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The assignment of boundary values for the chemical potential 
and the calculation of energy-release rates for the growth of 
creep cavities along grain boundaries by self-diffusion are dis- 
cussed. For simplicity, it is assumed that the boundaries are flat 
and that surface and grain-boundary diffusion are the domi- 
nant transport mechanisms. As matter diffuses from the void 
surface into and along the grain boundary, misfit residual 
stresses are induced to alleviate the high stress concentration 
ahead of the cavity apex. As a result, the contribution of strain- 
energy terms to the chemical potential can be neglected in 
typical cases. Also, contrary to the Griffith crack-extension 
model, the energy dissipation incurred by diffusive removal of 
material from the cavity surface and deposition in the grain 
boundary is a major term in the energy transfers associated 
with cavity growth. The primary energy “sink” in diffusive 
cavity growth is shown to arise from the work done by the 
grain-boundary normal stress when matter is inserted in the 
near-tip region by diffusion, not from the loss of strain energy of 
matter that is removed from the cavity at its tip or from the 
work of bond separation. Thermodynamic restrictions on the 
angle formed by the void surfaces at their apex, where they join 
the grain boundary, are considered. Boundary values for the 
chemical potential are derived in a manner appropriate for 
arbitrarily large but elastic distortions of material near the 
cavity tip and, in contrast to most previous work in the area, the 
effects of surface tension (i.e. of “surface stress,” as distinct 
from surface energy) are included. 
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I. Introduction 

HEN subjected to creep conditions, polycrystalline materials W tend to develop cavities at grain interfaces. Their growth and 
final coalescence lead to intergranular failure. The kinetics of cavity 
growth by diffusion has become a topic of extensive recent interest, 
and the literature does not fully agree on fundamentals of the 
subject. Hull and Rimmer’ and considered the diffusive 
growth of an array of sphericalcap (or lenticular) cavities in a planar 
grain interface. This assumption as to cavity shape implies that 
surface diffusion is rapid enough that cavity growth is controlled 
only by grain-boundary diffusion. Further, the grains were assumed 
to be nondeforming (rigid) and it is predicted that the growth rate 
varies linearly with the applied stress. However, conditions do not 
always allow this quasiequilibrium cavity shape and grain- 
boundary cavities sometimes have an elongated, cracklike shape. 
Hence, Chuang and Rice6 and others7-10 considered the other limit- 
ing case of a thin cracklike cavity growing in a grain boundary and 
established different relations between applied stress and growth 
speed. 

In an overview of nonequilibrium models, Chuang et a/.’’ 
examined the entire spectrum of interfacial void shapes in diffusive 
cavitation and concluded that, for many conditions, a cavity can 
grow from one extreme case of slow advance in a lenticular shape to 
the other extreme case of rapid advance in a cracklike shape. The 
growth mechanisms on which these analyses are based are such that 
under the action of the applied stress normal to the boundary where 
cavities are located, matter on the cavity surfaces is driven by 
surface diffusion toward the cavity apex and into and along the grain 
boundary. 

Based on this kinetic model, it is worthwhile to investigate the 
thermodynamic forces driving a cavity. Indeed, several workers 
have studied chemical forces in a stressed body containing defects. 
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Specifically, Stevens and Dutton” considered Griffith crack propa- 
gation by mass transport and formulated the thermodynamic poten- 
tials for incremental advance of a crack due to various diffusion 
paths. McCartney12 and Heald and Speight13 investigated the ther- 
modynamic stability of a cavity and determined the shape at which 
subcritical growth can be maintained. Their studies are essentially 
limited to cases in which cavities are located in a perfect crystal. 
However, grain boundaries are perfect matter sinks (or vacancy 
sources) and the fact that voids are often observed at the grain 
boundary suggests that it plays an important role during nucleation 
and growth. 

The objective of this paper is to reexamine the formulation of 
chemical potentials and the calculation of energy-release rates in 
cavity growth. The special features induced by the existence of 
grain boundaries are emphasized. Their action as matter sinks can 
change the whole picture of the formulation. .Specifically, in con- 
trast to Griffith cracks, it is shown that the strain-energy term in the 
chemical-potential expression can typically be neglected even in 
cavity growth in a relatively narrow cracklike shape. Also, it is 
shown that the major sink of energy in cavity growth is from the 
work of normal stresses on the effective opening of the grain 
boundary due to the addition of matter by diffusion. 

Although the material is modeled here as an elastic solid, under- 
going self-diffusion along interfaces, it is well to remember that the 
cavitation process is often accompanied by significant amounts of 
plastic creep flow through dislocation motion. l4 

II. The Boundary Values of Chemical Potential 

In phenomenological terms, diffusive fluxes of a substance are 
driven by thermodynamic forces generated by chemical-potential 
gradients. Consider a stressed body containing defects in the form of 
voids and grain boundaries and suppose, for simplicity, that the 
body consists of a single component which, again for simplicity, is 
taken as isotropic with respect to its elastic and surfaceenergy 
properties. Temperature is held constant and it is assumed that an 
unstressed matter reservoir, without defects, is available at the same 
temperature as the body. All thermodynamic potentials, including 
the chemical potential p, can arbitrarily be assigned the value zero 
in the reservoir. It is conventional to define p in units of energy per 
atom although the concepts are continuum in character and treat 
matter as being indefinitely divisible; atoms are merely a convenient 
unit for mass. 

