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ABSTRACT: The aim of the paper is to answer the question: which loading parameter
determines the stress and strain fields near a crack tip, and thereby the growth of the
crack, under creep conditions? As candidates for relevant leading parameters, the stress
intensity factor K1, the path-independent integral C*, and the net section stress gpe: have
been proposed in the literature. The answer, which is attempted in this paper, is based on
the time-dependent stress analysis of a stationary crack in Mode I tension, The material
behavior is modeled as elastic-nonlinear. viscous, where the nonlinear term describes
power law creep. At the time 7 = 0, load is applied to the cracked specimen, and in'the
first instant the stress distribution is efastic. Subsequently, creep deformation relaxes the
initial stress concentration at the crack tip, and creep strains develop rapidly near the
crack tip. These processes may be analytically described by self-similar solutions for short
times z.

An important result of the analysis is that small-scale yielding may be defined. In creep
problems, this means that elastic strains dominate almost everywhere except in a small
“creep zone™ which grows around the crack tip. If erack growth ensues while the creep
zone is still small compared with the crack length and the specimen size, the stress inten-
sity factor governs erack growth behavior.

If, however, the calculated creep zone becomes larger. than the specimen size, the -
stresses become finally time-independent and the elastic sirain rates can be neglected. In
this limiting case, the stress field is the same as in the fully-plastic limit of power law
hardening plasticity that has been treated in the literature. The loading parameter that
determines the near tip fiefds uniquely is then the path-independent integral C*.

It should be emphasized that K1 and C* characterize opposite limiting cases. Which
case applies in a given situation can be decided by comparing the creep zone size with the
specimen size and the crack length. Criteria for small-scale yielding are worked out in

~ several alternative forms. Besides several methods of estimating the creep zome size, a
convenient expression for a characteristic time is derived also, which characterizes the
{ransition from small-scale yielding to extensive creep of the whole specimeil.
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Under elevated temperature creep conditions in ductile solids, macro-
scopic cracks grow by local failure of the highly strained material near the
~crack tip due to the initiation and joining of microcavities, sometimes aided
by local corrosion. These processes are often confined to a small fracture pro-
cess zone near the crack tip. The aim of the present paper is to analyze the
stress and strain fields that encompass the process zone and set boundary
conditions on its behavior. In the analysis, the fracture process zone is
assumed to be negligibly small, This kind of analysis is necessary to gain in-
sight into the problem of which macroscopic loading parameter governs
crack growth under creep conditions. As candidates for relevant loading
parameters, the stress intensity factor K [1],? the net section stress gpe (21,
the path independent integral C* [3, 4], and the crack tip opening displace-
ment rate & [5] have been proposed. For a more comprehensive survey of the
recent literature, see Refs 6 through 8. The question of the “right’" loading
parameter is far from being academie; if, from laboratory crack growth tests,
growth rates in large structures are to be predicted, it may be too conserva-
tive to use the stress intensity factor as the correlating parameter. This is
clearly demonstrated in the work of Koterazawa and Mori [9], where the

crack growth rate drops by two orders of magnitude if the specimen size is .

chosen as 20 mm instead of 8 mm, although the nominal stress intensity fac-

tor is kept constant, On the other hand, the use of the net section stress as the

correlating parameter between laboratory tests and large structures can lead
to unconservative predictions in cases where the stress intensity factor should
have been used.

Based on a Dugdale miodel, Riedel [8} and Ewing {10} have worked out
conditions under which the stress intensity factor is the relevant parameter
for creep crack growth. More recently, Riedel [7] has confirmed these results
by the analysis of a stationary shear crack (Mode 111) in an isotropic material
that is capable of elastic and creep deformation everywhere. The key feature
of the analysis is that ‘‘small-scale yielding” conditions may be defined. In
creep problems, small-scale yielding means that elastic strains dominate
almost everywhere in the specimen except in a small “creep zone,” which
grows around the crack tip. The creep zone boundaty has been defined for
stationary cracks as the locus where creep strain and elastic strain are equal.
If crack growth ensues while the creep zone is still sufficiently small com-
pared with the specimen size, the stress intensity factor governs crack
growth,

In the present paper, the stress analysis of a stationary crack under creep

conditions is worked out for tensile loading (Mode 1). Both small-scale

yielding as well as the case where the whole specimen creeps extensively
(“fully yielded case”) are considered. For small-scale yielding, the stress in-

3The italic numbers in brackets refer to the list of references appensod Lo thibs paper.
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aacks 113

