 l), RICE and TRACEY (1973) and many subsequent investigators, and by its status as 
the non-hardening limit of the HUTCHINSON (1968) and RICE and ROSENGREN (1968) 

singularities for power-law strain hardening materials. On the other hand, many 
solutions are known for the general yielding range from plastic limit analysis (e.g., 
MCCLINTOCK, 197 1) ; these do not always show crack tip fields identical to the Prandtl 
field and, indeed, in cases for which they differ one observes sub-yield sectors and 
possible discontinuities in arr. 

4.2.2 Growing crack solution. As discussed above, the admissible forms of the stress 
fields in near-tip plastic sectors are the same for stationary and growing cracks when 
v = 0.5. Thus if it is assumed, as was done for the stationary crack, that material at all 
angles about the crack tip is deforming plastically, one might expect the same Prandtl 

135” 
X2 

I__ a & 

B 45” 
C A 

x, 

FIG. 2. The Prandtl stress field, represented in terms of slip lines, as a near-tip solution for a stationary crack 
under tensile loading. 
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field to persist at a growing crack tip. A number of previous investigators (RICE, 1968, 
1974; CHEREPANOV, 1974; RICE and SORENSEN, 1978) did make this assumption, failing 
to notice, as pointed out by RICE, DRUGAN and SEIAM (19X0), that the deformation field 
associated with such a moving Prandtl configuration produces a Iine of negative plastic 
work at 8 = 3n/4, the boundary between Regions B and C in Fig. 2. The radial velocity 
component on the fan side of this boundary, from (3.6) is a, _ -In r -+ + CC as r -+ 0, 
while on the constant stress side u, is necessarily bounded. Thus this velocity jump 
corresponds to a negative shearing, but CT,.@ is positive on the discontinuity line, 
resulting in negative plastic work. Consequently the Prandtl configuration is ruled out 
for a growing crack due to the positive plastic work requirement. 

Now since the Prandtl field is the unique asymptotic solution corresponding to a 
filly c~n~in~~~s stress field under the assumption of plastic response at all angles about 
the crack tip, and since allowing tangential stress (g,,) discontinuities would not 
eliminate the situation of a fan bordered at the rear by a constant stress sector, it is 
evident (as in SLEPYAN, 1974; GAO, 1980a; RICE, DRUGAN and SHAM, 1980) that the 
assumption of continued plastic response at all angles about the crack tip must be 
relaxed for the growing crack. An additional observation is that the Prandtl 
configuration exists, apparently, under contained yielding conditions, for increments of 
load applied before crack growth begins and also after it stops. Thus a solution for the 
growing crack might be expected plausibly to resemble somewhat the Prandtl 
configuration while eliminating that configuration’s negative plastic work region. 

These considerations of non-negative plastic work imply the necessity of a sector of 
currently elastic response bordering the rear of a moving centered fan sector. Such an 
elastic sector cannot extend all the way to the crack flank since, referring to (3.4), (rl I + 
-In 1 sin 8 1 as 0 -+ 71 (attempted solution of this configuration shows A, # 0), indicating 
that yielding will again occur before 0 attains the value n. Another way to observe the 
necessity of a zone of further plasticity adjacent to 0 = r~ is to note (RICE, DRUGAN and 
SHAM, 1980) that a moving fan produces ~7~ ---f - XI as r -+ 0; this requires a trailing 
zone of reversed yielding because otherwise a material particle would emerge from the 
crack tip region possessing plastic strain ET l varying with _y2 and becoming unbounded 
as .x2 -+ 0, hence producing residual stress @I 1 in excess of yield. Thus the form of 
asymptotic configuration suggested by these considerations is a modified Prandtl 
configuration, possessing a sector of currently elastic response interposed between the 
centered fan and trailing constant stress sector, Fig. 3. A solution having this form does 
indeed exist, with ot, = 112.08” and tJZ = 162.10”. Figure 3 has been drawn to 
correspond to these angles. This solution was determined independently by SLEPYAN 
(1974) for a Tresca material (which coincides with a Huber-Mises material when 

FIG. 3. This modified Prandtl stress field is an exact solution of the near-tip fields for a growing tensile crack in 
fully incompressible (v = 0.5) material. 
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v = 0.5), by GAO (1980a) and by RICE, DRUGAN and SHAM (1980). It is not known 
whether the modified Prandtl field of Fig. 3 is the only asymptotic growing crack 

solution possessing full stress continuity for v = 0.5, although we have been able to rule 
out several other assemblies of angular sectors. 

More results for the case v = 0.5 are given subsequently. 

4.3 Exact growing crack solution for v < 0.5 

4.3.1 General analysis. The region near the tip of a growing plane strain crack in an 
isotropic elastic-ideally plastic solid with v < 0.5 may in general be comprised of the 
four types of asymptotic angular sectors discussed in Section 3 : sectors of purely elastic 
current material response ; plastic sectors of either centered fan or constant stress type, 
where in both cases ss3 + 0 as r + 0; and non-singular plastic sectors in which s33 # 0 
at r = 0. An acceptable solution must consist of a configuration containing some or all 
of these sector types which satisfies the requirements of Section 4.1; we make the 
additional assumption that the tangential stresses are also continuous, so that full 
continuity of all stress components is required. 

