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Abstract 

Results on the mechanics of quasi-static crack growth are reviewed. These 
include recent studies on the geometry and stability of crack paths in 
elastic-brittle solids, and on the thermodynamics of Griffith cracking, 
including environmental effects. The relation of crack growth criteria to 
non-elastic rheological models is considered and paradoxes with energy balance 
approaches, based on singular crack models, are discussed for visco-elastic, 
diffuso-elastic, and elastic-plastic materials. Also, recent approaches to 
prediction of stable crack growth in ductile, elastic-plastic solids are 
discussed. 

1. INTRODUcrION 

This is a review of studies, for the most part 

recent, on the mechanics of quasi-static crack 

growth. The following topics are considered: 

(i) Elasticity analysis of slightly curved or 

kinked cracks and the condition for stability of a 

straight crack path under Mode I (tensile) 

loading, 

(ii) Irreversible thermodynamics formulation of 

conditions for Griffith crack growth or healing in 

elastic-brittl~ solids, including consideration of 

reactive environments which adsorb on the fracture 

surfaces, 

(i i i) Relation of crack growth criteria to 

non-elastic rheological properties of the 

crack-containing body, and examination of 

paradoxes with energy balance approaches for 

sharp, structureless crack tip models in 

visco-elastic, diffuso-elastic and elastic-plastic 

solids, and 

(iv) Formulation of criteria for ductile crack 

growth in elastic-plastic solids based on J 

integral methods and on asymptotic, incremental 

plasticity analysis of singular fields for growing 

cracks. 

There is no attempt at setting a unified theme. 

Rather, the paper examines some topics which have 

been of interest to the writer in recent work. 

For preliminaries, the following results from 

linear elastic fracture mechanics are useful. 

There is a characteristic inverse square root 

stress singularity at a crack tip so that if rand 

o are local polar coordinates at the tip, 

III 
O'ij-~ KJ rij (O)/V'2-iTr as r - 0 , (I) 

where the modes I, II and III refer respectively 

to tensile, in-plane shear, and anti-plane shear 

stress acting on the prolongation of the crack 
J 

W= 0); the functions fij{O) are universal 

functions that are normalized so that if indices 

ij correspond to the primary stress component of 



mode J on ()= 0, then fJ.(O) = 1, and the K's are 
1J 

the elastic stress intensity factors. The elastic 

strain energy release rate G is defined, for 

example,under plane conditions and quasi-static 

growth of the crack in its own plane by distance 

8a, by 

(8W) displ. = - G 8a (2) 

to the first order in 8a, where W is the strain 

energy per unit thickness and the variation is 

taken at fixed displacements of load points (for 

mixed load and displacement boundary conditions an 

equivalent definition of G is given by replacing W 

wi th the total potential energy, equal to W plus 

the potential energy of the prescribed loads, and 

taking the variation at fixed boundary values). G 

is a positive definite quadratic function of the 

stress intensity factors and, in the case of an 

isotropic material under plane strain conditions, 

G (3) 

where v is the Poisson ratio and ~ the shear 

modulus. 

2. GEa-tETRY AND STABILITY OF CRACK GRClVW PATH IN 

ELASTIC-BRITTLE SOLIDS 

Solutions for 2-dimensional elasticity problems 

for slightly curved or kinked cracks in unbounded 

bodies have been given by Banichuck [1] and 

Goldstein and Salganik [2,3], by developing a 

first-order perturbation solution in terms of .the 

deviation of the crack from a straight cut. A 

recent re-examination of the problem by Cotterell 

and Rice [4] leads to a remarkably simple form for 

the stress intensity factors when the x and y axes 

are oriented parallel and perpendicular to the 

crack at its tip, as shown .in fig. 1, and the 

loads are given as a distribution of tractions Tx 
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and T • 
Y 

Then, where TJ = TJ (r). measures the 

deviation of the crack from a straight line, it is 

found that [4] 

l::,\ ~ = ;L 
L t('l~ f J~r dr 
o Tx(r) (4) 

+ g ; t('l~ [~LL '('l] j. r dr 
L2 r2 L-r 

o Ty(r) 

to first order in TJ. The first integral is a 

well-known result for a straight crack. The 

second represents the effect of non-straightness, 

and it is interesting to note that to first order, 

only loadings in the shear direction (i.e., Tx) 

contribute to the tensile mode and conversely. 