, tensity factor K| governs crack growth initiation; whereas the path-indepen-
dlids, macro- ' dent integral C* 3,4 is the relevant loading parameter for the case of exten-
E:rii.:if near the . sive creep. Finally, it is pointed up that, for growing cracks, Ky and C* re-
netimes aided main the loading parameters, which determine the crack growth rate. But
Hracture pro- (I the relation between the crack growth rate and the loading parameter may
to analyze the become complicated, for instance, dependent on the previous histoty of load-
~set boundary ing and crack growth. The stress analysis of growing cracks will be further
ocess zone 15 discussed in two forthcoming papers [11,12]. :

ary to gain in-
neter governs

evant loading Constitutive Equations, In!tial and Bouhdary Conditions

st.ress T et 121, ok The authors will consider here the two-dimensional problems of plane--
- ning displace- stress or plane-strain tension, known also as Mode L. A crack is embedded in
¢ sur:.:ey of J.Ehe .!f a material that may be classified as 2 Maxwell-type elastic-nonlinear-viscous
right’” loading _ } material, where the nonlinear behavior represents power law creep. Creep’

deformation is assumed to be incompressible. The deviatoric strain rate ten-

* k growth tests,
sor, & " is related to the deviatoric stress and stress rate tensors, ¢’ and ¢’ by*

: 00 COTIServa-
meter. This is
(9], where the
secimen size is
is intensity fac-
on stress as the
ctures can lead
y factor should

[T T = r el .
¢=os0 +2B(ro’e {1)

Here, G is the elastic shear modulus. The creep exponent n and the tempera-
ture-dependent factor B are the parameters of the power law creep relation
¢ = Bo", measured in uniaxial tension creep tests. The equivalent tensile

stress o, is given by (see footnote 4)
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If elastic compressiBility is admitted, the traces of stress and strain tensors
are related via the bulk modulus -

. .
tre axtra 3

The material law stated in Eqs 1 to 3 is supplemented by the equilibrium con-
dition.

v-e=0 @D

41n the tensof hotation used throughout this paper, boldface quantities are tensots. A dot be-
tween two tensors indicates summation over one index; a double dot indicates summation over
two indexes. I is the: twa-dinensional unit tensor; that is, 1:1 = 2, ¥ is the three-dimensional
gradient operator, and 7 is the Laplace-operator. A prime indicates the deviant part of a
three-dimensional tensor. Traces are the sum of the three diagonal tensor componetits. ‘
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and by the compatibility relation which, for plane problems, has the form
r 2 V
V-V e )=§Vz(tre)— Ve _ (5)

where ¥; = 0 for plane problems. In the direction of the crack front
{x-axis), we have an additional equation, either e3; = 0 (plane strain), or
o33 = 0 (plane stress}.

The initial condition is that a load is applied suddenly to the cracked
specimen at the time, ¢ = 0. According to the material Jaw stated in Eq 1, the
instantaneous response of the material is elastic. Therefore, at time ¢ = 0,
the elastic stress distribution {13} prevails in the cracked body.

Boundary conditions are prescribed on the traction-free crack faces, n-o
= 0 (m = normal vector on crack face), and at infinity. For small-scale
yielding (short time response), it suffices to regard the crack as being of semi-
infinite extent, with the boundary condition at infinity being the requirement.
of asymptotic approach to the elastic singular field characterized by the
stress intensity factor [13]. :

The problem stated in the preceding Eqs 1 through 5 wilt now alternately
be formulated in terms of the Airy stress function, ¢. It is related to the in-

plane components of the stress tensor by
e=—VvVeé+Ivi (6)

thus automatically fulfifling the equilibrium condition (Eq 4). Inserting the
stress tensor according to Eq 6 into the material faw (Eqgs 1 through 3) and
inserting the resulting strain rate tensor into the compatibitity condition (Eq
5), one arrives at an equation for the Airy stress function, ¢. '

For plane strain, the deviatoric stress component ¢33 " cannot be expressed

in terms of ¢;
tion. Thus, for plane strain we have two coupled equations for ¢ and o33

21 - TV + d33)
—BV [V (V2 —o03") — 2V Vo, i =0 (N
1—2w . 1., o |
(—“375—]’ vig + -'E—<'733 ) + Boy'o," 1=0 (7a)

_where
E = Young’s modulus,
» = Poisson’s ratio, and
. = time derivative.

the plane-strain condition €33 = 0 forms-an additional equa- -
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The equivalent stress o, is given in terms of ¢ and 033" as

o, = —\?” 2V V¢: ¥ V)~ (V2¢) + 3oz )7 ®)

For incompressible material (v — 1/2), Egs 7 and 7a are simplified since 33"

=0, .
For plane stress the governing equation for the Airy stress function has the

form

2 945~ BY-(v 1AV -3V VR =0 O

and the equivalent stress is

— _:E._. . — 24321172 Y.
O, 2 (v ve: vVve—(V ®¥] am

The authors use either a polar coordinate system (r, 6) with 8 = 0 directly
ahead of the crack and the origin at the crack tip, or Cartesian coordinates
(x, y)-with the x-direction parallef to § = 0.