It is anticipated that the solution sought will have many features similar to the exact 
v = 0.5 growing crack solution, since it must approach that solution as v + 0.5. A 
configuration identical to that of the v = 0.5 solution, Fig. 3, cannot be a solution for 
the general v < 0.5 case, since continuity of ss3 across both boundaries of the elastic 
unloading sector cannot be met. The configuration in Fig. 4 was first hypothesized. It 
differs from the configuration of Fig. 3 in that the trailing plastic constant stress sector is 
replaced by a plastic ss3 # 0 sector. This change permitted a solution with a fully 
continuous stress field satisfying the non-negative plastic work condition everywhere. 
However, as was pointed out by GAO (198 l), this solution possesses the unacceptable 
feature that the stress field in the elastic unloading sector violates the yield condition in 
a small angular region directly behind the fan, This fact necessitates the introduction of 
a fifth angular sector, of the plastic sX3 # 0 type (this plastic sector could not be of the 
constant stress type due to non-negative work requirements, see Section 4.2.2), directly 
following the centered fan region ; this configuration is illustrated in Fig. 5. A solution 
possessing fully continuous stresses and satisfying all of the requirements delineated in 
Section 4.1 (and for which the elastic sector stress field nowhere violates yield) has been 
found having the configuration of Fig. 5. The means of determining this solution will 
now be discussed. GAO (198 1) proposed a solution with this same configuration but, as 

FIG. 4. This configuration was first hypothesized as a potential solution configuration for the v < 0.5 general 
case, since it permits a solution possessing a fully continuous stress field which produces positive plastic work 
everywhere. However, this configuration must be modified since the yield condition is violated for 0 in the 

elastic unloading sector, C, near 0,. 



458 W. J. DRUGAN, J. R. RICE and T-L. SHAM 

FIG. 5. The exact solution of the near-tip fields for a growing crack in material with Y = 0.3. This 
configuration results for general v < 0.5 except that the angular locations of the sector boundaries (N,, O,, 0,) 

vary with v, especially O,, which approaches 8, as v --t 0.5. 

discussed later in this section, his boundary locations and deformation fields are 
incorrect due to an unjustified enforcement of full velocity continuity at 0 = n/4. 

Referring to Fig. 5, Regions A and B are s33 = 0 plastic sectors of the constant stress 
and centered fan types, respectively. The general forms of their stress fields have been 
determined in Section 3.3.1. The stress field in Sector I3 is that corresponding to positive 
c7r0 in (3._5), namely 

Q,6 = k, 
(4.4) 

@W = 088 = (133 - - C,-2k#, 

where C, is a constant, as yet undetermined. In Sector A all Cartesian stress 
components are constants, chosen to satisfy (4.3)-the Huber-Mises yield condition 
with ss3 = 0. Mode I symmetry requires oi2 = 0 in this sector, so continuity of trrO 
across the boundary between Sectors A and B requires this boundary to be at 0 = n/4. 
Continuity of the remaining stress components across this boundary specifies the full 
stress field in Sector A in terms of Cr, which remains undetermined : 

0 11 = C,-k(l +7c/2), 

ET 22 = C,+k(l -z/2), 

ff - 0, 12 - 

(4.5) 

The velocity field in a moving centered fan which begins at H = n/4 is given by (3.6), 
where continuity of u, across 8 = n/4 was enforced, requiring the coefficient of the 
In (R/r) term of the expression for V, in the fan to vanish there since velocity components 
are less singular than In r in Sector A (see Section 5, where it is also proved that a, must 

possess a discontinuity across H = 7c/4). Note that the coefficients of the ln (R/r) terms in 
these centered fan velocity expressions are thus completely determined. Therefore, fufl 
velocity continuity across G1 permits B,, B, of Sector C to be completely specified in 
terms of 0, : 

B 1 = - [(S - 4v)/J2] (k/E) sin N,, 

B, = - [(5-4~)~~2](k~~)(~2-cos 0,). 
(4.4) 

Furthermore, full velocity continuity across e2 and 0, requires that (A,, AZ) of Sector D 
be equal to (B,, B,) of Sector C and to (B,, B,) of Sector E, so that all three pairs of 
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constants are identical and are given by (4.6). Thus the velocity components in Sectors 

C, D and E will all be of the form (3.2), with (A,, A,) equal to (B,, B,) of (4.6). 
Sectors C and E are of the sj3 # 0 non-singular plastic type. In such sectors, as 

analyzed in Section 3.2.2, the four stress components crrr, rrrO, ooO, ~~~ are governed by 
four first-order ordinary differential equations: (2.4), (2.14) and (3.10). As noted, an 
analytical solution to this system for the general case of (B,, BJ different from (0,O) 
could not be found ; hence a Runge-Kutta numerical scheme was employed to solve 
these equations in Sectors C and E. To this end, the governing differential equations 
were recast in the following form 

0:s = 2(%-O), 

oQe = - 2o,o, 

cr’ = 2Es&(B, cos B/sin I!+B,)/[~~$,+~vs,,(~~-~u,,-s,,) 
(4.7) 

+ (20 - 2% - %,)21> 

s;s = - 4(a- %)~‘/(3s,,), 

where r~ = (err+ CT,,)/~ and (B,, B,) are given by (4.6). Noting that (4.7) are independent 
of hydrostatic stress, C, was set equal to zero for purposes of calculation and chosen 
later to satisfy the condition o&n) = 0. 

Sector D experiences purely elastic current response ; as discussed in Section 3.1, the 
stress field in such a sector is given by (3.4) where in this case (A,,A,) in those 
expressions equal (B,, B,) given in (4.6). 

Now, the determination of the three unknown boundary angles Oi, Q2, 8, of Sectors 
C, D and E in Fig. 5 for a specific v value constitutes a two-parameter shooting problem, 
with the two independent parameters being 8, and 8,. The following iteration 
procedure is employed : initial guesses are made for 0r and 8,. Knowledge of 0, permits 
full specification of stresses at that boundary from (4.4) with C, set equal to zero as 
discussed. Enforcing full stress continuity, a complete set of initial conditions is thus 
known to begin the numerical integration of (4.7) through Sector C ; however, s33 = 0 
at B,, meaning that (4.7) cannot be applied directly at 8, but that Taylor series 
expansions of the stress components about 0, are necessary to start the integration. 
These expansions for 8 > 8, are, to 0[(&0,)3] of (4.7), 

ure = k - 
(5 -4v)2k 

48(1-2~)’ sin2 H, 
(G/3,)4+ . ..) 