The classic work on establishing boundary values for p is that of 
Herring.l5-l6 We follow here essentially his procedures, but three 
comments are in order. (1) Since it is assumed that matter is always 
added coherently to surfaces, at full composition equilibrium with 
the immediately adjoining bulk, there is no need to distinguish 
separate potentials for atoms and vacancies as he does. Indeed, 
Herring makes similar assumptions about matter addition, so that in 
the end the distinction is unnecessary and only pa-pv appears in 
his formulas (“a” denotes atoms, “v” vacancies). (2) Although 
Herring discusses carefully the difference between surface energies 
and surface tensions (i.e. surface stresses), in a context which 
assumes that surface energies are dependent on elastic strains of 
surface elements, in his evaluations of p he does not discuss energy 
changes that occur because adding matter will, in general, alter the 
strains along a surface. We derive expressions for p in a manner 
appropriate to arbitrarily large elastic distortions (important because 
some models for diffusive cavitation assume large strains at the 
cavity tip) and show, by a simple verbal argument in the following 
text and a more detailed analysis in the Appendix, that Herring’s 
expressions do in fact remain valid so long as the terms within them 
are properly referenced to the current deformed state. (3) Although 
some of Herring’s discussion of potentials is directed to (global) 
noneyuilibrium states, notably to diffusion, his methods of evaluat- 
ing p are phrased mostly in terms of conditions for equilibrium. Our 
methods are somewhat more in keeping with the spirit of irreversi- 
ble thermodynamics although we tacitly adopt the notions of local 
thermodynamic equilibrium which are inherent to the accepted, if 
thereby limited, procedures of that subject. 

Note that p is defined at any location within the stressed body 

such that p6n is the reversible work of taking an infinitesimal 
element of matter, equivalent to 6n atoms, from the reservoir and 
placing it at that location, whereas the displacements are fixed on 
the loaded external boundary. Equivalently, p6n = S F ,  where F is 
the total Helmholtz free energy of the body and, more generally, 
when matter is transferred without restrictions on the external 
boundary displacements, 

6F=6W t p 6 n  (1) 

where 6W is the work of external loads. The present concern is with 
matter added to (or removed from) void surfaces and grain bound- 
aries. If, collectively, they have an area in the current deformed 
configuration denoted by A ,  then p satisfies 

6F=6W- t  s pGNd.4 
A 

for arbitrary additions of infinitesimal matter layers to A ,  consisting 
of 6N atoms per unit (current) area. Expressions in the form of Eq. 
(2) arise in “internal variable ”  formulation^'^ of inelastic processes 
in solids, due to structural rearrangements of constituent elements of 
material by diffusion or (with appropriate terms analogous to p S N )  
slip, phase changes, etc. In applying Ey. (2) we will generally write 
6N = a t l a  where 6t is the local thickness of the (coherently) added 
layer and is the local volume per atom in the deformed configura- 
tion. Further, F will be represented asF, tF,s, where F ,  is the elastic 
strain energy, of local density w per unit volume of the current 
deformed configuration, and F ,  is the energy of interfaces, of 
density y per unit (current) area (y  = ys on cavity surfaces and y = yh  
on grain boundaries). 

Consider the addition of a layer of matter of (variable) local 
thickness 6t over some portion of a cavity surface, under circum- 
stances for which the external boundary is fixed (6W =O).  To obtain 
p, 6F must be calculated using contributions from the following 
sources: (i) a strain energy density w must be given to the added lay- 
er to make it fit coherently; (ii) the area of the surface changes such 
that, if additional elastic strains 6emp of surface elements are ne- 
glected, a(&)= - ( ~ ~ + ~ ~ ) 8 t d A  by an easy geometric construction, 
where K~ and K~ are the principal curvatures and the sign convention 
is such that both would be positive on a spherical cavity; (iii) surface 
elements strain by causing a change in y and an additional 
change in dA ; (iw) the tractions acting on the bulk solid immediately 
below the surface, which are in general nonzero whenever surface 
tensions exist, are carried through some additional displacements 
6ui when matter is added, thus causing a change in strain energy of 
material external to the surface. Herring’s1s216 discussion makes no 
reference to (iii) and (iv). It is conducted as if the product yUA is 
unaffected by the strains in such circumstances the contribu- 
tion from (iii) would be zero and, because (see Appendix) the 
surface tensions vanish in these circumstances, there would also be 
no contributions from (iv). (Rice andDruckeP observed that, when 
matter is added or removed from an unstressed surface, the energy 
alteration analogous to (iv) is of second order in a t ,  hence zero for 
our present purposes.) 

We evaluate 6F as if yd.4 were invariant to strain and then explain 
briefly (relegating a detailed analysis to the Appendix) why the 
result is valid in general. Hence the contributions to 6F arise from (i) 
and (ii) and are 

6 F = s  W S t d A - t s  Y s [ - ( K l . t  K Z ) 6 t ] d A  (3 1 
A A 

If we now write 6t =R6N and compare with Eq. (2 ) ,  it is seen that 

p = W a - ys(  K1  -t K z )  a (4) 

on a cavity surface. This expression is the same as that given by 
Herring, except that the strainenergy term which he neglects is now 
included, as long as it is understood that w ,  a, y,, and the K ’ S  are 
referenced to the current deformed state where matter is added. 

Now the generally untenable assumption that ydA is invariant to 
surface strain is discarded and 6F is calculated. Steps (i) and (ii) are 
first accomplished, while applying whatever system of (workless) 
forces is necessary to prevent occurrence of the surface strains 
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and displacements 6ui.  This procedure gives a 6F exactly as in Eq. 
(3) and the net additional 6F,  associated with steps (iii) and (iv), is 
merely minus the work of removing this additional set of forces. But 
the final state of the system is one of elastic (as opposed to compo- 
sitional, or surface shape) equilibrium, and at this stateF is station- 
ary with respect to elastic distortions. Hence, the net work of 
removing the set of constraining forces is a second-order quantity in 
S t ,  and the net contribution of (iii) and (iv) to SF is therefore zero to 
the first-order terms of interest. Hence Eq. (3) and, particularly, Eq. 
(4) for p are generally valid. A fuller analysis, necessarily of some 
mathematical complexity, is given in the Appendix. It is shown 
there that, when surface tensions exist, SF,  and SF,  separately 
contain terms of first order in 6t ( in addition to those already listed 
in Eq. (3)) but these terms are of opposite sign and cancel when 
6F = SF, t SF, is formed. 