The equations for ¢, (Eqs 7 and 9), together with the expressions for o, are
nonlinear partial differential equations of fifth order with three independent
variables, namely, r, 0, and ¢. Because of the complexity of the equations, no
closed-form solutions can be expected, in general. On the other hand,
numerical methods have particular stability problems with the rapid stress
redistribution near crack tips in strongly nonlinear elasto-viscous materials.
The authors show here, however, that an approximate but rather complete
picture of the stress and strain fields can be achieved by analytical methods.
In the following sections, first the asymptotic behavior near the crack tip is
studied, which is common to the small-scale yielding and the fully yielded
case and to intermediate cases. Then the fully yielded case foliows, which is
relatively simple, and finally the smalil-scale yielding case, which is more
complicated, is treated by means of self-similar solutions. '

The: Asymptotic Field Near the Crack Tip

Near the crack tip (# — 0), the elastic strain rates can be neglected in the
material law, Eq 1, compared with the creep rates. The reason is that the
creep exponent usually is greater than one (n = 4 to 6 is typical), which
makes the creep rates (oco™) much larger than the elastic strain rates (ec@), if
the stress near the crack tip is unbounded. As a consequence, the linear
terms in the partial differential Eqs 7 and 9 can be neglected for r — 0. This .
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leads to exactly the same asymptotic problem which is known from the
analysis of rate-insensitive ‘‘power law” strain-hardening materials.
_Hutchinson [/4] and Rice and Rosengren [15] (referred to as HRR hereafter)
have given the form of the stress and strain singularities

alr, 8, t) = A()a(@)y —1/nt1) . (11)

The creep strain and strain rate has an r~#/*1 singularity. The angular
functions #(6) are given graphically in Refs /4 through 7. Here, we under-
~ stand #(#) normalized as in Ref 17, such that the function, ¢.{(¢), which
belongs to the equivalent stress, is normalized to unity at its maximum value.
The amplitude, A, of the HRR-stress field is a function of the time and of the
applied load. It cannot be specified by analyzing the asymptotic problem
alone. In the deformation theory of power-law hardening plasticity, the
~ amplitude of the HRR-field could be specified by means of the J-integral
[14.15]. Analogously, the amplitude of the HRR-field will be specified in
terms of the C*-integral for the limiting case of extensive creep of the whole
~ specimen (see next section). This case corresponds to steady-state creep, thus
elastic strain rates vanish and the material responds as if it were purely
‘viscous. For small-scale yielding, however, the elastic as well as the creep
strain rates are important. Neither J nor C* are then path-independent, and
approximate methods must be applied to determine the amplitude A(5).

Extensive Cteei» of the Whole Speclmen

The material law stated in Eq 1 has the property that the stresses become
time-independent (¢ — 0) after long times (¢ — ) if the load is kept cons-
tant and geometry changes can be neglected. This latter condition, in par-
ticular, implies that the crack must be effectively stationary.”So, for & = 0,
the constitutive Eqs 1 through 5 take the form of nonlinear elastic materials,
if the strain rate is replaced by strain. The same nonlinear elastic material
law also describes the fully plastic limit for power law hardening materials.
This case has been studied extensively in the literature [/8-22] and the
resulis can immediately be used here by writing strain rate instead of strain,
and the path-independent integral C* [3,4] instead of the J-integral [13]. The
C*-integral can be measured at the loading pins of cracked specimens {3]. Its
relation to the applied Joad has also been calculated numerically, reading C*
instead of J in Refs 18 through 22. On the other hand, C¥* is related to the
amplitude of the near tip singular field [14, 15} by

1An+1)
At — ) = [ & ] (12)

BI,

In plane strain, ‘numerical values of the factor I, range from 3.8 (for n = o)
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t0.6.3 (for n = 1) [17]. Plane-stress values of I,, are 2.87 (for n = 13) and
3.86 (for n = 3) [16].

According to Eq 12, C* is the loading parameter that determines the near-
tip singular field, and thereby the initiation of crack growth, if the whole

specimen creeps extensively.