(5 - 4v)2k 
hoe = -2ke,-2k(o-d,)+ 120(1_2v)2 sin2 01(8-Ws+ . ..y 

(4.8) 

c = -2ktI-2k(B-8,)+ 
(5 -4v)2k 

24(1-2~)~ sin’ 0i 
(Q-0,)“+ . . . . 

(5 - 4v)k 

s33 = 3J2(1-2v) sin 8, 
(e-8,)2+ 

So using (4.8) numerical integration of (4.7) is performed from 0 = 8, + 0. lo to 8 = e2 in 
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increments of O.Of O. This results in values of all the stress components at H2 : enforcing 
full stress continuity across that boundary enables the constants C, it C, Z, C,, and d of 
(3.4), the elastic stress field of Sector D, to be determined. 

Thus (3.4) now fully specify the Sector D stress components in terms of angle 0. These 
expressions are substituted into the yield condition (2.1 l), and 0 is increased from 0, 
until (2.11) is satisfied. This determines the frnaf elastic-plastic boundary 0,. Full stress 
continuity across 8, gives the initial values of the stresses necessary to numerically 
integrate (4.7) through Sector E to 0 = rc. (Note that Taylor expansions are not 
necessary at fl = 8,, since sj3 # 0 there.) The resulting values of sJ3 and (T,” at 0 = 7~ are 
required by (3.10) and (4.2), respectively, to be zero; if they are not, new values for 0, and 
8, are predicted by employing a Newton-Raphson iterative scheme, and the above 
procedure repeated until those conditions are satisfied. C, is then chosen to be the 
negative of the calculated cr,,(n) value, so that the second condition of (4.2) is satisfied. 
Once a solution has been found, the Runge-Kutta integration procedure through 
Sectors C and E is repeated with a different step size to assess the accuracy of the 
results; all results reported in this paper appear to be accurate to the number of 
significant figures presented. 

An expression for asymptotic crack opening rate 6 (where 6 is the opening between 
upper and lower crack surfaces) is now easily obtained : since symmetry about the crack 
line requires fi = 2v,(r, E), the expression (3.2) for n2 in Sector E of Fig. 5 gives 

fi = -2B,b ln(R/r)+2rif[F,,(B)/cos &JdH, (4.9) 

at small distances r behind the crack tip. As discussed above, full velocity continuity 
across 8,,0, and e3 means that (B,,B,) of Sector E are given by (4.6), so that (4.9) 
becomes 

8 = J2(5-4v)(J2- cos B,)(k/E)b In(R/r)+2cij[F,,(O)/cos 01 do. (4.10) 

4.3.2 Specific reseals for v = 0.3. The above analysis was carried out for the specific 
case of v = 0.3, and a solution having 

0i = 110.26”, N, = 123.13”, 0, = 160.38, C, = 5.6778k (4.11) 

was found. [For the stationary crack Prandtl stress field, C, = (1+3rr/2)k = 5.71 k.] 
This solution is illustrated in Fig. 5, which has been drawn to correspond to these 
angles. The sector types in Fig. 5 are described in Section 4.3.1, and the stress fields in 
Sectors A, B and D are given by the equations mentioned there, coupled with (4.11). As 
discussed, the stress fields in Sectors C and E were determined numerically; they are 
presented in Table 1. 

The near-tip stress field of this solution is fully continuous for all angles 8 about the 
crack tip; it is plotted in Fig. 6 along with the Prandtl stress field of the stationary crack. 

GAO (1980b, 1981) has also analyzed the governing equations near a growing crack 
for v < 0.5, assuming steady-state conditions (as opposed to the present treatment for 
general, nonsteady conditions). In the former work, he does not construct a complete 
asymptotic solution, but contends that the solution will have the same asymptotic 
configuration as the v = 0.5 solution of Fig. 3 ; as discussed in Section 4.3.1, the solution 
cannot have this configuration for v -=z 0.5 since full stress continuity is then impossible. 
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TABLE 1. Stressjefd in Sector C (110.26”-123.13”) and Sector E 
(160.38”-180”) of‘exact so~~t~o~~or v = 0.3 (see Fig. 5) 

110.26 

114.35 

118.35 

123.13 

160.38 

164.37 

168.37 

172.37 

176.37 

180.00 

2.479 1.179 

2.438 0.9369 

2.385 0.723 I 

2.308 0.5049 

1.968 -0.00199 

1.978 -0.00088 

1.989 - 0.~26 
1.996 - 0.00004 

1.999 0.0 

2.000 0.0 

- 0.7602 1.829 

- 0.6608 1.703 

-0.5551 1.611 

- 0.4256 1.538 

0.00765 1.284 

0.00415 1.237 

0.00165 1.175 

0.00038 1.105 

0.00002 1.037 

0.0 1.000 

Gao further contends that the plastic strain field in the constant stress sector ahead of a 
growing crack is proportional to In r ; that this is not possible under conditions of full 
stress continuity is proved in Section 5 of the present paper. In the latter work, Gao 
rules out the configuration of Fig. 3 as a solution to the v < 0.5 case, and he constructs a 
complete asympfotic solution having the same assemblage of sectors as in Fig. 5, 

O;j/O-, - - - STATIONARY CRACK 
PRANDTL FIELD 

0” 450 90‘7 I350 f8OQ 

FIG. 6. Comparison ofcrack-tip stress states: dashed lines indicate the solution for a stationary crack (based 
on the Prandtl field of Fig. 2) ; solid lines display the exact growing crack solution (based on the field of Fig. 5) 
for v = 0.3, which contains an elastic unloading sector. Stresses are normalized by tensile yield strength. 
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although his boundary angles differ from ours for the same v value. This difference 
arises at least in part due to an incorrect feature of his solution ; namely, the erroneous 
conclusion arrived at in his prior paper that the plastic strain field ahead of the crack is 
proportional to In r. Further, the fracture criterion proposed by Gao is also based on 
this erroneous strain field ahead of the crack, while not accounting for the 
logarithmically singular plastic strain produced in the centered fan sector. 

