| Comparison of theory and experiment for
elastic-plastic plane-strain crack growth

L. Hermann and J. R. Rice

Recent theoretical results on elastic—plastic plane-
strain crack growth are reviewed and experimental
results for crack growth in a 4140 steel are discussed
in terms of the theoretical concepts. The theory is
based on a recent asymptotic analysis of crack surface
opening and strain distributions at a quasistatically
advancing crack tip in an ideally plastic solid. The
analysis is incomplete in that some of the parameters
which appear in it are known only approximately,
especially at large-scale yielding. Nevertheless, it is
sufficient for the derivation of a relation between the
imposed loading and amount of crack growth prior to
general yielding, based on the assumption that a
geometrically similar near-tip crack profile is
maintained during growth. The resulting predictions
for the variation of J with crack growth are found to
fit well to the experimental results obtained on deeply
cracked compact specimens.
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A recent theoretical analysis by Rice et al.' described the
plane-strain elastic—plastic deformation and stress field very
near the tip of a continuously growing crack in a non-
hardening solid,” obeying the Huber-von Mises yield
condition and associated flow rule (i.e. the ‘Prandtl-Reuss’
equations). By requiring, as a possible criterion for
quasistatic crack growth, that a geometrically similar profile
of crack surface opening be maintained very near the tip, the
analysis led to predictions of the manner in which crack
length should vary with applied load during growth. The
work described is an extension of earlier work by Rice and
Sorensen,? and includes a correction to the form of the near-
tip deformation and stress field presented in the latter. In
both studies!:2 the theoretical analysis is incomplete in that
certain parameters or functions which appear in asymptotic
expressions for - the near-tip deformation field must be
determined from full numerical elastic—plastic solutions for
growing cracks. This has been done approximately by
comparison with finite element solutions for the case of
crack growth under well contained plastic yielding. Results
for large-scale and general yielding are not yet available,
although some discussion of the fully yielded case has been
possible! ‘by use of dimensional considerations and
comparison with rigid-plastic slip-line solutions.

Our purpose here is to present experimental results on
crack growth in a high-strength steel and to use these as a
basis for comparison with the theoretical predictions
mentioned above.

THEORETICAL ANALYSIS OF GROWING
CRACKS
Figure 1a Shows the Prandtl slip-line field which describes
the plane-strain near-tip stress state (at least when large
changes in crack-tip geometry are neglected; see Rice and
Johnson® and McMeeking*) for a non-growing crack
subjected . to monotonically increasing load under
conditions of well contained yielding. This field may also
apply at large-scale and general yielding in certain highly
constrained configurations. During processes of stable crack
growth, for which the applied load varies continuously with
crack length a, a slightly different stress field results very
near the tip. This was described by Rice et al.! and its slip-
line interpretation is shown in Fig. 1b. In this case an elastic
unloading sector develops between the centred fan region C
and the back constant stress yield region B. The angles 0,
and 0, depend somewhat on the Poisson ratio but are
0, = 115° and 6,=163° for v=03. Remarkably, the
stresses ahead of the crack differ only by about 1%, from
those for the Prandtl field of Fig. 1a.

Letting 6 be the opening displacement between the upper
and lower crack surfaces, the analysis shows that

0 =aJ/oo+(Baco/E)In[R/a—x)] . . . . . . (1)

very near the tip of a continuously growing crack (i.e. as
x —a, where x s the position along the crack). In this
expression the superimposed dots denote time rates, g, is the
ideally plastic tensile strength, E the elastic tensile modulus,
and B is dependent on Poisson’s ratio, having the value!
p =508 for v=03. Also, the intensity of the applied
loading is, without loss of generality, phrased in terms of J
(associated with the J-integral although as will be discussed,
equation (1) remains valid for different ways of defining J;
the different choices imply different values for the
parameter R).

