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Stress Diffusion Along Rupturing Plate Boundaries 

F. K. LEHNER, V. C. LI, AND J. R. RICE 

Division of Engineering, Brown University, Providence, Rhode Island 02912 

An analysis is made of viscoelastic lithosphere/asthenosphere coupling in the time-dependent redistri- 
bution of stress along plate boundaries or other seismic lineaments following great earthquakes. The 
study is based on a generalization by Rice of Elsasser's model of stress-diffusion, in which general elastic 
plane stress deformations are allowed in lithospheric plates which are coupled in an elementary way to a 
(Maxwellian) viscoelastic asthenosphere. Solutions are developed which describe the large-scale quasi- 
static distribution of thickness-averaged stresses in the lithosphere at or near stationary or travelling rup- 
ture zones, modeled here by either crack-like zones of fixed stress drop or dislocation-type slip zones. 
Sudden ruptures shed load onto the asthenosphere which is gradually transferred back to the lithosphere 
by a slow relaxation process. The spatial and temporal characteristics of the predicted stress alterations 
suggest a significant role of lithosphere/asthenosphere coupling effects in triggering interactions of great 
earthquakes, patterns of prolonged aftershock activity, and the breaking of barriers or gaps by time-de- 
pendent stressing. 

INTRODUCTION 

We are concerned in this study with long-term processes by 
which great earthquake ruptures transfer stress laterally to 
neighboring sections of a plate boundary or other seismic lin- 
eaments, and with the effect of such time-dependent stress re- 
distribution on the triggering of further ruptures. Indeed, the 
questions as to the triggering mechanism and, related to it, the 
repeat time•of great earthquakes seem to be viewed in dis- 
tinctly different ways depending on the emphasis placed by a 
particular model on one or another aspect of the phenome- 
non. For example, modern versions of Reiars [1910] elastic 
rebound hypothesis have been developed in the form of essen- 
tially two-dimensional models of strike slip faulting in which 
the fault extends vertically downwards from the Earth's sur- 
face to some depth in a lithospheric plate, viscoelastic and 
freely sliding in the model of Budiansky and Amazigo [1976] 

for the propagation of triggering effects and the current 
broader interest in this question is reflected, for example, in a 
large number of studies devoted to the seismic gap problem 
(see, e.g., Wyss [1979]). Also, Brune [1979] has recently dis- 
cussed the significance for earthquake prediction based on 
premonitory phenomena of propagating-triggering effects. 
Brune has argued that such effects might in fact invalidate any 
attempt to predict an earthquake from observations of pre- 
monitory signals, in part simply by the absence of such signals 
prior to the arrival of the trigger. This indeed would seem to 
be a possible defect of the above-discussed models. However, 
as shown by an analysis of regional events prior to the 1976 
Haicheng earthquake [Scholz, 1977], a travelling 'deformation 
front,' as Scholz has called it, may be viewed as a critical pre- 
monitory signal, accessible to observation and obviously 
worth a closer study. 

or, more realistically, elastic and dynamically coupled to a Support of the idea of propagation of earthquake triggering 
semi-infinite viscoelastic substrate in the models of Nur and disturbances along tectonic lineaments comes from observa- 

tions of seismic migration patterns along plate boundaries Mavko [1974], Savage and Prescott [1978a, b], Spence and Tur- 
cotte [1979], and Turcotte et al. [1979]. 

As shown first by Budiansky and Amazigo, such models are 
capable of exhibiting an infinite sequence of earthquake cy- 
cles (pre-earthquake strain accumulation, co-seismic strain re- 
lease, and post-seismic readjustment). Typically, when the 
shear stress has risen to the critical level of a static shearing re- 
sistance along the fault plane, the strain accumulated while 
the fault was locked is released by sudden relative slip across 
the fault to an extent corresponding to a drop in stress to some 
lower value of (dynamic) shearing resistance. The load which, 
according to the more complete models, is thereby suddenly 
placed on an asthenospheric substrate will be relaxed there 
gradually due to the assumed viscoelastic response while tec- 
tonic loading associated with plate motion will renew the pre- 
seismic accumulation of strain along the fault and lead into 
the next earthquake cycle. 

Two-dimensional models of the type just described, in 
which conditions remain essentially uniform along strike, 

[Fedotov, 1965; Mogi, 1968a, b; Kelleher, 1970; Sykes, 1971; 
Delsemme and Smith, 1979], the classic example being fur- 
nished by the North Anatolian fault in Turkey [Richter, 1958; 
Mogi, 1968a; Ambraseys, 1970; Dewey, 1976; ToksOz et al., 
1979]. In the case of the North Anatolian fault a clear trend of 
westward migration appears for earthquakes above magni- 
tude 7, commencing with the great Eastern Anatolian earth- 
quake of 1939. The mode of propagation is one in which suc- 
cessive ruptures, extending up to 200 km in length, abut rather 
than overlap, while exhibiting an average rate of migration of 
about 80 km/yr. Several observations on the North Anatolian 
fault zone appear consistent with migration patterns of seis- 
mic activity observed along the circum-Pacific belt. Thus, for 
example, in the northwestern circum-Pacific, Fedotov [1965] 
and Mogi [1968b] have identified a sequential occurrence of 
great shallow earthquakes in which the seismic belt was nearly 
continuously covered by aftershock areas without significant 
overlap. Mogi estimates migration speeds between 150 and 
270 km/yr. for these events (although consecutive earth- could be quite unrealistic (unless reinterpreted as representa- 

tive of locally uniform near-fault conditions) if earthquake quakes in the series considered do not generally form a step- 
ruptures are triggered primarily in response to disturbances wise continuous progression of rupture but, rather, often leave 
arising from inhomogeneities along the strike of a seismic lin- gaps which are subsequently filled). The inferred speeds are of 

the same order as the approximately 100 km/yr. of the 'defor- eament. Indeed, the case has been made repeatedly in the past 
mation front' which presumably triggered the Haicheng earth- 
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the other hand, in support of a speculation expressed by Wood 
and Allen [1973] in a study of seismic migrations along the San 
Andreas fault that migration speeds may vary with magnitude 
of seismic events, a conjecture based on a comparison of their 
own findings of a south-north migration at 3 km/yr of events 
M • 5.0 with data discussed by Savage [1971] which suggest a 
south-north migration at 60 km/yr for events M • 7.2. 

Savage [1971] and Ida [1974] have developed theories of 
propagating disturbances aiming at an explanation of ob- 
served seismic migration patterns. In these theories the consti- 
tutive response of fault gouge material enters as the rate deter- 
mining factor. 

Here we wish to focus on a larger scale aspect of migrating 
seismicity and deal with the subject of stress transfer along 
plate boundaries, allowing for stationary as well as for travel- 
ling disturbances as the primary sources of stress alteration. 
We take up an idea suggested by Bott and Dean [1973] and 
pursued more explicitly by Anderson [1975] according to 
which certain global scale similarities between seismic migra- 

=G•OU,• Ou• 2v 0% •] (2) o,• [Ox• + Ox,• + 1 - v Ox• 
under plane stress conditions, where G is the shear modulus 
and v is the Poisson ratio. The plane stress model applies 
when the average stress disturbance in the thickness direction 
is negligible in comparison with the in-plane components, and 
this should be appropriate for disturbances of dominant wave- 
lengths that are comparable to or greater than H (e.g., great 
earthquakes). 

We treat interactions with the asthenosphere in the spirit of 
the simple Elsasser model, but generalize it to that of a linear 
Maxwell body (elastic and viscous element in series). First, for 
the cases when elastic response can be neglected we write, fol- 
lowing Elsasser, 

(3) 

and observe that this should be accurate especially if, as is 
widely suspected, the asthenosphere consists of a zone having 

tion patterns ought to be interpreted as manifestations of a thickness h of the same order as H, but a viscosity ,/very 
stress diffusion in an elastic lithosphere riding over a viscous much lower than that of adjoining material. Otherwise, we 
asthenosphere as in Elsasser's [1969] theory of lithospheric simply regard •l/h as some effective coupling parameter ob- 
stress guides. This idea seems indeed supported by Anderson's tained by matching model predictions to observed diffusion of 
first estimates of seismicity migration speeds. It would there- deformation. The incorporation of elastic effects through a 
fore appear highly deskable to pursue further a theory of similar model is less suitable but in the interest of simplicity 
stress diffusion, similar in spirit to Elsasset's, but free of prin- we use the Maxwell generalization 
cipal shortcomings of the latter associated with the assump- 
tion of a purely viscous response of the asthenosphere and 4ab/G + ,,h/•I = • (4) 
with consideration only of deformations that propagate in a where b is an effective length for short-time elastic coupling. 
single direction. Hence in this paper we present an analysis of Later we shall suggest that if the elastic constants are regarded 
great earthquake disturbances on the basis of a plate theory 
proposed by Rice [1980], which generalizes Elsasser's by al- 
lowing for general plane stress deformation states in elastic 
lithospheric plates and for a MaxwellJan viscoelastic behavior 
of an asthenospheric substrate, as is essential for more realistic 
modeling of time-dependent stress alterations at rupturing 
plate boundaries. Large scale effects of viscoelastic relaxation, 
which may be expected to play a role during time spans of the 
order of repeat times for great earthquakes, are thereby made 
amenable to the relatively simple analysis afforded by a two- 
dimensional plate/foundation model. 