5. ASYMPTOTIC PLASTIC STRAIN FIELD 

This section provides the derivations for the asymptotic strain field expressions for 
centered fan regions near stationary and growing cracks given by RICE (1982), who 
corrected similar results of RICE, DRUGAN and SHAM (1980). In addition, it is proved 
that the plastic strain field in the constant stress sector ahead of a growing plane strain 
crack (Sector A of Fig. 5) must be less singular (as r + 0) than that of the adjoining 
centered fan sector (Sector B). 

5.1 Stationary crack 

The plastic strain field in the centered fan region near a stationary crack has the form 

EC = Lij(0)/r (5.1) 

where only the rQ (= 0r) component of Lij(0) is non-zero [and undetermined by the 
asymptotic analysis; RICE and TRACEY (1973) give some numerical results for L,&b))]. 
That (5.1) results near a stationary crack is observed by setting b = 0 in (3.7), giving 

(5.2) 

toO(l/r)asr~Osincevia(2.10)(withA=0)D~j=OtoO(l/r)asr~Owhen~=O.The 

symbol 0(1/r) is defined by 

IrO(l/r)l < nL, as r + 0. 

Writing (5.2) in terms of Cartesian components, 

Dt E irj = ( l/2r)yij(0)[azf(0, t)/dU2 +f(O, t)] (5.3) 

in a centered fan region near a stationary crack ; gij(0) are 

gt ,(0) = - g22(0) = -sin 28, 

Y12(@ = .921(O) = cos 20, (5.4) 

Y3it”) = O. 

Integration of (5.3) with respect to time at a fixed material point gives, to 0(1/r) as r -+ 0, 

~5 = (1/2r)gij(0) 
s 

*” [Pj-(0, zW2 +f(H, z)] d7, (5.5) 
-co 

which has the form (5.1), and we note that the only non-zero components of gij(tl) 
referred to the polar coordinate system are grB(Q) = se,(d) = eigijhj = 1. 
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The components of rDej in the centered fan near a growing crack (Sector B of Fig. 5) 
are given by the right side of (2.10), using (4.4) : 

DR = - 2(2 - v)(k/Q(ci/r) sin 0, 

D& = 6v(k/E)(h/r)sin 8, 

f)& = -2(1-2v)(k/~)(~/~)sin 8, 
(5.6) 

to 0(1/r) as I -+ 0; from these, D$.( = Djj - DFj) can be calculated using (3.7) and the plane 
strain condition (D,, = D53 + I&s = 0) 

DFr = I.$& = -(l - 2v)(k/E)(ci/r)sin 8, 

0,” = D,, of (3.7), 

Ds3 = 2( 1 - 2v)(k/E)(Li/r)sin 8, 
(5.7) 

II’;, = 0. 

Thus in terms of Cartesian components, the plastic strain rates in the centered fan are 

DE = [(S -4v)/(2,,/2)](k/E)gij(8)(+) In (R/r) 

+(l-2v)(k/E)(d/r)[3(1/J2- COS B)gij(0)+(36,,6,j_6ij)sin 01 

+ (lPrkJij(@ Ca2f(Q, we2 +f(e, t)l, (5.8) 

to 0( l/r) as r -+ 0, where gij(0) are given in (5.4). 
To prove that the rate of deformation Dij must be less singular than l/r as r -+ 0 in 

Sector A of Fig. 5, assume as in Section 2.2 that rdaij(r, 8, t)/& -+ 0 as r + 0. Then (2.8) 
can be written as 

ciij = (drTij/M) (e&/r) + O( l/r) as r -+ 0 (5.9) 

where 0( l/r) is defined by 

rO(l/r) + 0 as r -+ 0. (5.10) 

Taking the material time derivative of (2.15) gives 

053 = -D& = -[I&,,-v(c?-,, +CiJJ/Iz (5.11) 

which, via (5.9), becomes 

Dz3 = - [& - v(d; r + aiz)] (sin &J/E) (&/r) + 0( l/r) as r + 0. (5.12) 

Employing (4.4) and (4.5), (5.12) gives for Sector B and Sector A, respectively, of Fig. 5 

D?31B = 2(1-2v)(k/E)sin 0(b/r)+O(l/r) as r + 0, 

#.31,4 = 0(1/r) as r -+ 0. 
(5.13) 

The boundary between Sectors A and B is known from Section 4.3.1 to be 8 = 7114, 
rigorously only at r = 0. Thus, this boundary (call it SAB) can be expressed for 
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sufficiently small P > 0 as 

H = 7c/4 + m(r), (5.14) 

where m(r) is unknown except that m(r) + 0 as r ,+ 0. Now, we require full stress 

continuity across S,, ; using the plastic part of the Prandtl-Reuss flow rule 

DG = As, (5.15) 

continuity of s33 across S,, demands 

s33 = &lB/AH = &I./A, on S,,, (5.16) 

where the subscript A or B denotes the value of the subscripted quantity in Sector A or 
Sector B, respectively. Thus, rearranging and using (5.13) and (5.14), 

Wr) 
AA’AB = Dg3’A’D’3” = 2(1-2v)(k/E)(d/r)sin[n/4+m(r)] +o(l/r) 

Since 

and 

sin Err/4 + m(r)] = (cos [m(r)] + sin [rr~(r)])/~~2 

as r + 0 along S,,. 