In fact, « and R in equation (1) are not determined by the
asymptotic analysis leading, for example, to the stress field
of Fig. 1b. These parameters must be determined by
comparison of equation (1) with complete elastic—plastic
solutions for growing cracks, which are necessarily
numerical and subject to uncertainties as to accuracy and
interpretation very near the tip. We discuss each parameter
in turn. First, « is dimensionless and might be expected to be
rather close in value to the parameter o* as defined by

dég, =a*dffo, @=0) . . . . . . . . .

for the crack tip opening displacement of a non-growing
crack subject to monotonic load increase. This expectation
seems to be confirmed by results of numerical solutions for
crack growth under well contained plastic yielding. Letting
‘ssy’ denote small-scale yielding, it was found!'? that to
within 5 to 10% accuracy a,,, & o, where o, = 0:65. The
parameter o may vary from o, as large-scale and general
yielding conditions are approached. For example, the
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1 Slip-line representation of crack tip stress state: a
for non-growing crack; b for growing crack

deeply cracked plane-strain bending configuration (Fig. 2)
leads at fully plastic (fp) conditions to'>¢ o = 0-51.
Furthermore, o, = o, exactly for the rigid—ideally plastic
material model, so that it may be presumed that
o ~ off, = 051 for elastic-plastic deeply cracked bend
specimens which are loaded well into the plastic range. In
fact, estimates of a* from elastic—plastic solutions for non-
growing cracks® 7+8
ok, (= 0-65) until the applied moment M per unit thickness
approaches closely to the fully plastic limit moment,!$
M, = 0-3640,b?, and then o* decreases rapidly towards
af(=0-51) as deformation continues.

The parameter R in equation (1) evidently has dimensions
of length, and it is reasonable to expect that R should have a
value in approximate proportion to the size of the plastic
region, or at least to the size over which stress distributions
similar to those of Fig. 1 prevail. This notion has limited
confirmation from comparisons of equation (1) with

. numerical simulations of crack growth under small-scale
yielding. Such studies suggest that!

R~O0BEJ62. . . . . . . . . . ... 0

for small-scale yielding where J has been identified as the
far-field value of the contour integral taken in elastic
material and hence equal to G = (1 —v?)K?/E in the small-
scale yielding limit. The value of R given by equation (3) is
proportional to, but approximately 15 to 309 larger than,
the maximum radius of the plastic zone under small-scale
yielding conditions. The accuracy of equation (3) remains
an open question ; there may be some small dependence of R
on the ratio of the length of crack growth to the size of the
yield zone, but numerical solutions have not as yet been
sufficient to resolve this.

Certainly, R must be expected to deviate from equation
(3) as large-scale and fully plastic yielding conditions are
reached. As discussed by Rice et al.’ the behaviour of R at
large-scale yielding cannot be decoupled from the definition
of J; if J is defined so that in the limit of rigid—plastic
response (E/a, — o0) J does not depend on a (but only on a
and on the rate of imposed boundary displacement), then R
might still be expected to have values in proportion with the
size of the fan-like stress region. Hence, with an appropriate

Metal Science August-September 1980

suggest that o* remains very close to -

definition of J, it was suggested! that for a configuration
similar to that in Fig. 2 R might ultimately reach a limiting
value of some definite fraction of the uncracked ligament
dimension b. Suitable theoretical confirmation of this
expectation (perhaps from numerical solutions) is lacking at
present, and our experiments suggest that the large-scale
yielding behaviour of R may be somewhat more
complicated. )

A possible criterion for stable crack growth has been
developed from equation (1) in the following way. By
integration, the form of the crack profile very near the tip
can be written as

0 = (arfog)dJ/da+ (Brao/EYIn (eRfr) . . . . . (4)

where e = 2-718 is the natural logarithm base and r = a—x.
The equation is asymptotically valid as r—0 for a
continuously growing crack (i.e. when dJ/da is finite). The
expression can be rewritten as

o= (Proo/EYIn(p/r)y . . . . . . . . . . . (5
where
p=eRexp[(2/f)E/c2)d]/da] . . . . . . . (6)

1t is clear from equation (5) that the form of the crack profile
very near the tip is dependent only on the single parameter
p. Hence, if one adopts as a possible fracture criterion the
premise that the crack maintains a steady near-tip
geometrical profile during growth, this is seen from
equation (5) to be tantamount to assuming a crack growth
criterion in the form

p=constant . . . . . . . . . . . . . (D

Thus, with p understood to be constant, equation (6) is
equivalent to the differential equation

dJ/da = (B/a)(63/E)In(p/eR) . . . . . . . . (8)

which governs the variation of J with a during quasistatic
crack growth. This is a ‘differential equation’ in the sense
that R is dependent (in a way yet to be fully documented, at
least beyond the small-scale yielding result of equation (3))
on J and probably on the previous crack growth.
Integrals of equation (8) have been presented in previous
work! for crack growth under small-scale yielding, using