THEORY 

Propagation of Deformation in an Elastic Plate 
Overlying a Viscoelastic Foundation 

We now present a simple model of a linearly elastic litho- 
spheric plate of uniform thickness H riding on a viscoelastic 
asthenosphere, as developed previously by Rice [1980]. Our 
interest is directed towards horizontally propagating deforma- 
tions created by and spreading out from large scale ruptures 
along a plate boundary. 

If a• (a,/• -- x, y) are the thickness averaged stresses in the 
plane of the plate, the exact equations of equilibrium are 

Oa,•e/Ox.. = ,•/H (1) 

where ,• is the shearing traction acting on the lower surface of 
the plate in the negative r-direction. Here and subsequently, 
summation over the values x, y is implied by repeated Greek 
indices. Letting ua be the thickness averaged displacements in 
the plane of the plate, the stress-strain relations for an iso- 
tropic material are 

as uniform through the lithosphere and asthenosphere, an ap- 
propriate choice of b is 

b = (r/4):H (5) 

On the other hand, if the suspected layer h below the litho- 
sphere had a (quasi-static) shear modulus G• much smaller 
than G, it would be appropriate to write 

b = hG/G, (6) 

Probably, the most suitable value is a little larger than the 
greater of these two estimates. 

When the equilibrium, stress-strain, and Maxwell coupling 
equations are combined there results 

a + fi • Ox•Ox• + 1- v Ox•Ox•j Ot 
(7) 

ot = hHG/r• [8 m bH 

These equations for u• are, in fact, too complicated to solve in 
closed form for all but the simplest boundary value problems 
and shortly we will introduce a physically motivated model 
equation which has solutions that agree with those of the gen- 
eral equations in some important limiting cases. However, the 
nature of the deformations predicted by the general equations 
can be somewhat clarified by isolating the equations satisfied 
by the dilation e and rotation o0, where 

e -- Ou•/ox + ou•/oy 2•o -- ou•/Ox - ou•/Oy (8) 

One finds that these satisfy uncoupled differential equations 

(a + l•O/00V2e-' [(1 - •,)/2]Oe/Ot 

(a + t5o/ot)•% • o•o/ot (9) 
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with V 2 = •/Sx • + 0•/Sy •. In the case when elastic coupling 
effects are neglected (fl -- 0) these are classical diffusion equa- 
tions, and it is seen that a and 2a/(1 - t,) are the respective 
diffusivities for propagation of rotation and dilation. Thus, for 
Elsasser's problem of a long portion of plate boundary sud- 
denly relieved of stress, the appropriate diffusivity is a for the 
strike-slip mode along a transform fault, and 2a/(1 - v) for 
the compressive mode on a shallow thrust fault. 

For very long faults, exact solutions to (7) or (9) for con- 
stant stress drop or slip displacement boundary conditions 
along the fault may be obtained without difficulty and were 
given previously by Rice [1980] in a first analysis of the pres- 
ent plate model. When a more general situation obtains, such 
as with faults of finite length, closed form solutions to (7) or 
(9) are difficult to find. For disturbances created along seismic 
zones of large linear extent progress can be made, however, 
through analysis of a simplified model which we shall now 
discuss. 

Simplified Plate Equations for the Analysis of Transfer 
of Stress and Deformation Along Plate Boundaries 

We shall now introduce a model, based on a simplification 
of (7), which will be more amenable to analysis than the latter 
while furnish'rag approximations good enough for problems 

a+fi • (1 +v)= (3--•+ = (3--}- 
which is of the same character as (7), (9) for the more general 
model. 

We now consider the accuracy of the model represented by 
(11). First, in the limit of long wavelength disturbances (•u/ 
(3x = negligible), as for nearly uniform stress drops along very 
long segments of the plate boundary (i.e., Elsasser's problem, 
but with Maxwell coupling) the more general equations (7) re- 
duce to exactly the same equation for u(-- u,•). Also, if we 
examine the relaxed limit %• -- 0, equivalent to setting time de- 
rivatives in (11) equal to zero, and consider two joined semi- 
infinite plates with an arbitrary distribution of slip &(x) along 
their boundary, where 

= u(x, y = o +) - u(x, y = o-) 

it is elementary to verify that the solution to (11) is 

u(x, y) = - _oo • arctan I (1 + v)Y ] x - x' dx' (13) 

where -•r _< arctan _< +•r. This leads to shear stresses along 
the fault given by the Cauchy principal value integral 

(3u (1 + v)G f_+oo d&(x')/dx' oxy(x, O) = G •yy (x, O) = - 2•r _oo x - x' dx' 
(14) 

As remarked, we have chosen M to make this equation agree 
with the exact solution to the full elastic plane stress equations 
(e.g., see Bilby and Eshelby [1968] or Rice [1968]; these refer- 
ences actually give the result analogous to (14) for plane 
strain, in which (1 + v) of (14) is replaced by 1/(1 - v), but as 
noted in the latter reference this is just the transformation 
which converts a plane stress solution to a plane strain solu- 
tion). A consequence of this last result is, for example, that in 
the case of a shear crack with some prescribed distribution of 
stress drop along its length, in the relaxed limit both the 
simple model and the exact plane stress solution give the same 
distribution of &(x) along the fault and the same in- 
tensification of shear stress oxy(x, 0) outside it. Finally, be- 

involving the transfer of disturbances along seismic zones of bause the foundation response is irrelevant in the limit of 
large linear extent. 

To fix ideas, we focus on the case of a long transform 
boundary coinciding with the x direction in the plate, letting u 
be the dominant displacement component u,•. Further, we 
treat the plate as if it were constrained in the y direction, ig- 
noring the displacement and equilibrium equations for that 
direction. A closer match to the actual plate behavior can be 
obtained by not using the x component of (7) with Uy set to 
zero but, rather, by beginning anew with equilibrium and 
stress-strain relations in the form 

short wavelength disturbances (at least when fi • 0), the 
simple and the more general model give identical responses 
along the fault plane in that limit also. 

The accuracy of the simple model of (11) in general may be 
addressed in a more abstract manner by taking Fourier and 
Laplace transforms of u: 

i +.o t) e-iø'x a(0, y, t) = u(x, y, dx 

t• (w, y, s) --- t•(w, y, t)e -s' dt 
(15) 

Oo•10x + Oo•ylOy = •xlH 

o,•,• = MOu/Ox O,•y = GOu/Oy trary slip history &(x, t) for t > 0 is then 
Here M is an effective modulus that we choose as (1 + v):G •t = (Y/21Yl)• exp {-(1 + v)(o0 2 + •,•)'/•IYl} because, as we show, this allows the simple model to simulate 
exactly the relation of the more general model between slip where 
and shear stress drop for arbitrary slip distributions along the 
plate boundary, in the important limiting case for which the •2 -- s/[(1 + v):(a + ils)] 
foundation is completely relaxed (• -- 0). Thus when %• is re- The resulting transformed shear stress on y -- 0 is 
lated to u as in the Maxwell model of (4), the governing equa- 
tion is 

(10) The transformed solution of (11) corresponding to an arbi- 

(16) 

(17) 

(18) 
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where the amplitude factor $ (normalized to S -- 1 in the re- 
laxed state) is 

S -- (1 + Q),/2 (19) 

with Q = (X/to) 2. The solution to the 'exact' equations (7) for 
this problem is derived in Appendix A and when the resulting 
expression for 6xy is written in the form of (18) above, one 
finds 

written when the x axis defines a line of plate convergence 
and faulting takes place as low angle thrusting in a subduction 
zone. In a two-dimensional plate model the dominant dis- 
placement component now becomes v --- uy and stress drops 
are associated with the component %y. When the x direction is 
regarded as constrained, so that we ignore displacements and 
equilibrium requirements in that direction, the governing 
equations are 

[2/(1 - •,)2 + Q]2_ [4/(1 + •,)2111/(1 + •,)2 + Q],/211/( 1 + •,)2 + (1 - •,)Q/21 '/2 
Q[1/(1 + •,)2 + Qi,/2 (20) 

For Q = 0 this S = 1 and for large Q it behaves as Q,/2, just as 
for (19) above. The two results for S are compared in Figure 
1, for the case •, = 0.25, and they are seen to agree closely over 
the full range of to and S. Hence, in view of the complexity of 
(20) as compared with (19), we limit all further consideration 
to the simplified model and expect that negligible inaccuracies 
will result from this. 

