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OVERVIEW NO. 9 

PLASTIC CREEP FLOW EFFECTS IN THE 
DIFFUSIVE CAVITATION OF GRAIN BOUNDARIES 

A. NEEDLEMAN and J. R. RICE 

Division of Engineering, Brown University, Providence. RI 02912. U.S.A. 

(Rrceicrd 15 Jamrurp 1980) 

Abstract-We analyze the growth of cavities along grain interfaces by the combined processes of grain 
boundary diffusion and plastic dislocation creep in the adjoining grains. It is shown that the coupling 
between the processes can be expressed in terms of a parameter L, which has the dimensions of length 
and which is a function of material properties, temperature and applied stress; L decreases with increas- 
ing temperature and stress and has, e.g., values in the range of 0.25 to 25 pm for various pure metals 
when stressed to 10m3 x shear modulus at 0.5 T,. The contribution of dislocation creep to the cavity 
growth rate is shown to be negligible when L is comparable to or larger than the cavity spacing, but 
significant interactions occur. leading to growth rates very much in excess of those predicted on the basis 
of boundary diffusion alone, when L is comparable to or smaller than the cavity size. The coupling 
occurs because extensive dislocation creep allows local accommodation of matter diffused into the grain 
boundary from the cavity walls. 

The cavity growth rate is analyzed by formulating a new variational principle that governs combined 
processes of grain boundary diffusion and non-linear viscous creep, and by implementing this principle 
through the finite-element method to obtain numerical solutions. Results for the cavity growth rate are 
presented for a wide range of ratios of L to cavity spacing. and of cavity radius to spacing. Also, results 
are presented for the total growth time of cavities from an initial size to final coalescence. 

A.M X/IO 

R&urn&Nous analysons la croissance de cavitts intergranulaires par combinaison de la diffusion 
intergranulaire et du fluage de dislocations dans des grains adjacents. Nous montrons que le couplage 
entre les deux phtnomitnes peut s’exprimer g I’aide d’un parametre L. qui a les dimensions d’une 
longueur et qui est fonction des propriktks du matCriau. de la tempkrature et de la contrainte appliqute; 
L dCcroit lorsqu’on augmente la tempkrature ou la contrainte, et ses valeurs sont, par exemple. com- 
prises entre 0,25 et 25 pm pour divers mttaux purs soumis g une contrainte de 10’ x le module de 
cisaillement a 0.5 T,. Nous montrons que la contribution du fluage de dislocations B la vitesse de 
croissance des cavitt‘s est nkgligeable lorsque L est comparable ou suptrieur a l’espacement des cavitCs. 
mais que, lorsque L est comparable ou infbrieur & la taille des cavitts, des interactions notables se 
produisent et conduisent g des vitesses de croissance nettement suptrieures a celles qu’on prevoit en 
considkrant la diffusion intergranulaire seule. Le couplage se produit, car un fluage de dislocations 
important permet une accommodation locale de la matitre ayant diffuse dans les joints B partir des 
parois de cavitts. 

NOUS analysons la vitesse de croissance des cavites en formulant un nouveau principe variationnel 
combinant les phtnomknes de diffusion intergranulaire et de fluage visqueux non lineaire. et en appli- 
quant ce principe B I’aide de la mkthode des &ments finis pour obtenir les solutions numkriques. Nous 
prCsentons les rtsultats sur la vitesse de croissance des cavitks, pour un large domaine de rapports de L B 
l’espacement des cavitts. et du rayon des cavites h leur espacement. Nous prCsentons egalement des 
rCsultats concernant le temps de croissance total des cavites depuis une taille initiale jusqu’li la coales- 
cence finale. 

Zusammenfassung-Wir analysieren das Wachstum von HohlrPumen entlang von Korngrenzen iiber die 
kombinierten Prozesse der Korngrenzdiffusion und des plastischen Versetzungskriechens in den angren- 
zenden K6rnern. Es wird gezeigt. dal3 die Kopplung zwischen diesen Prozessen mit einem Parameter L 
beschrieben werden kann, der die Dimension einer LLnge hat und der von Materialeigenschaften. 
Temperatur und angelegter Spannung abhlngt. L nimmt ab mit ansteigender Temperatur und anstei- 
gender Spannung und betrlgt z.B. 0,25 bis 25 pm fir verschiedene reine Metalle bei Scherbelastung von 
lO-3 x Schermodul bei 0,5 T,. Der Beitrag des Versetzungskriechens zur Hohlraumwachstumsrate ist 
-wie gezeigt wirdvernachllssigbar, wenn L vergleichbar oder griil3er ist als der Abstand zwischen den 
HohlrPumen. Wenn I_ jedoch vergleichbar oder kleiner wird als die HohlraumgriiBe, tritt betrPchtliche 
Wechselwirkung auf mit der Folge von Wachstumsraten. die weit iiber die auf der Grundlage der 
Korngrenzdiffusion errechneten hinausgehen. Die Kopplung tritt auf, da ausgedehntes Versetzungskrie- 
then die van den HohlraumwPnden in die Korngrenze diffundierte Materie lokal anpassen kann. 

Die Hohlraumwachstumsrate wird analysiert mit einem neu formulierten Variationsprinzip. welches 
die kombinierten Prozesse der Korngrenzdiffusion und des nichtlinearen FlieBens unfafit. und welches 
mittels der Methode der finiten Elemente numerische LGsungen ergibt. Ergebnisse fiir Hohlraumwach- 
stumsraten werden fiir einen weiten Bereich des Verhtiltnisses zwischen L und Hohlraumabstand und 
zwischen Hohlraumdurchmesser und Abstand angegeben. Ebenso werden Ergebnisse vorgelegt fir die 
totale Wachstumszeit von der anfinglichen Gr6Be bis zum Zusammenwachsen. 
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1. INTRODUCTION 
Processes of grain boundary cavitation, by diffusive 
motion of matter from cavity walls into the grain 
interface, have been studied extensively as a model for 
rupture at elevated temperature. The basic model for 
this process was introduced by Hull and Rimmer [I] 
and modified in various ways to account for bound- 
ary conditions [2,3], non-equilibrium shapes of the 
rupture cavities [4,S] and elastic deformations of the 
adjoining grains [6,7]. 

However, the works mentioned neglect the 
influen~ of plastic creep flow on the diffusive cavita- 
tion process. Our aim here is to model the combined 
effects of diffusion and creep flow on cavity growth. 
As will be seen, at stress levels of the order 10m3 p and 
higher (p = shear modulus) at 0.5 T,,, (T,,, = melting 
temperature) interactions between diffusive transport 
and creep flow are typically very important, although 
not at much iower stresses, of the order 10e4 p at this 
temperature. These combined effects lead to rates of 
cavity enlargement which can be appreciably greater 
than would be the case for either mechanism acting in 
isolation. Indeed, the possible importance of plastic 
creep flow to rupture at elevated temperature is sug- 
gested indirectly by the well-known Monkman- 
Grant [S] correlation, in which the product i,,t, 
(i, = steady state creep strain rate, t, = rupture time) 
is sometimes found to vary only slightly over ranges 
of stress and temperature which correspond to large 
changes in both factors. 

A previous attempt to model the combined effects 
of creep and diffusion on cavity growth was made by 
Beere and Speight [9]. Their model constitutes only a 
very rough approximation, and is based on the con- 
cept of each cavity being surrounded by a spherical 
she11 of effectively non-peeping material, within 
which a Hull-Rimmer diffusive cavitation process 
takes place, with these shells being embedded in a 
matrix of uniformly creeping material. The model has 
been modified and extended by Edward and 
Ashby [lo], who also give a comprehensive discussion 
of its predictions for various materials and conditions 
of stress and temperature. In contrast, our work 
attempts to solve exactly (with the help of a numerical 
finite-element solution) the coupled problem of creep 
and diffusion. We find some important differences, to 
be discussed, with this concept of a non-deforming 
shell, although the approximate models are found to 
exhibit the proper trends and incorporate the key 
dimensionless parameters describing the coupling. 