-equation (3) for R. In this case the J versus a relationship is

determined fully by the initial value of J (i.e. J;¢) at the
onset of growth and by the parameter p; J increases from
Jic with ongoing crack growth but ultimately approaches a
limiting value (which makes R = p/e, so that dJ/da = 0) at
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2 Deeply cracked plane-strain bending specimen
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which continuing crack growth can occur without further
increase of J. This limiting value in the steady state has been
denoted (J),, in the previous work!'2 and (J),, = 1-6003 p/E.

A number of comments are pertinent. First, it is of
interest to note that in order to maintain a steady
geometrical profile near the crack tip, J must in general vary
during crack growth (unless the size parameter R has
reached the value p/e). This is a plasticity effect, traceable
to the strain-path-dependent nature of -elastic—plastic
stress/strain relationships, in particular to the difference in
response stiffness for plastic loading versus elastic
unloading. It would not result in a non-linear elastic
material even if that material had the same stress/strain
relation for monotonic loading as does the elastic—plastic
material. Instead, in such a non-linear elastic material the
requirement -of a constant near-tip crack profile during
growth would be essentially equivalent to the requirement
of a constant value of J during growth.

Second, the crack growth criterion of equations (7) and
(8) is based on maintaining, in a sense, a fixed deformation
state very near the crack tip during growth. This may be
expected to provide a suitable model for ductile crack
growth at least in circumstances for which significant void
nucleation occurs only very near the tip, within the region of
the fixed deformation state. It cannot be expected to apply
with much precision in cases for which microcrack or cavity
nucleation is influenced by the size scale in the material over
which high stresses act. Obviously, the growth criterion also
does not incorporate the physics of transition of a stable
ductile tearing mode fracture to a cleavage mode fracture,
which is presumably due to strain-rate elevations of local
stress levels during quasistable growth processes with
consequent change of microscopic fracture mode.

Third, it is of interest to note that the general form of the
growth criterion seems to be independent of the manner in
which the notion of a fixed near-tip deformation state is
characterized. For example, Rice et al.! show that the
equivalent plastic shear strain at points within the fan of
Fig. 1b at small distances r directly above or below the
crack tip is

VP = (m/ay) dJ/da+1-88(2— v} oo/E)In (L/r) . . . (9)

-for a continuously growing crack, where the parameters m
(analogous to « of equation (4)) and L (analogous to eR) are
also undetermined by the asymptotic analyses. The
determination of these parameters from numerical solutions
requires that local strains be known accurately; no results
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with the requisite accuracy are available at present.
Nevertheless, it is clear that equation (9) can be rephrased in
the form

yP = 1-88(2—v)(0o/E) In ({/r) . . (10)
where
{ = Lexp {[m/1-88(2—v)](E/o}) dJ/da} . (11)

and { measures the strength of the near-tip strain field.
Hence, the criterion for crack growth with a fixed strain
state prevailing very near the tip can be phrased as the
requirement that { = constant, and this leads to a
differential equation governing crack growth which is
similar in form to that of equation (8).

Fourth, it is emphasized that the theoretical analysis
leading, e.g. to equations (1,4, 9) is based on an ideally
plastic material. We can account for actual strain hardening
in a very approximate manner by identifying ¢, in equations
(1, 2,4-6, 8) as the ultimate (nominal) tensile strength a,.
This is done in analysing the experiments (although in
equation (3) for R we shall interpret o, as the actual yield
stress o,, which is reasonable if R is to be associated with the
size of the plastic region). Nevertheless, more subtle strain-
hardening effects than are revealed in the uniaxial tensile
test can occur and may be relevant to the analysis of crack
growth. These are related to the development of severe
shape changes of the plastic yield surface (in stress—space). A
special case is the development of a pointed vertex structure
on the yield surface at the current stress state. This greatly
reduced the stiffness of elastic—plastic response along non-
proportional stressing paths, compared to predictions based
on yield surfaces which do not change in shape and hence
might be expected to be critical to the analysis of
deformation fields near growing cracks. Remarkably,
however, a recent analysis of steady-state Mode III crack
growth by Dean and Hutchinson® shows very little
difference between the:crack surface displacements predicted
according to a vertex yield model and to a model which
retains the Huber—von Mises shape of the yield locus (i.e.
‘isotropic’ hardening). Whether effects of changes of yield
surface shape are similarly without major effects for
growing tensile cracks remains to be seen.