Small-Scale Yielding

In a previous paper [7] it has been shown that small-scale yielding can be
defined under creep conditions. The small-scale yielding solution is valid as
long as the creep zone is sufficiently small compared with the dimensions of

" the specimen. It may be also called a short-time solution, since it describes

the development of stresses and strains shortly after the load is applied at
t = 0.

The solution of the small-scale yielding problem is now shown to be possi-
ble in terms of self-similar functions. It follows the same lines as in the Mode

" III case [7], and also the nature of the time-dependence of stresses and

strains is the same.
Observe that the stress field o at any point 7, 0 at (short) time ¢ after load
application is a function of the following set of variables and material param-

eters
r, B! t,KI,E,B, v, n

Further, from the form of the differential Eqs, 7 and 9, for ¢, and hence for
the stress field, it is clear that E, B, and ¢ can enter only as the product EBt,
and one notes that (EBz) /&1 has the same physical dimensions as does
stress. Accordingly, from standard considerations of dimensional consis-
tency, the stress field o for small-scale yielding, or short times, has the form

o = (EBt)~ Vo~ DR[(EBt) Y~ Vr/K {2, 0, n, v)

where F is a dimensionless function of its (dimensionless) arguments. In fact,
for plane stress the function F is independent of v, since » appears in neither
the differential Eq 9 nor the boundary conditions. The detailed formulation
of a solution in the above “‘self-similar” form is discussed next, introducing
notations paralleling those of Ref 7. :

Self-Similar Solutions

For plane strain, the self-similar stress function and stress component 33"
that satisfy Eq 7 as well as the initial and boundary conditions have the form

: _ 4
E 1 ((1 EV)KI) B(R, )T~ (13a)

o0 =17" )2
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: E ‘
o33'(r,0,8) =T— p):;; (R, )T~ Vin-1) (13b)

1

The dimensionless time T and radial coordinate R are given by

n—1 E N\ |
T= . (14
5 (1 — V) Bt (14)
r
S $1 i)2 T20=1)
27 FE

The dimensionless shape functions ® and L33 obey the following différential
equations (where the operator ¥ is now understood to act in the dlmensmn- '

less (R, 8) coordinate system)

_NZ( +R'51‘z’)(v2¢ + Iy + V'[v'[(zv‘?@'—l(vzq’.—_ L3

3 3 9 {(n—1)/2 ..
(E(VV@:VV‘?)——Z(VZQJV+ZE33'2) _B=0 (16a)

3t RoE 31— )

1 (1 — 20)V2® + 3L’
2 aR

. 3 3 9 (n—1)/2
+E33'{5(VV‘I’:VV¢’) —-Z(V2¢)2+ZE33'{| =0 {16b)

For plane stress the same form for ¢ as defined by Egs 13&, 14, and 15 may
be assumed, but w_ith 1 — » replaced everywhere by 1. In this case, Eq 9

reduces to

a
22 + R— -
v (2 BR)V ¢ +

. 3 1 . (n—1¥2

v-[v-[(:ﬁvv@—lv%) (E(vvqxz_vv@)—i(vzé)?) B=0
(17

The boundary condition at infinity is the elastic field. In dimensionless form

B(R — o0) = iRm cos3§ ' (18)

e
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(135)

(14)

(15)

¢ differential’
: dimension- -

2P — 233 ")

=0 (16a) -

2
=0 (i6b).

, and 15 may
s case, Eq 9

&—-n-§4——~ R PRI

__tion at the crack tip is relaxed by creep deformation, and the stresses are dis-
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For plane strain, one also has the boundary condition

Ea'R = o) = ——:2,:(1 — )R V2 cos‘g (19)

" Once the shape functions & and L33’ are known by so!vmg the differential

Egs 16 and 17, subject to traction-free crack surface bounda:y condltlons,
stresses and strams can be calculated. The stress fehsor has the form =

(20)

.o'---;

1—

" where the in-plane components of the dimensionless shape function E follow

from ¢

T=-gvéd+Ivid - (21)

" The factor 1 — y must be replaced by unity for plane stress. Further, from

Eq 11 it is known that L must become infinite in the form RVU+tn) a5
R — 0. The elastic strain, e, follows from Eq 20 by Hooke's law. The creep
strain, ¢°f, can also be expressed in terms of I, using Eq 1

gSt = T—l/(n"I)Ecr(R, g) (22)
with
: 3 [“pfBgpr g\ de
E<(R,8) = 2\/}_2}" (22.2) 7 23)

Here, L' = L'(p, 8) is the deviatoric part of L and the integral on p is done

“with @ fixed. The total strain, ¢, is given by the sum ¢ = €°! + €.