To see the origin of the estimate of b (and hence r, since fl 
= b/-/) given in (5) we observe that for sudden loadings the as- 
thenosphere reacts elastically, with %, = Cru/b in our model, 
and (11) reduces to 

Oo•,y/Ox + Ooyy/Oy = 

o•,y = NOv/Ox oyy = [2G/(1 - •,)]Ov/Oy 
(26) 

Here 2G?(I - •,) is the modulus consistent with (2) and the ef- 
fective modulus N is chosen as G(1 + •,)2(1 - •,)/2 to ensure 
the same relation between displacement v along the fault and 
drops in stress oyy as for the exact plane stress model of (7) in 
the relaxed limit. Thus, (4) and (26) give 

a+/• (1+:,)2 2 Ox 2 + 1- •, Oy 2' = '•- (27) 
#[(l + + Ou/O/l = u (21) 

for the short time thickness average displacements of the lith- 
osphere. If we suppose that a very long segment of the plate 
boundary suddenly undergoes a stress drop q, the resulting so- 
lution for u is 

u = (ql•m/G)e -y/tv'2 (22) 

for y > 0. By comparison, the anti-plane strain elasticity solu- 
tion for a very long strike slip type discontinuity, sustaining a 
stress drop q uniformly through the lithosphere thickness H, is 

u(y, z) = (q/G) Im {[(z + iy) 2 -/./•],/2 _ (z + iy)} (23) 

Here u(y, z) is the local (versus thickness average) dis- 
placement, the z axis is directed downward with z -- 0 at the 
Earth's surface (left-sensed coordinate system), and the square 
root has its branch cut along -H < z < H. The corresponding 
thickness average displacement at y = 0 + is 

1/•t •rq • u(0 +, z) dz = •- • H (24) 

and comparison with (22) suggests that we choose 

fl,/2 = 0r/4)H (25) 

which is the origin of the estimate of b given in (5). 
A weakness of the representation of short time elastic re- 

sponse within the model is, however, that the resulting ex- 
ponential decay of u with y is more rapid than the l/y2 decay 
based on the anti-plane elasticity solution. Thickness average 
displacements calculated from (22) and (23) are compared in 
Figure 2. We emphasize, however, that if the considerations 
leading to the estimate of b in (6) are valid (i.e., G• much less 
than G), then our manner of incorporating elastic coupling 
with the asthenosphere is more realistic and (22) is likely to be 
in better agreement than suggested by Figure 2 with the (un- 
known) precise solution of the elasticity equations analogous 
to (23). 

and this agrees with the more general model also in the long 
wavelength limit, corresponding to Elsasser boundary condi- 
tions of uniform stress drop over a long portion of the plate 
boundary [Rice, 1980]. For very long ruptures the dominant 
deformation modes predicted by (11) and (27) are simple 
shearing and uniaxial stretching, respectively. According to 
what has been said earlier, the propagation of deformation 
into the plate away from the ruptured boundary will be gov- 
erned in each of these cases by a characteristic diffusivity, 
namely, a for the shearing mode and 2/(1 - •,) • 3a for the 
stretching; i.e., dilational mode. 

We observe that if a particular solution of (11) for the 
strike-slip mode is 

u-- f (x, y, t) 

then a corresponding solution to (27) for the ihrust mode is 
given by 

v -- f {[2/(1 - •,)l'/2x, [(1 - •,)/2l'&, t} 

or by any constant times this expression. We shall develop all 
subsequent solutions for the strike-slip mode, but reinterpret 

1.0 

0.8 "Exact" -- 

0.4: •'• - 

o.z ½ aod• / 

0.0 • ' 

0 1 g 3 
y/H 

Fig. 2. Decay with distan• from fault of t•ckness averaged dis- 
placements as predicted by plate model and by 'exact' elasticity solu- 
tion for uffiform stress drop q over H, assum•g no va•ation of elastic 

We note that a simplified equation similar to (11) can be properties with depth. 
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results in terms of the above transformation as needed to dis- 

cuss the thrust mode. 

Finally, we must specify numerical values for the parame- 
ters a and • so as to provide an interpretation of subsequent 
results. Selecting b as given by (5) we have • -- (Hrr/4) 2 and 
therefore fi/a -- (rr/4)2H•l/hG for the relaxation time of the 
Maxwell foundation. We shall assume G -- 5.5. x 10 'ø Pa for 

the mean shear modulus of the crust and upper mantle. An 
appropriate choice of viscosity r/is uncertain and, indeed, if 
the linear model adopted here is to simulate approximately 
what is an inherently non-linear viscous response of the as- 
thenosphere [e.g., Melosh, 1976], different choices of r/may be 
appropriate according to the application [Rudnicki, 1980]. We 
have chosen to base numerical illustrations here on the value 

r/-- 2.0 x 10 '9 Pa s (2.0 x 1020 poise). This value is consistent 
with the characteristic time 2•l/G -- 20 yr. obtained in recent 
work by Thatcher et al. [1980] on earthquake loading data, if 
the above G is used. (Thatcher et al. infer r/-- 1.0 x 10 '9 Pa s 
from this data, since they choose G -- 3.0 x 10 •ø Pa as the 
mean shear modulus of a 30 km thick elastic plate.) The cho- 
sen value, *t -- 2 x 10 '9 Pa s, falls into the range of 5 x 10 '8 Pa- 
s to 5 x 10 '9 Pa s set by earlier inferences of Nur and Mavko 
[1974] from earthquake loading data and Walcott [1973] from 
the isostatic rebound of Lake Bonneville. Furthermore, we 
shah assume H = 75 km for the thickness of the elastic layer 
(lithosphere) and h -- 100 km for the thickness of the vis- 
coelastic substrate (asthenosphere), taking note that only the 
ratio H/h enters into the relaxation time, the value of which is 
thus fi/a -- 4.6 yr. For convenience we use the value fi/a • 5 
yr in the following. Further, the dependence of the time scale 
of results on the value chosen for viscosity is discussed when 
appropriate subsequently. 

TIME-DEPENDENT STRESS ALTERATIONS 

ASSOCIATED WITH SUDDEN RUPTURES 

A first question arising within the flamework of our model 
concerns the time-dependent stressing of a plate boundary in 
the vicinity of or directly on segments that have failed in a 
sudden great earthquake rupture event. Two simple and in a 
sense complementary models of such faulting are analyzed in 
this section. In the first the fault is idealized as a crack-like 

zone of sudden and permanent stress drop while in the second 

b. --• l-co 

: r•-Z'•o i y 

Fig. 3. Definition of crack problems for strike-slip (Figures 3a-3c) 
and thrust faulting (Figure 3d) modes of rupture on transform and 
subduction type plate boundary, respectively. 

down to the base of the elastic plate. We will assume here that 
slippage is resisted along the crack faces by a stress •'r which, 
in accordance with our plane stress model, must be viewed as 
an average taken over the plate thickness. In a complete de- 
scription of the process, which we do not attempt here, 
would contain contributions corresponding to frictional slid- 
ing of brittle rock in the upper sections of the plate and from 
perhaps quasi-plastic slip at greater depths, where pressure 
and temperature are higher. 

As shown in Figure 3a, the zone of active slippage is viewed 
in a horizontal plane like a shear crack of length L loaded in 
Mode II by a remotely uniform shear stress ,oo. However, in 
order to simplify the subsequent analysis, we shall in fact deal 
with the case of a semi-infinite zone of slippage, indicated in 
Figure 3b, the strength of which is reduced to a level •'r over a 
certain distance L extending behind the 'crack tip.' Rice and 
Simons [1976] observe that this approximation of Figure 3a by 
Figure 3b involves little error and, in fact, corresponds to a 
certain amount of entrapped slip in the fault of Figure 3a. 
Subtracting out the uniform tectonic stress ,oo, the problem 
then becomes one in which a 'stress drop' •'oo - •'r occurs 
along a segment of length L along the crack focus with the 
sense shown in Figure 3c, i.e., such that the half planes y X 0 
experience the same relative displacement as for the original 
loading of Figure 3b. Finally, in Figure 3d is shown a plan 
view of the corresponding Mode I (thrust) problem for a sub- 

model the rupture is viewed as a suddenly introduced zone of duction-type plate boundary. 
slippage, represented by a fixed dislocation density distribu- 
tion. It should be recalled that stress-drop and slippage here 
refer to thickness-averaged quantities; we do not at this point 
examine variations of stress or slip through the lithospheric 
thickness. 

The crack model and the dislocation model furnish two ex- 

tremes in terms of actual time-dependent response. In fact, in 
each a certain readjustment (of stress and slip displacement, 
respectively) is suppressed which may be expected for any 
natural fault plane from material behavior such as time-de- 
pendent strengthening of frictional contact surfaces and creep. 
It seems likely, however, that the somewhat more realistic 
rupture model is that of the second kind, in which fault slip- 
page associated with a suddenly formed crack is kept at its ini- 
tial value and the resulting dislocation-type problem is ana- 
lyzed, as is done in the second part of this section. 