EXPERIMENTS
The material used in the experiments was an Al-Si killed
AISI 4140 supplied as 19 mm thick plate by Bethlehem
Steel Corporation. Compositional weight percentages are:
0-42C, 0-004P, 0-014S, 0-22Mo, 0-001As, 0-01Sb, 0-002Sn.
The material was austenitized in argon for 1 h at 1140 K, oil
quenched, and tempered for 1 h at 770 K, resulting in
nominal tensile yield and ultimate strengths of
6, = 1173 MNm~? and o, = 1327 MN m ™2, respectively.
Four specimens were prepared, each with in-plane
dimensions as shown in Fig. 3 (the larger dimension,
30-5 mm, for the distance from the notch tip to specimen
back surface applies for specimen 4 only). The specimens
were side-grooved in a shallow 90° V-notch shape to
suppress shear lips, and were pre-fatigue cracked so that the
remaining uncracked ligament b had values at the start of
the ductile crack growth tests as shown in Table 1. This
table also shows the thicknesses and side groove depths;
thicknesses listed are the average of those before and after
side-grooving, and are used to reduce measured loads to
loads per unit thickness for use in theoretical formulae. The
uncracked ligaments b are small compared to overall
specimen dimensions and hence for analytical purposes the
specimens are modelled as deeply cracked bend specimens
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Table 1 Specimen ligament sizes, thicknesses, and
side-groove depths (for other dimensions see Fig. 3)

Table 2 Comparison of maximum amount of crack
growth in each test as estimated from changes in elastic
compliance with actual growth observed visually from

Specimen Initial ligament Thickness Side-groove markings on fracture surface due to fatigue load cycling
number size by, mm (average), mm  depth, mm at end of test
L - 1075 12:19 0-51 Specimen  Estimate from Visual observation of
2 1042 15:37 051 number compliance changes, mm load-cycle markings, mm
3 10-62 18-54 0-76
4 15-86 18-:54 076 1 66 63

2 73 70

3 68 73

4 12:0 118

(Fig. 2) with M computed about the mid-point of the
uncracked ligament. Thus, M = P(a+b/2) and increments
df of the rotation measure in Fig. 2 are identified as
d0 = dA/(a+b/2) where A is the opening displacement
along the load line. This displacement is measured by the
clip-gauge shown. The gauge is of high sensitivity ; it is made
of high strength steel with strain gauge sensors and mounted
in knife-edge supports (razor blades attached to the
specimen fit into sharp V-grooves in the clip gauge).

Tests were performed on an Instron closed-loop
servohydraulic test machine. Amounts of stable crack
growth were estimated according to the elastic unloading
compliance technique described by Clarke et al.;!° elastic
rotations were assumed to be given by their expression

0° = 16(1 —v*)M/Eb>. . (12)

The accuracy of the measurement of small changes in crack
length (i.e. based on the ligament b inferred from equation
(12) from the response to small increments of elastic
unloading) is increased by the use of low-noise high-gain
electronic instrumentation amplifiers to process P versus A
records, and by minimization of friction. The latter is
accomplished partly through design of the clip gauge and
partly through the use of flexible hanger plates which allow
the loading pins to rotate in needle bearings. This makes
possible the resolution of inferred changes in crack size of
the order of 0-01 mm.

Figure 4 shows a P versus A record for specimen 2. This is
representative of all the specimens and illustrates the elastic
unloading and reloading to infer crack growth.

The crack growth estimated by the compliance technique
is compared to visually observed growth in Table 2. Here

f ] T

LOAD P —»

| | | | | | | | |
DISPLACEMENT A—»

4 Load/displacement diagram for specimen 2 showing
elastic unloading and reloading
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the values reported in the middle column are the total
compliance-estimated growth at the end of the tests (e.g.
when only 3-4 mm of ligament remained). Also, at the end
of each test several cycles of fatigue loading were applied to
mark the position of the crack front and then the thickness-
average growth was measured visually, leading to results in
the last column. The compliance-estimated growth is within
0-5 mm or less of the visually observed growth.