The program of the paper is as follows: In the next 
section we discuss the Huh-Rimmer model and indi- 
cate, following a discussion by Rice [ll], why plastic 
creep flow effects are expected to be important in 
modifying its predictions. Then we establish a new 
variational principle governing problems of coupled 
plastic creep flow and grain boundary diffusion (the 
final form of this principle, equation (46) to follow, for 
axisymmetric cavities was stated but not developed in 
Eli]), and use this principle as the basis for a finite- 

element solution for the rate of cavity growth. We 
show that the coupling between creep and diffusion 
can be expressed in terms of a stress and temperature 
de~ndent material length scale I. introduced by 
Rice [ 111, where 

L = (%T,/&m)i’3. (1) 

Here u, is the remotely applied ‘equivalent’ tensile 
stress, grn the associated creep strain rate, and 
9 = D,GJl/kT (D& = grain boundary diffusion 
coefficient, R = atomic volume, kT = energy per 
atom measure of tem~rature). In particular L@ 
appears as the coefficient in the equation 

~.i~ = 9 ab,jar (21 
relating the volumetric rate of matter diffusion, CU,, 
along a grain boundary to the gradient, au,/&, of 
normal stress a,, acting on that boundary. Numerical 
values of L are given for several materials as a func- 
tion of stress and temperature in the last three 
coiumns of the upper portion of Table 1 (to be dis- 
cussed subsequently), When the length L is large (e.g., 
low u and T) compared to cavity radius (a) and half- 
spacing (b), plastic creep flow effects can be neglected. 
On the other hand, at higher e and T, when L is small 
compared to the spacing, coupled creep-diffusion 
effects are important and the ratio of cavity growth 
rate ti to the prediction based on the rigid-grains 
(Hull-Rimmer) model is found to be a rapidly 
increasing function of the ratio a/L In the limit of 
very large a/L, grain boundary diffusion makes no 
contribution to the growth rate. These conclusions 
are consistent with the models of Beere and 
Speight [9] and Edward and Ashby [lo]. Indeed, for 
power-law creeping materials (2 K cr”). Edward and 
Ashby show that the predicted strain to rupture in 
their approximate model depends, for a given initial 
a/b ratio, on material parameters only through a 
dimensionless grouping P where. in our notation, 

1 4L3 2’n 
P=lo p 

( > 

They observe that for P > 1 (i.e., large values of our 
length parameter L or small cavity spacings b), there 
is a negligible contribution of creep flow to growth 
and rupture is controlled by grain boundary diffu- 
sion; for P 5 10-j, they suggest that grain boundary 
diffusion is negligible and rupture is controlled, essen- 
tially, by creep flow alone. 

2. HULL-RIMMER MODEL AND 
MODIFICA~ONS DUE TO 

PLASTIC CREEP FLOW 

The Hull-Rimmer [1] model for diffusive cavity 
growth on a grain boundary is illustrated in Fig. 1, for 
the typical case [S] when the dominant mechanisms 
of matter transport are by surface and grain boundary 
diffusion. Two important assumptions are made in 
this model: First, surface diffusion is presumed to be 
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Fig. 1. Hull-Rimmer model for grain boundary cavitation by surface and grain boundary diffusion. The 
adjoining grains are assumed to separate as rigid bodies in this model. 

rapid enough so that the void retains a quasi- than predicted by the rigid-grains model. We assume 
equilibrium spherical-caps shape. (See Chuang et that surface diffusion is sufficiently rapid to maintain 
al. [S] for an analysis of conditions under which this the quasi-equilibrium, spherical-caps cavity shape. 
assumption is valid, and for solutions to more general Considerations of [S] suggest that this will typically, 
versions of the Hull-Rimmer model when the cavity but not always, be the case when the grains are 
has a non-equilibrium shape). Second, the grains are modelled as rigid; the range of validity of this 
assumed to be effectively rigid (i.e., non-deforming). assumption remains an open issue for the present case 
This means that the grains move apart uniformly as of plastically creeping grains. Within this assumption, 
rigid bodies, hence requiring that matter be carried by the physical processes which control the rate of cavity 
diffusion along the entire segments of grain boundary growth are grain boundary diffusion and plastic creep 
between voids in order for cavity growth to occur. flow. 

Consideration of the elastic deformability of the 
adjoining grains suggests that this is relatively unim- 
portant to modifying predictions of the model. Elastic 
effects are, of course, important in establishing the 
time scale required, after sudden load application, for 
attaining the quasi-steady conditions imagined in the 
model [ll, 51. Also, they are important for determin- 
ing the transient concentrated stress fields that exist 
near the cavity tip when sudden increases of load 
occur [12]. But elastic strains are so small in repre- 
sentative cases that, once quasi-steady conditions are 
established, they can hardly modify the requirement 
that the grains move apart as effectively rigid bodies. 

Figure 2 illustrates the ways in which creep flow 
can contribute to growth. We enumerate three 
regimes of response: 

However, if the grains are stressed to a level for 
which extensive plastic creep flow occurs, grain de- 
formability can, as we show, be considerably more 
important, leading to much faster cavity growth rates 

1. Consider first the case in which stresses are high 
and creep flow is sufficiently rapid that, as a limiting 
case, we may neglect matter transport along the grain 
boundary. The cavity growth rate for this case is dis- 
cussed by Hancock [13]. As illustrated in Fig. 2a. the 
material points immediately adjacent to the void wall 
take on a distribution of velocities which tend to 
make the void increase in volume and, in general, 
under uniaxial tension and for widely-spaced voids 
(so that plastic creep flow is not concentrated in a 
voided layer along the grain boundary [IO]), decrease 

in radius. This change in size and shape is indicated 
schematically by the dashed curve in Fig. 2a. But 
when surface diffusion is rapid, as we assume, local 

tgrom boundary 

(J) 

(b) 

Fig. 2. Illustration of the effects of plastic creep flow. (a) Cavity growth by the combination of plastic 
creep flow (which, if considered alone. generally tends to decrease the void radius, dashed curve) and 
rapid surface diffusion; (b) Local accommodation of matter diffused into the grain boundary, by the 
deformation of grains. Note that the inscribed (dashed) lines do not remain straight as in the rigid-grains 

model. Thus, the diffusion path necessary to accommodate a given amount of matter is shorter. 



matter transport along the void surface always serves 
to retain the qu~i-equilibrium, spherical-caps shape 
(dash-dot-dash curve in Fig. 2a) so that the net effect 
is to increase the void radius. 

The void volume may be written as 

I/ = f h(l))a3 

where h($) is a function of the angle $ which the void 
surface makes with the plane of the grain boundary at 
its tip. From [SJ, 

h(l)/) = 1 - i 
cos IJJ 
- 

1 +cos$ 2 1 
sin $ ; cos I/J = yb/2ys. 

(5) 

For example $ = 70” is representative, and 
h(70”) = 0.61; of course, h(90”) = 1. Now, if c, is the 
rate of void volume enlargement due to creep flow 
(i.e., due to a velocity distribution immediately adja- 
cent to the cavity surface associated with the dashed 
curve in Fig. 2a), then [ 1 l] 

For the case of a linear viscous material, cr may be 
evaluated from classical creeping flow solutions for 
axi-symmetric ellipsoidal cavities under uniaxial ten- 
sion (results may be taken from elasticity solu- 
tions [14], replacing Poisson’s ratio by l/2 and the 
remote tensile strain em by the remote tensile strain 
rate 6,). The results for the limiting cases of spherical 
voids (II/ = 90”) and flat penny-shaped cracks ($ = 0) 
are 

3. As a final case, assume that grain boundary diffu- 
sion is the dominant mechanism and that there is 
negligible creep flow. This is the Hull-Rimmer case, in 
which the grains are effectively rigid. Now the spacing 
2b (Fig. 1) between voids is essential to the result, and 
we adopt the accepted approximation of considering 
the diffusion process to take place in an axially sym- 
metric manner with the radial flux Jb along the grain 
boundary vanishing at a radius equal to b. That is, 
each void is effectively assumed to be centered in a 
right-circular cylinder of radius b (Fig. 3) with Jb 
vanishing at the outer radius. In this case the growth 
rate under remotely applies stress u, is [5]: 

h(ll/)d = 
9[% - (1 - a2/b2)oo] 

2a’[ln(b/a) - (3 - a2/b2) (1 - a2/bz)/4] ’ 

sphere: pcI = &,a3; crack: I’,, = 4&u3. (7) 

The results are not very different, suggesting only a 
mild dependence on qIi, and we use the result for a 
sphere. Hence, using equation (6), the growth rate of 
widely-spaced voids is given by 

where 9 is defined in the text after equation (1) and 
where (r. is the normal stress acting on the grain 
boundary at the void tip, 

go = y&c1 + KJ = 2y,sin $/a 

MM z tima/4 (8) 

in the present case for which there has been assumed -l-r----- 
to be negligible grain boundary diffusion. We assume l I iii n f (vi,j+vi,i) 
for purposes of this discussion that (8) is approxi- 
mately valid for non-linear power law creeping 
materials (only the numerical factor l/4 could vary). 

h 
I 

(km = Bu,“) 
2. Assume now that both the processes of creep 

flow and grain boundary diffusion are active. This is a I I ugi=o ( 

y i  = “ii 
difficult case to analyze, and the remaining sections of 

t- 

the paper are devoted to it. It is important because we 
find that when both processes act simultaneously the 
cavity growth rate can be many times greater than 
would be the case of either mechanism acted in isola- 
tion. The reason for this is illustrated in Fig. 2b. On 

+&(raJ,, + 2v, = 0 

the left is shown the void at one instant in the growth 
history, and two straight lines (dashed lines in the 

nJ, =B 5 (u,,) 

figure) have been inscribed on the grains parallel to 
the boundary. On the right the void and the inscribed 
lines are shown after some amount of growth. 
Obviously, in the rigid-grains model the lines remain ., cent votas. 

