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Summary

This paper discusses recent theoretical developments on fracture at

elevated temperature in the presence of overall plastic (dislocation) creep.

Two topics are considered:

1. Stress fields at tips of macroscopic cracks in creeping solids:

Here consideration is given to the transient development of an effectively

steady state of creep in a cracked body, following sudden load application

for which the short-time material response is elastic. At long times

(steady creep state) .the severity of the near-crack-tip deformation rate

field can be characterized in terms of a path-independent integral C* ,

which is a generalization for non-linearly viscous materials of the J integral

for rate-independent materials. Based on recent work by Riedel and Rice,

it is shown that the short time transient field of creep flow has the same

functional form at the crack tip, but that its amplitude parameter C* is

replaced, approximately, by G/(l+n)t , where t is time since load appli-

cation, n is the exponent in a power-law creep relation e « a , and

G is Irwiu's elastic energy release rate (calculated in terms of the stress

intensity K as if the body were elastic). Hence G/(l+n)C* can be

identified as a characteristic time for stress redistribution in attaining

the steady creep state. Macroscopic creep crack growth is discussed in

terms of these concepts and associated analyses.

2. Diffusive growth of microscopic grain boundary cavities in creeping

solids: Previous analyses of this problem are based on an assumption that

grains adjoining the cavitating boundary separate in an effectively rigid

manner. However, important interactions between cavitation, by surface and

grain boundary diffusion, and plastic creep processes are observed to occur

when a state of overall dislocation creep prevails. These arise from two
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.effects. First, even in the absence of matter transport along the grain

boundary (D, very small), the presence of overall creep causes an increase
D

in volume of the cavity and tends to cause a change in shape. The latter

would, generally, tend to decrease rather than increase the cavity radius,

but in the presence of sufficiently rapid surface diffusion the spherical-

caps shape of the cavity is retained and the creep-flow-induced volumetric

opening rate of the cavity causes a continuous enlargement of cavity radius.

Second, when grain boundary diffusion is considered, the deformability of

the adjoining grains means that matter diffusion from the cavity surfaces

can be accommodated by highly localized relative separation velocities

across the grain boundary. Hence the diffusion path length is not set by

cavity spacing (as in the rigid-grain Hull-Rimmer model), but can be much

shorter, resulting in a far more rapid removal of material from the cavity

walls. A precise analysis of the problem has not yet been developed, but

a variational principle governing simultaneous dislocation creep and grain

boundary diffusion has been established, and this should lead to effective

finite-element solution procedures. Also, an approximate model of the pro-

cess suggests that for pure metals in the range of 0.5 to 0.8 Tm , and at
—3 —4

stress levels of 10 u (y * shear modulus) and 10 u , respectively,

the resulting cavity growth rate may exceed predictions of the rigid grain

model by as much as factors of 10 to 100. ,
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Stress fields at tips of macroscopic cracks in creeping solids;

This section is based on recent work of Riedel and Rice [1] on tensile

(Mode I) cracks in elastic-creeping solids and on earlier work by Riedel [2]

on anti-plane (Mode III) shear cracks. The materials considered are assumed

to follow the stress strain relation

c = a/E + Ban (1)

in uniaxial tension. The exponent n is typically in the range 4 to 6,

sometimes higher, for dislocation creep processes.

A body containing a crack is supposed to be loaded in tension. If the

load is applied suddenly, the instantaneous stress field developed in the

material is elastic. The stress concentration at the crack tip causes a

zone of rapid creep straining to develop there, effectively to alleviate

the elastic r stress singularity. The early stages of this process

may be described in analogy to analyses for rate-independent plastic

mater*! .Is. Accordingly, this (short-time) field, in which elastic strains

are much greater than creep strains everywhere except within a small region

at the crack tip, is referred to as "small scale yielding." The near tip

solution in this regime is complicated, but the parameter which governs it

is the (far field) elastic stress intensity factor K .

On the other hand, at long times after load application there is com-

plete redistribution of stresses and subsequent response of the material

under fixed load takes place as if the material were purely viscous,

e - Ban . In such cases, referred to as "extensive yielding," the near

tip stress and creep rs 2 fields have an Intensity characterized by C* ,

where C* is a path-independent integral [3].

In both the "small scale" and "extensive" yielding limits, and for

intermediate cases, the r,8 form of the near tip field is controlled (for

n>l) by the non-linear term in (1). Accordingly, the near-tip fields of

stress and strain rate are of the same form as the fields of stress and

strain in a rate-independent material with e <= cr . Such fields are given

in [4,5], and referred to as "HRR" fields.