Experimental results for specimen 2 are shown in Fig. §;
the trend of the curves shown is representative of the results
for all specimens. The horizontal axis denotes amount of
crack growth and the curves labelled M and M, denote,
respectively, the applied moment and the fully plastic
moment. The latter is calculated from"® M, = 0-3640, b%.
Evidently, the early portion of the test corresponds to
contained yielding and the later portion to general yielding.
Also shown in Fig. 5 are the elastic energy release
rates G calculated from

G = 16(1 —v*)M?/Eb? . (13)

(which is consistent with equation (12)) and two different
measures of quantities that can be associated with the J-
integral, and which are discussed below.

The points denoted by the circular symbols in Fig. 5 give
values of the ‘deformation theory’ value of J, namely Jy, in
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5 Applied moment M, general yield moment M, G, J,,
and J; versus crack growth for specimen 2 ‘
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the terminology of Rice et al.! This is obtained by
integrating

dJ, = (2/b)M dO— (J,/b) da
= (2/b)P dA—(J,/b) da. . (14)

throughout the test, starting at J, = 0 when A = 0. If the
material were actually non-linear elastic then, as shown by
Hutchinson and Paris,!! the above expression when
integrated for deeply cracked bend specimens defines a
value J4 which depends only on the imposed deformation 6
and the ligament size b and not on the ‘path’ by which the
current values of 6 and b were obtained. Further, J; would
then agree with the line-integral definition of J and reduce to
J4 = G in the limit of crack growth with a negligibly small
non-linear zone. Similar independence of J4 from the path
by which current # and b values were obtained and
agreement with line-integral values of J cannot be expected
for actual elastic—plastic solids; in such cases J4 is merely
defined by equation (14). On the other hand, it remains true
that J4, = G when a crack grows in an elastic—plastic solid
with a negligibly small plastic zone. Indeed, it is clear from
Fig. 5 that experimental results for J, agree closely with
those for G until the applied moment M approaches closely
to M,. In view of the properties of J,, it seems most
appropriate to associate J in equations (3) and (8) with J4 in
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order to use those equations at loads extending slightly
beyond the limits of small-scale yielding.

The triangular symbols in Fig. 5 denote values of the ‘far
field’ value of J, namely J;, obtained by integrating

dJ; = (2/b)M d6 = (2/b)P dA
=dJy+(J,/b)da . . (15)

throughout the test. The name ‘far field” arises because, in
the particular case of a deeply-cracked rigidly—ideally
plastic bend specimen subject to monotonically increasing
rotation, Rice et al.! showed that J; thus defined agrees with
the line-integral value of J as computed on a contour
coinciding with the outer boundary of the specimen. There
is no proof that a similar interpretation would be valid for
elastic—plastic solids, or even for rigid—plastic solids in
different specimen configurations. As noted above, certain
definitions of J are consistent at general yielding with a con-
tinuing interpretation of R as a measure of the spatial extent
of a region stressed in a fan-like manner. Others are not. As
shown by Rice et al.! J; has the proper features at full
plasticity whereas J; does not. (Later we shall consider
another quantity which also exhibits the proper features at
full plasticity and which reduces to J~J; ~ G at well
contained yielding.) We observe from Fig. 5 that the
difference between J; and J, is insignificant in the very early
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stages of crack growth, but increasingly more significant
with continuing growth. Also, it is evident from equation
(15) that measurement of J; versus a implies J4 versus a, and
vice versa.

Figures 6-9 show, as circular symbols, the experimental
results for J, as a function of crack growth for specimens 1—
4. The open circles are data points obtained prior to general
yield (i.e. M < M,) and the solid circles are results obtained
after general yield. The solid and dashed curves represent
the results of the theoretical prediction for well contained
yielding.

