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Elastic Wave Emission from Damage Processes 
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The theory of elastic wave emission (i.e., acoustic emission; AE) from damage processes such 
as slip and microcracking is discussed. Analogous developments in the literature on earth­
quake seismology and dynamic dislocation theory are noted and utilized. A general represen­
tation of the displacement field of an AE event is given in terms of the double-couple 
response to a distribution of "moment density tensor" in the source region. Results are 
specialized to a point source model and to a general far-field analysis of outgoing elastic 
waves, and conditions for validity of such representations and their low-frequency specializa­
tions are noted. Emitted wave fields are compared for tensile opening and slip events, and 
procedures which might enable the approximate determination of the size or area increase of 
tensile microcracks are discussed. 

KEY WORDS: Acoustic emission; slip; microcracking; deformations; displacement field; elastic waves; 
NDE. 

1. INTRODUCTION 

Acoustic enussIOn (AE) is concerned with the 
detection of elastic waves generated by what might 
generically be termed "damage" processes in stressed 
solids. These processes may consist of various types 
of inelastic deformations (slip, twinning, phase trans­
formations) and microcracking. In order to advance 
the opportunities for quantitative study of damage 
processes by AE, it is important to have available the 
relation of processes in the source region (e.g., the 
location, spatial extent, orientation, and time depen­
dence of a slip or cracking event) to the resulting 
elastic wave field. The presentation of such relations, 
especially for microcracking and slip processes, is the 
concern of this paper. 

The relation of source processes to elastic wave 
fields is, of course, a major concern of earthquake 
seismology. Accordingly, major references for the 
present study are provided by analyses of wave gen-
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eration by seismic sources; this literature has been 
summarized recently in portions of a book on 
quantitative seismology by Aki and Richards(2) and 
in a review on the mechanics of earthquake rupture 
by Rice.(21) While no attempt is made here to com­
prehensively review the relevant literature, a brief 
summary of key papers should perhaps begin with 
the adaption to shear faults by Vvedenskaya(26) of 
Nabarro's(19) solution for a dynamically introduced 
dislocation, with DeHoop's(7) development of an 
elastodynamic representation theorem for radiation 
from surfaces of displacement discontinuity, and with 
the refinement of the theory of double-couple repre­
sentations of seismic sources by Burridge and 
KnopOff.(5) Other notable contributions are the 
development of the seismic moment parameter 
by Maruyama(17) and Aki(l) for characterizing far­
fields of sources, its generalization by Kostrov, (12, 13) 
who noted that a second-rank moment tensor char­
acterized the far-field for general sources [see also 
ref. (3)], and the application of the general formu­
lations to analyze radiation from spreading disloca­
tions by Haskell(9, 10) and from spreading cracks by 
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Richards(22. 23) and Madariaga.(14. 15) Brune et aI.(4) 
have recently summarized work on inference of source 
size from high-frequency properties of far-field spec-
tra. 

These or analogous elastodynamic developments 
from crystal dislocation theory [e.g., the work of 
Mura(18)] have been used in developing the theory of 
AE. A noteworthy paper is that of Malen and 
Bolin,(16) and subsequent work has been reported by 
Simmons and Clough, (24. 25) Hsu et aI., (II) Pao, (20) and 
Wadley et at<27) These works are focused on a point­
source model and hence eliminate information on 
propagation through the source region (such informa­
tion may be of limited relevance for typical materials, 
however, because of problems with high-frequency 
signal propagation through microscale heterogeneities 
such as grains). Also, the relations of source parame­
ters such as microcrack size and orientation to prop­
erties of the emitted wave fields have not yet been 
very fully documented. The utility of results of this 
type is of course dependent on existing practic~l 
limitations on the detectability of AE signals, but It 
seems advisable to have available the principal fea­
tures of results on how AE fields are related to 
processes of damage. For slip processes key results 
can be read off with little alteration from the seismic 
source literature, whereas for cracking processes some 
new results are derived here. 