Fig. 3. Summary of the field equations and boundary con- 
ditions for the axisymmetric problem of combined plastic 
creep flow and grain boundary diffusion. The outer radius, 
b, of the cylinder represents the half-spacing between adja- 
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straight and matter must be transported along the 
entire grain boundary. But as remarked first by Beere 
and Speight [9], owing to plastic creep flow of the 
grains the matter can be accommodated locally, 
resulting in strong distortions of the inscribed lines as 
shown. Hence the path lenkth over which matter must 
be diffused, to effect a given growth of the void, can 
be very much shorter than for the rigid-grains model. 
This means that less stress is required to effect the 
growth. Conversely, for a given stress level, the 
growth rate will be more rapid when local accommo- 
dation of the diffused matter is possible by creep. The 
sketch in Fig. 2b suggests rather strong effects of 
creep flow in the region of accommodation, and this 
raises some uncertainty about the concept of a shell of 
non-creeping material adjacent to the cavity [9, lo]. 

(9) 

w 

,v,= -+bi, 



for a spherical-caps void. This value of cro assures 
continuity of the chemical potential at the tip [S] ; i.e., 
the potential per atom (negiecting strain energy terms, 
jus&ifiably in representative cases [H]) is 

p = -y&r + kz)R 

on the cavity surface and 

(il) 

p= - a$ (12) 

aIong the grain boundary, where o,, is the local nor- 
mal stress and n is the voiume per atom. Equation (9) 
above for ci actually corrects equation (71) of [5], 
which had an additional factor of (i-aZ!b2) on the 
right-hand side. Subsequently we will explain the ori- 
gin of this error in the way that the condition of mass 
conservation was enforced. Related errors have been 
made in other work as well [lftl 171, whereas, as 
pointed out in [16], the versions of equation (9) given 
in [l, 21 are incorrect because they are based on inap- 
propriate boundary conditions. When u”ib’ CC f, the 
growth rate predicted by the rigid grains model is 

h(tJl)rj: = V(cr, - rr&/2a2 ln(b/2.12a). (13) 

Let (i’@ be the growth rate predicted by (13) in the 
rigid grain case, regime 3, and d, be the rate predicted 
by (8) For regime 1 when creep is dominant and there 
is negligible contribution from grain boundary diffu- 
sion. Taking their ratio and recalling the definition of 
the temperature and stress level dependent parameter 
L, equation (I), we obtain [Xl] 

(the factor multiplying (G;‘L)~ ranges from 0.8 to 2.2 
for b/a between 10 and 20, and CJ~/(T~ between 0 and 
1,/2). This equation must be used with care because. as 
we have emphasized, in regime 2 when both g-b. diffu- 
sion and creep flow are active simuItaneous~y~ ci 
exceeds both &,, and ci,,. Nevertheless, the equation 
suffices to show in an elementary way the importance 
of the ratio (r/L to determining the regime of response, 
and we will see that this same ratio arises as an ex- 
pression of the coupling between creep and diffusion 
in the subsequent analysis of regime 2. As suggested 
by (14). and as will be shown, creep flow alone (regime 
1) is important at large values of a/L, diffusion alone 
at smatl a/L, and over a rather broad transition 
regime (say, 0.2 < a/t < 20). both mechanisms com- 
bine to produce growth in excess (in fact. ~rer_r much 
in excess for, say, 1 K a/L -c 5) than either mechanism 
acting in isolation. 

Consider the temperature T= 0.5 7’, and suppose 
that a is in the range of 1 pm. Then for ox = lo- 3 14 
(2nd to last column of Table 1). the interaction 
between creep and diffusion will be significant in 
cavity growth for all the materials shown except silver 
and perhaps nickel and magnesium, because L is 
comparable to or smaller in size than u. But at the 
ten-fold smaller stress level of IO-’ kr (3rd to last 
column of Table 1). L is much larger than (I for all the 
materials shown except chromium and perhaps tung- 
sten, and at this stress level plastic creep flow is gener- 
ally unimportant in contributing to the rate of cavity 
growth, The last column of Table 1 may be compared 
to the third to last, to see the effect of increasing 
temperature from 0.5 T, to 0.g T, at the stress level of 
‘iO_‘~; evidently, L is greatly reduced in size and 
hence creep flow becomes important to cavity growth 
for many of the materials shown at the higher tem- 
perature. 

To estimate L as a function of stress and tempera- 
ture, we write 

These observations suggest that at 0.5 T, and for 
very low stress levels representative of multi-year ser- 
vice in energy generating equipment, say (T, 2 1 to 
3 x 10-4g, L will he large compared to representa- 
tive cavity sizes for most materials (still. the highest 
stress level of this range reduces L by about a factor 
of 4 from the values in the third to last column of 
Table 1). Hence generally, but not always, for such 
cases plastic creep flow is not expected to make sig- 
nificant contributions to cavity growth under sus- 
tained load; i.e., response usually corresponds to 
regime 3 so that the rigid grain model applies ap- . . _ 
proximately. Exceptions may occur due to hzgh IocaE 
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and we write for power-law dislocation creep 

(16) 

(subscript ‘0’ refers to volume, or lattice, diffusion), 
Hence we can write 

where T, is the meiting temperature and Lo and K are 
constants expressible in terms of the various material 
parameters appearing in the expressions for ‘/ and i. 
Using a recent tabulation of data by Frost and 
Ashby [18] for all these material parameters, we show 
values of n, k and Lo in the first three columns of the 
upper portion of Table 1. The last three columns 
show values of L at two stress levels. lo-‘p and 
10-3fi, for ‘I’ = 0.5 7,. and at the stress level IO-“/i 
for T = 0.8 T,. (These values of L differ somewhat 
from those presented by Rice [t l] based on an earlier 
tabuIation of data by Ashby 1223; obviously, there are 
significant uncertainties in the material parameters 
presented in Table 1 and entries are not always con- 
sistent with a recent but less extensive tabulation of 
diffusion parameters in [Sj)* 
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thermal stresses in start-up operations, to local stress 

concentrations at notches or macrocrack tips, or to 

transient effects at sliding grain boundaries following 

alterations in load level. In these cases as well as other 

high stress situations, representative e.g. of turbine 
blade operation or of certain metal forming processes, 
substantial interaction between creep flow and diffu- 

sion is expected as for regime 2 above. and the cavity 

growth rate may exceed greatly predictions of the 

rigid-grain model. It seems unlikely that regime 1, 

requiring L K u, will be encountered in practical cases 

except at very high stress levels and perhaps in the 

terminal joining of cavities. 

The large values of L for silver in Table 1 suggest 

that plastic creep flow might not be expected to con- 

tribute to cavity growth in practical cases. This may 

be significant in terms of the observations by Goods 

and Nix [23,24] that creep fracture results for silver 

polycrystals with pre-existing grain boundary voids 

could be rationalized in terms of a purely diffusional 

model of the rigid-grains type, modified as in [4.5] to 

account for non-equilibrium cavity shapes. However, 

it must be cautioned that their high-stress creep data 

for silver [24], with n : 9, leads to Lo 2 10m4 firn and 

to values of L which are not always large for the 0% 

and T values of their experiments. Also. copper exhi- 

bits large values of L compared to representative 

microstructural sizes, except at relatively high stress 

levels, and this is also a material for which correlation 
of creep rupture lifetimes in terms of diffusional 

models of the rigid-grains type has been possible 

[ 1.5,25]. Finally, Miller [26] has correlated crack 
growth in uFe by a diffusional model at stresses of the 

order 2 x 10m4 p and T = 0.54 7”,,,. For this range we 

estimate L z 7 pm from Table 1; the value is not as 

large compared to the cavity radius (5 pm) in his ex- 

periments as would be expected, by our present con- 

siderations, to justify neglecting plastic creep flow. 