COMPARISON OF EXPERIMENTS WITH
SMALL-SCALE YIELDING FORMULATION

The theory is well developed only for crack growth under
conditions of small-scale yielding. We show predictions of
the theory for this case in Figs. 6-9, based on using J,; rather
than G in the small-scale yielding formulation, and
substituting o, or o, for g, as discussed earlier. This
formulation is given by combining equations (3) and (8) in
the form (using p = 508, a = o, = 0-65

dJy/da = 7-82(c%/E) In (ps?/0-23¢EJ,) . . (16)

This equation has been integrated subject to
Js=35kN m™! at the onset of growth, as suggested by the
data in Figs. 5-9, and values of the one free parameter p are
chosen to best fit the data prior to general yield. Results are
shown by the solid and dashed curves in Figs. 6-9.
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11 Inferred values of R and R/b versus crack growth
for specimen 2 and comparison with predicted R/b
value from small-scale yielding expression with J
identified as J,
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The solid curves in Figs. 6-8 (specimens 1-3) are the same
as the best-fit curve in Fig. 9. The value of p which generates
this curve is p=7175mm, which implies that
(Ja)s =80 kNm™!. The dashed curves in Figs. 6-8
correspond to slightly different values of p, giving the best fit
for each specimen although the theory implies, of course,
that p is a specimen-independent material property.

We conclude from Figs. 6-9 that the theory is reasonably
successful in describing experimental data for crack growth
prior to general yield.

FORMULATION FOR ARBITRARY EXTENT OF
YIELDING

Here we present what we believe to be a plausible
interpretation of the terms in the growth criterion of
equation (8) for arbitrary amounts of crack growth and
extent of yielding in deeply cracked bend specimens. The
approach will, however, almost certainly be subject to
revision when and if sufficiently accurate numerical elastic—
plastic solutions become available to predict from first
principles the relationship of terms in equation (8) to
applied deformation and crack length.

First, consider the interpretation of dJ in the theoretical
expressions. We can identify dJ as dG in the limit of growth
with an extremely small non-elastic zone. On the other
hand, dJ is subject to certain restrictions of interpretation
as discussed earlier at large-scale and fully plastic yield-
ing conditions. In particular, Rice et al.! show that for
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rigid—ideally plastic bend specimens an expression
dJ = (2/b)M d6P, consistent with dJ; of equation (14), is
appropriate. Here d6P is the plastic part of the rotation. We
can embody both limiting cases by writing

dJ = (2/b)M dO° +dG . (17)

This can be rearranged by noting that G = M6°/b for a
deeply-cracked bend specimen and that 6° is given by
equation (12). Thus

dG = d[Eb(6°)?/16]
= (2Eb0°/16) d6* +[E(6°)%/16] db
= (2/b)M d6°— (G/b) da . (18)

by equation (12), and by using db = —da. Hence equation
(17) can be written as

dJ = (2/b)M d(6° + 6°)— (G/b) da
or
dJ = dJ;—(G/b)da = dJ;+[(J,—G)/b] da . (19)

In terms of this interpretation of dJ the growth criterion of
equation (8) may now be written as

dJs/da+(J4—G)/b = (508/x)(62/E) In (p/eR). . (20)

Here = 5-08 has been used and it is recognized that o
should, in general, be regarded as variable.

We have used experimental data for J4 and G to evaluate
the left-hand side of this equation, and by taking a = 0-65
‘and using the value of p from the small-scale yielding fit of
the data we can infer R as a function of a from it. That is, we
infer the variation of R with a on the assumption that the
experimental data fit equation (20). The results are
presented in Figs. 10-13 where we show R (right ordinate)
and R/b (left ordinate) versus crack growth. Also, we show
the value of R/b implied by the small-scale yielding
expression of equation (3) when J, is used for J.

We observe that R is rather well predicted by equation (3)
throughout the range of these tests. This is probably a
peculiarity of these experiments because equation (3) is not
expected to be valid usually at general yielding. It was
suggested in earlier work! that R/b should approach a
limiting value as general yielding conditions are
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approached. Our experiments extend only modestly into the
general yielding range and cannot provide a good test of this
concept. However, the data which we have are not
suggestive of an approach to a limiting value of R/b, at least
over the range studied. Furthermore, the final R/b values in
the experiments range from 0-6-0-8 and these seem rather
large if R is to be interpreted as a size in the material over
which fan-like stress fields such as those of Fig. 1 prevail.
This topic requires further study, from both the standpoints
of developing a suitable theoretical basis for growth in the
general yielding range and of experimental analysis of the
resulting growth criterion.
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