A precise graphical presentation of the stress and strain fields would re-

~ quire the numerical solution of the nonlinear partial differential Eqs 16 and
+ 17, which will be attempted in future work, in analogy to the solutions ob-
" tained in Mode HI [7].

Approximate Description of the Small-Scale Yielding S tress and Strain Fields

Presently, no numerical solutions of Eqs 16 and 17 are available, but a
qualitative description of the stress and strain fields is possible. First the
authors note that the time dependence of the stresses and strains (Eqs 20
through 23) is the same as in Mode HI [7]: the initial elastic stress concentra-
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tributed more homogeneously across the specimen, while creep strains
develop preferably in a creep zone which grows around the crack tip.
Using Eqs 11 and 20, one knows the » and ¢ dependence of the near-tip
HRR-field, which can now be specified except for a numerical amplitude fac-
tor o, . (This factor will be calculated approximately in the next subsection,
where the authors show «, = 1.) Thus, the near tip stress and strain fields,
for small-scale yielding, are '

K2 1/tn+1) _
T R

30 nk? mAnkl) g )
€~ 'Z"B(n + l)an" [—-——W(n T I)ZEB} 4 (8)[08(6)]" 1.,,,;"/("4-1) (25)

.. One now knows the asymptotic fields at infinity (linear-elastic field) and near
the crack tip (HRR-field, Eqs 24 and 25). One can now assemble approxi-
mate sofutions by simply extrapolating the asymptotic fields to the locus
r1{@, t), which is defined by the equality of the equivalent stresses of the
-remote elastic and the near tip HRR-field. This definition leads to

with the angular function
cos? g[(l - 2v)2-+.3 sin? g} (nt D/An—1} |
ﬂ@:{ .01 ] @n

This form applies for plane strain; for plane stress, the expression-1 — 2v
must be replaced by unity, and 7,(¢) and «, have their plane stress values.

The creep zone boundary has been defined by equating the equivalent
creep strain e, to the equivalent elastic strain e, [7]. If one uses this defini-
tion and calculates the strains from the assembled stress field described
above, the result for the creéep zone boundary r.. (6, t) has the same func-
tional form as r, except for the angular function F{8):

1 (K \¥(n + 1)2E"Bf /=D
o8, 0 ZW(E)[ e ] o (6) (28)

- - According to Eq 28 the creep zone expands in proportion to 20—V, The
angular functions (8} and F.(6) are shown in Fig. 1. Within the accuracy
of the present method, the creep zone boundary runs into the crack tip. More
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FIG. 1—Polar diagrams of the angular functions F1{0) (dashed lines) and F..(6) (solid lines),

Jfor plane strain (upper haif} and plane siress (lower half). Creep exponent n = 3.5 13

Paisson’s ratio v = 0.3.

accurate methods, however, might lead to a creep zone boundary which hits
the crack faces behind the crack tip.

Approximate Calculation of the Factor o, —The proper way to calculate
the -dimensionless factor «,,, which appears in the results of the preceding
subsection, would be to solve the partial differential Eqs 16 .and 17
numerically; the amplitude of the near tip singular field is then part of the
result. In the present paper, however, the authors estimate the value of «, by
means of the path-integral J {13]. The quantity W = [¢:de, which appears in
the J-integral, is understood as an integral over the deformation history at

-each material point. With this definition of W, the J-integral is, in general,

path-dependent for creep problems. One assumes, however, thatJ is approx-
imately path-independent. The reason why one regards this as a reasonable
approximation is the following: creep straining takes place mainly in the
creep zone. In this region, the HRR-field is a good approximation that
becomes asymptotically exact as r — 0. Further, one finds that it is possible
to eliminate both coordinates {r, §) from Egs 24 and 25, thus showing that
stresses and strains in the HRR-region behave as if there were a unique rela-
tionship «(¢), independent of {r, §) at any instant of time ' :
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= %B(n + 1to'o,m! (29)

The existence of a unique stress-strain relation, however, implies path-

independence of J. For the stress-strain relation stated in Eq 29 the value of

the J-integral has been calculated in Refs /7 and 18 as a function of the am-
plitude of the near tip field ‘

7, = (n + 1)Bel, [A(B)]" ! (30)

In the elastic field, J has the well-known value [13]:
K21 — w?)/E for plane strain
o= [ (31)

K*/E for plane stress

Assuming a}iproximate path-independence of J {that is, J, = J » ), one ob-
tains the amplitude of the singularity

Klz(l — Vz)/E 1/(n+12
Al) = | ——————— 32
@ [ (n + DBt ] 32)
and, with the definition of «, according to Eqs 11 and 24,
m 2y §E (1) :
o, = [n + 171 —» )J 33)
F) I, .