2. SOURCE REPRESENTATION 

This section follows closely the presentation by 
Rice.(21) The equations governing displacements u of 
a continuum of mass density pare 

and for linear elastic response, stress (T is related to 
strain e by a modulus tensor C such that 

0ap = CaPy8 '>Y8' 

where 2ey8 =aUy/aX8 +aU8/aXy' (2) 

The tensor C is taken to be that for a homogeneous 
body or at least one with smoothly varying properties 
on the macroscale; microscale heterogeneities such as 
individual grains are ignored, which implies a limita­
tion of results to wavelengths that are large compared 
to the grairi size. The displacement field generated by 
an arbitrary distribution of body force f throughout 
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some volume V is written as 

U.(x, I) = foofv G.p(x, x', t- I')/P(X', I') d 3x' dl', 

(3) 

which defines the Green's function G.p(x,x', I) for 
the medium. 

Disturbances associated with the alteration of 
matter (which in degenerate cases may include slip 
and/or crack opening, and are collectively called 
damage here) can be regarded as being generated by 
a "transformation" strain eT. This is defined so that (T 

and e satisfy 

(4) 

throughout the source region, where C is the same 
modulus tensor as existed before the damage process. 
In the special cases of concern here for which the 
source process involves the generation of a displace­
ment discontinuity on a discrete surface S (a surface 
of slip or cracking), but elastic behavior elsewhere, eT 

is Dirac singular on S. In particular, if the sides of S 
are labeled + and -, and if n is the normal to S 
directed from - to + and Au is defined on S as 
u + - U - , then for any small volume «5 V intersected by 
«5S of surface, 

(5) 

Hence, for surface discontinuities, one writes 

(6) 

where «5 D(S) is a surface Dirac function, converting 
any volume integral over a region intersected by some 
part of S to a surface integral over that part of S. 

By using Eq. (4) in Eq. (1) and identifying an 
effective body force, the displacement field generated 
by an arbitrary distribution of eT within some region 
V can be written as 

Here m is the (seismic) moment density tensor, 



Elastic Wave Emission from Damage Processes 

namely, the symmetric second-rank tensor defined by 

(8) 

and 

Hpap(x, x', t) = oG~p(x, x', t) /ox' a 

+oG~a(x,x', t)/ox'p (9) 

is the response u~(x, t) to a "double couple without 
moment" exerted at x' at time t = O. Such a double 
couple is generated by a pair of impulsive force 
dipoles; e.g., oG~p/ox'a is the response u~ generated, 
in the limit h~O, by a pair of oppositely directed 
point impulses of magnitude l/h, one acting in the 
negative P direction at x' and the other in the positive 
P direction at a point removed by distance h in the a 
direction from x'. 

Defining the Fourier transform on time of a 
function f( x, t) by 

j(x, w) = L+oooo f(x, t)e -i.,/ dt, (10) 

and recalling that time convolutions of functions 
transform to products, one has the frequency version 
of Eq. (7) as 

(11) 

It is convenient in using this representation to ob­
serve that 

where rhaP(x, t) is the time rate of map(x, t), so that 
the expression can be written as 

= -! i) (1 /iw )H~aP(x, x', w)] thap(x', w) d 3x'. 

(13) 

Here the quantity in brackets is the transform of 
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which is the response to double couples without 
moments formed from forces which are suddenly 
applied and held constant for subsequent time, rather 
than from impulses. The representation of Eq. (13) is 
more convenient than Eq. (11), since the limit of the 
bracketed term in Eq. (13) defines a nonzero function 
of position in the limit w ~ O. 

3. POINT-SOURCE MODEL 

Let the origin of coordinates be chosen some­
where in or very near to the source region. If the 
spatial extent of the source is small compared to the 
distance ro( = Ixl) to the receiver position, Eq. (13) is 
suggestive of a "point-source" model in which the 
resulting field is written as 

where 

(15) 

for general sources or, in the case of planar discon­
tinuities, 

This quantity Map is referred to as the (seismic) 
moment tensor of the source. 