Throughout the body of the paper, derivations are often 
simplified by neglecting surface tension and the variation of ydA 
with surface strain. The final results in each case are valid without 
these assumptions, if the terms are properly interpreted; details of 
complete derivations are given in the Appendix. 

Consider now the addition of a matter layer 6t to a flat grain 
boundary subject to tensile stress, again under conditions for which 
6W=O. The layer must be given a strain energy appropriate for 
coherent fit and the boundary must be separated by the distance 6t to 
allow the new matter, resulting in a change -Just dA of strain 
energy of the adjoining material, where u is the normal stress 
(“true” stress, i.e. force per unit current area) acting on the grain 
boundary. Thus 

where b is the lattice spacing, po = l / ~ , ,  is the radius of curvature of 
the cavity wall at the apex, and we use the estimate y,=Eh/25. 
Since po typically has values of 50 to 5000h (i.e. 10 nm to l p n ) ,  
the strain-energy term is negligible. 

However, this result occurs because of the mobility of matter in 
the circumstances considered. Surface diffusion allows large values 
of po to be attained (e.g. compared to that for a flat Griffith crack). 
Also, misfit stresses induced by matter flow into the grain boundary 
effectively thicken the boundary near the tip, alleviating the stress 
concentration normally associated with cracks or cavities. Very 
different conclusions on the importance of w could arise when the 
cavity does not lie along, or itself constitute, a high-diffusivity path. 

These latter circumstances seem to coincide with those assumed 
by Stevens and Dutton” and Dutton and PulsZ0 for the diffusive 
growth of Griffith cracks and, at this point, it is interesting to 
compare the directions of matter flow in the proposed models. As 
Dutton and coworkers remarked, in the case of their Griffith crack- 
extension model, the chemical potential at the tip region is very high 
due to high strain-energy density developed in this region, and they 
considered that the first term in Eq. (4) dominates. Hence, they 
assumed that the direction of diffusion is away from the tip along the 
cavity surface. However, in the present model, based on the Hull- 
Rimmer model and its generalizations, misfit stress is induced and 
greatly reduces the stress concentration associated with a notch so 
that the second term of Eq. (4) dominates. The chemical potential at 

(5)  

and, writing 6t = a S N ,  

along a grain boundary. Again, this result agrees with Herring’s, 
except that the strain-energy term is now included, so long as the 
terms are properly referenced to the current deformed state; the 
result remains valid when surface tension along the grain boundary 
and dependence of yt, on strain are included (see Appendix). 

Equation (6) emphasizes the necessity for care in defining quan- 
tities per unit volume or area of the deformed configuration: The 
difference between UR and m a r ,  where 0, is the value of R in the 
unstressed reservoir, is itself of the same order as the strainenergy 
term w a  in Eq. (6). If, instead, 9 is the strain energy per unit 
volume as measured in the unstressed state and & and Ts are, 
respectively, force and surface energy per unit area of the unstressed 
state (so that & is a “nominal” stress), then it is straightforward to 
show that Eqs. (4) and (6) are modified to 

p=9ar-.i.,(1 tE,,) ( K 1  t K z ) o , .  

p = 9 a,. - &( 1 t & ,)ar 

(4a ) 

(6a ) 

on the cavity surface and 

on the grain boundary, where E ,  is the strain of adjoining material 
elements in the direction normal to the surface being considered. 
Obviously, & E ~  is of the same order as 9, and hence great care is 
required in discussing the effect of strainenergy contributions to the 
chemical potentials. 11*12~19,20 Similar remarks apply to Eq. (4u) 
since K ~ Y ~  is generally of the same order as (r at a cavity tip (see below). 

In a material capable of matter transport by diffusion, p must be 
continuous at the cavity apex where it meets the grain boundary; 
otherwise, an unbounded matter flux would result there. Hence, 
when the strain energy terms are negligible 

YS(KI ,  + KZ,) = U” (7) 
where K], , ,  K ~ ” ,  and mo are, respectively, the cavity surface curva- 
tures as the apex is approached along the cavity walls and the 
grain-boundary normal stress as the apex is approached. Using this 
formula as an approximate estimate of stress near the apex, the 
relative importance of the strain-energy terms can be estimated. For 
simplicity, consider cylindrical voids under plane strain conditions 
( K ~ = K ,  K ~ = O )  and assume linear elasticity. Then 

the cavity surface far from the tip is higher than at the tip region and 
the flow is then reversed toward the tip and into the grain boundary. 
Intuitively, this result must be true since in our model the grain 
boundary which lies ahead of the cavity tip is capable of accepting 
the matter previously diffused from the cavity surface, whereas in 
the Griffith model the cavity is regarded as being essentially the 
same as if it were located in a perfect crystal so that no sinks are 
available to accommodate the matter, and thus flow must carry 
atoms away from the tip. However, it remains an open question as to 
whether a full solution to the coupled equations of elasticity and 
diffusion would actually produce cavity growth in the narrow 
cracklike mode assumed in the Griffith model of Dutton and 
coworkers. Instead, it is possible that a full analysis would merely 
predict a rounding of the crack near its tip. In contrast, there are 
several complete solutions for modeling cavities along grain bound- 
aries. These solutions predict growth, ultimately in a comparatively 
narrow cracklike but with negligible strainenergy 
terms at the tip as long as p,>>h. 

111. Energy-Release Rate in Cavity Growth 

In fracture-mechanics terminology, there is an energy-release 
rate associated with cavity growth. Since the published literature 
does not show total agreement, we examine here the computation of 
this rate and determine where the energy goes for diffusive crack 
growth. This computation is done with reference to a plane strain 
mode (i.e. cylindrical cavities or cracks) so that all works and 
energies are on a unit-thickness basis. 