" This form is for plane strain. Numerical values are a3z = 0.912 and a3 =

0.975 for v = 0.3. For plane stress the factor (1 — p2) must be deleted, and
the plane stress value for the integral Iy [16} must be inserted. Numerical
values are @, = 1.015 independent of n, within 1/2 percent accuracy.

It is interesting to note that with this approximate value of or,,, Eq 33, the
near tip fields of ¢ and & for small-scale yielding have the same form as for the
extensive yielding case (Egs 11 and 12), provided that C*, which governs the
amplitude of the latter case, is replaced in all formulas by G/(1 + n)t (here
G = (1 — »2) K2/E for plane strain and K (2/E for plane stress).

Assessment of the accuracy—Unfortunately, the error of the approxima-
tions.in the previous two subsections can be hardly estimated analytically.
Thierefore, one applies the approximate method to Mode I and compares

the results with the numerical results, which are then available [7]. It turns.

out that the approximate method under-estimates the amplitude. of the
HRR-field by 5, 15, and 30 percent for n = 4, 3, and 2, respectively, whereas
it gives the field amplitude exactly for n — o (elastic-perfectly plastic mate-
rial) in Mode III. The practical range of creep exponents isn = 4 to 6 and
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sometimes higher; in this range the approximation is very close to the exact

29

@ Mode I1I result. On the other hand, as-n:— 1 the concept of a growing creep
zone becomes ill-defined, and this may result in the inaccuracy of the ap-

plies path- proximation at low ». Figure 2 shows a compatison between the numerically

he value of o calculated stress and the approximately-calculated stress which'is composed

of the am- of the HRR-field near the crack tip.and the elastic field far from the. crack

tip. With the strains calculated from this stress field, one obtains a creep
sone size which coincides within 20 percent accuracy with the value

(30) : | ~ calculated numerically [7]. i
' In conclusion, the approximate methods work well for Mode 111, and the

authors now proceed assuming their approximate validity for Mode I, too.

Criteria for Small-Scale Yielding versus Extensive Creep of Whole Specimen

@
' From the preceding analysis it is clear that the stress intensity factor K
), one ob- and the integral C* characterize the near tip field (and thereby crack growth
= behavior) in opposite limiting cases as follows: a description by K applies if

the crack grows while the specimen behaves in a predominantly elastic man-
: ner except in a creep zone that is small compared with the specimen size
(32) } (biittie failure); the C*-integral applies if crack growth is accompanied by ex-
tensive creep of the whole specimen (ductile behavior). ‘

As an example, the initiation time for growth of a pre-existing sharp-
tipped crack as a function of the loading parameter is calculated.. One

(33) : 2.0 : : —

and o3 =
leleted, and
. Numerical
uracy.

., BEq .33, the
'm as for the
{governs the
A n) (here
3S).
‘approxima-

R —»

FIG. 2—Stress component Loy versus distance from crack tip, R, for Mode III, normalized as
in Egs 13 to 15 but with 2 G instead of E/(1 — »). Comparison of approximate analytical result
(dashed line) with numerical result (solid line). Analytical curve is given by g3 = RV for R
> 1.59 and Tp; = 0.863 R~ for R < 1.59. Arrows indicate creep zone boundary: mum =
numerical result; an = approximate analytical result. Creep exponent n = 4.
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assumes that the crack starts to grow once a critical equivalent strain, e, is
~ attained at a small structural distance, r., from the crack tip. For plane
-stress 7. is defined directly ahead of the crack (¢ = 0), and for plane strain it
is measured in the direction where 7,(¢) is a maximum, The near tip strains
are given by Eq 25 for small-scale yielding. Inverting Eq 25, one obtains the
crack growth initiation time, t;, as a function of the stress intensity factor

i

n+]

(34)

=g

1 n+1i 2zE%,
E*B(n + 1) | 2na,"t! K2

If extensive creep of the whole specimen precedes crack growth initiation, the
strains are given by inserting Eqs 11 and 12 into Eq 1. Then the initiation
time depends on C*

(35)

Aut1)
1, = ecB—I/(n+l)[.£'L,r,£.]n "

C*

Now some practical guidelines will be discussed as to how one can decide
whether or not small-scale yielding conditions prevail in a given test situa-
tion:

1. A direct approach would be to estimate the creep zone size experimen-
tally, for example, by -observation of a polished specimen surface near the
crack tip. Extensive creep of the whole ligament can be detected by measur-
ing the displacement at the loading pins.