The Suddenly Introduced Crack 

The shear crack problem of Figure 3c possesses anti-sym- 
metry, implying 

u(x, y, 0 = -u(x, -y, 0 (28) 

We are thus led to a boundary value problem for (11), subject 
to the subsidiary conditions 

u(x, y, o)=o 

u(x, O, t) --' 0 x > 0 

GOu/Oy(x, O, t) - -q(x)H(t) x < 0 (29) 
Ou/Ox, Ou/Oy--> 0 x 2 + y2 _> oo 

where H(--.) is the unit step function. The loading conditions 
of Figure 3c correspond to q(x) -- qH(x + L), where q is the 
constant stress drop •'oo - •'r. The form of the third condition 
follows from (10) while the second is a direct consequence of 
(28). We shah now employ Fourier transform and Wiener- 

Consider first the problem of a suddenly introduced zone of Hopf techniques (see, e.g., Noble [1958]) to construct a solu- 
stress drop coverLqg some segment of a transform fault and tion. 
modeled here as a crack-like zone of slippage which reaches Fourier and Laplace transformations of (11) again provide 
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us with the general solution (16) for the transform t• The 
boundary condition u(x, O, 0 = 0 for x > 0 implies 

_- f o s) e-i•x _- I • (•o, s) •(x, o +, dx &(•o, •) •(,0, 0+, s) = T 
(30) 

where the sumbol fJ+(w, s) adopted for the integral means that 
(f+(•0, s) is analytic in the upper complex •0 plane (Im (•0) > 0), 
given that the displacement remains bounded everywhere. 
Similarly, the condition along x < 0 leads to 

GO1•(w, O, s)/Oy = -Q(w)/s + •_(w, s) (31) 

where Q(•o) is the Fourier transform of the loading 

Q(•o) = q(x)e -• dx (32) 

which can be assumed to be analytic in the half plane Im (•o) 
> 0, and 

•_(w, s) = O•y(x, O, s)e -•'• dx (33) 

which is analytic in a half plane Im (•0) < v. Here v > 0 at any 
finite time denotes the decay index of o•y(x, 0, 0, i.e., o•(x, 0, 
t) --- O(e -'x) as x --> +oo. 

Differentiation of (16) and use of (30) and (31) now fur- 
nishes the relation 

(1 + r)G(•02 + X2)•/2fJ+(•0, s) = Q(co)/.s - P_(co, s) (34) 

valid in a strip of the complex •0 plane, which is delimited by 
the overlap of the domains of definition of the analytic func- 
tions (f+ and •'_. 

In Appendix B we develop the solution to (34) by standard 
Wiener-Hopf methods. This is done there by first representing 
the loading q(x) in the form 

q(x) = • Q(K)d • dK (35) 

which is the Fourier inversion of (32). A solution is then con- 
structed for the elementary loading q(x) = d% x < 0 where K 
is regarded as having an arbitrarily small but negative imagi- 
nary part. The resulting expressions for •'+ and •'_ are distin- 
guished by a superscript (K), referring to the particular ele- 
mentary loading, and are given by (B6) and (B7). 
Superposition of these elementary solutions, weighted by 
(1/2•r)Q(K) in the same manner as for q(x) above, then yields 
the solutions for general load distributions in the form 

i f +oo_,• Q(•) d• (1 + •)•(•o, 0% s) = • ,-•-,• (•o - •)(•o + iX)'/'(• - iX) '/'• 
(36) 

for the transform of the crack surface displacement, and 

•(•o, o, s) = •'_½o, s) - Q(•o)/s 

2q1'$ ¾-oo-t$ 
(37) 

for the transform of the shear stress. 

We shall not attempt to perform the inversions and in- 
tegrations necessary to obtain u and a•,y everywhere. Rather, 
we focus attention on the most interesting part of the solution 

which gives the stress straight ahead of the crack tip as well as 
the displacement behind it. The first is obtained by inverting 
(37). With (32) determining Q(K), the Fourier inversion theo- 
rem gives the result 

i fo 6x•(x, O, s) = -4•s _oo q(•) d• 

d• w - iX e-•(•-•) d• (38) 

An appropriate shift of Mtegration contours permits this to be 
written as 

O•(x, o, •) = • 

• _ ß d• d• 09) 
The double integral in this expression is readily evaluated in 
terms of known Laplace transforms (see, e.g., Erdelyi et al. 
[1954]). This yields the Laplace transform for the stress ahead 
of the crack 

1 fo (__•),/2 e -•(•-ø d• x > 0 (40) a•(x, O, s)= s•rx,/• q(li) x- li 
for any loading q(x) given on x < 0. 

A measure of the stress concentration at x -- 0 is given by 
the Mode II stress intensity factor, defined by 

K(t) = lira {(2wx)'/2oxy(x, O, t)} 
x-.O + 

From (40), upon taking this limit, we find 

1 2•}'/2føq(•) e • R(s) = 7 -oo (_•),/2 d• (41) 
In the case of a uniform stress drop q occurring over -L _< x 
_<0 

R(s) = 1 q(21X),/2 erf [(XL) '/2] 
s 

(42) 

The Laplace transform inversion of (40) and (41) is 
achieved with the help of a theorem given in Carslaw and Jae- 
ger [1948]. Details are carried out in Appendix C1, the result 
being 

o•,y(x, O, t) = 1 f0 efl'xl/2 q(•) la(X -- 1•, t)(-•) '/2 d• -oo x-t/ x>0 
(43) 

where 

la(X - l•, t) -- e -"'/• e -nerfc [(x - 

' Io[2(*lat//3) '/2] d*l 

,% -= •/[ (• + 

Here/o(') is a modified Bessel function and/o(0) -- 1. Simi- 
larly we obtain 

K(t)= _ooq(•) _•,/2 d• (44) 
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Fig. 4. Stress alteration along transform boundary ahead of suddenly introduced zone of uniform stress drop q (crack 
model) at various times. 

Specialized for a uniform stress drop q occurring over -L _< 
x _< 0, these results are appropriately normalized and plotted 
in Figures 4 and 5 for different times, expressed as multiples 
of the relaxation time t•/a, as well as for various ratios of rup- 
ture length to lithosphere thickness. These solutions represent 
the transition from an initial stress state characterized by a 
purely elastic, unrelaxed response of the asthenosphere, to a 
final state of a completely relaxed asthenosphere exhibiting 
the known response of an elastic plate with traction-free lower 
surfaces. Characteristically, as time progresses, the relaxing 
asthenosphere supports less and less of the load shed onto it 

erf (L/H) !/2, so that when L/H is equal to 4 or larger, the ini- 
tial value of K is effectively independent of L and is given by 
K = q(2H) !/2. By comparison, the relaxed value (48) of K has 
no limit as L increases indefinitely. 

An asymptotic result for the stress at t >>/•/a is 

o•(x,O,t)= q f_• -Idl/• 
erfc 2(1 + v)(at)l/• d• x > 0 (49) 

initially by the failing lithosphere until ultimately the astheno- and a corresponding expression for K may be written down 
sphere is completely relaxed and the stress and stress concen- immediately. These asymptotic solutions for times much 
tration associated with faulting reaches a stationary maximum larger than the relaxation time fi/a display the behavior of El- 
within the elastic plate. A characteristic time scale for this sasser's [1969] original model wherein the asthenosphere be- 
transfer of stress from newly-ruptured segments of a plate haves like a Newtonian viscous fluid. The value offi/a -- 5 yr, 
boundary to adjacent potential 'gap zones' thus emerges from 
our model of lithosphere/asthenosphere coupling and to- 
gether with predicted magnitudes of stress alterations consti- 
tutes a feature of prime interest. We shall further discuss this 
after presentation of more results. 

The behavior of the solutions plotted in Figures 4 and 5 in 
the unrelaxed (t --• 0') and completely relaxed (t -• oo) limits 
is embodied in the following analytical expressions. For t -- 
0', i.e., immediately after the coseismic slip, 

o•,y(x, 0) q•_• -Idl/2 -- e -ø'-øxø d• x > 0 (45) x - 

which is readily obtained from (40) upon noticing that lim•oo 
{;k(s)} -- 1/[(1 + v)• !/2] = ho. In the completely relaxed limit t 
-• oo (X -• 0), on the other hand, one has the well-known re- 
sult 

o•,,(x, O) = (2q/•r)(L/x)m[1 - (x/L) '/• 

arctan (L/x) m] x • 0 (46) 

The co•espond•g results for the stress •tensity factor are 
easily deduced from (42). Thus, • the unrelaxed state, t • 0', 

K = q(2/•) m erf (•)m (47) 

while for t • • 

K = q(8L/) (48) 

which is a fam•ar result of fracture mechanics. In prepamg 
Figures 4 and 5 we have taken v as 0.25 and for s•plicity of 
•te•retation have replaced •-• = (1 + v)fim = (1 + v)eH/4 
= 0.98H by H • aH of the relations •volved. In pa•icular, 
the same replacement enables us to write (47) as K • q(2• m 

however, restricts the usefulness of asymptotic results for t >> 
fi/a and hence also the validity of Elsasser's model quite se- 
verely, as is apparent also in Figures 4 and 5 from the time 
span covered by significant post-seismic stress alterations in 
response to sudden stress drops. 