(5.17) is 

sin [m(r)] m(r) -----.--_= 0(1/r) as r -+ 0, 
r r 

cos[m(r)] -+ 1 as r -+ 0, 

Thus 

Ail,/& + 0 as r --) 0 along S..,,. 

Next enforce continuity of s,, across SAB ; (5.15) requires 

s,, = &‘&JAB = G’AAIAA on SAB. 

Rearranging and making use of (5.18), 

D:JA/DFrlB = AA/& --f 0 as r + along SAB. 

Now from (5.7) and (5.14) 

D,“,le = -[(l-2v)/J2] (k/E)(ci/r)+O(l/r) as r -+O along S,+,; 

thus (5.20) demands that 

D$lA = 0(1/r) as r -+ 0 along Sin. 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 
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Here, Sin denotes the limit of 8 = 7r/4+m(r)-c as E --* 0; Sin denotes that limit with 
(+ E) replacing (-E). Further, from (2.7), (4.5) and (5.9), 

O;JA = 0(1/r) as r +O (5.23) 

coupled with (5.22) shows 

D,JA = D;& + DrP,j+, = 0(1/r) as r + 0 along S,. (5.24) 

Since D,, = do,/&, it is evident that v, in Sector A must he less singular than In r as r -+ 0 
along S&; comparing this result to the first equation of (3.6) yields the important 
conclusion that v, must undergo a jump across SAB as r + 0. 

Now the plane strain condition D,, = 0 applied to (2.7) specifies A whenever 
sj3 # 0; see (3.8). Applying this expression for Y > 0 in Sector A of Fig. 5, consideration 
of the r-dependence of the stress components (DRUGAN, 1982) shows that the most 
singular behaviour of A possible in Sector A is 

A, - l/r as Y -+O. 

Coupling this result with (2.10) and (4.5) shows that the most singular behavior of Dij 
possible in Sector A is 

DijIA -l/r as r-+0. 

But RICE (1982) showed that for the general field 

D, = dFij(@/r (5.25) 

to satisfy plane strain compatibility, Fjj(6) must meet the restriction 

F,,(8) = C, sin 8+Cz cos 8, (5.26) 

where C, and C, are constants of integration. Applying this to Sector A, symmetry 
about the crack line requires C, = 0, and the result (5.24) demands C, = 0 also. Thus 
F,,(8) z 0. To determine the other components of Fij(61), note that (5.?3) show!: 

DijI, = &IA> (5.27) 

to 0(1/r); thus (5.15) with (4.5) shows F12(0) z 0, and the plane strain condition 
requires F&Q) = 0 so (5.15) also shows F, ,(8) = - FJ6). Finally, since 

F,,(8) = FII(0)cos2 0+2F,,(O)sin 0 cos 0+ F,,(0)sin2 0, (5.28) 

use of the preceding results shows FIl(@) z 0. Therefore, we have proved that 
Fij(Q - 0, and hence that 

I$$ = 0(1/r) as r-+0. (5.29) 

This important conclusion means that, by the arguments of Section 2.4.1, Sector A 
produces only bounded contributions to E$ as I --* 0, except possibly on 0 = 0, where 
(5.29) demands that E& be less si~g~~#r than In r as r -+ 0. 

The jump in u, at the front boundary of the centered fan sector produces a step 
increase in plastic strain. To compute this increase, examine the kinematical conditions 
which must be satisfied at such a moving velocity discontinuity. Denote a jump in a 
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field quantity, say b(r, 8, t), across S,, as 

[I@]] = lim {b(r, 7t/4 + m(r) f F, t) - b(r, n/4 + m(r) - E, t)>. (5.30) 
r-+0 

For the material to maintain its integrity along S,,, U, must satisfy 

CC%13 = 0. (5.31) 

Taking the time derivative of (5.31) following this moving boundary gives, as r -+ 0, 

cca1+ ~~~~2)( - 43) ~[~~~~~~~~ = 0. (5.32) 

From this, the radial velocity discontinuity as r + 0 is 

CC~JI = e,CbJl = (6/J2)e,hsCCau,ldxpll 

= J2Lie,ha[[~(a2.4,~iha 4- aupjax,jy, (5.33) 

since 

Ccau,/ax,l]e, = CC~u,/arll = 0 

via (5.31), so (5.33) reduces to 

Khll = J24Ihll as r -+ 0. (5.34) 

Full stress continuity across S,, means that [[zFj]] = 0, so the result of a jump in u, is to 
produce a jump in .sr” : 

CC4Jl = CC~,III(JW as r -+ 0. (5.35) 

Since U, must be less singular than In r as r --, 0 along SAB in Sector A, the most singular 
term of [[u,.]] is given by the term proportional to in r in the first expression of (3.6); 
thus (5.35) is 

[[.$,,]I = (l/2)(5-4v)(k/E)ln(R/r)+o(ln r) as r +O. (5.36) 

The plastic strain at a material point in the centered fan can be obtained, when a is 
increasing continuously with applied loading, by integrating (5.8) and adding the strain 
accumulated due to the velocity discontinuity, (5.36). Integration of (5.8) is effected 
(RICE, 1974) by using % = e,k/r to substitute for & and by replacing r with y/sin 8 since 
the y-coordinate remains fixed as the crack grows past a material point ; the resulting 
expression is integrated with respect to 8, beginning at 0 = n/4. The final expression is 

sFj = [(5 - 4v)/(242)] (k/E)GJ%) ln (R/r) + O(ln r), (5.37) 

where 

G,,(8) = -G&8) = -2 sin %, 

G12(%) = G,,(8) = ln[tan(%/2)/tan(n/8)] +2[cos %-(l/J2)], (5.38) 

Gsi = 0. 