2. The second possibility would be to calculate the creep zone size from Eg
28 and compare it with the specimen size. Since the material parameters B
and n play an important role in Eq 28, this formula is strictly limited to
power law creep.

3. Aformula for the ereep zone size, which will be approximately valid for
- more general creep laws than pure power-law creep, is obtained if the time in
Eq 28 is replaced by any one of the strain components, €. Using Eq 25 with
Eq 28 leads to

1]6 A7, 2 n/nt+ 1) Hn+1)/(n—1)
zeglrs B, b } Fo®)  (36)

rc,(ﬂ, t) = ﬁn(ﬂo)[ (K/E)

with the numerical factor 8,

2n+ 1) An—1})

33/2 o "Hay (ga)genkl(go)

In Egs 35, the strain component e;; is supposed to be measured at a position
(r, 0,) by means of a high-temperature strain gage. The position (r, §,) must
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be within the creep zoné; @, is an arbitrary angle and the result of Eq 36 is in-
dependent of #,. For plane stress, it will be convenient to measure egy directly

"ahead of the crack tip (8, = 0). For plane strain, larger tensile strains can be
_ measured above the crack tip (§, = n/2) with the axis of the strain gage

oriented at an angle 8 = 37/4. Then numerical values for 3, are 83 = 0.212
and 8,3 = 0.238 for plane strain, and 8; = 0.074 and ;3 = 0.067 for plane
stress. Thus, Eqs 36 and 37 provide a rough estimate for the creep zone size
even if the creep exponent n is uncertain, since the result in this form is not
strongly dependent of &, if » is large. ‘ '

4. The creep zone size can also be expressed in terms of crack opening
dispiacement (COD), &, which is sometimes convenient to measure. The
resulting relation depends on the definition of COD: one definition of COD is
to measure the distance between the two crack faces at the point where the
creep zone boundary hits the crack faces behind the crack tip. With the ap-
proximations of the present theoty, this point cannot be determined (see Fig.
1), but the relation between r and &, (COD at the creep zone boundary)
must have the form ‘

Eaczb

2
ro = Bn’[ . } Fo(0) (38)

The factor 8, can only be-estimated by analogy with the Mode I1I case [73.
The result is 8, 'Fo{x/2) = 0.3. The advantage of Eq 38 is that it allows an
estimate of the creep zone size independently of the creep parameters B and
n. So it may be suspected that Eq 38 is approximately valid for more geneial
creep laws than pure power-law creep. A practical drawback of Eq 38 is that

- COD at the creep zone boundary will be hard to measure precisely.

COD can also be defined at the point where the line # = 135 deg
originating from the apex of the crack profile, intersects the crack profile

[23]. This COD value will be denoted by &,. With this definition of COD, one

obtains

_ " é:’. _E_ZZI(nvl) _Eﬁz
ra—ﬁ"[g(K)} (Kl)Fgw (39)

with

1 [n +1 {2,”)1/2 i|2(n+1)/(n*‘l} )

"= 16w Jaa(mio

16 (40),

The angular part, #4(6), of the displacement function is

3n+1(1 af l
v e - + 1y)— _rr — g ‘en*l — 2*r ‘en‘*l
g8 7 . {2 (n+1) 86[(6 aae)a ] Or0, } (41)
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Typical numerical values are for plane strain: 83" = 0.63, 85" = 0.40, and
13" = 0.32; and for plane stress: 83" = 0.127, 85" = 0.116, and 813" =
0.108. _ ' '

5. Finally, the characteristic time for the transition from small-scale yield-
ing to extensive creep of the whole specimen can be estimated analyticalty.
Figure 3 shows the time-dependence of the amplitude A(t), of the near tip
singular stress field. The short-time limit is given by the small-scale yielding
result (Eq 32), and the long-time limit is given by Eq 12. The characteristic
time, ty, for the transition defined in Fig. 3, is

_ K21 = »)/E .
1= T e ek “2

for plane strain; for plane stress, replace 1 —v2byl. $ma.ll-s'cale'yielding
prevails if the time is sufficiently small compared with the characteristic time
t,. In Eq 42, C* is considered as a quantity that is known from a numerical
- analysis of a nonlinear viscous {or, by analogy, small strain nonlinear elastic)
problem {18-22]. For a center-cracked strip, for instance, Goldman and

Hutchinson [18] give

C* TERNIE 43
r—aa.,,e-m (\5) J(b-,n) { ‘)

The erack length is 2a, the strip width is 2b; J is given graphically in Ref I8 as
a function of a/b and of the creep exponent n; 0 .and &, are the remotely