As is evident from Figure 4, the time scale governing the 
stress transfer to segments of the plate boundary bordering the 
rupture zone cannot be characterized simply in terms of the 
relaxation time fi/a. This slow ascent to the ultimate stress 
distribution (46) reflects the 1/(t) •/• decay at large times of the 
function/•(r + x, t) in (43) and is qualitatively similar to the 
behavior of the model developed by Thatcher et al. [1980] in 
theix study of lithospheric loading by dip-slip earthquakes. 
We shah further comment on stress transients when com- 

paring the crack solution with the dislocation solution below. 

K 

qx/'•-•' L =oo 3.0 
1.5 

L=H 

1.0 -- 

0.5 I [ I I I I 
o io atl• •o 

Fig. 5. Thickness average stress intensity factor associated with 
suddenly introduced zones of permanent stress drop (crack model) on 
a transform fault versus time. 
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Fig. 6. Initial slip displacement associated with sudden stress drop q 
on segment L of semi-infinite strike slip fault. 

An unrealistic feature is the 1/(x) •/2 singularity for the 
stress as x --> 0% This could be avoided through a more com- 
prehensive constitutive modeling of the rupture process in the 
near-tip region of the crack, i.e., by introducing a 'break-down 
zone' in this region as in the work of Palmer and Rice [1973] 
and subsequent studies based thereupon [e.g., Rice, 1980]. We 
emphasize again, however, that the theory employed in this 
paper is limited in scope to large scale phenomena and cannot 
be expected to yield accurate modeling of thickness-averaged 
quantities at distances from the rupture front (or 'crack tip') 
which are small in comparison with the thickness of the litho- 
sphere. We shah thus focus on the behavior of solutions at dis- 
tances typically of the order of H ahead of or behind the rup- 
ture front, i.e., beyond the unrealistic stress concentrations 
resulting from the crack tip singularity. A valid measure of the 
stress concentration arising near the edge of a zone of per- 
manent stress drop will be the thickness-averaged Mode II 
stress intensity factor as given by (44) and plotted in Figure 5 
versus dimensionless time for a uniform stress drop and differ- 
ent ratios of rupture length to lithosphere thickness. The de- 
pendence of this stress intensity factor on rupture length is 
seen to be quite marked, and so is the difference between its 
initial and final values (47) and (48), which, for the longer 
ruptures, reveals a very significant effect of load transfer from 
the relaxing asthenosphere to the lithosphere. However, the 
rise of K with time is likely to be exaggerated, as is the time- 
dependent stress alteration in Figure 4, both reflecting the ex- 
treme condition of a permanent drop in stress along the rup- 
ture. 

The sequence of figures just discussed was prepared for the 
strike-slip (or transform) mode. By using the transformation 
noted earlier to the thrust mode, as appropriate for a gently 
dipping fault plane, identical results apply to that case but 
with o,•y replaced by aye, with the surface rupture lengths 

L/H--O, 1,2,3,5, oo 

of various illustrations replaced by the sequence 

L/tt = O, 0.61, 1.22, 1.83, 3.05, oo 

and with the distance marks 

x/H=O, 1, 2, 3, .-. 

on the horizontal axis in Figure 4 (and equally in Figures 6, 7, 
and 9) replaced by 

x?H = 0, 0.61, 1.22, 1.83, ... 
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panied by a permanent stres s droP, PoStSeismic slippage will 
however be hindered in reality bY time-dependent strengtl•- 
ening of the fault and is therefore likely to be exaggerated bY 
the crack model. Nevertheless, the amount of coseismic slip- 
page is of considerable interest and, in the model considered 
next, can well serve as what would seem a reasonably realistic 
initial condition for a dislocation-type fault model. We there- 
fore return to (36) and (30) from which the Laplace transform 
for the slip displacement along the fault is derived in Appen- 
dix C. For the short time limit t --> 0 + (X --> Xo) we deduce 
from (C7) the following expression for the initial slip dis- 
placement due to a finite zone of stress drop: 

8(x, 0 +) = -•- p-i• erf {[p + Xo(L- Ixl)] d• 
-L_<x_<O 

2q 
o+) = 

(50) 

•Xo(p•l-L) p•/2 erf {[p - Xo(Ixl - L)] '/=} 
x <-L 

A plot of this relation in dimensionless form is shown in Fig- 
ure 6 where XoL has again been replaced by L/H, ranging 
from 1 to oo. The simple result for L --> oo is 

8(x, 0 +) = - G err [(Xølxl)•/2] (51) 

which shows that the initial slip displacement along a long 
rupture lies less than 5% below its maximum value of 2q 
#•/2/G at Xolxl = 2 or larger, this maximum being identical 
with the initial slip displacement along an infinite fault which 
experiences a sudden stress drop [Rice, 1980]. It is interesting 
to compute the maximum mean slip displacement predicted 
by our model for a thickness averaged stress drop of 50 bar, 
say. Taking v = 0.25, fl•/2(1 + v) = •o -• = 75 km and G = 5.5 
x 10 •ø Pa, we find &man = 11 m, which fits well into the range 
of observed slip displacements for great earthquakes. 

The Suddenly Introduced Dislocation Distribution 

The intended use of (50) is as an initial condition in mod- 
eling a suddenly introduced rupture in which post-seismic slip 
is prevented by a rapid restrengthening of the fault zone, the 
nature of which we shah leave open here. In this dislocation- 
type fault model the subsidiary conditions associated with (11) 
are the following: 

u(x, 0 +, t) = • &(x)H(t) x < 0 
u(x, 0 +, t) --- 0 x > 0 

(52) 

presupposing, in addition, an appropriate behavior of u at 
large distances from the crack-tip. In the above &(x) denotes 
the slip distribution as defined by (12) and produced initially 
by a constant stress drop rupture event, i.e., &(x) is the func- 
tion given by (50) and plotted in Figure 6. 

The Fourier inversion of (18), making use of the con- 
volution theorem and a table of integrals, gives 

A time-varying slip movement is predicted to occur along 
the fault in response to a suddenly introduced rupture accom- o o•(x, 0, s) = (1 + •,)GX K,(Ix - IX) (53) 

2rs -oo Ix - 
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Fig. 7. Stress alteration for dislocation model of strike slip fault on and ahead of rupture zone at various timesß 

where Kl is a modified Bessel function and for x < 0 the in- 
tegral exists in the sense of its Cauchy principal value. The 
Laplace transform inversion of (•/s)K,([x - f[•) is outlined in 
Appendix C. The result is 

Ox,(X, O, t) = 

where 

o 2•/' -oo 

The rupture front or crack tip in Figure 7 is characterized 
by a sharp transition from the stress minimum, which at finite 
times appears near the end of the slipping region, to the stress 
concentration which is encountered upon approaching the 
rupture from outside. Although details will vary to some ex- 

/•(f) df tent, the same qualitative stress pattern may be expected to 
[x- •l (54) persist for different initial slip distributions. It seems possible 

therefore that the low stress zone behind the rupture front 
may act as a barrier to future propagating ruptures, thus fur- 
nishing one explanation for the observed tendency of rupture 
zones (including aftershock areas) of successive great earth- 
quakes to abut without appreciable overlap [e.g., Fedotov, 
1965; Mogi, 1968a; Sykes, 1971]. Moreover, it is near stress 

+ • (Ix - •lXoat/•) • K•+,(i x _ •lXo)} concentrations of the type shown in Figure 7 that one would "=l 2"(v!)2 expect future ruptures to originate preferentially, to advance 
The short time limit for t --> 0 may be verified to coincide with from there into the more highly strained region adjacent to 
(45), as it should, when/•(x) is substituted from (50). Equation the original rupture; this indeed appears to be an observed 
(54) for this slip distribution was evaluated by numerical in- pattern [Kelleher, 1970; Sykes, 1971; Kelleher and Savino, 
tegration and results are plotted in Figure 7 for different ratios 1975]. 
of rupture length to lithosphere thickness and for multiples of If one explains the time interval separating the occurrence 
the relaxation time fi/a, again assuming v = 0.25 and Xo = of neighboring great earthquakes in terms of missing strain 
1/H. Figure 7 affords a comparison with the crack solution of energy which must be supplied by further loading in time be- 
Figure 4 for points x > 0 ahead of the crack tip, and for -L < fore a rupture can be extended, then it will be of interest to ex- 
x < 0 shows the stress alterations within the zone of initial amine the contribution of stress transfer from a relaxing as- 
stress drop due to stress transfer from the asthenosphere onto thenosphere to this loading of regions bordering a new 
the locked rupture zone. rupture. Clearly, if significant stress is transferred at high 