For example, in the case of extensive yielding the near tip stress

field (in plane strain or in plane stress) is given by an expression of the

form
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where the f. are diraensionless and appropriately normalized functions

of 6 , dependent also on n .

By dimensional considerations, and by the requirement that the load-

ing be characterized only by K? , the short time, or small scale yielding,

solution has the form

ll-1\ e]a±. - (EBt)-
1/(R-1)g:L.^/K2(EBt)

2/(ll-1\ e] (3)

at time t after load application. Here g.. is dimensionless, dependent
-halso on n and v (Poisson ratio), and g..[p,9] decays as p for large

p . This stress field involves a near tip singularity in the same form as

(2) except that C* is replaced by a factor proportional to K_/Et .

Indeed, Riedel and Rice [1] give an approximate argument showing that, for

small scale yielding,

C* should be replaced by G/(l+n)t (4)

in (2), where G (=(l-v2)K_/E for plane strain) is Irwin's energy release

rate. Their comparisons with exact numerical results [2] for the field

analogous to (.3) in Mode III suggest that the approximation of (4) is accu-

rate to +10% for n*4 .

On the basis of (3) and the stress-strain relationship, it is possible

to define a "creep zone," somewhat arbitrarily, as the region where creep

strains exceed elastic strains, both reduced to equivalent tensile strains.

This zone has a size which increases in proportion to the parameter

K

and small scale yielding conditions may be assumed to prevail whenever the

creep zone is small compared to characteristic lengths of the cracked body

(e.g., crack length, uncracked ligament width). By (4), a transition time

t. between the short-time, small scale yielding and long-time, extensive

yielding cases may be defined by

tx = G/(l+n)C* . (5)

For example, consider a short plane stress crack of length a in a

large body under stress o"̂  , with associated creep strain rate s c r . I

this geometry, G = 7ra2a/E is well known, and we write it as

1

•a ,

G da = (a2/2E)[(7r/2)(/2 a)'1] , (6)
o
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which can be interpreted as the loss of strain energy, o2/2E , on crack

introduction, from an "affected" area consisting of a semi-circle of radius

•/la.. A similar interpretation gives, approximately

c*

Thus the characteristic time t. , for transition from small scale to exten-

sive yielding is, approximately,

h 2n «cr 2nEB a« ' (8>

and is shorter at high stress levels than at low.

Correlation of creep crack growth by K seems appropriate when ad-

vance takes place over a time scale much less than t. , and by C* for a

time scale much greater than t. . The analyses just discussed are for a

stationary crack; it is known [6] that there must be a different type of

singularity at a growing crack tip than that described by (2), or by its

short-time version based on (4). In analogy with growing crack solutions

for rate-independent plastic materials [7], however, it is expected that
0

this different singularity, for which elastic and creep strains are of the

same order, will be important only in a small inner core of the heavily

crept zone near the crack tip, for the more ductile of materials. The point

needs further elaboration.
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Diffusive growth of microscopic grain boundary cavities in creeping

solids;

The well known Hull-Rimmer [8] model for diffusive void growth along

a grain interface is illustrated in fig. 1. First, surface diffusion is

presumed to be rapid enough so that the void retains a quasi-equilibrium

spherical-caps shape (see Chuang et al. [9] for a detailed analysis of

conditions under which this assumption is valid, and solutions to a more

general version of the Hull-Rimmer model in cases for which it is not).

Second, the grains are assumed to be effectively rigid, so that the only

way in which the voids can grow (e.g., by grain boundary diffusion, which

is typically the most rapid matter-transport process) is by diffusion along

the whole grain interface between voids, since the grains must separate

uniformly. This diffusion is driven by the difference between the poten-

tial, per unit volume, -a (a = normal stress) on the interface and
n n

-2y K (K = surface curvature) on the void, which is negative whenever the

net stress on the unvoided portion of interface exceeds the sintering limit
of 2y sinij//a .

s -3
But at applied stresses of the order 10 y (p = shear modulus) at

-4
0.5 T or, for example, 10 u at 0.8 T , plastic creep flow of the

m m

grains is generally rapid enough, according to the data summarized by

Ashby in [10], that the grains can hardly be considered rigid. Besides,

it is known on empirical grounds (Monkman-Grant correlation) that the

product of rupture time t and steady state creep strain rate e is
*• So

not strongly variable over variations of stress and temperature that cause
changes by several powers of 10 in £ . This suggests a strong coupling

ss

between plastic creep flow and creep rupture, even though diffusive pro-

cesses as envisioned in the Hull-Rimmer model seem to be active.