/Ty jY 
rl~:#~(r)~_ .. x 

T I_ r ~ 
.. L "'1 

Fig. 1. Slightly curved or kinked two-dimensional 
crack. Coordinates are oriented so that x-axis is 
tangent to the crack at its tip; T and T are the 
surface tractions. x y 

Cotterell and Rice [4] have used this result to 

derive the condition for stability of the straight 

path of crack growth for an initially straight 

crack loaded, nominally, in tension as in fig. 2a. 

It is supposed, however, that in addition to the 

primary stress intenSity factor kI at the tip, 

there is a small mode II intenSity kII which 

arises from some small imperfection of the loading 

device. The stress field on the x-axis directly 

ahead of the crack is indicated in fig. 2a, and it 

is to be noted that in addition to the 

inverse-square-root singular terms, there is a 

non-vanishing contribution to 0xx at the tip, 

namely T, which represents a uniform tension 

acting parallel to the crack. 



Fig. 2b shows the notation y(x) employed to 

describe a non-planar extension of the crack over 

distance a ahead of the tip and, when the forgoing 

perturbation solution is used, one finds that the 

mode II stress intensity factor at the tip is [4] 

a 

k + 1:. y' (a)k -"' fiT Jy' (x) dx 
II 2 I Vw ,~ o va-x (5) 

where y' (x) = dy/dx and, as appropriate for small 

extensions, the 0(Vx) terms in the original crack 

tip field displayed in fig. 2a have been 

neglected. Now, for continued growth of a crack 

along a smooth arc (of large curvature compared to 

the size of the fracture decohesion zone) in an 

isotropic, brittle solid, it may be argued [1-4] 

that the path selected is that for which KII = 0 

throughout the growth process. 

1 on y = o. x> 0: r CTyy = kI 1..j2'7TX + 0 (.,jX ) 
=====' -----.:...! CTxx = kI 1..j2'7TX + T + 0 (.,jX) 

CTxy ' kn/.j21TX + 0(..jX) 

t Iknl« kl 

(0) 

(b) 

Ie) 

Fig. 2. Stability of the straight path of crack 
growth under mode I (tensile) loading. (a) Stress 
field near tip of crack loaded in tension; 
imperfection of loading system results in small 
mode II stress intensity. (b) Notation for 
describing extension of crack. (c) Crack path is 
unstable if T > 0, based on growth condition that 
KII = 0 at advancing crack tip. 
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The condition KII = 0 converts the ahove 

expresssion to an integral equation for the path, 

and the solution is [4] 

where 8
0 

= -2k II/k I is the initial angle of 

crack growth and arises from the imperfection of 

the loading system. As illustrated in fig. 2c, 

the character of the solution is determined 

entirely by the sign of T. When T > 0 the crack 

tangent veers away from the original crack plane, 

with exponential growth at large x (erfc - 2 in 

that limit), and the straight crack path is 

unstable. When T < 0 the crack tangent gradually 

returns towards that for the initial crack, and 

the straight path is stable. 

The derived stability criterion is in excellent 

agreement with experiment. For example, Radon et 

al. [5] observed crack paths in centrally 

precracked PMMA sheets loaded biaxially with 

tension a perpendicular to the crack and Ra 

parallel to it. In this case T = (R-I)a and, 

indeed, in all their tests with R < I (i.e., T > 
0) the path veers outward from the initial crack 

plane, with the severity of the deviation 

increasing markedly with the excess of Rover 

unity. 

3. THERMODYNAMICS OF THE QUASI-STATIC 

GRCMrn OF GRIFFITH CRACKS 

In this section crack growth in highly brittle 

solids is considered. Further, the term "Griffith 

crack" is here used in the restricted sense of 

denoting a crack which separates an otherwise 

elastic material by direct decohesion of atomic 

bonds, leaving no trace of permanent deformation, 

e.g., dislocations, away from the crack plane. 

There is observational evidence that such 

conditions of crack growth exist in certain 

ceramic solids [6]. Also, there may be wider 

classes of materials in which conditions 



immediately at the crack tip are of this type [7], 

i.e., no dislocation nucleation from the tip, 

despite the motion of existing dislocations in the 

concentrated crack tip stress field [8]. Here a 

thermodynamic formulation is given, following Rice 

[9], for the quasi-static growth of Griffith 

cracks, in a context that is wide enough to 

include thermally activated growth with lattice 

trapping [10-12] and environmentally influenced 

growth, e.g., in glasses and ceramics [13,14] in 

the presence of H20. 

Indeed, the Griffith criterion for crack growth is 

usually regarded as a thermodynamical criterion. 