The distinguishing features of the dislocation solution are enough rates by this mechanism, triggering interactions of ad- 
seen to be significant time-dependent stress changes in the jacent events may be expected, a consequence being perhaps 
rupture zone itself and comparatively smaller stress altera- the clustering in time of individual events into distinct rupture 
tions beyond the rupture front. In comparing Figures 7a and sequences followed by longer intervals of relative quiescence 
7b we see that larger ruptures produce greater postseismic extending over a certain segment of a seismic belt. Relevant to 
stress alterations. For L = 5H about 70% of the initial stress this question will be a comparison of the relative rate of stress 
drop is eventually eliminated at the center of the rupture zone alteration dx•/q (or d•/q for the thrust mode) with an average 
by asthenosphere relaxation, while for L = 2H only about tectonic stress rate normalized in the same way by the stress 
40% is eliminated. Thus shorter ruptures exhibit larger per- drop. In fact, tectonic stress rate as well as stress drop are both 
manent stress drops. taken appropriately as long time averages for a large number 

We also note that the approximate symmetry of the stress of earthquake cycles so that we may set the ratio of average 
distribution within the rupture zone about the point x = -L/2 tectonic stress rate to stress drop q equal to t, -•, where t, is the 
confirms that a semi-infinite zone of slippage and a finite zone recurrence time. 
will yield stress distributions on the rupture plane and ahead Figure 8 affords a comparison between stress alterations 
of it which are qualitatively in agreement and quantitatively due to load transfer from a relaxing asthenosphere as implied 
close enough to justify our initial replacement, for mathemati- by Figures 4 and 7, and tectonic stressing for values of t, com- 
cal convenience, of a finite fault by a semi-infinite fault (cf. monly mentioned in the literature. Plotted are stress alteration 
Figure 3). versus real time, letting fi/a = 5 yr, for the crack as well as for 
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Temporal clustering of large events has indeed been ob- 
served and, according to Sykes et al. [1980], who recently have 
examined the historical record for the Alaska-AleutiaI• arc, 
'appears to be a common feature of several simple plate 
boundaries' including such examples as the plate boundary 
off northern Japan and the southern Kuril Islands and the 
North Anatolian fault. Disturbances of this clustering trend 
may result from material inhomogeneities and geometrical ir- 
regularities of the plate boundary and indeed, from Figure 8, 
the stress anomalies associated with such features need only 
be of the order of a few bars to put neighboring ruptures ef- 
fectively out of phase. 

From the lower half of Figure 8 it is apparent that accord- 
ing to the dislocation model the stress at x -- -H, i.e., on the 
rupture zone itself, increases for a number of years at a much 
higher rate than it does on the adjacent plate boundary seg- 
ment at x -- H. This suggests an important role of astheno- 
sphere relaxation in aftershock occurrence, taken in the 
broader sense of Mogi [1969] as prolonged anomalous seismic 
activity. Indeed, the shape of the stress isochrones on the rup- 
ture plane as it appears in Figure 7 is suggestive of a tendency 
towards more persistent long-term aftershock activity within a 
central section of the rupture zone. Beyond the rupture front, 

Fig. 8. Stress alteration as a function of time on transform boundary on the other hand, one may expect aftershock activity in the 
within and ahead of rupture zone. stricter sense associated with the stress concentration, but, ow- 

the dislocation problem at distances of one lithosphere thick- ing to the lower stress rates, an even more prolonged seismic 
ness ahead of and behind the rupture front, assuming a rup- activity due to asthenosphere relaxation leading gradually 
ture length of five lithosphere thicknesses. The actual times into a concentration of long-term precursory events near the 
associated with ordinates on the plots of Figure 8 increase or margin of the next great rupture. Such a behavior could re- 
decrease in proportion to ,/when ,/differs from 2.0 x 10 '9 Pa semble in certain aspects the 'seismic preconditions' noted by 
s. Also, for the thrust mode the equivalent rupture length is L Kelleher and SaWno [1975] as well as Mogfs [1969] observa- 
-- 3H. The stress alteration at x -- H is seen to increase slowly tion of long-term regularities in the space and time distribu- 
up to a saturation level amounting to 18% of the magnitude of tion of seismicity associated with certain great earthquakes. 
the initial stress drop for the dislocation problem, but 69% of q Although a more detailed prediction of such regularities will 
for the crack problem. As has been pointed out already, the obviously require more sophisticated modeling, the results of 
crack solution is expected to predict unrealistically high stress our study indicate that lithosphere/asthenosphere coupling 
changes while the dislocation solution will set a lower limit effects are likely to enter into the basic mechanism of any pro- 
because it suppresses postseismic slip. Nevertheless, the latter longed (i.e., of the order of a relaxation time) anomalous seis- 
is likely to be somewhat closer to reality. mic activity preceding or following major or great ruptures. 

The dotted lines in Figure 8 represent the accumulation of 
tectonic stress, expressed as a fraction of q, at a rate equal to 
t, -• counted from the rupture event at t -- 0. The supposition MIGRATING DISTURBANCES 
is now that at the time immediately after the rupture the stress In this section we explore the effects of lithosphere/as- 
at x -- H is increased by an instantaneous elastostatic altera- thenosphere coupling on the characteristics of propagating 
tion of about 0.05q, but is still below the critical level at which disturbances akin perhaps in certain basic aspects to propa- 
a rupture can occur. The remaining necessary stress is then gating deformation fronts or triggering disturbances as have 
supplied by the added contributions of tectonic loading and been discussed in connection with earthquake migration. To 
load transfer from the relaxing asthenosphere. Assume now simplify the analysis, we focus on a large tectonic size scale 
that the increase in stress still required at x -- H is some frac- and a long time scale and we shall model a 'deformation front' 
tion of q, say «q, for example. This could be accomplished by by a continuously propagating zone of permanent stress drop, 
tectonic loading alone at a rate of t, -• -- 1/100 year within 50 i.e., by a steadily advancing crack. We shall thus deal with a 
years. Taking the lowest (dislocation solution) estimate for variant of the preceding crack problem. In reality, of course, 
stressing due to asthenosphere relaxation and adding this to slip will often be discontinuous in time and distributed in 
the tectonic loading rate one finds that the required additional space in the manner of shear zones in the upper crustal re- 
load of «q will be supplied in only 35, years. Although the gions, but for the present purpose we average it out, analo- 
magnitude of this acceleration effect depends somewhat on re- gously to the treatments by Brune [1968] and Kostrov [1973] of 
currence time, it remains significant within a range of 50 to 'seismic flow' of rock masses over long time scales. 
250 years which may be regarded as typical. This suggests that With reference to Figure 3c and the relevant discussion of 
major and great earthquakes should occur in some concerted the previous section, let the crack problem to be analyzed in 
fashion determined by lithosphere/asthenosphere coupling ef- the following consist of a similar Mode II crack advancing, 
fects. In fact, as a consequence of the acceleration mechanism however, steadily in positive x direction at a fixed speed 
implied by Figure 8 there should exist a tendency towards Subtracting out a remotely uniform tectonic stress ,oo, we are 
progressive synchronization of adjacent ruptures during re- led to the problem of a travelling crack subject to a follower 
peated earthquake cycles. load -q(x - Vt) -• •x - Vt) - •oo distributed over a segment 
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Fig. 9. Stress alteration along transform boundary ahead of travelling zone of uniform stress drop q (propagating crack 
model) for various propagation speeds. 

of length L behind the crack tip. Mathematically this suggests 
a solution to (11) of the form 

u(x, y, t) -- u(x - Vt, y) (55) 

We therefore choose the origin of a new x, y coordinate sys- 
tem at the tip of the travelling crack and shall thus deal with 
the following boundary value problem 

(a - •VO/Ox) [(1 + v)202u/Ox 2 + O2u/Oy •] + VOu/Ox = 0 (56) 

u(x, O) = 0 x > 0 

GOu/Oy(x, O) = -q(x) x < 0 (57) 

Ou/Ox, Ou/Oy • 0 x 2 + y2 _, oo 

and 

where 

i /+oo-,• Q(/c) (1 + v)GO(c0, 0 +) -- • ,-oo-,• (co -/c)k+(c0)k_(/c) 

i f Q(tc)k_(oo) O) = (oo- 'Ok-(.) 

k+(,o) = (,o)'/'(,o + it,)'/'(oo + ic) 

k_(,o) = (,o - ia) 

(62) 

(63) 