’/Aat-llh\ﬂl

Alt) AL e) —

t

t

1.5
L/ —
the HRR-near tip stress field. A{t). The short-

long times {extensive creep of the whole
characteristic time, t1, is defined by

FIG. 3—Time-dependence of the amplitude of
time (small-scale yielding) is described by Eq 32. After
specimen) the value given in Eq 12 is approached. The
equating long- and short-time solutions. Creep exponent: n = 4.
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applied stress and creep strain rate. With Eq 43 the transition time is given
by

e (V3/2)7~1 Has/b, 1)

= A 44
Eio® 14+n JHasb,n) @

£y

The material parameter B does not appear in Eq 44, but the creep exponent
n has a significant influence. According to Eqs 44 and 28, the creep zone size
at the time ¢, is approximately 1/10 of the half crack length, a.

Discaussion

Apart from the approximations which are involved in the analysis of the
small-scale yielding case, further limitations of the present theory must be
kept in mind.
~ Firstly, the theory has been worked out for a material law which, besides
elastic deformation, allows for pure power-law creep only. However, the
general conclusion, that a creep zone near the crack tip can be defined, will
not be altered if more general creep laws are valid, as long as the creep rate
increases stronger than linearly as a function of the stress. From the form of
Fqs 36 through 42, it is expected that the size of the creep zone can be
estimated even if the creep law is different from a pure power-law relation. In
this connection, the authors remark in passing that the solution presented for
small-scale yielding is also valid for creep laws which include, approximately,
transient effects through a time-hardening expression of the form ¢ = ¢/E +
Bt(t)a", provided that the product B in our solution is everywhere replaced by
[ B(r)dr. :

Secondly, the theory is based on the assumption that the fracture process’
zone is always negligibly small compared with the creep zone and the speci-
men dimensions. In very ductile materials and small specimens, however, the
fracture process zone may spread over the whole cross section of the cracked
specimen. This situation can no longer reasonably be described by power law
creep. The stress and strain distribution in the net section is likely to be more
homogeneous in such a situation than predicted by the present theory. Under
these conditions, the net section stress could be the loading parameter to
determine the lifetime of cracked as well as uncracked specimens.

Thirdly, the theory does not cover the range between small-scale yielding
and extensive creep of the whole specimen. One might expect that an inter-
polation between the two limiting cases is particularly doubtful for a large
plate with a small center-crack under tension. In this case, the creep zone
size at the transition time ¢, is about one-tenth of the half crack length. This
first appears to be far away from extensive creep of the whole plate. However,
if one estimates the strain rates at the transition time by simply adding the
remotely applied creep rate ¢, = Bo,”", to the creep rate obtained for
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small-scale yielding, it turns out that the elastic strain rates are considerably
smaller than the creep rates everywhere except near the creep zone boundary
where they are of equal order of magnitude. The condition for the extensive
- creep limit to be valid is that the creep rates are much larger than the elastic
rates everywhere. This starts being fulfilied at.the transition time. Hence,
there is no big gap between the validity of the small-scale yielding and the ex-
tensive creep case. Of course, if a higher degree of accuracy is required, the
limiting cases are separated--by a period of time where neither of them is ac-
- curate enough.

Finally, the analysis has been confined to statlonary cracks. For growing
cracks, the conclusions concerning the applicability of K and C* are not

singular field immediately at the tip of a growing crack can no longer be the
HRR-field when elastic effects are present [11 ]. As a consequence, the in-
fluence of the loading parameters on the near tip strains becomes more com-
plicated than, for instance, the one given in Eq 25, In addition, the stress and
strain fields become dependent on the prior history of the loading parameter
and of the crack growth. This will be discussed in greater detail in a forth-
coming paper [12].

Cenclusions

An important resuilt of the stress analysis is that a creep zone near the
crack tip can reasonably be defined and calculated. The size in relation to
specimen size and crack length determines which loading parameter governs
crack growth initiation and growth rates. In large cracked specimens or
structures (crack length and specimen size are large compared with the creep
-zone), the stress intensity factor is the loading parameter that correlates
crack growth rates between specimens of different shape. In specimens that
are small compared with the creep zone, but large compared with the frac-
ture process zone, the path-independent integral C* is the relevant loading
parameter. If the ligament width of the specimen becomes comparable with
the size of the fracture process zone (which has been neglected in the present
analysis) the net section stress possibly determines the lifetime of a specimen.
Excessive crack tip blunting will have a similar effect.

Criteria for small-scale yielding have been developed. They are either
based on the comparison of specimen size and creep zone size or on the com-
parison of the test duration with a characteristic time that can be calculated
analytically.
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