In the case of elastic-brittle crack growth without diffusion, as 
formulated within the Griffith context, an energy-release rate G is 
defined by 

Ga =w-F, (9) 

where a is crack length. Here it is customary to neglect surface- 
tension effects (whether they can be included consistently within a 
model for a mathematically sharp-tipped crack remains an open 
question), so that F ,  is the ordinary strain energy of the cracked 
body, as computed from continuum elasticity theory, and G is given 
by the expression (1  - v 2 ) K 2 / E  for an isotropic linear elastic solid. 
Further, in the Griffith model dF, is written as (2y,-y,Jda be- 
cause, in an increment da of growth a length 2da of the crack 
surface is created at the expense of length da of the grain boundary. 
Actually, this term should be written as (2+,- qb)dCi, wheredi is the 
growth increment as measured in comparison to some reference 
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configuration, and the 7’s are based on the unit area of that config- 
uration (the 7’s are independent of surface strain when surface 
tensions vanish). Understanding the terms in this way gives, for the 
Griffith model of reversible crack growth, 

dW =dF =dF, tdF,=dF, t (2y,- yb)da (10) 

G =2Y,-Yo (1 1) 

during growth, so that the required value of G is 

It has been emphasized,22 however, that the actual requirement of 
thermodynamics for quasi-static, isothermalcrack growth should be 
phrased as the inequality H b F  (i.e. the inequality assuring non- 
negative entropy production) which requires only that 

@-P=[G-(2y,-y,)]ri>O (12) 

for growth (or healing, a<O), which is general enough to include 
lattice trapping with thermally activated growth at values of G 
which differ from Eq. (1 1). Here 2 ~ , ~ -  -yo can be interpreted as the 
reversible work of pulling the interface apart against cohesive 
forces. 

The formulation IS rather different for the diffusive-growth pro- 
cess considered here, because there is no direct rupturing of cohe- 
sive bonds. It is assumed, consistent with procedures in the ther- 
modynamics of diffusion, that p is defined as in Eqs. (4) and (6) 
during processes and that diffusive fluxes J are established on the 
cavity surface and grain boundary, such that Jap/as<O, wheres is 
the arc length along the flow path. Consider a half-void of length a 
as in Fig. 1 and let rb denote the grain interface and Ts the upper 
surface of the cavity. Then Eq. (2), which is regarded as an identity 
given the definitions of p., can be written with F = F ,  t F , ,  where 

andds denotes an element of arc length. Hence, if an energy-release 
rate is defined as W -Fe ,  the rate is given by 

W - F e  =F,?-2JI’ d d s  - L , p N d s  

Some rearrangements of this equation are useful. Note, however, 
that contrary to the case for Griffith cracks, the quantity like G ,  viz. 
(@ -Fe) /u ,  will not generally be simply a function of applied load 
and notch size but, as will be shown, will depend on details of the 
matter placement along the grain boundary. First, observing that J 
and N are related by mass conservation, 

dJld 7 +N =O (15) 
that p.,, = p/,, U,s = Jh at the cavity apex, and thatJ vanishes at the left 
and right boundaries (the latter if the right boundary is a half-spacing 
between cavities), integration by parts leads to 

Hence the energy-release rate W - P ,  supplies two terms, the first 
(Fs) being the energy which goes to cavity-surface creation and 
grain-boundary removal and the second being diffusive dissipation 
in the form of necessarily positive products (-.lap./&). 

Next, elasticity theory shows that the rate of change in strain 
energy (calculated, e.g. as by Rice and Drucker,IH Rice,= and 
EshelbyZ4 when material is added or removed from surfaces) is 

F e = 2  f w C l N d s - t  fwf l&’ds . tW-  f u C l N d s  
rS r/l r1i 

(17) 

Here fl&’ (generally positive on rb and negative on r,) is the 
volumetric rate of matter addition per unit area or the rate of 
thickening i; the first two terms represent the strain energy of the 
added matter and the last two the work of all applied tractions, both 
external and those ( - cr) acting along the grain boundary. Equation 
(1 7) is written for the case when no surface tensions exist, consistent 
with Refs. 18,23,  and 24. The full form of the equation is given in 
the Appendix. We can also compute Fs, where F, is given by Eq. 

I rn ----= 
Fig. 1. Cylindrical void in grain boundary. 

(13). Consistent with the neglect of surface tension in Eq. (17), in 
evaluating F s  the effects of the surface strain rate E on products of 
the form yds are neglected (again, see the Appendix for the full 
expression) and hence 

F , =  -2  J r ’ y s ~ C i N  ds t (2ys  cos4~,,-y,),U (18) 

Here !he integral represents the effect of adding matter at the rate 
t=OiV to the surface (t‘ will generallybe negative along r, when the 
cavity is growing); as discussed earlier, - ~i ds = - KQ&’ ds is the 
rate of change of an arc ds, at a place where the curvature is K ,  due to 
matter addition. The last term of Eq. (18) arises because the integral 
gives only the rate of change ofF, from matter addition (or removal) 
from the existing arc TS but, as illustrated by the inset diagram in 
Fig. 1, it does not include the new surface element created during 
growth. As shown in the diagram, in cavity growth by du into the 
grain boundary, two arcs of lengthdu C O S ~ , ,  (4” is the angle between 
J?, and the negative x axis at the cavity tip) are added to the cavity 
surface and the grain boundary diminishes by du , thus leading to the 
last term of Eq. (18) for F,v. The subscript “0” on this last term 
means that the y’s refer to values at the cavity tip. 