It is important to have a clear understanding of 
the approximation involved in Eq. (14). Obviously, it 
is assumed that ro/a» 1, where a is some typical 
radius of the source region. There is, however, also a 
frequency restriction involved in using Eq. (14), in 
that wavelengths involved must be large compared to 
a. This seems not always to be well understood but 
will be clearer when specific forms of Eq. (7) or Eq. 
(13) for an unbounded isotropic solid are considered. 
Essentially, the high-frequency portions of the radia­
ted signal are sensitive to the spatial distribution of 
origins in the source zone from which disturbances 
emanate. These origins have a different set of propa­
gation times to a receiver at, say, reception point roY' 
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than at another reception point, roY". Hence, .high­
frequency information, involving periods comparable 
to differences in these propagation times, is different 
for the receiver at roY' than at roY". Looking ahead to 
the isotropic results, the essential requirement for 
independence of the receiver orientation, and hence 
validity of Eq. (14), is that for disturbances spreading 
at speed c, the frequency w be low enough that 

This condition will be met for all y if ei.,a/c ~ I or 
walc« 1. The corresponding approximation in the 
time domain is that 

which means that time differences should not be 
resolved finer than periods of order alc. 

Suppose that transformations ET , or displace­
ment discontinuities au, in the source region have 
effectively reached their long-time (static) values at a 
time t r • Then for sufficiently low w, such that ei.,t, ~ 1 
(i.e., w«lltr), 

(19) 

Hence for frequencies at which ei.,t, ~ 1, the point­
source model reduces to 

(20) 

This shows that it is the moment Map(tr) at the 
completion of the source process which governs the 
low-frequency range of elastic wave emission. 

From the results presented it is clear that at low 
frequencies (in the sense ei.,a/c ~ 1), the basic ob­
servable quantities for a small AE source are the six 
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functions Map(t) of Eqs. (15) and (16), low-pass 
filtered in the sense of Eqs. (17) and (18). Further, at 
what are generally yet lower frequencies (i.e., ei.,t, ~ 
1), the observable quantities reduce to the six con­
stants Map(tr) corresponding to the static state in the 
source region at completion of the damage event. 

Aki and Richards(2) use the representation of Eq. 
(14) and solve for the Rayleigh (and Love) wave 
radiation from an arbitrary point source in a half­
space (Chap. 7). This solution may have relevance to 
particular experimental situations for detection of AE 
signals. 

Another approach for which the point-source 
model is useful is for an examination of the excitation 
of normal modes of the body in which the AE event 
takes place. The solution can be read off from Aki 
and Richards(2) (Chap. 8). Let U(k)(x), k= 1,2, ... , 
denote the normal modes and suppose these are 
normalized so that 

(21) 

Then the solution for a step-function point source 
Map [this corresponds to using Map(tr) and ignoring 
information in oscillation frequencies higher than 
those for which ei.,t, ~ 1] applied at t=O is 

u(x, t) = ~ MapEaik)u(k) (x) 
k 

where Eap(k) is the strain in the kth mode at the place 
of the point source. For linear damping without 
coupling between modes, the time-dependent terms 
become (approximately, for light damping) 

1 - exp ( - w(k)t 12Q(k») cos w(k)t, 

where Q(k) is the quality factor for damping in the 
kth mode. This form shows also how the long-time 
static field evolves. 

4. FAR-FIELD RESULTS FOR ISOTROPIC 
HOMOGENEOUS BODIES 

Here results are given for the displacement field 
at points distant from the source in an otherwise 
isotropic and homogeneous material. The results pre­
sented are for outgoing waves from the source region, 
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calculated as if the source resided in an unbounded 
body. They apply until wave reflections from 
boundaries intervene, but do not include the reflec­
tion and wave-guide effects associated with finite 
regions. 

In this case u can be written as a sum of dila­
tional (ud) and shear (US) contributions, 

These are given by [e.g., ref. (21) or equivalent ex­
pressions in ref. (2)] 

where JLap(x, I; c) is defined by 

JLaP(x, I; c) 

(24) 

=1 jt {lx-x'l-c(/-I')} U{ C(~-I') -lx-x'l} 
v -00 4'1TpCIX-X I 

X m (x' I') dl'd 3x' ap , (25) 

and where U{ ... } is the unit step function; here Cd is 
the dilational (or longitudinal) wave speed and Cs is 
the shear (or transverse) wave speed. 