Note that (5.37) gives the plastic strain at a material point which has passed through the 
constant stress region (Sector A of Fig. 5) and has current location (r, %) in the centered 
fan (Sector B); the plastic strain accumulated by the material point during its passage 
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through Sector A was proved to be at most O(ln r), and therefore does not contribute to 

the first term of (5.37). 
Alternatively, for an equivalent plastic shear strain, yp, defined as (HILL, 1950) 

j” = (20$0$)“2, (5.39) 

using (5.7) one integrates (5.39) in the fan in the manner described above and adds the yp 
accumulated discontinuously at the front boundary of the fan to obtain 

yp = (5-4v)(k/E){ 1+(1/~2)ln[tan(8/2)/tan(~/8)]}ln(R/r)+O(ln r) (5.40) 

at a material point in the fan. 

6. A DUCTILE CRACK GROWTH CRITERION 

The asymptotic deformation field results can be used as the basis for a ductile crack 
growth criterion, as proposed by RICE and SORENSEN (1978) and extended by RICE, 
DRUGAN and SHAM (1980). The crack opening rate expression (4.10) derived in the exact 
v < 0.5 analysis has the same form as that derived by RICE, DRUGAN and SHAM (1980), 

S = fi(o,/E)h ln(R/r)+k (6.1) 

where co = J3k is the tensile yield strength, k is a parameter undetermined by the 
asymptotic analysis but homogeneous of degree one in 6 and in the rate of applied load 
increase, and their exact v = 0.5 analysis gave a = 4.385. (RICE, DRUGAN and SHAM 
(1980) also performed an approximate asymptotic analysis for v = 0.3, from which they 
obtained p = 5.08. This approximate analysis contained an error, however, as 
discussed in Section 3.2.1 and in the Appendix which gives the details of a correct 
approximate asymptotic analysis.) Comparison of (4.10) and (6.1) gives p for the present 

exact v < 0.5 analysis, 

p = (J6/3)(5-4v)(J2-cos e,), 

so using the results of the specific solution of Section 4.3.2, 

(6.2) 

p = 5.462 for v = 0.3. (6.3) 

This corresponds very closely to the p value determined from the numerical finite 
element solution of plane strain crack growth under small scale yielding conditions of 
SHAM (1979) as reported in RICE, DRUCAN and SHAM (1980), where p = 5.4 was given as 
a representative value of data which varied within the range + 1.4% of p = 5.4. A 
recent, more refined numerical finite-element simulation of growth by SHAM (1982), 
discussed subsequently, is also supportive and gives /3 = 5.46 as an average of 
numerical data varying within a + 0.3% range. 

Now since (4.10) has the same form as (6.1), the full development of a crack growth 
criterion from (6.1) by RICE, DRUGAN and SHAM (1980) can be applied to the present 
v = 0.3 exact solution. In particular, they show that (6.1) may be rewritten as 

8 = CY~/,,, + P(o,/E)b ln(R/r), (6.4) 

where i? has been replaced by a new length parameter R which, along with the 
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dimensionless quantity a, is undetermined by the asymptotic analysis ; J is the far-field 
value of the J-integral, taken in surrounding elastic material. For continuous crack 
growth (dJ/da finite), integration of (6.4) results in 

8 = P(c,lE)r 1nW) (6.5) 

very near the crack tip, where 

p = R exp[l +(~/P)(E/a~)(dJ/da)]. (6.6) 

Expression (6.5) shows that there is no opening at a growing crack tip, but that dii/dr is 
infinite there. It is further evident from (6.5) that the parameter p fully characterizes the 
crack profile near the tip ; thus, RICE, DRUGAN and SHAM (1980) proposed p = constant 
as a crack growth criterion, which is the requirement that a geometrically similar near- 
tip profile be maintained for continued growth. They also investigated a crack growth 
criterion based on the attainment of a critical accumulated plastic strain, yp, by all 
material points within a certain small characteristic distance above and below the crack 
tip. It was shown that the resulting differential equation governing growth is identical 
in form to the one resulting from the p = constant criterion, and hence would be 
expected to provide qualitatively similar conclusions. 

The parameters c[ and R were estimated by SHAM (1979, 1982), where two 
independently calculated finite-element solutions for a growing crack under small- 
scale yielding conditions were employed. In the earlier solution, crack growth was 
simulated by repetition of a two-step process: first, the crack tip nodal force was 
incrementally unloaded while maintaining constant external loading; then the external 
loading was increased with the new crack length held fixed. The finite elements 
employed were constant strain triangles, arranged in groups of quadrilaterals [see 
NAGTEGAAL, PARKS and RICE (1974)] in order to relieve the artificial mesh locking 
effects which arise under nearly-incompressible conditions. 

The more recent calculation (SHAM, 1982) simulates crack growth in a more realistic 
fashion ; namely, the external loading is increased simultaneously with the release of the 
crack tip nodal force. This calculation employs four-noded quadrilateral elements, and 
artificial mesh locking effects are handled via the specialization of a modified 
variational principle of NAGTEGAAL, PARKS and RICE (1974) to the element type 
employed. The far-field boundary conditions appropriate to small-scale yielding are 
enforced by embedding the finite-element mesh in the analytically-simulated surround- 
ing continuum. This procedure increases the ratio of the maximum plastic zone size 
obtained to the size of the smallest element employed; specifically, the ratio is 100 for 

this calculation, as compared to 50 for the earlier one (SHAM, 1979). 
The results of these two solutions indicate that for the modest range of tearing 

modulus T[ 5 (E/oi)dJ/da] examined, 0 < T < 20, CI is approximately independent of 
crack growth history [to within 2% variation for the LX values estimated in the SHAM 
(1982) solution] and has the value 

a N 0.6. (6.7) 

As opposed to the SHAM (1979) solution which indicated that the value of a was roughly 
the same for a growing crack as for a stationary crack, the SHAM (1982) solution 
indicates that a is approximately 5% less for the growing crack than its estimated 
stationary crack value. 
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The parameter R was estimated by SHAM (1979) to be given by 

R = sEJ/o; (6.8) 

with s N 0.23 and approximately constant over the limited amounts of crack growth 
simulated. The new calculation of SHAM (1982) suggests that s is not constant, but varies 
within the approximate range 0.11-0.13. However, the source of this variation is not 
well established, and the precise implications for R remain unclear. 