3. VARIATIONAL PRINCIPLE FOR 

COMBINED PLASTIC CREEP FLOW AND 

GRAIN BOUNDARY DIFFUSION 

Here we examine the equations governing com- 

bined processes of plastic creep flow and grain bound- 

ary diffusion in some generality. Our purpose is to 

establish a variational principle. We will apply the 
principle as the basis for a finite-element solution to 

the axially symmetric cavity growth model, Fig. 3. but 
the general version of the principle may be useful for 

a variety of other creep-diffusion processes (e.g., estab- 

lishing overall constitutive relations for polycrystals). 
The material of the grains is taken as incompress- 

ible and non-linear viscous, specifically of the power- 

law form 

0 = .li”” (18) 

in uniaxial tension where A and n are constants (com- 
pare equation 16). This is generalized to arbitrary 
stress and strain rate states by writing (with the sum- 

mation convention) 

where 

fJlj - fhijDkk = ;/t-‘n-i)‘“<ij (19) 

c = \m. dkk = 0 (20) 

and the strain rates are given in terms of material 

velocities t’i (relative to Cartesian coordinates x,, .yZ, 

~3) by 
Eij = SCiJ8Xj + dVj/SXi. (21) 

Further, the stresses must satisfy the equilibrium 

equations 

Sai,/dxi = 0 in V, nigij = Tj on ST (22) 

where V is the volume occupied by the grains, and 
where Ti the surface traction and ni the unit outer 

normal on the part of the external boundary, Sr. 

where tractions are prescribed. Observe that the re- 

lations of Ui, to tij are such that 

s &;I 
uij di,, = O(i,,) = __ fi ~~I’+“,‘“, 

lfn 
(23) 

0 

Our subsequent equations are valid for any relation 
between gij and iij (e.g., anisotropic. not of a power 

law type) so long as the integral is path-independent 

in strain rate space and hence defines only a function 

Q of the end-point strain rates. 
The solution to the above set of equations is well- 

known to be equivalent to the variational principle 

6F = 0 to first order in 60~ (24) 

(in fact, F is not only stationary but a global mini- 

mum) where F is the following functional, defined on 

the class of kinematically admissible velocity and 

strain rate fields (i.e., related to one another by (21) 

meeting ite = 0, and with Vi taking on proper values 

on any part of S where velocity is prescribed): 

F = Q(i,,)dV - 
s s 

Ti tli dS (25) 
V ST 

It is straightforward to show that this same principle 

also applies to a polycrystal with freely-sliding grain 

boundaries, in which case the admissible fields ui may 

have tangential discontinuities (but not normal dis- 
continuities, unless diffusion is considered) on A. 

where A denotes the collection of grain boundaries. 
Although we do not pursue the matter here, it is also 
possible to generalize the principle to grain boundary 

sliding with viscous resistance by adding a term 

s w(AaX) dA (26) 
A 

to F. Here Greek subscripts have the range 1.2 and 
refer to a local set of Cartesian coordinates in the g.b., 
and it is assumed that the shear stresses 7, acting on 
the boundary are related to local velocity disconti- 
nuities Au, in such a way that 

s 

A“# 

7= d(AnJ = w(AcB). (27) 
0 
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Now assume that diffusion takes place along grain 
boundaries (which are assumed to support no shear 
stress). Choose the normal ni on each side of a grain 
boundary to point into the adjoining material (oppo- 
site to the convention on S) and observe that 

+_ ni - -n;, where +, - denote the two sides of the 
boundary. Then, if j, = nJ, is the volumetric flux 
crossing unit length in the grain boundary, matter 
conservation requires that 

where 

aj&, + AU,, = 0 on A (28) 

AU, = (niui)+ + (niui)-. (29) 

Further, the linear, isotropic form of the kinetic re- 
lation for diffusion is 

j,=QJ,= _Dd!!! 
kT ax, 

= c@%,fax, on A (30) 

where (12) for P has been used and 

0, = nidrjnj (same on + and - sides). (31) 

Note also that niQio, = 0 (no shear stresses), and that 
along the collection of arcs r where grain boundaries 
meet free surfaces (e.g., along the cavity apex in 
Fig. 3), a, takes on prescribed values 

0, = 60 along r (32) 

where e,, = Y~(K~ + K*) for continuity of potential and 
K,, K* are the principal curvatures of the free surfaces 
adjoining I-. It is not required for validity of what 
follows that these free surfaces be at equilibrium vis- 
a-vis surface diffusion. 

To establish a variational principle satisfied by the 
solution to the coupled equations of creep flow (in V) 
and diffusion (on A), we begin by observing that the 
true stress field satisfies identically the principle of 
virtual work (or of virtual velocities) in the form 

s 
aijQdV = TV: dS - o”Av,* dA (33) 

” s ST s A 

where vt, i$ are arbitrary fields associated by (21) 
with of taking on arbitrary discontinuities on A but 
vanishing on any portion of S where Vi is prescribed. 
Let j,* be the flux field associated with Au,* by (28); it 
does not matter for our purposes that only its deriva- 
tives, and not j,* itself, are uniquely determined. Note, 
however, that j,* (as well as the true field jJ must 
satisfy a condition of the form 

E(m,j,*) = 0 (34) 

at junctions of grain boundaries, where the sum 
extends over each grain facet at the junction and ma is 
the local normal to the arc of intersection, chosen to 
be directed into the plane of each participating grain 
facet. 

We may write 

s 
a,Av,* dA = - 

s 
O,aj,*fax, d.4 

A A 

= 
s 

ao,jax,j,* d.4 - a(aJj:)fax, d.4 
A I A 

= 
s 

&Jax,j,* dA + 
s 

a,m,j$ dT 
A i- 

= 

s 
!- jaj$ dA + 

A9 s 
uom, j,* dT . (35) 

r 

Here, in the first equality we have used (28) for the * 
field; in the third we have applied the divergence 
theorem to the collection of grain boundary facets A 
(noting that (34) holds at all grain junctions and that, 
by continuity of the potential p of (12) at such junc- 
tions, 0, must be the same for every participating 
facet); in the last equality we have used (30) for 
&./ax, and (32) for en. When equation (35) is substi- 
tuted into the principle of virtual work, equation (33). 
and we make the identifications 

0: = 6vi, i$ = gij, j,* = Sj,, (36) 

and further require that 6Vi be such that &,.. = 0, we 
find that the solution to the coupled creep-diffusion 
problem satisfies the following variational principle: 

6F = 0 to first order in 6vi (37) 

where F is the functional defined by 

F = R(&)dV - 
s s 

Tivi dS 
V ST 

+ 

s 

'jejm dA + 
A29 s 

oom,j, dr (38) 
r 

for all kinematically associated fields Vi, &, jz [i.e., 
satisfying equations (21) and (28) and chosen so that 
ui takes on proper values at points of S where it is 
prescribed and that ikk = 01. 

Conversely, by inverting the procedure of deri- 
vation, it is straightforward to show that the vari- 
ational principle implies the full set of field equations 
that we have given and, also, that F is not only 
stationary but also a global minimum for the true 
field. 

We note that the coupled problem that we have 
described has the feature that the current velocity 
field is fully determined by the current configuration 
of the body, by the current tractions Ti on ST and by 
the current values assigned to u. on r. In other 
words, there are no ‘transient’ effects associated with 
sudden loading of such a body (although the velocity 
field will change in time as the configuration changes, 
for example, by cavity growth). 



4. AXIALLY SYMMETRIC CAVITY GROWTH Thus, forming the functional F of (38) and recalling 
MODEL AND FINITE ELEMENT the definition of L in (1) we obtain the functional 

FORMULATION introduced by Rice in [ 111. 

In Fig. 3 we show a spherical-caps cavity of radius 
a in a circular annulus of grain boundary of outer 
radius h. The adjoining grains are represented by 
right circular cylinders. The remotely acting tensile 
creep strain rate is i,, and the corresponding equival- 
ent tensile stress is urn (i.e., urn = &z”). In general the 
latter will differ from the remotely applied tensile 
stress, gircu. when there is triaxial stressing, and 

u Ilrn = eat + fJ,,m (39) 

where u,,, is the stress acting in the radial direction 
far from the cavitated grain boundary. (When u,,~ is 
non-zero, ullac should replace urn in equations (9) and 
(13) for the rigid-grains model). In order to simulate 
constraint of adjoining material, we take the radial 
velocity to be uniform at r = b, and hence the same as 
in the remote field. Thus the boundary conditions on 
the external surface are 

F n HB 

47ru&a3 = ~ ss 
&l+n)/nR dR dZ 

1 f n o Ro(Z) 

1 
2 

dR 

+” s B 

R’Vz(R’, 0) dR' . (46) 
urn 1 

Here R,(Z) is the (dimensionless) cavity radius at 
height Z, for Z within the cavity height, and zero for 
larger values of Z. The form of this expression for F 
shows that a/L is the parameter which expresses the 
coupling between plastic creep flow and grain bound- 
ary diffusion. 

On z = h: T, = urrm, T, = 0 
On r = b: T, = 0, 11, = --+I!& 

(40) 

and, of course, ‘I’, = T, = 0 on the cavity wall. 
If L&, 0) is the vertical velocity along the grain 

boundary, the axially symmetric version of (28) is 

A numerical solution to the governing equations, 
6F = 0, with F defined by (46), is obtained by means 
of the finite element method. The features of this 
boundary value problem which complicate the finite 
element formulation are: (i) the material incompressi- 
bility and non-linearity and (ii) the diffusional terms 
(the last two integrals in (46)). The method employed 
here, developed by Needleman and Shih [19], utilizes 
constant strain triangles arranged in a quadralateral 
mesh so that the sides of the triangles comprise the 
sides and diagonals of the quadralaterals. The incom- 
pressibility constraint is imposed on the admissible 
velocity fields by direct elimination of nodal degrees 
of freedom and the nonlinear variational equation is 
solved by the Newton-Raphson method. For axisym- 
metric problems, unlike for the plane strain problems 
on which attention was focused in [19], incompressi- 
bility is not satisfied pointwise within each element 
but in some average sense. However. numerical ex- 
periments show that the errors induced by employing 
the method of [19] to satisfy incompressibility ap- 
proximately, rather than exactly, in axisymmetric 
problems is negligible for meshes with the relatively 
small elements that we employ (these errors are 
thought to be of the same order as those introduced 
by the discretization process itself). The finite element 
mesh employed here, for the case b/a = 10.0, is 
depicted in Fig. 4. 

ii (rj) + 2u,(r, 0) = 0 

where j is the radial matter flux, and when this equa- 
tion is integrated subject to j = 0 at r = b (since the 
outer boundary represents, approximately, a half 
spacing between cavities as in Fig. 1) 

2 b 
j=- 

s 

r’u,(r’, 0) dr’ . (42) 
r I 

We assume the power law stress-strain rate relation 
so that R is given by (23). and note that A of equa- 
tions (18) and (23) can be written as a&““. 