Corresponding results may also be given in the 
frequency domain by writing fi in place of u and fl in 
place of p. in Eqs. (24). The expression for fl(x, w; c) 
is 

- ( .) -1 exp{ -iwlx-x'l/c} 
JLap X,w, c - 2 

V 4'1Tpw Ix-x'i 

To obtain the "far-field" displacement distri­
bution, it is now assumed that the receiver point at 
x=roy is far enough removed that 

ro »a and ro »c/w. (27) 

The far-field approximation should not be confused 
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with the point-source approximation, which assumes 
that 

ro »a and c/w»a, (28) 

although it is obvious from these inequalities that for 
sufficiently small afro, there will be a range of (low) 
frequencies where both sets of inequalities are satis­
fied simultaneously. The calculation of the far-field is 
simplest in the frequency domain and begins with the 
recognition that 

Ix-x'i = (ro -y·x')[1 +o( y.x'/ro)] (29) 

and that [see Eqs. (24) and (26)] 

a3[ exp{ -iwlx-x'l/c} /Ix-x'iliaxpax)xp 

(30) 

The far-field approximation is such that the brack­
eted terms in Eqs. (29) and (30) reduce to unity and, 
after a little calculation, one has results in the 
frequency domain in the form 

Corresponding results in the time domain can be 
written at once by observing that 

e -;wro/c 1 fhap(x', w )e;WY·X'/C d 3x' 
v 

is the transform of 

(32) 

(33) 

the latter form has an obvious interpretation in terms 
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of a retardation of time between the source process 
and its reception. 

The expressions in Eqs. (31), transformed to the 
time domain as in Eqs. (32) and (33), make evident 
the origin of conditions (17) and (18) as requirements 
for validity of a point-source model. 

For isotropic materials 

where A and G are the Lame elastic constants. Hence 
for the particular case of a surface S with normal n 
across which velocity discontinuities &i occur, 

f rlzap{x, '" )eiw'Y.x/c d 3 x 
v 

= Is {p( cl-2cnc5apny{x)ll~y{x, "') 

+ pc/[ na{x)ll~p{x, "') + np{x)ll~a{x, "')]} 

5. RESULTS FOR PLANAR SURFACES OF 
TENSILE OPENING AND SLIP 

(35) 

A general displacement discontinuity can be re­
solved into an opening displacement and into two 
tangential slip displacements. These cases are consid­
ered separately here for the special case in which S is 
a flat surface (n constant). 

Observing that for a displacement discontinuity 
Ilu in the direction of any fixed unit vector v, one may 
write 

Ilu{x, t) =vllu{x, t), (36) 

where Ilu is the magnitude of the discontinuity, Eqs. 
(31 )-(33) and (35) lead to 

d{ )_'YO{t;cd) 
u 'Yro, t - 4 'lTrOcd 

X {n.v+2( c//cl){n·'Y 'Y.v-n.v)}, 

S{ )_O{t;cs ) 
u 'Yro, t - 4 'lTrocs 

X {(y·v)n+ ('Y·n)v-2{n·'Y 'Y·v)y} , 

(37) 

where 

Rice 

O{t; c)= f Ilu{x, t-ro/c+'Y·x/c) d 2 x. (38) 
S 

Corresponding results in the frequency domain are 
obtained by observing that the transform of O( t; c) is 

One may observe that ud has the direction of 'Y and 
that US is perpendicular to 'Y. 

To examine specific cases, suppose with refer­
ence to Fig. 1 that the axes are chosen so that x 2 has 
the direction of n, i.e., perpendicular to S, and that 
XI' x3 lie in the plane of S. Then for angles cp, (J as 
shown, 

'YI = sincpcos (J, )'2 =coscp, )'3 =sincpsin(J. 