There are two major ways in which plastic creep flow can interact with

diffusive matter transport processes, and the net effect seems typically

to be a significant increase of the void growth rate over what is predicted

for the rigid grains model. The first way is illustrated in fig. 2a where,

for simplicity, it is assumed that there is negligible matter transport

along the grain boundary. Since the grains flow in creep, the material

points immediately adjacent to the void surface take on a distribution of

velocities which tend to make the void increase in volume and, in general

under uniaxial tension and for widely spaced voids (so that plastic flow is

not concentrated in a voided layer adjoining the grain boundary), to make
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the void radius, a, decrease. This change in size and shape is indicated

schematically by the dashed curve in fig. 2a. But. when surface diffusion

is rapid, local matter transport along the void surface retains the spheri-

cal caps shape (dash-dot-dash curve in fig. 2a) so that the net effect is

to increase the void radius. Hence, if V is the rate of void volume
— — — — — cr

enlargment due to creep flow on the adjoining grains, the contribution to

the growth rate is

... , ™ a3h(ip)| = V , or h(<|>)a = V /4ira2 . (9)
at ! J _| cr cr

Here the bracketed term is the void volume; h(90°) = 1 , h(70°) = 0.61

(70° is a typical angle ty for metals). V may be evaluated from

classical creeping flow solutions for widely spaced spherical voids in a

linear viscous material under uniaxial tension; it is not very different for

a penny shaped crack, suggesting only a mild dependence on ty . The result

is

h(<|>)a = -A_ * a . (10)

For comparison, the rigid-grains model predicts a result which, for

, reduces to approximately [8,9]

Via - 2Y sin*/a) D & a
hC*)a « a , where V = -£=2- (11)

2 K 1

and the notation is standard. In fact the ratio a from (10) to that from

(11) is typically of the order a

ature dependent length defined by

3 3
(11) is typically of the order a /L where L is a stress level and temper-

JJ (12)
This length will appear subsequently and some numerical values will be given.

The second process by which plastic creep flow interacts with diffusion

is illustrated in fig. 2b. Now matter transport along the grain boundary,

with matter deposition on the adjoining grains, is considered. One the left

is shown the void at one instant and two straight lines have been inscribed

on the grains parallel to the grain boundary. On the right the void and

inscribed lines are shown after some amount of growth. Obviously, in the

rigid grain model the lines remain straight and matter must be transported
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along the entire grain boundary. But, as remarked first by Beere and

Speight [11], with plastic creep flow of the grains the matter can be

accommodated locally, resulting in the strongly non-uniform motion of the

inscribed lines as shown. This means that the diffusive path length can be

much shorter than in the rigid-grains model, depending on how deformable

the grains actually are, and this is expected to result in a more rapid

removal of matter from the cavity walls (i.e., higher a ) than for the

rigid grains model.

The process has not yet been modelled in a convincing way. Beere

and Speight [11] assume that the grains separate in an effectively rigid

way under low stress in some shell of material adjoining the void, with

plastic creep flow taking place outside of this shell. However, the pic-

ture of the inscribed lines in fig. 2b suggests, instead, severe creep dis-

tortions near the cavity boundary. Such problems of combined plastic creep

flow and diffusion are amenable to finite element analysis, and are being

studied currently [12].

The finite element method is formulated according to a variational

principle which leads to the system of equations shown in fig. 3. Here an

axisymmetric problem of a spherical caps void of radius r~a , in a cylinder

or radius r=b (a void half-spacing) is shown. The principle is written

in dimensionless form with R=r/a , B=b/a , H=h/a , Z=z/a , V. = v./e a ,
i i <*>

and is 6F=Q (F=tnin.) where F is the following functional of dimensionless
velocities V. and associated dimensionless strain rates E.. = e../e :

i ii ii °°

•H fB

n
1+n

R d R d Z

fB- L Z=H
RdR

•©•

2y sinij)

aa 'Z=0
dR , (13)

where it is understood that (V) _•-•=• B
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The first two terms of (13) are those which appear in a classical variational

principle for creeping solids; the last two refer to g.b. (grain boundary)

diffusion. When L >> a and b , only the last three terms differ sen-

sibly from zero in the solution field (i.e., the behavior is rigid in this

limit) and the classical Hull-Rimmer result, summarized in (11), is recovered.

On the other hand, when L « a , only the first two terms can differ sen-

sibly from zero, grain boundary diffusion is unimportant, and the prediction

of the growth rate reduces to that of (9), or of (10) for a linearly viscous

material. At intermediate values of L , e.g., a/L of order unity, the

coupling between g.b. diffusion and plastic creep flow is important.