It is convenient to write the variational functional, 
F, in dimensionless form and to this end let R = r/a, 
Z = z/a, B = b/a, H = h/a. and define dimensionless 
velocities by 

1/,(R,Z) = u,(r,z)/i,a, I/,(R.Z) = u,(r,z)/i,a. (43) 

Then F is defined for all fields V,, V’ satisfying 
V,(B,Z) = --B/2 and the condition of incompressi- 
bility, 

av,laR + I/,/R + avyaz = 0. VW 
Further, the dimensionless equivalent strain rate i 
( = i/i%) is defined in terms of V,, V’ by 
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The diffusional terms in (46) are evaluated as fol- 
lows; first we define 

f(R) = jRB R’ V,(R’, 0) dR’ (47) 

and note that along Z = 0, V, is given by 

Vz(R,O) = i wi$i(R). (48) 
i=l 

(45) 
Here, w are the nodal values of V’, N is the number 
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Fig. 4. Finite element mesh used for analyzing the problem 
outlined in Fig. 3 with a/h = 0.1. Each quadrilateral is 

composed of four triangles. 

of nodes along the line 2 = 0 and &(R) is the ‘hat’ 
function, 

R - R,_l 

Ri - Ri-z 
Ri_1 < R SZ Ri 

(#Jo= RR”’ -R 
ii1 - Ri 

RiGR<Ri+l (4% 

R -=IR+~ or RBR,+~ 

Employing (48) in (47) enables f(R) to be written as 

f(R) = 5 @‘&R) (50) 
i=l 

where 

s 
B Si(R) = R’~i(R’) dR’, (51) 

R 

The simple form of the ‘hat’ functions permits gi(R) 
to be evaluated analytically. The integral in (46) 
multiplying f10 is simply 

s B 

R I/,(R, 0) dR = 5 B’igi(l) (52) 
1 i=l 

while the integral multiplying (u/L)~ takes the form 

s ,B $f’(R)dR = i i K~jW;N’j (53) 
i=* j=l 

with 

Kij = 
s 

B 1 
- g~R)gj(R) dR ’ 

1R 
(54) 

Since Kij is obviously symmetric (Kij = Kji), only 
the elements of K for which say, j 2 i, need be 

evaluated. These can be written in one of three 
forms: 

Kii = g,2(1)lnRi-I + 
s 

Ri+ls’(R) 
- dR (no sum on i) 

R,-t R 

+ s Ri”gi(Ngi+t(R) dR 

R 
(55) 

Ri-1 

Kij = gi(l)gj(l) In Ri-1 

+ y,jl)J:” ‘GdR (j > i + 1) 
L 1 

Each of the integrals remaining in (55) is evaluated by 
numerical integration; four Gaussian points being 
used in each of the subintervals Ri_1 < R < Ri and 
Ri G R < Ri+l. The finite element method described 
in [19] is then employed to descretize the remaining 
integrals in (46) and to solve the resulting nonlinear 
algebraic equations. 

The results are presented following the discussion 
in the next section on the computation of the rate of 
cavity growth. 

5. DETERMINATION OF THE RATE 
OF CAVITY GROWTH 

The procedures of the last section lead to a deter- 
mination of the velocity field v,, v, everywhere in the 
body and, by (442), the flux j along the boundary is 
determined also. To compute the rate of cavity 
growth we observe that since the material is incom- 
pressible, fi must be equal to the net rate at which 
volume crosses an arbitrary surface surrounding the 
cavity. We can shrink this surface onto the cavity 
itself so that if A, denotes the upper surface of the 
cavity and ni is the normal to A,, directed into the 
adjacent material, 

q = 2naj,, f 2 r (np, + nlvz) dA. (56) 
J.4, 

Here u,, u, are velocities of material points immedi- 
ately adjacent to the cavity wall (because of surface 
diffusion, these are not the same as dr/dt, dz/dt, where 
r,z are coordinates of the cavity wall) and j, is the 
grain boundary flux at the cavity tip, 

2 b 
j, = - 

s 

rv,(r, 0) dr (57) 
a (I 

by (42). Thus, using (4) for L’ in the case when surface 
diffusion is rapid enough to retain the quasi- 
equilibrium cavity shape, 

We digress to discuss the form of these equations in 
the rigid-grains case, for which the entire body of 
Fig. 3 has a uniform upward velocity v,, with v, = 0. 
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In previous treatments of this case the integral in 
equations (56) and (58) was neglected. It has the value 
Ita2v, and hence 

h($)ti = jo/2a + u,/2, 

while, from (57): 

(59) 

Thus 

j, = v,(b* - a*)/a_ 60) 

~(~~ = j0/2a(l - a2/b2) = vzb2/2a2. (611 

In Refs [S, 16,173 the term v, in (59) was deleted, 
resulting in a deletion of the term (i - a2/b2) in the 
version of (61) in terms of j, [S], and an unwanted 
factor of (1 - az/b2) in the version of (61) in terms of 
v, [16,17]. This is the origin of the correction incor- 
porated into (9). Fortunately, its effect is small since 
(1 - a2/b2) differs little from unity over most of the 
growth range of practical interest. 

Other minor differences remain in the final versions 
of the growth rate law, and these have to do with the 
way that different authors treat the surface tension, T, 
(i.e., surface stress. as distinct from surface energ): r,). 
Chuang et al. [S] tacitly assume that 7’, = 0 (as we 
do here also) whereas Raj and Ashby [16] and Raj et 
ai. [17] assume T, = ys. As Herring [20,21] has 
remarked, there is no reason for either of the choices 
of T, to be correct and, in fact, T, may well be nega- 
tive (surface compression) in many cases. The general 
result, when T, exists, is given by replacing the term 
within brackets in the numerator of (9) by 

[o, - (1 - a2/b2)2y, sin $/a 

- (a2/b2)2T, sin $/a] (62) 

and, as noted, urn should be replaced by a,,, when 
triaxial stresses are applied. Some authors give results 
in terms of the average stress 0 acting over the 
unvoided portion of grain boundary, and in that case 
(T, is to be replaced by (1 - a2/b2)if; this form is also 
valid if there is pressure acting inside the cavity [17]. 
(A recent analysis of surface tension effects by Rice 
and Chuang [15] suggests that continuity of p at the 
tip, indeed, the avoidance of Dirac-like singularity in 
p at the tip, can be satisfied only if surface strains are 
developed in such a way as to make T, (and the corre- 
sponding grain bound~y tension, Tb, vanish there). 

Returning to the solution for creeping grains, the 
growth rates that we report are calculated from equa- 
tions (58) and (57), using numerical results for the 
velocity field from the finite-element solution, 

6. NUMERICAL RESULTS FOR 
CAVITY GROWTH RATES 

Numerical solutions of the axisymmetric cavity 
growth model described in Section 4 were carried out 
for ratios of cavity radius to cavity half-spacing, a/b. 
of l/10, l/S, l/3 and 2/3. The height, h, of the cylindri- 
cal region depicted in Fig. 3 was taken large enough 

Table 2. Cavity volumetric growth rates, 9. for a cavity 
radius to cavity half-spacing ratio. a/b, of ljl0 

alL c&z P/&a3 p/J&, 

0.01 1.0 4.02 x lo4 1.00 
0.0316 1.0 1.30 x IO3 1.02 
0.1 1.0 65.1 1.62 
0.316 1.0 20.1 15.8 
1.0 1.0 10.2 2.54 x 102 
3.16 1.0 6.30 4.94 x 103 

10.0 1.0 5.10 1.27 x lo5 
0.01 0.5 - 

0.0316 0.5 6.43 x 104 1.00 
0.1 0.5 2.12 x IO3 1.04 
0.316 0.5 1.20 x 102 1.88 
1.0 0.5 18.8 9.27 
3.16 0.5 7.33 1.14 x lo* 

10.0 0.5 5.23 2.58 x lo3 
0.01 0.0 4.02 x lo6 1.00 
0.0316 0.0 1.27 x lo5 1.00 
0.1 0.0 4.17 x 103 1.04 
0.316 0.0 2.19 x 10’ 1.72 
1.0 0.0 27.3 6.79 
3.14 0.0 8.38 65.9 

10.0 0.0 5.34 1.33 x lo3 

(h = 1Oa for a/b = l/l0 and h = 5a for the remaining 
three values of a/b) to effectively eliminate any depen- 
dence of the solution on h. In all calculations the 
spherical cap tip equilibrium angle, $, was assumed to 
be 70” and the creep stress exponent, n, of the grains 
was taken to be 5. Values of a/L of lo”*. j = -4 to 4, 
were chosen in order to explore the range from essen- 
tially rigid grains behavior to creep flow dominated 
behavior in equal intervals (of 0.5) of logiO(a/L). 