DEAN and HUTCHINSON (1980) and PARKS, LAM and MCMEEKING (1981) have also 
performed finite element calculations for a growing crack under small scale yielding 
conditions. In both of these investigations a special finite-element procedure was 
employed to calculate directly the steady-state solution, and estimates of a and R were 
made. DEAN and HUTCHINSON (1980) reported that p = 4.28 and s = 0.78 would best fit 
the four computed values of the crack opening nearest the tip in their results, while 
s = 0.31 would best fit the same data if b were fixed at 5.08. PARKS, LAM and 
MCMEEKING (198 1) reported the values p = 5.808, s = 0.1824 as representing the best 
fit to their results. Thus, further work appears necessary to clarify the precise value of R 
and its possible dependence on growth history. 

For crack growth under small scale yielding conditions, the criterion p = constant 
means that (6.6) with (6.7) and (6.8), results in a differential equation which specifies the 
behaviour of J in terms of a necessary for continued growth 

dJ/da = (/?/a)(a$E)ln [pa$(seEJ)]. (6.9) 

Here, e is the natural logarithm base, and (6.9) is to be integrated subject to the initial 
condition J = J,, at growth onset. The quantity p is theorized to be a material 
parameter, so from (6.9) materials which can exhibit stable crack growth under small 
scale yielding conditions must have 

p > seEJ,,lo& (6.10) 

since if the value of dJ/da calculated from (6.9) at the J,, point is negative, immediately 
unstable crack growth is expected. For materials which satisfy (6. lo), inspection of (6.9) 
reveals that dJ/da has an initially positive value, so that J increases with continued 
crack growth, causing dJ/da to decrease continually to zero. At dJ/da = 0, crack 
growth persists with no further increase in J; from (6.9), this ‘steady-state’ J is 

J,, = (l/se)po$E. (6.11) 

Thus, stable crack growth under small scale yielding conditions in a material with 
v = 0.3 is governed by (6.9) and (6.1 l), with LX and p specified by (6.7) and (6.3), 
respectively. RICE, DRUGAN and SHAM (1980) show how this fracture criterion can be 
phrased in terms of alternate parameters to J,, and p, permitting various interpret- 
ations more identifiable with other (e.g., microstructural) viewpoints. 

HERMANN and RICE (1980) investigated this model by comparing the predicted J vs a 
curves with those obtained from experiments on a high-strength AISI-4140 steel (gyield 
= 1173 MPa, oUlt. = 1327 MPa), selected for its ability to provide several millimeters 
of stable crack growth under plane strain conditions in a typical specimen before the 
occurrence of general yield. The test geometry was that of a deeply-cracked bend 
specimen, so the ‘deformation theory’ value of the J-integral for this configuration was 
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determined from the measurements ; crack growth ranging from approximately 5 to 
10 mm was produced prior to attainment of general yield. The theoretical J vs a curves 
(calculated using fi = 5.08, CI = 0.65 and s = 0.23) were found to agree reasonably with 
the experimentally obtained curves for the full range of sub-general yield stable crack 
growth, the parameter values giving the best fit to the data being J,, = 35 kN m-l and 
p = 7.2 mm. The latter implies by (6.11) that J,, = 80 kN m ’ which gives a level of an 
apparent plateau in the experimental curves directly prior to general yielding. 
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APPENDIX 

AN APPROXIMATE ASYMPTOTIC ANALYSIS FOR v c 0.5 

RICE, DRUGAN and SHAM (1980) quoted the results of an approximate asymptotic analysis of 
the fields near a growing crack for v < 0.5, stating that the details of that analysis would be 
presented in a future publication. This Appendix provides those details, correcting an erroneous 
limit calculation that their analysis contained as discussed in Section 3.2.1. 

The approximate asymptotic analysis to be discussed differs from the exact v < 0.5 analysis of 
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Section 4.3 due to the approximation made that 

sz3 -+O as I.-r0 (A.11 

at all angles of plastic response near the advancing crack tip. That this is a good approximation 
will be shown explicitly here; RICE, DRUGAN and SHAM (1980) motivated its assumption by 
noting that a plastic strain singularity is expected at a plane strain crack tip and hence that (A. I) is 
rigorously valid at all angles of plastic response at which singular plastic strain is produced. 
Further motivation for assuming (A.l) is the fact that s 33 = 0 everywhere when v = 0.5. 