(64) 

and Q(•) is again the transform of the load q(x) as defined by 

Again, further conditions on the boundedness and decay of (35). 
the displacement and its derivatives need to be assumed sub- A comparison with (37) now shows that the stress may be 
sequently in order to ensure a solution. The method of solu- obtained from (63) by Fourier synthesis without further effort 
tion closely parallels that employed for the transient crack upon reinterpreting terms in (40), i.e., replacing X(s) by a(V) 
problem of the previous section. Fourier transformation of and deleting the transform variable s. The result is 
(56) yields 

(a - fiVioo) [d•2/dy 2 - (1 + p)2032a] + Viooa = 0 (58) 

and restricting consideration to the half plane y _> 0, the gen- 
eral solution of this equation is 

•2(o0, y) = A(o0)e -('+")•('ø)y Re [k(o0)] > 0 

1 /Oq(•) (_•),/2 Oxy(X , O) = •l'--• --oo X -- • ½--a(V)(x--O d• 
Similarly, from (41) we deduce the expression 

x > 0 (65) 

where 

and 

k(c0) = (to)'/2(to -- ia)'/2(oo + ib)'/2(oo + ic) -'/2 

1 V) 2 1/2 a = a(V) = •- {[(a/fi + 4/fi(1 + v) 2] - (a/fi V)} 

1 V) 2 1/2 b = b(V) = •- {[(./fi + 4/•(1 + v) 2] + (./fi V)} 

2•) '/2/ø q(li) ½a(v)• (59) K(V)-- _oo (_/j),/2 d• (66) 

(60) for the stress intensity factor. When a uniform stress drop q 
occurs over -L •< x •< 0, in which case the lower limit in (65) 
and (66) is to be replaced by -L, the last result becomes 

K(V) -- q[2/a(V)] '/2 erf {[a(V)L] '/2} (67) 

For unbounded L and non-zero V (66) yields 

(61) K( V) = q[2/a( V)] '/2 (68) 
In this special case integration of (65) also furnishes the result 

Oxy(X, O) = q {[1/(wa( V)x)'/2]e -"(r•x - erfc [(a( V)x)'/2]} 

x > 0 (69) 

c = c(V) = ./# v 

Clearly, a, b, and c are positive real functions of V. Accord- 
ingly, in order to meet the requirement Re [k(c0)] > 0, the 
branch cuts of k(c0) must be properly selected. 

An application of the Wiener-Hopf technique which closely Figures 9 and 10 present graphs of these solutions for uni- 
parallels the developments of Appendix B and the previous form q and various ratios of rupture length to lithosphere 
section now leads to the following results for the transformed thickness, based again on the choices v -- 0.25 and (1 + v)fi I/2 
displacement and stress along the x axis: = H. Note that the velocity parameter a(1 + v)/fi '/2 V appear- 
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Fig. 10. Thickness average stress intensity factor associated with 
travelling zone of uniform stress drop on a transform fault versus 
'slowness' of propagation. 

ing in a(V) may then be written as aH/fiV. Accordingly, in 
preparing Figures 9 and 10, we have used the expression 

a(F) • «{[(aH/•F) 2 + 4] '/2 - (aHI•V))/H (70) 

These results for the stress distribution ahead of the crack 

and for the associated stress intensity factors display a depen- 
dence on the propagation speed of the crack through the pa- 
rameter a. The function a(F), as given by (61), is seen to ap- 
proach the values 2V/[a(1 + v) 2] and 1/[fi•/2(1 + v)] at low 
and high speeds, respectively. For the particular choice (70) 
the same limits are 2//V/alF and 1/H, respectively, and these 
have a simple interpretation in terms of the relative magni- 
tude of an effective travel time H/V and the relaxation time 

fi/a. The low-speed asymptote characterizes purely viscous re- 
sponse of the asthenosphere, as in Elsasser's model, while in 
the high-speed limit there remains no time for viscous relaxa- 
tion and the asthenosphere responds elastically. As is to be ex- 
pected, in the high-speed limit the solution for the travelling 
crack reproduces the short-time limit (45) of the transient 

100 km/yr or higher, the asthenosphere is virtually unrelaxed 
and the zone of stress drop propagates as if over an elastic 
foundation, led by significantly reduced stresses and stress 
concentrations. Any sizeable reduction in V from 100 km/yr 
will imply a load transfer from the asthenosphere to the litho- 
sphere, on the other hand, which can be read off Figures 9 
and 10, and this may lead into an earthquake instability. In- 
deed, in the extreme case of arrest of a disturbance propagat- 
ing previously at a speed of the order of 100 km/yr or larger, 
the process analyzed in the previous section will evolve, en- 
abling the arrested disturbance to shed gradually significant 
stress on any barrier and thereby to trigger a delayed rupture. 

CONCLUDING DISCUSSION 

The preceding analysis seeks to provide a model for large- 
scale stress and strain diffusion phenomena in a lithospheric 
plate, reflecting dynamic coupling of the latter to a vis- 
coelastic asthenospheric substrate. In contrast with Elsasser's 
[1969] theory of lithospheric stress guides, in which a purely 
viscous asthenosphere and very long (spatial) wavelength dis- 
turbances are assumed, our model is able to deal with sudden 
events such as earthquake faulting along a limited plate 
boundary segment. The theory presented is general enough, 
for example, to serve as a basis for modeling large scale in- 
plane deformations and stresses associated with a variety of 
tectonophysical phenomena affecting the lithosphere, such as 
major volcanic eruptions or intrusive processes of the type oc- 
curring at spreading centers. Also, certain phenomena of 
stress and strain diffusion from the boundaries into the inte- 

rior of plates that have been linked to the occurrence of intra- 
plate earthquakes [Shirnazaki, 1978; Ishii et al., 1978; Yarn- 
ashina, 1979; $eno, 1979] appear to lie within the scope of our 
theory. 

A principal limitation of any plate theory lies of course in 
its two-dimensional nature which implies an averaging over 
any depth variation and forces us, in particular, to disregard 

crack problem of the previous section, the same being true, of the details of processes at plate boundaries. Nevertheless, it 
course, for the stress intensity factor. On the other hand, a(V would seem feasible in future more comprehensive modeling 
--• 0) -- 0 so that for any finite L the elastic solutions (46) and 
(48) are again recovered, and it is clear indeed that the limits 
V--• 0 for the travelling crack and t -• oo for the stationary 
crack are equivalent in that the asthenosphere will become 
completely relaxed in each case, thus leading to identical solu- 
tions for a freely floating elastic plate. 

The fact that a(V) increases monotonically has the impor- 

to employ suitable matching techniques and thereby link the 
theoretical results obtained in this paper to detailed cross-sec- 
tional studies of rupture progression across the plate thickness 
so as to gain more complete insight into the role played by 
lithosphere/asthenosphere coupling. 

From the solutions obtained in this paper and illustrated by 
Figures 4-10 the following main conclusions may be drawn: 

tant consequence that the stress ahead of the crack as well as The stress which is shed by a great earthquake onto the as- 
the stress intensity factor become more strongly attenuated thenosphere is gradually transferred back to the lithosphere 
the higher the propagation speed V and hence the greater the by a relaxation process. Accordingly, postseismic increases in 
elastic load-carrying capacity of the asthenosphere. This cou- stress will be felt outside the rupture zone, which may exceed 
pling effect is quite analogous to one displayed by a simple coseismic elastostatic stress alterations several times and 
theological model consisting of a spring (lithosphere) and a amount in magnitude to an appreciable fraction of the stress 
Maxwell element (asthenosphere) in parallel arrangement. In drop on the fault at a distance of one lithosphere thickness 
such a model the distribution of the total load over both ele- away from the rupture front. When postseismic slippage along 
ments is determined by the rate of loading, just as in our the fault is unimportant, the stress on the fault will build up in 
model the load distribution over asthenosphere and litho- time due to the same mechanism of asthenosphere relaxation. 
sphere depends on the propagation speed of the zone of stress The spatial and temporal characteristics of this postseismic 
drop. stressing, as illustrated in Figures 7 and 8, are quite distinct 

Figures 9 and 10 permit a quick assessment of the role of for points located on the rupture and beyond it and suggest 
lithosphere/asthenosphere coupling effects for a given propa- characteristic patterns of prolonged aftershock activity for lo- 
gation speed of a zone of reduced stress. Taking/•/a--5 yr, H cations inside and outside a new rupture zone. Quite gener- 
-- 75 km and V-- 100 km/yr as a typical order of magnitude, ally, stress diffusion away from great ruptures implies a ten- 
we find that aH/fiV-- 0.15. Hence, for migration speeds of dency towards progressive synchronization of neighboring 
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events, a trend which is easily upset, however, by hetero- 
geneities and geometrical irregularities •see discussion in con- 
nection with Figure 8). 

When modeling migration of seismic activity along a plate 
boundary by a steadily advancing zone of stress drop, the al- 
tered stress state propagating ahead of this zone is found to 
correspond very closely to an essentially unrelaxed state of the 
asthenosphere at typical propagation speeds of 100 km/yr. 
When arrested by a barrier, a disturbance of this kind can 
transfer significant stresses to the barrier from a then relaxing 
asthenosphere and could thus act as a delayed trigger of a bar- 
rier breaking event. 