To estimate L one may write

kT

and, following Ashby [10] for dislocation creep,

where, in the last expression A is a constant, y the shear modulus,

the dislocation slip step and D , Q refer to bulk diffusion. According-

ly, with some rearrangement one may write

t? = ~ T ^ e X p | - ^ | (14)

L 3 (Po/e)1/3 = L exp
_3

(16)
o

where T is the melting temperature. Using data for all material

parameter's in (14,15) from the Ashby tabulation [10], values of n , K , and

L are shown for several metals in Table 1. Also shown are values of L

° -3
at stress level of 10 y at 0.5 T and 0.8 T . A tenfold decrease in

_4 m m

stress, to 10 y would increase the values of L shown by about a factor

of 20.

What emerges, then, is that a .typically growing through a range of

from 1 to 10 pm , will generally be of a size comparable to L at stress
-3 -4levels of order 10 u at 0.5 T and 10 y at 0.8 T . In such casesm m

coupling between creep flow and g.b. diffusion must be considered. At

significantly lower stress levels, L is much larger than a and b ,

and rigid grains behavior applies, eq. (11). At significantly higher stress

levels, L is much smaller than a , and growth is described by eq. (9)
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3
which, it may be recalled, predicts a result of order (a/L) times that

of eq. (11).

A highly approximate model in which the continuum of fig. 3 has been

replaced by a "shear plate" has been studied by the writer in unpublished

work. The variational functional F analogous to (13), but now reduced

to a one-dimensional functional, has been minimized on the class of grain

boundary velocity fields

M « - - -»(¥)
(i.e., H and n chosen to minimize F ), where na is the decay dis-

tance and the outer radius b is taken as infinite.

Some results of this very approximate analysis are quoted here, in

lieu of accurate finite-element results, unavailable at present. Consider

the case where a is large compared to the sintering level, 2y siniji/a ,

and take n=5 . In this case the predicted growth rate, a , in presence

of simultaneous creep and g.b. diffusion, is about equal to that predicted

by the rigid grains model (with h/a = 10.) when a/L « 0.03 . The growth

rate is 3 times higher than the rigid grains prediction when a/L « 0.3 ,

20 times when a/L « 1 , .70 times when a/L « 3 , and 500 times for

a/L ss 10 . Thus, whenever a/L exceeds, say 0.1, the rigid grains model

must be considered too conservative. When a/L is larger than about 10,

eqs. (9) or (10). can be used with reasonable accuracy. As is seen from

Table 1, the intermediate range, 0.1 <; a/L < 10 , will be encountered in

many practical cases.

Additional Note; A related study by Edward and Ashby ["Intergranular Fracture

during Power Law Creep," Acta Met, in press] comes to similar conclusions on

the importance of plastic creep flow on diffusive cavitation.
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Figure Captions

Fig. 1 Hull-Rimmer model for grain boundary cavitation by surface
and grain-boundary diffusion. The adjoining grains are assumed
to separate as rigid bodies in this model.

Fig. 2 (a) Cavity growth by combination of plastic creep flow (which,
if considered alone, generally tends to decrease cavity radius,
dashed curve) and rapid surface diffusion.

(b) Local accommodation of matter diffused into grain boundary,
by deformation of grains. Note that the inscribed (dashed) lines
do not remain straight, as assumed in the rigid-grains model, and
thus the diffusion path length necessary to accommodate a given
amount of matter is shorter.

Fig. 3 Summary of field equations and boundary conditions for axi-
symmetric problem of combined plastic creep flow and grain boun-
dary diffusion. Outer radius b of cylinder represents half-
spacing between adjacent voids.
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Table 1

K T /T
Values of L = (Pa/e) 1 / 3 = LQe

 m

103a

L (ym) L (urn)

e
ro

Material

Ag

Cu

Ni

Al

YFe

Zn

aFe

Mo

n

5.3

4.8

4.6

4.4

5.75

6.1

6.9

4.3

K

3.08

3.05

3.92

2.57

2.44

1.79

2.20

1.70

Lo(vm)

2.87 x 10"2

1.09 x 10"2

.511 x 10~2

.762 x 10"2

.955 x 10"2

2.02 x 10"2

.213 x 10"2

.396 x 10"2

at 0.5 T
m

13.6

4.85

13.0

1.30

1.26

.724

.174

1.18

at 0.8 T
m

1.35

.493

.686

.189

.202

.189

.0332

.330

values are for a = 10 y ; would
be approximately 20 times larger for

a = 10~4}i , if n=5 .
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