Summing Eqs. (17) and (18) gives 

and, as shown in the Appendix, this equation is correct generally, 
i.e. when surface tensions and associated dependences of products 
yds on surface strains are present. If surface tension T , ~  exists at the 
tip, the distribution of u must be regarded as including a concen- 
trated tension T , ~  sin$, at the tip in this formula and in Eqs. (23) and 
(24). As noted in the Appendix, however, there are grounds for 
arguing that T,  and T,, must vanish at the tip. If we now recall the 
definitions of p inEqs. (4) and (6), recognizing that K , = K ,  K ~ = O  in  
the present case, and then compare Eqs. (14) and (19), we conclude 
that 

during cavity growth. This expression is well known for the equilib- 
rium angle 4o at the apex of a grain-boundary void. The v?me 
expression has generally been assumed to apply during growth; the 
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Fig. 2. Illustration of transfer of matter in diffusive cavity growth. In 
growth Aa a layer of local thickness An is removed from the cavity surface, 
and the grain boundary effectively thickens by a local amount AS as a result 
of addition of matter. 

present analysis provides a rationalization for this assumption. 
On the other hand, Eq. (2), and hence Eq. (14), were assumed to 

apply as equalities during growth. If, instead, they were assumed to 
apply as inequalities in the form (notation of Eq. ( 2 ) )  

W 2 F - L  pNdA 

to allow for some form of entropy production at the cavity tip in 
addition to the diffusive entropy production ( -Jdp/ds)  already 
exhibited, e.g. in Eq. j16), then combining Eq. (14), with = 
replaced by 2, and Eq. (19) (which remains valid as an equality) 
leads to 

(2YSCOS$O -7IJ”u 5 0  (22) 

This inequality will be satisfied during cavity growth (i.e. when 
a >0) only if COS$~S (y1,/2~,s)o, that is, only if 6” is greater than or 
equal to the angle given by the equilibrium expression. During 
cavity shrinkage (i.e. sintering) it will be satisfied only if $o is less 
than or equal to the result of the equilibrium expression. Conse- 
quences of the inequality version of the second law of ther- 
modynamics are perhaps not often surprising but this case seems to 
be an exception. It might be expected that, because the cavity 
advances by the drawing-in of material to the grain boundary at the 
cavity apex, under action of applied stress, $o might decrease from 
the value given by the equilibrium expression as a increases from 
zero, and conversely. But thermodynamics prohibits this action. If 
there is to be any deviation from the equilibrium expression, it must 
be in the opposite sense. In these circumstances, it seems reasonable 
to assume that $,, always retains the value given by the relation for 
equilibrium and, as shown by Eq. (20), this assumption must 
necessarily be the case if the cavity apex does not constitute a “point 
source” of entropy production. We have been careful to use the 
phrasing “angle given by the equilibrium expression” rather than 
“equilibrium angle” in this discussion. For example, due to the 
dependence of the 7’s on surface strain it is possible that the angle $” 
given by the equilibrium expression in a stressed solid would differ 
from the corresponding angle 4” in an unstressed solid. 

As a final expression for the energy-release rate, which is perhaps 
most revealing in comparing different models, we may rearrange 
Eq. (17), which retains validity regardless of whether Eq. (21) is 
regarded as an equality or inequality, to read 

(Since Eq. (17) neglects surface-tension effects, so does this equa- 
tion. However, we show in the Appendix that this equation and, 
hence, our subsequent discussion in this section remain valid i f F ,  is 
replaced by a new quantity F,’ which is, in fact, a more logical 
quantity to use in calculating an energy-release rate, as W -F,,’, 
when surface-tension effects exist. Also, as noted previously, r 
then includes the concentrated tension T , ~  sin$, at the tip.) Equation 
(23) can be interpreted using Fig. 2 where, in growing the void by 
some infinitesimal increment Au, material of local thickness An is 
removed from the notch surface and the grain boundary effectively 
thickens by an amount As. Hence 

and this equation clearly shows the difference between the Griffith- 
like model envisioned by Stevens and Dutton” and the misfit 
model. In the former case, there is assumed to be no (or negligible) 
opening AS ahead of the crack, and all of the energy release goes to 
the first term of Eq. (24), representing strain energy of material 
diffused away from the highly stressed notch surface. As remarked, 
it remains to be demonstrated that a model of t h s  type will actually 
lead to cavity growth. On the other hand, in the Hull-Rimmer model 
and its generalizations, high stresses are alleviated by the misfitting 
material which effectively thickens the grain boundary at the notch 
tip. As shown (Section 11), in this case thew terms are negligible and 
all of the energy release goes to the last term of Eq. (24), which 
represents work done by local stresses in opening the grain bound- 
ary to accommodate the diffused matter. 

It is tempting to regard the left side of Eq. (24) as being G Au , 
where G = ( 1  -v2)K2/E is the usual energy-release rate of linear 
elastic fracture mechanics. However, this application is valid only 
in special cases, considered by Chuang,21 of essentially steady-state 
growth in which the creep cavity is thin (i.e. cracklike in shape and 
in which all effective thickening of the grain boundary is limited to 
very near the void tip, with the diffused matter being accommodated 
by elastic distortion of the adjoining grains. In such cases Chuang 
shows, by developing numerically an explicit solution to the 
coupled (linearized) equations of elasticity and diffusion, that the G 
level to drive the void is always greater than the Griffith level of Eq. 
(1 1) .  Indeed, this is required by general considerations embodied in 
Eq. (16)(inwhichwemaysetE*s=(2y,-y,)a forthepresentcase), 
since ( - J  d p / d s )  is necessarily positive. Chuang’s analysis 
suggests that K can never fall below =I  .7 times the Griffith value 
and, by applying the J-integra1,2”-25 he derived an equation analo- 
gous to Eq. (24), neglecting thew terms, and demonstrated that his 
numerical results for g ( x )  and 6(x)  closely satisfied this equation. 