APPENDIX A.' SOLUTION TO THE GENERAL MODEL FOR 
STRESSES ALONG A PLATE BOUNDARY ASSOCIATED 

WITH AN ARBITRARY SLIP DISTRIBUTION 

Here we develop the solution for the general model of •?) 
analogous to that presented for the simple model of •11) in 
•16)-•19). The displacements may be written as 

ux -- O•/Ox + Otk/Oy 

-- oO/oy - o,k/Ox 
where the potentials are found to satisfy 

(a + fiO/Ot)V:ck-- [(1 - v)/2]&k/Ot 

(o• + •O/Ot)V2•/----' O•/Ot (A2) 
(compare equations (9)). Taking Fourier and Laplace trans- 
forms as in (15) the solutions are, for y > 0, 

• -- Ae -my rn = [w 2 + •(1 - v)s/(a + fis)] '/• 
(A3) 

• = Be -ny n --[w • + s/(a + ils)] •/• 
Boundary conditions to be satisfied on y -- 0 are 

Ux(X, y - 0 +, t) - ux(x, y -- 0-, t) -- 2ux(x, y -- 0 +, t) -- 8(x, t) 
(A4) 

Oyy(X, O, t) -- 0 

The latter condition follows from the complete anti-symmetry 
of the problem and, by the stress-strain relations of (2), it is 
equivalent to 

c9U x OUy (x, y -- 0 +, t) + t, -•x (x, y -- 0 +, t) -- 0 (A5) oy 

Hence, using (A3), A and B are found to satisfy 

2iwA - 2nB -- • 
(A6) 

(m 2- vw2)A + i(1 - v)•nB--0 

When these equations are solved for A and B, and the relation 

Oxy •--- Cl(•y/•X -[- Oux/Oy) (A7) 

is used, we find that the transformed shear stress •./on y = 0 is 
given by (18) with $ given by the expression in (20). 

and (34) takes the special form 

(1 + •)G(w: + X•)'/•U?)(w, s) 

= i/Is(u, - - s) (12) 

To solve this by the Wiener-Hopf method, we factorize the 
function k(w) -- (w: + h:) •/• • the fore 

choosing 

(B4) 

so that k+(w) is analytic in Im (w) < h, the branch cuts in the w 
plane being taken symmetrically along the imaginary axis. We 
now rearrange (B2) and write 

(1 + v)Gk+(w) fI?)(w, s) -//[s(w - g)k_(t0] 

-- i[1/k_(w) - 1/k_(•)l/[s(w - •)1 - •'_(')(w, s)/k_(w) (BS) 

This equality holds in the strip 0 < Im (w) < • _< h. With the 
functions on its left side analytic in Im (w) > 0 and that on its 
right side analytic in Im (w) < •, it follows that each function 
represent an analytic continuation of the other and therefore 
either side of (B5) may be set equal to one and the same entire 
function E(w). Moreover, both f]?•(w, s) and •'?•(w, s) ap- 
proach zero as oo in their domain of analyticity. There- 
fore, by Liouville's theorem, the function E(w) must vanish 
everywhere. Equating accordingly each side of (B5) to E(w) -= 
0, one arrives at 

(1 + t,)GO+('•(w, s) -- i/[s(w - •)(w + ih)l/2(/• - ih) 1/2] 

•'_('•(w, s) -- ill - (w - ih)l/2(/• - /h)-l/2]/[s(w - /•)] 

(B6) 

(B7) 

APPENDIX C: SOLUTION OF SOME INVERSION PROBLEMS 

1. Laplace Transform Inversion of (1/s)e 

We use theorem XII of Carslaw and Jaeger [1948, p. 259] 
stating that if •(s) and •(x, •t) are Laplace transforms of f(t) 
and •(t, •t), where •(x, *l) -- g(s) exp [-•th(s)], then 

,•'-' {g(s)f[h(s)]} -- •(t, •/)fO/) d•/ 

Let us apply this theorem to the transform 

1 
-exp {-/j[s/(1 + s)] 1/2} 

This will yield the inversion of the original transform upon re- 
placing t by at/• and • by (r + x)• in the final result. Take 
now 

f(s)-- l e-•"/' g(s)-- 1 h(s)-- s- 1 
,S S S 

Then 
APPENDIX B: SOLUTION OF (40) BY THE 

1 WIENER-HOPF METHOD g(s)f[h(s)]-- s• exp {-•[(s- 1)/s] '/•} --:•(•, s- 1) We wish to solve first for the particular case of the complex 
periodic load q(x) = d% where • has a small negative imagi- say. Also 

nary part -& From (32) there follows 1 1 
Q(w) -i/Oc w) (B 1) q•(s, *t) -- 7 exp [-*t(s - 1)/s] = -e-h ns 
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Now, by the shifting theorem .•-l {i•(•, s - 1)} -- ,B(•, t), so 
that &(,o, s)-- • (C3) 

B(f, 0 E •-1 { 1 exp [--•(s/(1 $ where t97 ) is the elementary solution given by (B6) and Q(g) + s)) 1/'] -- e-'.g a-1 {g(s)f[h(s)]} is the Fourier transform of the actual load, as defined by (35). 
From a table of transforms we obtain f(O -- erfc [•/(2tl/•-)] and 
ok(t, rt) -- e-•o[2(rlO•/']. By the above theorem, therefore 

o•-l{ 1 exp [-•(s/(1 + $))1/2]} $ 

-- e-' e -"erfc [•/(2•1/')]Io[2(•01/'] d• 

Replacing t by at/• and • by (r + X)ho, one thus obtains (43) 
and similarly (44). 

2. Laplace Transform Inversion of (1/s)3t(s)K•l]x - 
Consider the inversion of 

-- K• 
s l+s 

We apply the same method as in the above, selecting 

s4 1 h(s) -- (s- 1)/s •($) = Ki($1/2) g($) = 
This gives 

= K, g(s)hh(s)] s'•5- s s 
and 

Thus 

1 e_f2/4 t f(o-- 
from a tableß Going through identical steps again, while notic- 
ing that q•(t, ,/) remains the same as under Appendix C1, we 
get 

• 1_ e- t exp (-,/- •2/4•1)1o[20101/2] d•l 

-- e-' irl(O + Y. 2•(•!),_•:•.1(0 (c2) 
To obtain the last expression, use has been made of the series 
representation Io(z) = Y•,_oO'(z/2)'-'/(v!) '- and an integral repre- 
sentation for K,. Taking care now of a factor ho by which the 
original transform differs from the one inverted here and re- 
placing f and t by Ix - flho and at/•, respectively, one arrives 
at (54). 

3. Fourier Inversion of Slip Displacement 
Along Suddenly Introduced Crack 

By virtue of (30), relation (B6) furnishes the Fourier-Lap- 
lace transform of the slip displacement along a semi-infinite 
crack subject to a suddenly introduced elementary load q(x) = 
d •", x < 0, and further conditions specified by (29). The same 
method of superposition which was applied in deriving rela- 
tion (38) now enables us to write down a solution t9+(•o, s) to 
(34) for a general loading q(x) in the form 

(C4) 

(0) -- •{)(0) '4- i•)1/2(•{ __ i•)1/2 
(C5) 

Choosing integration contours along the branch cuts and eval- 
uating the residue at the pole •o -- •, we get 

1 f_o d(x, 0 +, s): •r(1 + v)Gs _o• q(•)[I'(x' f, s) - L(x, f, s)l d• 
(c6) 

where In(x, •, s) and I,(x, •, s) are integrals still to be eval- 
uated. We have 

I1 •- (,r•- •,t2)1/2 

o. e -2x" dp = •(x+f) (P -- X)I/2• -- f) 1/2 
and 

a=max (x, i) 

liø"•ø' eø'•+'edod• . •/' (0' '•' T)(O'- X)I/2(T -- X) 1/2 

l o,, e -"('•-0 d•' ---- erf½ {[<, + X)lxl] '/'} <r • _ X,),/, - 

_--- e•(•+O (p -- x)l/2(p -- 01/2 
after some manipulation involving the use of an integral rep- 
resentation for erfc. Substitution of these results in the above 

expression for •(x, 0 +, s) now yields 

1 •(x, 0 +, s) --- ,r(1 + v)O$ o,, q(Od'v•+ø 

ß •o e-2XOdp (p -- X)I/2(o O -- 01/9- df + •o q(•) ear'+ø 
o e -Axø dp d•} ß • (P- X)•/2(p -- 01/2 (C7) 

We are interested in the case in which a stress drop occurs on 
a segment of length L of the faultß The desired expression (50) 
for the initial slip displacement then follows from the general 
result (C7) upon letting 3• --} 1/[fll/•-(1 + v)] -- ho and ensuring 
proper limits of integration. 
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