(40) 

Tensile Opening. For this case v=n, i.e., v has 
the direction of X 2 • Hence 

(41) 

where 

A = (n - 'Ycos cp) /sinCP (42) 

Fig. 1. A planar surface S of tensile opening and/or slip; notation 
for far-field analysis. 
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TENSILE OPENING 
( symmetr ic about x2 axis) 

Fig. 2. Far-field dilational (d) and shear (s) displacement patterns 
for tensile opening. 

is a unit vector which is tangent to great circles in the 
plane of n and -y, and which always has a positive 
projection onto the direction of n (i.e., ~ is a unit 
vector in the direction of decreasing cp ). Since 
2Cs2/Cd2 =2G/(A +2G), the orientation term in the 
expression for ud is always positive. 

Note that not all of the orientation dependence 
is displayed explicitly in the above formulas; (2 as 
defined in Eqs. (38) and (39) also depends on -y, 
although this orientation dependence can be ne­
glected in the low-frequency limit as discussed in 
connection with Eqs. (17) and (18). 

The radiation patterns of Eqs. (41) are shown in 
Fig. 2. Zeros on the s-wave pattern denote nodes; 
there are no nodes on the d pattern. Both patterns 
shown are rotationally symmetric about the x 2 axis. 

Slip. Now let v be in the XI direction. Eqs. (37) 
lead in this case to 

(43) 

where ~ is defined above and p. is a unit vector in the 
direction of decreasing (J. 
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The resulting radiation patterns are shown in 
Fig. 3; both contain nodes. As is well known for this 
case, the slip plane orientation cannot be determined 
uniquely from the far-field radiation patterns, 'but 
can only be reduced to two candidate directions at 
90° with one another. 

Moments. For the tensile opening, 

= (A +2G) Is au(x, t) d 2 x (44) 

are the only nonvanishing components of moment 
and, in circumstances for which the orientation­
dependent parts of (2, Eq. (38), can be neglected 
(low-frequency limit), 

(2(t; C)=M22(t-rO/c)/(A+2G). (45) 

Similarly, for the slip case, 

are the nonvanishing components of moment and, in 
the same circumstances as above, 

o 

o 

o 

SLIP (results on plane 8=0) 

Fig. 3. Far-field patterns for slip. 
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Comparison of Tensile Opening Versus Slifi. The 
main comparison of these two damage modes follows 
from a comparison of Figs. 2 and 3. The tensile 
opening radiation patterns are axisymmetric [at least 
to the neglect of "propagation" or "directivity" ef­
fects which occur at sufficiently high frequencies for 
the y dependence of 0, Eqs. (38) and (39), to be 
nonnegligible] and thereby enable a unique de­
termination of the orientation of the surface S on 
which the opening occurs. However, no information 
is retained on the shape of S, at least in the low­
frequency range. For slip events the radiation pat­
terns are not axisymmetric and divide the unit sphere 
into four sectors formed by great circles connecting 
diametrically opposite nodes in Fig. 3. These sectors 
are differently located on the unit sphere for d versus 
s radiation. As commented, the patterns do not 
uniquely determine the slip plane normal, but only 
two directions, of which either one may be the nor­
mal and the other the slip direction. 

The ratios of the maximum amplitudes of d and 
s waves are different for tensile opening versus slip. 
In the opening case this ratio is (Eq. (41)] 

(48) 

whereas for slip [Eq. (43)] 

The numbers are for the case A = G, for which the 
Poisson ratio p = * . 

Propagation in the Source Region. In principle, 
the high-frequency portions of the radiated field con­
tain details of the space-time distribution of the 
damage event throughout the source region. The 
frequency range for which such effects are observable 
is that for which wale is of order unity or larger. 
There may in some materials be a reasonable range of 
frequencies between wale= 1 and wdle= 1, where d 
is grain size and the latter equation refers to a cutoff 
frequency at which heterogeneities at the grain size 
make signal interpretation impossible. Obviously, for 
use of this range in quantitative AE, it is necessary 
that a»d. This condition will frequently not be met 
for microcracking processes. 