Numerical results for values of e&r,, the ratio of 
the normal stress acting on the grain boundary at the 
void tip to the remotely applied stress, of 0.0, 0.5 and 
1.0 are displayed in Tables 2 to 5, The non- 

Table 3. Cavity volumetric growth rates, 1;: for a cavity 
radius to cavity half-spacing, a/b. of l/5 

OIL cocm P/&a3 wkkc 

0.01 1.0 2.80 x lo5 1.00 
0.0316 1.0 8.86 x lo3 1.00 
0.1 1.0 2.95 x 102 1.06 
0.316 1.0 23.5 2.66 
1.0 1.0 10.3 36.8 
3.16 1.0 6.32 7.15 x 102 

10.0 1.0 5.13 1.84 x IO4 
0.01 0.5 - 
0.0316 0.5 1.15 x 105 1.00 
0.1 0.5 3.66 x lo3 1.01 
0.316 0.5 1.43 x lo2 1.25 
1.0 0.5 19.0 5.23 
3.16 0.5 7.35 64.0 

10.0 0.5 5.24 1.44 x 103 
0.01 0.0 7.00 x lo6 1.00 
0.0316 0.0 - 
0.1 0.0 7.03 x 10’ 1.01 
0.316 0.0 2.61 x 10’ 1.18 
1.0 0.0 27.6 3.95 
3.16 0.0 8.40 38.0 

10.0 0.0 5.34 7.46 x lo2 
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Tabte 4. Cavity volumetric growth rates, l? for a cavity 
radius to cavity half-spacing ratio, a/& of l/3 

0.01 1.0 1.53 x 106 
0.0316 1.0 - 

0.1 1.0 1.54 x 10” 
0.316 t.0 58.6 
1.0 1.0 10.8 
3.16 1.0 6.29 

10.0 1.0 5.03 
OS?f 0.5 - 
0.0316 0.5 2.42 x 10s 
0.1 0.5 7.66 x 103 
0.316 0.5 2.56 x 102 
1.0 0.5 20.2 
3.16 0.5 7.34 

10.0 0.5 5.16 
0.01 0.0 1.38 x 10’ 
0.0316 0.0 - 

0.1 0.0 1.38 x 104 
0.316 0.0 4.54 x 102 
1.0 0.0 29.5 
3.16 0.0 8.40 

10.0 0.0 5.30 

1.00 

G 
1.21 
7.06 

1.30 x lot 
3.29 x lo3 

- 
1.00 
l.oD 
1.06 
2.64 

30.4 
6.75 x 102 

1.00 

1.00 
1.04 
2.14 

19.3 
3.85 x 102 

dimens~onali2ed cavity volumet~c growth rate, 
P/&a3, was calculated from (56) using numerical inte- 
gration. For corn~~i~n purposes the ratios of the 
calculated cavity growth rates, @, to the correspond- 
ing growth rates obtained employing the rigid grains 
model, &o, are also tabulated. Blank entries in Tables 
2 to 5 correspond to cases, not computed, for which 
P/l&, is clearly unity. 

For small values of a/L, how small depending on 
a/b and CT&,, the numerically computed growth 
rates coincide with those given by the rigid grains 
model while for large a/L the numerically computed 
growth rates are approaching an ~yrnptot~~ value 

4.84 

3.87 
D 

.$ 
2 2.90 
; 

0.00 L , I I I L J 
1.00 2.50 4.00 5.50 7.00 8,50 IO.00 

r/a 

Fig. 5. The vertical velocity distribution (half the separ- 
ational velocity of the grains) along the grain boundary for 
ajb = 0.1, a/L = 0.1 and Q/U, = 0.5. The triangles show 
the computed nodal values and the straight line is the dis- 

tribution according to the rigid grains modei. 

FLOW EFFECTS IN GRAIN BOUNDARIES 

appropriate for the purely plastic creep Aow case. At 
fixed a/L, the ratio p@& increases with decreasing 
a/b and with increasing (T&,. For example, taking 
a/L = 0.1, with a/b = l/l0 and uo/5m = 1.0, the cal- 
culated volumetric growth rate is 62% greater than 
given by the rigid grains model while with a/b = J/3, 
a/L = 0.1 and o&r, = 1.0, the computed volumetric 
growth rate is only 1% above the prediction of the 
rigid grain model. With a/L = 0.1 and a/b = l/10, 
increasing 6*,/a, from 0.0 to 1.0, increases P/P& from 
1.04 to 1.62, although, of course, the magnitude of 3 
decreases with increasing oO/rrm. 

The ~han~ment of the computed cavity volu- 
metric growth rates over those given by the rigid 
grains model arises from the plastic deformation of 
the grains which permits matter to be accommodated 
locally near the void tip as illustrated in Fig. 2b. This 
reduces the diffusive path length and, hence, permits a 
more rapid removal of matter from the cavity wall 
than can take place in the rigid grains model. Figs. 5 
to 7, illustrate this accommodation, for increasing 
values of a/L, with a/b = I/IO and a&, = 0.5. Plot- 
ted in these figures is the distribution of the normal 
velocity along the grain bound~y, which is half the 
separational velocity of the grains. Also shown in these 
figures are the ~orres~nding vatues of the normal 
velocity in the rigid grains model. Obviously, in the 
rigid grains model the normal velocity along the grain 
boundary is constant. For a/L less than 0.1, not 
shown here, the computed normal velocity along the 
grain boundary is essentially constant and coincides 
with that given by the rigid grains model. For 
a/L = 0.1, there is significant local accommodation in 
the grains, however most of the cavity growth rate is 
still due to the transIationa1 separation of the grains. 
As illustrated in Figs. 6 and 7 when a/L increases the 
deformation that takes place to accommodate the 

Table 5. Cavity volumetric growth rates, P for a cavity 
radius to cavity half-spacing ratio, a/b? of 2/3. 

ait @o/e, 

0.01 1.0 
0.316 

::t: 0.1 
0.316 1.0 
1.0 1.0 
3.16 1.0 

10.0 1.0 
0.01 OS 
0.0316 0.5 

%16 
0.5 

i:0 
0.5 
0.5 

3.16 0.5 
10.0 0.5 
0.01 

z 0.0316 
0.1 0:o 
0.316 
1.0 :I:: 
3.16 

10.0 8:: 

l&(33 

- 
- 

5.53 x 104 
1.76 x 103 

63.8 
9.81 
7.10 
- 
- 

898 x lo4 
2.85 x 103 

99.3 
11.6 
7.28 
- 
- 

1.24 x 10; 
3.94 x 103 
f.35 x 102 

13.6 
7.48 

jj/ki 

- 
- 

1.00 
1.01 
1.15 
5.61 

1.28 x 102 
- 
- 

I.00 
1.00 
1.11 
4.08 

81.1 
- 
- 
1.00 

:.: 
3:46 
6.02 
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I .46 
0 

%? 
\ 

3 I .09 

>r 

0.73 

0.36 

Fig. 6. The vertical velocity distribution (half the separational velocity of the grains) along the grain 
boundary for a/b = 0.1, a/L = 0.316 and U&J, = 0.5. The triangles show the computed nodal values 

and the straight line is the distribution according to the rigid grains mode). 

matter being transported from the cavity walls cavity volumetric growth rate takes the form 

becomes more localized. Since the rigid body separa- 
tional velocity of the grains is decreasing as (Q/L)-~, 
the enhancement of the cavity growth rate due to this 
accommodation becomes more pronounced. 

“Q 2rc(; - I)[(%) - 11 (63) 
Ecoa 

The numerical results obtained here for the cavity where 
volumetric growth rate can be compared with the 
results of the approximate upper bound analysis of 

1 4L3 Z/n 

Edward and Ashby [lo]. Their upper bound on the p=z b3 
( ) 

0.00 i 
1.00 2.50 4.00 5.50 7.00 0.50 10.00 

r/o 

Fig, 7. The vertical velocity distribution (half the separational velocity of the grains) along the grain 
boundary for a/b = 0.1, a/L = 1.0 and uo/o, = 0.5. The triangles show the computed nodal values. 
Here, the straight line giving the distribution according to the rigid grains model essentially coincides with 

the horizontal axis on the scale of the figure. 
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RIGID GRAINS \ 
MODEL <-’ 

I I \ 

/EDWARD AND ASHBY [IO] 

c...-..-- 

L 

I I _ 

-2.0 -1.0 0.0 I.0 2.0 

lOqp/L1 

Fig. 8. Log-log (base 10) plot of the cavity volumetric 
growth rate versus a/L for a/b = 0.1, and for extreme 
values of the ratio of the classical sintering limit stress to 
applied stress, ao/dm = 0.0 and uO/um = 1.0. For compari- 
son purposes the predictions of the rigid-grains model and 
the upper bound analysis of Edward and Ashby [lo] are 

also shown. 

and in obtaining (63), Edward and Ashby [lo] assume 

Q,, negligible. 