IV. Total Energy Change due to Introducing a Cavity” 

Stevens and Dutton” considered the total energy change AE due 
to introducing a cavity into a stressed body. In our notation 
E =F - W, where the external loads are assumed to be fixed so that W 
varies in proportion to the displacement of the loaded boundary. 
Following their classification, with slight modifications, AE in- 
cludes contributions from the following four sources (completely 
neglecting surface-tension effects): (1)  change of energy due to 
void surface area introduced and lost grain-boundary area (MJ, 
(2) elastic strain-energy change (AF,) due to removal of material 
from the body to form a void, (3) work done by external loads 
(A”) during removal of material, and (4) work done in processes 
of local matterrearrangement, such as by local stress fields when the 
matter removed from the void is deposited at the grain boundary 
(W‘). (All other possible sources such as dislocation, slip, etc. are 
neglected.) It is important to-note, acwas  not emphasized b y  
Stevens and Dutton, that the AF, and AW terms calculated in steps 
(2) and (3) are not the total terms AF, and AW (which, for example, 

*This section and Fig. 3 are based on a letter sent to R Dutton in 1974 in response to 
his comments on Ref. 6. 
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enter into the energy release-rate expression). Both AFe and AW 
include a contribution from the work W’ in step (4) and, typically, 
this is a very significant term. Indeed, the work W’ is analogous to 
the effect of the (T term in Eq. (6) for /r. on a grain boundary; the part 
-&SN of pSN in Eq. (2) is essentially a work of type W’;  its 
importance has been shown in Eq. (24). 

With the preceding classification of terms, the total energy 
change is 

AE =AF,s t A F ,  - A W = AF,  t AF,  - A W - t  W’ (25) 

In fact, the specific terms hF,, AW, and W ’  depend on the sequence 
of operations and are different if matter (e.g. from a reservoir) is 
first inserted into the grairiboundary, then an equivalent amount of 
matter is removed from the body to form the void and placed in the 
reservoir. The total effect, AF,-  AW,  which these terms represent, 
is independent of sequence. 

Consider a small elliptical cylindrical void lying along a grain 
boundary, as illustrated in Fig. 3 with its major axis nonnal to the 
direction of the uniaxial applied stress vm. The energy change AE of 
this configuration is computed by cutting out the “volume” V 
(actually, an area in the 2 - 0  model), thus creating a void on the 
boundary, and temporarily depositing it in an unstressed-matter 
reservoir. This operation produces the free energy changes AF, ,  
A F , ,  and A W ,  where 23 

(26) 

The volume V is then removed from the reservoir and inserted into 
the grain boundary, thus adding a nonuniform layer of material of 
local thickness 6, such that 

ATe - AW = - [T( 1 - v2)  (T ,~u~/E]  ( 1 t d / 2 ~ )  

J-  S(x)d.u=V=nad (27) 
gra in  1mundai.y 

To obtain the W ‘  term, the work done during the insertion process is 
calculated. This work includes that done on the surrounding mate- 
rial, plus that necessary to bring the strain energy of the material 
being inserted to the proper level. Let Cm(,u) be the normal tensile 
stress of an Inglis-type stress distribution induced by ern and let 
(~“ ( r )  be the final total stress that results after the matter V has been 
stuffed into the grain boundary. To compute W ‘ ,  the grain boundary 
is cut, held in place by applying u“, and the stresses are quasi- 
statically altered until the cut has opened locally by S(.r) (at which 
point the grain boundary stresses are d’(x)). The W’ is simply the 
(negative) work done on the surface of the cut during this operation 
and, assuming that the material is linearly elastic, 

W’ = - 1/2J (4‘ t u”Sd,u (28) 
grain boundary 

The material V that is inserted into the opened cut must be stressed 
and thus there will be an additional part of W’ related to the 
strainenergy increase in the inserted volume V at state (b )  but this 
portion is insignificant when d’ is small compared toE.  Still, if cr” 
is of the order of (T, over the region where the matter is added, the 
term is ofthe order T( 1 - vz)crm2 ad/=, which is of the same order as 
A F , - A W  of Eq. (26), unless d/tr<<l. 

There are two obszrvations concerning W ‘ .  First, it is usually far 
larger than AF,-AW and hence cannot be neglected. Suppose, for 
example, that the material is added uniformly over the entire grain 
boundary, so that mi’= u” and both have average values of ( T ~ .  Then 

W’ = - cr,v = - urnnuti 

=(AF,-AW)(E/(l --vz)crm)(d/u)/(l +d/2a) (29) 

and the factor multiplying ( A T , - A W )  will be much greater than 
unity unless d/u is of the same order as cr,/E. Second, there is no 
unique value for W’;  it depends on how the matter is inserted. For 
example, concentration of the matter along a limited segment of the 
grain boundary could make (TO large and negative there, so much so 
that W’ could become positive (and indefinitely large). Also, adding 
matter only over the highly stressed portions of the grain boundary, 
so as to reduce 4 to negligible values there, would produce a 
different expression for W’ than Eq. (29). Since W ‘  is not unique, 

Fig. 3. Elliptical cavity in a linear elastic material; u‘‘ is the grain- 
boundary tensile stress when there is no matter placement in the grain 
boundary and v b  results after placement. 

neither are the terms AFr and AW and, hence, neither is the net 
energy change A E .  Unique values result only for a given S(x). In 
this sense, it is meaningless to talk about an energy-release rate 
(except in the limiting case of steady-state cracklike cavity growth 
(Section 111)) unless it is understood that the distribution S(~r) is 
determined by the coupled equations of elasticity and diffusion as 
part of the analysis. 