Making the approximation that (A.1) holds at all angles ofplastic response about the crack tip, 
and hence that the Huber-Mises yield condition reduces to the in-plane form (4.3), permits only 
two possible types of asymptotic plastic sector: the centered fan and constant stress types 
described in Section 3.2.1. Thus the near-tip field must be comprised of at most three sector types, 
the third possible type being the currently elastic sector (Section 3.1); this is the same situation as 
for the exact solution of the field near a growing crack when v = 0.5. The configuration 
representing the solution to that case, Fig. 3, is therefore postulated to result for the present 
v < 0.5 approximate analysis. with the elastic sector boundary angles f),, 0, being as yet 
undetermined. The analysis of the stresses in Sectors A and B of Fig. 3 is identical to that 
described in Section 4.3.1, so that the angle of the boundary between these sectors is 0 = ai4 
(independent of v), and their stress fields are (4.5) for Sector A and (4.4) for Sector B, with C, 
initially unknown. Sector D is assumed to be of the constant stress type; enforcing the crack flank 
boundary conditions (4.2) completely determines the stress field in this sector 

Q33- ? -k jA.2) 

Finally, appropriate continuity conditions must be specified across 8r and 02, namely full stress 
continuity and full velocity continuity. The remaining unknowns in the problem are the elastic 
sector constants A,, A,, C, ,, C, 2, C,, and d [see (3.2)-(3.4)], and 0,) e2 and Cr. Thus the problem 
is overspecified, since there are 10 conditions restricting 9 unknowns (velocity continuity across 
@ = 8, does not constrain these unknowns). This overspecification is the result of assuming (A.l) 
to be true at all angles of plastic response about the crack tip; the explicit effects of this 
assumption are that continuity of cr33 across 0 = f32 cannot be enforced, and that the elastic 
sector stress field is not everywhere below yield. (When v = 0.5, these conditions are satisfied 
automatically, and the present formulation is exact.) These facts indicate that the true solution 
for v < 0.5 must contain angular sectors in which s 33 # 0 at r = 0, as shown in Section 4.3. 
Nevertheless, assumption (A.1) allows for a much simpler analysis to determine approximate 
values for the locations of the rear fan boundary and the elastic-plastic reloading boundary, C,, 
the coeficient fl of (6.1) and the near-tip stress field, for a given value of v < 0.5. 

Enforcing full stress (except cr33 at 0,) and velocity continuity results in the elastic sector 
constants being given by 

Crt = 2Mk-A,[4 lnlsin O2 1 +cos 20,]-A,(%,+sin 28,), 

C, z = - A,(2@, + sin 28,)+ A, cos 20,, 
(A.31 

C,, = A, cos 26, -A,(28, -sin 2H,), 

d = (l-2v)(C,-2kBr), 

where M = 4(1-v2)/E and (A,,A,) = (B,,B,) of (4.6). Furthermore, in contrast to the exact 
analysis of Section 4.3.1, there results a closed form expression for Cr, 

Cr/k = 1 f20, -(,/2/4)[(5-4v)/(l -v2)][sin 0, lnlsin @,/sin O,/ 

+(&-OS o,)(e,-fL?)l, (A.4) 
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and a pair of coupled transcendental equations for Q1 and Q2, 

-sin 0,[2 lnjsin O&in Q21 +cos 20, -cos 26,] 
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+(cos Q1 -J2)(sin 28, -sin 28,)+4,/2[(1 -v2)/(5-4v)](l fsin 20,) = 0, 
fA.5) 

sin 0,[2(0,-Q,)+sin 20, -sin 20,] 

+(cos 8, -,/2)(cos 20, -cos 20,)+4J2[(1 -v’)/(S-4v)]cos 20, = 0. 

It is easily shown that an expression for 6 of the form (6.1) results from the present configuration, 
and enforcing velocity continuity across 0 = 0, requires that fi be given in terms of 0, and v by 
(6.2), the same expression resulting from the exact v < 0.5 analysis. 

Now, for a given value of v, (A.5) are solved by a Newton-Raphson scheme; C, is then directly 
available from (A.4), and p from (6.2). 

Equations (A.5) have some interesting features. For values of v < 0.5, these equations have 
three sets of solutions (O,, 0,). One set is always 0, = Q2 = 135”, corresponding to the Prandtl 
field of Fig. 1. This solution must be ruled out for a growing crack since, as discussed in Section 
4.2.2, the resulting deformation field contains a line of negative plastic work production. Another 
solution set to (AS) for v < 0.5 is dependent on v but corresponds to a very narrow elastic sector 
(e.g., for v = 0.3, this solution is 0, N 127”, 0, = 135”). This solution must also be ruled out on the 
basis of negative plastic work production, which occurs in the plastic reloading sector following 
the elastic sector. Fortunately, a solution set to (A.5) for which only positive plastic work is 
produced (corresponding to a much wider elastic sector) can be found for each v; this is the 
solution desired. For v = 0.5, (A.5) have only two solution sets : fll = H2 = 135”, and the exact 
result quoted in Section 4.2.2 of Q1 = 112.08”, o2 = 162.10”. 

Table 2 shows the accuracy of this approximate analysis by comparing the values of O,, Q,, C, 
and b obtained, to Q,, Q3, C, and p, respectively, from the exact analysis of Section 4.3.2, for 
v = 0.3. 

TABLE 2. Comparison of exact us approximate growing crack solutions for v = 0.3 

Rear boundary Plastic reloading 

P Cf/k of fan sector boundary 

Exact analysis 
Approximate analysis 

of Appendix A 

5.462 5.6778 110.26” 160.38” 
5.460 5.683 110.22” 161.04” 

AUTHORS' NOTE 

The requirement offull stress continuity between asymptotic angular sectors for the growing 
crack, stated as an assumption in Section 4.3.1, has recently been proved by W. J. DRUGAN and J. 
R. RICE (Drucker Anniversary Volume: Mechanics of Material Behavior, edited by G. J. DVORAK 
and R. T. SHIELD, Elsevier, Amsterdam, in press) as a special case of a general analysis of the 
continuity restrictions on quasistatically moving surfaces in elastic-plastic solids. In addition, 
their analysis derives specific conditions on the stress state at such a moving surface if 
discontinuities in tangential velocity and shear strain are to be allowed. We note that the 
discontinuities in velocity and strain which occur in the growing crack solution of the present 
paper do so across a surface (the boundary between the constant stress and centered fan regions, 
Sectors A and B of Fig. 5, as r + 0) whose stress state meets these specific conditions. 
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