Figure 8 gives a log-log (base 10) plot of the com- 
puted normalized cavity volumetric growth rates 
versus a/L, for a/b = l/l0 and with Q/CT, = 0.0 and 
1.0. The numerical results, plotted from the values in 
Table 2, are extrapolated past a/L = 10.0 in Fig. 8. 
Also plotted in this figure is the right hand side of 
(63). In the power law creep dominated regime the 
upper bound of Edward and Ashby [lo] is about a 
factor of six above the computed cavity growth rate. 
For example at a/L, = 10.0, (63) gives an upper bound 
of 34.3 while the numerical values of @,a3 range 
from 5.34 for a&r, = 0.0 to 5.10 for 6&r, = 1.0. 

In the limit of essentially rigid grains behavior, a/L 
small or P large, (63) gives p/&a3 c (cJ/L)-~, whereas 
the rigid grains model, with which the numerical 
results coincide in this limit, gives 6’/k,a3 - (a/L)-3. 
Thus, for sufficiently small a/L, approximately 
aJL _ 10-2.5 in Fig. 8, (63) also gives an upper 
bound. In this regime the cavity growth rate as given 
by the rigid grains model, presumed valid in this limit, 
is significantly below the upper bound (63). 

For intermediate values of u/L, where the coupling 
between grain boundary diffusion and plastic creep 
flow is significant, the right hand side of (63) falls 

FLOW EFFECTS IN GRAIN BOUNDARIES 

Fig. 9. Contours of constant effective creep strain rate, 
k = &, for a/b = 0.1, a,& = 0.316 and a&, = 0.5. 

between the computed results for a&, = 1.0 and 

oo/e, = 0.0. Hence, (63) is not a true upper bound. 
As mentioned in the Introduction, the analysis of 

Edward and Ashby [lo] is based on the concept, 
introduced by Beere and Speight [9], of the cavity 
being surrounded by a shell of effectively non- 
creeping material. To explore the appropriateness of 
this concept in light of the present numerical solu- 
tions, Figs 9 to 11 exhibit contours of constant effec- 
tive creep strain rate for a/b = l/10, cro/o, = 0.5 and 
a/L = 0.316, 1.0 and 3.16 respectively. In these figures, 
the contours are curves of constant effective creep 
strain rate normalized by the remote effective creep 
strain rate. 

Q. 

Fig. -10. Contours of constant effective creep strain rate, 
E = &. for afb = 0.1, a/L = 1.0 and uO/a, = 0.5. 
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Fig.. 11. Contours of constant effective creep strain rate, 
E = C/ta, for u/b = 0.1, a/L = 3.16 and o,io, = 0.5. 

In Fig. 9. where a/L = 0.316, the maximum effec- 
tive creep strain rate occurs at the cavity along the 

axis of symmetry, and has a value of about E = 1.1. 

Except for this small zone of plastic creep deforma- 
tion, the cavity is surrounded by a diffusionally 

relaxed region, with the grain material outside this 

relaxed region deforming nearly homogenously, with 

the region bounded by k = 1.0 being a plateau on 

which 1.0 5 i < 1.1. For a smaller value of a/L than 

0.316, the contours of E exhibit a similarly shaped, 

but larger, diffusionally relaxed region to that 
depicted in Fig. 9. 

As a/L increases, in Figs. 10 and 11, the diffusion- 

ally relaxed zone moves up from the grain boundary 

and the plateau of effective creep strain rate becomes 

more peaked and propagates toward the cavity tip. 

Note also that the creep deformation zone along the 
cavity boundary near the axis of symmetry is relaxed. 

In Figs. 5511 we have plotted features of the nu- 
merical results for a/b = l/10. Qualitatively similar 

features, although differing in detail, were observed 

for the other values of a/h considered. 

As is evident from the results displayed so far, the 
numerical solution depend in a complex way on the 

parameter a/L. In contrast, the dependence of the 
cavity volumetric growth rate on o,,/olo is surprisingly 
simple; the cavity volumetric growth rates displayed 

in Tables 2 to 5 are linear in u&r,. Of course, such 

linearity must emerge in the rigid grains limit. but 
there is no obvious reason (to us) why a linear re- 
lation should persist into the regime where the plastic 
creep flow effects are significant. As illustrated in 
Fig. 12, where each computed point is marked, the 
linear dependence of the cavity growth rate on uo/crcc 
covers the range from a&, = 0.0 to the sintering 
limit at which $’ vanishes for a/L = 0.316 and 1.0. 

Denoting the value of u&r, at the sintering limit by 

(c,,/c~~)~, the rigid grains approximation gives 

(6&,), = [l - a2/b2] - l. 

Linear extrapolation of the values of v/&a3 in 

Table 2 for a/L = 0.01, 0.0316 and 0.1 all give 
(ao/om), = 1.01, in agreement with (64). However, 
from Fig. 12, (~~/a,), = 1.10 and 1.59 for a/L = 0.316 

and 1.0 respectively. 
Although here we do not pursue, in detail, an inves- 

tigation of the dependence of the sintering limit on 

plastic creep flow, we note that a similar linear extra- 

polation, to that above, carried out for a/L = 3.16 

with (~~/a,) = 4.0 and 4.5 gave positive cavity volu- 

metric growth rates, thereby illustrating that the 
linear dependence of i’/i,a3 exhibited in Tables 2 to 5 

and Fig. 12 is not a general attribute of solutions of 

(46). Indeed, as remarked previously, in the limit of 

a/L large, solutions of (46) approach the pure power 
law creep solutions, for which $‘/&,,a3 is positive and 

independent of a&~,. 
These considerations show that in the presence of 

plastic creep flow the classical sintering limit of equa- 

tion (64) is irrelevant if conditions are such that L is 

comparable to or smaller in size than u. Voids then 
continue to grow even when the applied stress is less 

than the classical limit. 

7. ESTIMATE OF THE TIME TO RUPTURE 

When fracture occurs by intergranular cavitation, 

the time to rupture t,, and the steady-state creep rate, 
at a constant applied stress, i,,, are sometimes found 

240 

r 

Fig. 12. Plot of the computed normalized cavity volu- 
metric growth rate versus CT~/U, for a/b = 0.1, a/L = 0.316 

and a/L = 1.0. 
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experimentally to be related by 
Monkm~-Grant [S] correlation 

kSS t, = constant. 

the well-known 

(65) 

Typically, &J, has a value in the range between 0.05 
and 0.5. 

The numerical results presented in the preceding 
section will be utilized to obtain an estimate of &t, 
under the assumption that the surface diffusion is suf- 
ficiently rapid to maintain the equilibrium spherical- 
caps cavity shape. We emphasize that the validity of 
this assumption, when plastic creep flow effects are 
significant, is an open question. 

Here, we define the rupture time, t,, as the time for 
a cavity to grow from an initial radius, ai, to the 
limiting radius, b, at which there is coalescence. 
Thus, we neglect the ~ntribution to the rupture time 
of the time required to nucleate the cavities, which, 
in practical cases (see Raj and Ashby [16]), can be 
significant. 

Differentiating (4) with respect to time and re- 
arranging terms gives 

(66) 

where, here, =& is properly identified with the re- 
motely imposed strain rate, i,, and the denominator 
on the right hand side of (66) is a function of the 
current values of a/b, aJL and QIC~ (here (r = Ai:/“). 

Rather than directly evaluating the integral in (66), 
it proved convenient to adopt the following numerical 
procedure. The current time derivative of the cavity 
radius, C% is written, from (4), as 

= _ru’, F(i, ;,ao,am) 
4nW) 

Here, C, is identified with i, and the appropriate 
value of F(a/b, aJL, a&J is chosen by interpolating 
between the values given in Tables 2-5. First, for the 
current value of a/b a table analogous to Tables 2-5 is 
constructed. This table is constructed by linear inter- 
polation of either &%,a3 or p/pRRc, whichever has the 
smallest relative change (change in the entry divided 
by the minimum of the entries in the two of 
Tables 2-5 employed in the interpolation). Then for 
those entries for which p/$“C is interpolated, p/&u3 
is calculated by multiplying f$T$‘,, by v&&a3 where 
p,G is determined from (9). For example, if the current 
value of a/b is 0.15, the value of p/&a3 entered in the 
table for a/L = 0.1 and e&r, = 1.0 would be deter- 
mined by linear interpolation of p/p’o between 1.62 
and 1.06, and then multiplying the interpolate value 
(1.34) by the value of i/,,/&u3 calculated, from (9), 
with a/b = 0.15, the value of @,a3 entered in the 
table for a/L = 1.0 and c&r, = 0.0 would be deter- 
mined by linearly interpolating between 27.3 and 27.6. 