V. Discussion 

Dutton and PUIS,~O commenting on the formulation presented by 
Charles,lg equated the crack-extension force to the elastic 
fracture-mechanics strainenergy release rate G =(1 -v2)K2/E.  As 
indicated, the usual fracture-mechanics expressions are valid only 
in special circumstances. Essentially, their arguments were based 
on a Griffith-like crack model and treated the strainenergy term in 
Eq. (24) as dominant. We have pointed out, however, that when a 
crack is located in a grain boundary rather than in a perfect matrix, 
the grain boundary can accommodate the material being removed 
from the crack surface and thus relax the high stress concentration 
ahead of the crack tip. Hence the strainenergy contribution appears 
to be minor in the energy-release expression and the major portion 
comes from the work done by the boundary stress F on the opening 
AS as it appears in the last term of Eq. (24). Charlesz6 noted in his 
reply that he believes that the “PV” work of insertion of a diffusible 
species in a highly stressed volume dominates in the stress rupture 
process, although he did not provide a full analysis as we do here. 

Speight et a / .  presented an intergranular crack-growth model 
based on the mechanisms discussed here. Rather than relying on a 
full solution of relevant equations, as by Chuang’l and Vitek,7 they 
imposed an approximate distribution S (see Eq. (1) of Ref. 8) to 
solve for the maximum stress in the grain boundary. Further, they 
attributed the energy-release rate to the “plastic work” done by ( T ~  

on the crack volume ( W ‘ = - u , V )  as in Eq. (29). But we have 
shown that the work term W’ depends on the distribution of S and 
their formulation does not appear to be fully consistent in this 
respect, although it is not clear how critically these assumptions 
affect their conclusions. 

VI. Conclusions 

Precise expressions have been presented for chemical potentials 
on grain boundaries and free surfaces; in representative cases, the 
strainenergy contributions to these expressions are negligible for 
the diffusive growth of grain-boundary cavities. This result occurs 
because surface diffusion tends to round out a cavity near its tip and 
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grain-boundary diffusion generates misfit stresses to alleviate its 
stress concentration, reducing local stresses to the order of yrlpo. 
An evaluation of expressions for the energy-release rate in diffusive 
cavity growth shows that the major energy sink is provided by the 
work of normal stresses on the grain boundary, as it is effectively 
thickened by matter addition, and not from the loss of strain energy 
of material diffused from the cavity tip. We discussed the computa- 
tion of net energy changes associated with introduction of cavities 
and pointed out that the dominant term is dependent on details of the 
matter placement along the grain boundary. We also commented on 
restrictions placed by thermodynamics on the angle formed by 
cavity walls where they join the grain boundary. 

APPENDIX 

Surface-Tension Effects 

At various points throughout the paper, surface-tension (or 
surface-stress) effects were ignored for ease of presentation, with 
reference to the Appendix. Let 0' and 8' be curvilinear coordinates 
in a surface (cavity surface, grain boundary) in some arbitrary 
reference configuration, and let gap be the surface metric tensor 
(a,@= 1,2) in this configuration. If the coordinate lines are regarded 
as being scribed onto the surface, in an elastic deformation the 
coordinates are convected and the metric tensor changes to g,,. The 
(covariant) components of strain are defined as 

%,=(Ra, -R0,,)/2 (A- 1) 

The contravariant components (on the convected coordinates) F 4  of 
the surface-tension tensor are defined such that +%Ea,dA is the 
work of incremental elastic distortion 6ce, of an area dA . Since ydA 
is the surface energy, 

P'fi~,,dA =G(ydA )=GydA . + Y e o  6~,,dA (A-2) 

where the ,gf14 's are the contravariant components of the metric, we 
obtain the well-known relation between surface tension and surface 
energy15,1R,27 

P@ =( d y l d E a a )  -t yg"p (A-3) 

which is valid for arbitrary deformation. Note that if 9 is defined by 
+dA, = ydA , where dA, is the area of the considered element in the 
reference configuration, then 

= (rlA,/dA )(d?/dE,,) (A-4) 

(For readers unfurniliur with curvilineur tensors: If the coordinate 
lines are locally orthogonal at the point considered and normalized 
so that d0' andd02 are equal to the associated changes in arc length 
along the surface, then g", of Eqs. (A-2) and (A-3) is just the 
Kronecker tensor and is the force acting in the p direction per 
unit length of a cut along the surface with outward normal in the a 
direction. Also, when the reference configuration differs by an 
infinitesimal amount from the current configuration, E,, is merely 
the classical strain tensor.) 

Mechanical equilibrium equations for rap are complicated2* but it 
is known that the field equations of equilibrium are fully implied by 
the principle of virtual work, which is most convenient for our 
purposes. Let A denote a region of cavity surface with bounding 
contour C ,  let a i  be components (in 3-0  space) of the outward 
normal to A (i.e. pointing away from the adjacent material), let uij 

be the stress tensor acting immediately beneath the surface (Latin 
indices i,j have the range 1 to 3), and let Tn be components of the 
surface tension acting normal to C.  Hence the surface may be 
considered as a membrane loaded with forces per unit area -n p i j  on 
A and forces per unit IengthT, alongC. The principle of virtual work 
then requires that 

surface strains 6 ~ ~ ~ .  Some well-known consequences are, for 
example, that 

TO=, ~ " 0  K,, =n &jnj  (A-6) 

where rn, denotes the outward normal (in the tangent plane of the 
surface) to C ,  and K,, is the surface-curvature tensor. 

An equation identical to (A-5) can be written for an arbitrary area 
A of the grain boundary, where P O  and Ta are tensions in the grain 
boundary, but now the integral involving d j  must be carried out 
over both sides of the grain boundary. Observe that when the grain 
boundary is flat, as considered here, the normal components of crii 
are equal on both sides (and identical to u). This observation means 
that, for grain boundaries, we can write nicrij6uj as ni(Tiu6u, where 
B, are components of Bi parallel to the boundary and via are shear 
stresses in the immediately adjacent material. Observe that for 
symmetrically loaded boundaries, as in Figs. 1 to 3 ,  C T ' ~  will reverse 
sign on crossing the boundary and ria is generally nonzero 
whenever the surface tensions in the boundary are nonuniform. 