The high-frequency spectrum of slip events and 
its relation to propagation processes in the source 
region is discussed by Aki and Richards(2) (Chaps. 14 
and 15) as well as by Das and Aki,(6) Madariaga,(14,15) 
Rice,(21) and Richards.(22, 23) Such results are not 
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pursued here except to note that from Eqs. (37), (41), 
and (43), when transformed to the frequency domain, 
the frequency content of the far-field radiation is 
determined by O(w; c) of Eq. (39). This expression 
can be rewritten as 

where k= -ywle. The integrals define the full 
space-time Fourier transform of the velocity dis­
continuity, and observation of the far-field at orienta­
tion y corresponds to sampling this space-time trans­
form along the ray k = - yw I e in k - w space. [Since 
Iyl = I, this sampling, even if carried out for all orien­
tations, cannot even in principle enable one to fully 
reconstruct the function ~zi(x, t). The spatial struc­
ture along S of a given frequency component of ~zi is 
resolvable only over a range of wave numbers kl' k3 
that are smaller in magnitude than wi e; information 
involving shorter wavelengths is evidently not trans­
mitted to the far-field.] 

6. CRACKS 

Suppose that a crack exists along a planar surface 
Ao and, in a damage event, spreads to area A( = Ao + 
~A) in the same plane. As a special case, Ao may 
vanish. For simplicity, it is assumed that the crack 
plane is perpendicular to the tensile direction so that 
~u consists only of tensile opening; more complicated 
cases of tensile opening in combination with shear 
are deferred to later treatment. 

From earlier discussions it is clear that at suffi­
ciently low frequencies ei.,tr "'" I, the approximation of 
Eq. (19) applies, and [Eqs. (44), (39), and (45)] 

M22 ( w) ""'M22 ( tr) ""'( A +2G)e i .,ro/cO( w; c) 

""'(A+2G)~V, (51) 

where ~V is the change in volume displaced by the 
crack surfaces in going from one statical configura­
tion to the other: 

~V=f (~u) staticdA - f (~U)A staticdAO' 
A A Ao 0 

(52) 
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Hence it is the change in crack volume which is the 
basic observable quantity in the low-frequency limit, 
as noted by Wadley et. al., (27) at least in the present 
case when the crack opens parallel to the tensile 
direction. In particular, the low-frequency amplitude 
spectra of the outgoing d and s waves are [Eqs. (41), 
transformed] 

(53) 

and the general point-source result for this case, Eq. 
(20), reduces to 

+ AH.ll (x, 0, w) + AH.33 (X, 0, w)]}. 

(54) 

In view of the potential observability of ~V, it is 
useful to have estimates which give its quantitative 
relation to crack size or crack growth. The volume 
opening Vof a disk-shaped crack of radius a sub­
jected to tensile stress (1 can be calculated from the 
expression for the static crack surface opening [e.g., 
ref. (8)], 

(55) 

where r is the distance from the crack center, and 
hence 

V=2'IT loa ~urdr=8(I-p )(1a 3/3G. (56) 

For new crack formation [AD =0 in Eq. (52)], ~V= V 
and hence an equivalent disk-shaped crack radius a 
can be associated with an AE event. (The corre­
sponding procedure for a slip event is less successful, 
since it cannot then be assumed that the drop (1 in 
shear stress transmitted across the slip surface is 
equal to the applied shear stress.) 

Another perspective on the problem is provided 
by the recognition that (1~V /2, with ~V defined by 
Eq. (52), is the static energy reduction due to intro­
ducing a crack in a loaded elastic body (this energy 
loss goes partly to wave emission and partly to the 
work of fracture). However, the energy loss can also 
be calculated by growing the crack from the initial 
configuration (AD) to the final configuration (A). A 
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given infinitesimal step of this growth involves crack 
advance by amounts 8a(s) along the crack front, r, 
parameterized by arc length s along it. Hence 

1(18V= Irg8a(s) ds, (~7) 

where g is Irwin's elastic energy release rate, related 
to the stress intensity factor K by 

(58) 

One may therefore write 

(59) 

where g is the average g that would be encountered in 
statically enlarging the crack area by ~A. 

In some cases it would seem appropriate to 
assume that g is less than or equal to the macroscopic 
crack toughness gIc for the material (e.g., the micro­
cracking takes place in the weaker regions of a 
material with statistically variable properties). In such 
case the ~V inferred from the AE event provides a 
lower bound to the change in crack area, in the form 

(60) 
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