The second step consists of linearly interpolating 
between the two values of co/o, to give $‘/&,u3, at the 
current values of u/b and so/am, for a/L = 0.01, 
0.0316---10.0. (For a/L > 10.0, it is assumed that 
the value of p/&a3 at aO/em = 1.0, a/L = 10.0 con- 
stitutes an adequate approximation to the plastic 
creep flow limit.) The third and final step employs 
linear interpolation of log,,(@‘/&,a3), considered as a 
function of log,&/L). Here, this logarithmic 
interpolation is employed, since as exhibited in Fig. 8, 
log&/&,a3) is a rather slowly varying function of 
log~~(~/L) for which linear interpolation can be 
expected to be reasonably accurate. 

The value of d at the current time, t, is then readily 
calculated from (67). The value of cavity radius, a, at 
t + dt is given by [a(t) + ci dt] where dt is chosen so 
that [a(t) + ri dr] is equal to l.Ola. Then, the values of 
a/b, a/L and, from (lo), co are calculated and the 
whole procedure repeated. The calculation initiates at 
a = ai and terminates when a = b. In order to carry 
out the calculation for a/b > Z/3, the appropriate 
value of @&a3 is given by an extrapolation pro- 
cedure analogous to the linear interpolation pro- 
cedure described above. The final result is not par- 
ticularly sensitive to the details of the extrapolation 
scheme employed, since typically, 85% or more of the 
rupture time has elapsed when a/b = 2j3, for the cases 
considered here, 

The final result gives i& as a function of b/L, q/b 
and (ao/a,)i. Results for c&t* as a function of b/L for 
various ratios of initial cavity radius to spacing with 
(ao/am)i = 0.0 and 1.0, are shown in Fig 13. Also 
shown in this figure, for comparison purposes, are the 
predictions of the model of Edward and Ashby ([lo] 
Fig. 9) for this case. 

For small b/L, the cavity growth rate is purely dif- 
fusion controlled and, from (9), with which the nu- 
merical results agree (to within lx), in this limit for 
at/b = l/10, 

b3 
c&r, = 3.03 x 10-2 - 

0 L 
for (a(JCr,)i = 0.0 

\ I 

b 3 0 
(68) 

tt& = 5.02 x 10-z - 
L 

for (a,/a,)t = 1.0 

At the other limit, b/L large, the diffusional contri- 
bution to the cavity growth rate is negligible, ti/&,n3 
is independent of (a,/a,)[ and nearly constant over 
most of the lifetime. Approximating this constant by 
5.2 and carrying out the inte~ation in (66) gives, 

&.t, Z 3.4 (69) 

For intermediate values of ai/b, the values of I&, at 
fixed b/L, depends somewhat on (crO/em)i; for 
example, for b/L = 3.16, ci,t, = 0.38 and 0.52 for 
(co/a& = @O and 1.0, respectively. However, as can 
be seen in Fig. 13, the value of C,tV is a much more 
sensitive function of b/L than of (a,/a,)i, at least for 
the parameter values considered here. 
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---- op’b = 0.10 FROM [IO] 

@ oi/b= 0.20 (rohm), = 0.0 

@ ai/b = 0. IO (cG,/~;D), = 0.0 

0 q/b= 0.05 (~r,/i&,)~ = 0.0 

@ o$b=O.lO Lc~/q,)~ - 1.0 

@ q/b = 0.05 (co/am)i - 1.0 

2.0 

1.6 

0.4 ______ __------ 

4.0 6.0 6.0 10.0 

b/L 

Fig. 13. Plots of the Monkman-Grant product i-t,, where 
& is the remotely imposed strain rate (based on plastic 
dislocation creep only) and t, is the time to coalescence, vs 
b/L for various values of the initial cavity radius to spacing 
ratio ai/b and various ratios of the classical sintering limit 

stress to applied stress (~~/a,)~. 

The model of Edward and Ashby [IO] underesti- 
mates the value of i,t, in the regime where cavity 
growth takes place primarily by power law creep. 
This is consistent with the fact that their upper 
bound, as illustrated in Fig. 8, is about a factor of 6 
greater than the numerical results in this regime. It 
shouid also be noted that the assumption, embodied 
in our calculation of the rupture time, as well as in 
that of Edward and Ashby [lo], that the cavity 
retains its equilibrium spherical-caps shape is particu- 
larly questionnable in this regime. For b/L 2 2 there 
is, as shown in Fig. 13, agreement between the predic- 
tions of the Edward and Ashby [lo] model and the 
present results. For very small b/L, say b/L < 10ml. 

the residual rupture time, due to pure diffusional 
growth, is underestimated by their model. since it 
*‘*w a cavity growth rate that is greater than given 
by (9) in this limit, as discussed in reference to Fig. 8. 

The results in Fig. 13 show that a Monkman-Grant 
correlation cannot be expected from considerations of 
cavity growth alone. Indeed, Miller [26] has recently 
emphasized the different stress dependencies for the 
growth rate of existing cavities, and for the total rup- 
ture time in clFe, attributing the difference to the time 
required for nucleation. However, in cases for which 
all or most of the lifetime to rupture involves cavity 
growth, the results in Fig. 13 suggest that values of 
the Monkman-Grant product in the representative 
range from approximately 0.05 to 0.5 will result for a 
wide range of b/L (from approximately 1 to 4) for 

essentially al1 ratios of initial cavity size to spacing 
and of applied stress to the classical sintering limit. 
Further, the term i,, in Fig. 13 refers to the strain rate 
associated with plastic creep alone. Diffusional contri- 
butions to the overall steady creep rate become 
increasingly more important compared to plastic con- 
tributions at small values of b/L, and this will tend to 
make the actual value of the Monkman-Grant 
product somewhat higher than what we show in 
Fig. 13 for small hjL. 

8. SUMMARY AND CONCLUSIONS 

1. It has been shown that plastic creep flow inter- 
acts with diffusional processes of grain boundary 
cavity growth. The principal effect is that creep de- 
formability of the grains allows matter diffused from 
the cavity walls to be accommodated by local separ- 
ations of the adjoining grains in the vicinity of the 
cavity (Figs. 2b and 5 to 7), thus shortening the effec- 
tive diffusion path length and resulting in greater 
rates of cavity growth than would be the case if either 
grain boundary diffusion or plastic creep flow acted in 
isolation. 

2. A quantitative analysis of the process has been 
based on a variational principle governing combined 
processes of plastic creep flow and grain boundary 
diffusion, employed as the basis of a finite-element 
numerical solution for the growth of a spherical-caps 
cavity of radius a, spaced at center-to-center distance 
2h with neighboring cavities. 

3. The resulting cavity growth rates are found to be 
greatly in excess of those based on the rigid grains 
(Hull-Rimmer) model, Tables 2 to 5 and Fig. 8. when- 
ever the stress and temperature dependent parameter 
L is of a size comparable to or smaller than the cavity 
radius U. 

4. Values of the parameter L are presented in 
Table 1 and suggest. e.g., that at 0.5 T, the coupling 
between plastic creep and diffusion will generally be 
significant at stresses of the order 10e3 p or higher. 
but not at stresses of the order 10e4p or lower. L 
decreases in size with increasing stress and/or tem- 
perature. 

5. The patterns of the Mises equivalent shear strain 
rate distribution presented in Figs. 9 to 11 do not 
support closely the concept of a non-deforming 
spherical zone adjoining the cavity and embedded in 
a cage of plastically deforming material, although 
more complexly shaped zones of effectively non- 
deforming material do result immediately above and 
below the cavity. 

6. In the presence of overall plastic creep flow. cavi- 
ties continue to grow (Fig. 12) even at applied stress 
levels which are somewhat less than the classical sin- 
tering limit. The effect is most pronounced for values 
of a/L of the order unity or larger. 

7. Integration of the cavity growth rate equations 
leads to predictions of rupture times t, based on 
growth alone (i.e., ignoring nucleation), which are 
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such that the Monkman-Grant product &t, varies 
with stress level and temperature, for a given initial 
cavity size ai and half spacing b (Fig. 13). 

8. The analysis is based on the assumption that 
surface diffusion is sufficiently rapid to retain a quasi- 
equilibrium type of spherical-caps cavity shape. The 
range of validity of this assumption will certainly be 
limited, especially in low-L cases for which rapid 
cavity growth is predicted. This is an important topic 
for further study. Also, elastic and transient creep be- 
havior of the grains has been neglected. These are 
expected to be important following alterations of load 
level, although not for long-time sustained loading. 
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