To calculate y (Section 11), SF was calculated when a layer of 
local thickness 6r was added to cavity surfaces andor grain bound- 
aries, under conditions for which 6" =O. We write 6 F  =6F,-t 6 F ,  
and observe that, when matter is added, there are associated dis- 
placements 6u and strains 8sep alongA, (the cavity surfaces) and A,, 
(the grain boundaries). The change in elastic strain energy is 

6F,= wStdA t f wGt(lA- f ( ~ 8 t d A  
A s  A h A o 

The first three terms were discussed in the body of the paper, the 
fourth corresponds to item (iv) in the list preceding Eq. (3), and the 
last three together give the change in strain energy of the material 
lying outside the added layers. The last integral on A,J covers both 
sides of the grain boundaries and it is noted that the normal stresses 
(T and shear stresses q i a  appear separately, Further, for symmetri- 
cally loaded grain boundaries, 6u, is the same on both sides of the 
boundary. The change in F ,  is 

6F,s= - 4 y s ( ~ '  tK,)StdA t (6y, ty,fe66e,p)dA 4 
+ f (~Y/J-+Y,P"&,~)~A (A-8) 

h 

The first term was discussed in the body of the paper. The second 
two are contributions of type (iii) (preceding Eq. (3)), due to effects 
of elastic strain in changing y by 6y and dA by ~flU6~,& . Using 
Eq. (A-2), 

(A-9) 

Mechanical equilibrium is expressed by the principle of virtual 
work in Eq. (A-5). We may write this equation separately for the 
grain boundaries and the cavities, taking C to be the arc where the 
two make contact. Summing these equations, we observe that 
contributions on C cancel (because of mechanical equilibrium be- 
tween T, and rb at the cavity tip, 2 ~ , ~  cos+, =T,)) if there is a unique 
displacement 6 u i  at the tip. On the other hand, if there is matter 
addition 6t (=OSN) to the grain boundary at the tip, so that the 
vertical components T, sin+o of rs separate by at ,  the sum of the two 
terms involvingC is -J& sin+,&dC. Hence the resulting "grand " 
form of the principle of virtual work is 

for arbitrary virtual displacement fields 6u and associated virtual 
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where the last integral covers both sides ofA,. Since the actual field 
Su,, f ~ , ~  associated with matter addition involves continuity of 6u, 
across A?,, it can be taken as the field to be entered in this form of the 
virtual work equation. Now, when we sum Eqs. (A-7) and (A-9), 
to write 6F =6F,, t SF,,, we find that because of Eq. (A- lo), all the 
terms involving PO, mi’, and m’a cancel one another. Hence 

t 4 (w-u)6t CfA (A-11) 

where here, and in Eq. (A- 16), for simplicity in the presentation of 
formulas, the integral involving u is understood to include a 
“delta function” contribution to u at the cavity tip due to the 
vertical component of concentrated tension, rS sin+,, , acting there. 

Thus, if we write 6 t = R 6 N  and observe that p is defined by 

6 F =  4 p6NdA-t  4 p6NdA (A-12) 

(in the case considered of matter addition under conditions for 
whichW=O), thenweobtainatonceEqs. (4)and(6)inthe bodyof 
the paper for p. Thus we see that, although the terms associated with 
6 u ,  and S C , ~  make first-order contributions to 6 F ,  and 6F,  sepa- 
rately, they make only higher-order contributions to the total 6 F .  
There is, however, a curious result at the tip. Because u has the 
delta-function contribution there, of integrated intensity rs sin+,, , 
we must conclude that p has a similar negatively infinite delta 
function form of integrated intensity -7, sin$& at the tip. We leave 
open the full interpretation of this conclusion. Certainly, to the 
extent that thermodynamics requires continuity of p, such a condi- 
tion can be met only if the material adjusts its state of surface strain 
at the tip of a manner such that T, (and hence rl,) vanishes there. 

In the discussion of plane strain growth of a cylindrical cavity, 
surface-tension effects were ignored in deriving Eqs. (17) and (18). 
NOW we can drop indices on ~ a f i  and E ~ ~ ,  writing r and F for the 
components in the plane of deformation. With the previous discus- 
sion as background, the full version of Eq. (1 7) is readily seen to be 

t 2f n p’Ju jd.s -t f n iui~r~,rd.s  (A-13) 
rS r, 

where the integral on r(, covers both sides of the grain boundary and, 
as in Figs. 1 to 3 ,  thex direction is parallel to the grain boundary. 
Here i andj range overx andy . Similarly, the full version of Eq. (1 8) 
is: 

F,= - 2 f y,vKoNds - t (2yS COS$o -y0)0“ 

1 i 

t 2f reds-t reds 
1:s r6 

(A- 14) 

Again, a grand form of the principle of virtual work may be written, 
analogous to (A- 10): 

2s r6eds-t f ri3Ed.v 

rS 16 

= - (7, sin+,, Sr), - 2 s  n iuijSu jds - f n iuisSu,ds (A- 1.5) 
rS I‘ 6 

Thus, when Eqs. (A-13) and (A-14) are added together the terms 
multiplying i a n d i  cancel and we obtain Eq. (19) in the body of the 
paper (which we remarked there to be valid in the general case when 
surface-tension effects exist, as long as IT is taken to include the 
concentrated tension at the tip-if, indeed, this is nonzero). 

Finally, if Eq. (A-15) is used in (A-13), and then (A-13) is 
rearranged to the form of Eq. (23) in the body of the paper, we 
obtain 

t f u C l N d s  (A- 16) 
I- 

1 

(i.e. the same right side as Eq. (23)) if we define 

(A-17) - - 
L I 

S I 

When we recall thatp, can be written as the integral over the volume 
of the body of stress components times corresponding components 
of strain rate, these added terms seem to be appropriate and W -F(,’ 
seems to be the obvious extension of the concept of an energy- 
release rate to cases in which surface tensions exist during cavity 
growth. 
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