Yet the typical presentation deduces the criterion 

as one of an equilibrium crack size (a condition 

of stationary free energy) and makes no reference 

to the second law of thermodynamics as a principle 

governing irreversible processes, although 

fracture, as typically ~ncountered, is essentially 

irreversible. With reference to fig. 3, we 

consider for simplicity unit thickness of a 

cracked body in plane strain. Suppose that the 

body is in contact with surroundings at 

temperature To (represented by the heat 

reservoir), and further suppose that crack growth, 

or healing, proceeds slowly enough that inertial 

effects may be neglected and that the body is at 

an essentially uniform temperature, except perhaps 

for some microscopic-sized region adjoini~g the 

crack tip. (These considerations may seem unduly 

restrictive but it will be shown in the next 

section that serious paradoxes arise when one 

attempts to generalize the energy balance, or 

thermodynamic, approach for a mathematically sharp 

crack which grows in a solid with non-elastic 

rheology, or even in an elastic solid for which 

the time scale of deformation involves significant 

coupling with diffusive fields or with heat flow 

fields as in coupled thermoelasticity) • 

First we neglect chemical interactions with the 

surroundings. Under the conditions considered, the 

first and second principles of thermodynamics 

require that 
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. 
p~ + Q = U 

(7) 

A= S - Q/To ~ 0 

where U is internal energy, S the entropy, A the 

entropy production rate, Q the heat transferred, P 

the load, all per unit thickness, and ~ the 

work-conjugate displacement. Note that in the 

given circumstances, U and S are functions only of 

~, a (crack length), and T (=To). Eliminating 

heat flow in the usual way leads to 

(8) 

is the Helmholtz free energy. Adopting Griffith's 

[15] procedure for computing ~, we write 

"- -"- + "- = W(~ a) +2ya 
~-~elastic ~surface ' (9) 

where W(~,a) is the strain energy (at temperature 

To) as calculated from continuum elasticity, and y 

is the surface free energy, Le., 2Y is the work 

of reversible, isothermal separation of atomic 

bonds over unit area. The expression for ~ is 

motivated [9] by recalling that ~may be equated 

to the "reversible work" of attaining the current 

configuration of the body from some reference 

configuration. 

p 

Q 

Fig. 3. Griffith crack in body at temperature To; 

for discussion of thermodynamic restrictions on 

crack growth. 



When it is realized that aw(.1, a) 18.1 = P, and the 

definition of Irwin's energy release rate, eg. (2) 
or 

G = _ aW{.1,a) 
oa (10) 

is introduced, the foregoing expression for the 

entropy production rate becomes 

. 
ToA: {G - 2y)a ~ 0 " (ll) 

This inequality is the proper expression of the 

consequence of the principles of thermodynamics , 

for Griffith crack growth. 

By contrast, the classical Griffith criterion 

[15], namely G = 2Y, corresponds to growth without 

entropy production, i.e., to fully reversible 

crack growth, and such may not be possible in real 

solids, even those in which cracks meet the 

definition of "Griffith cracks" adopted here. 

Before proceeding to discussion of the inequality 

(G - 2Y) a ~ 0, it is "pertinent, especially to the 

discussion of the next section, to note that the 

Griffith criterion (G = 2Y) is fully consistent 

with a more elaborate cohesive-zone fracture 

model, illustrated in fig. 4, in which surfaces 

are supposed to separate gradually at the crack 

tip. In this separation, th~ restraining stress a 

is a function of opening displacement ~ which, as 

shown, falls off to zero at a sufficiently great 

~(=~c). This consistency was first shown by 

Willis [16] through direct calculations based on 

linear elasticity, and in a "small strain" 

non-linear elastic c~ntex-t by Rice [17], later 

generalized by Eshelby [18] to include geometrical 

non-linearities also. Specifically, following 

Rice [17], the integral 

(12) 

(here q, is the strain energy density, Q the 

stress, ~ the displacement, and ds an element of 

arc length) is path-independent for all contours 
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Fig. 4. Cohesive zone model for elastic-brittle 
fracture. Path r for evaluation of J integral may 
be shrunk to boundary of cohesive zone, showing 
equivalence of cohesive zone model and Griffith 
criterion when w is small compared to overall 
geometric dimensions. 

of the type r shown in homogeneous elastic 

materials. By taking the contour along the crack 

tip cohesive zone, Rice showed that the value of J 

when bonds at the crack tip are just pulled out of 

range of one another is 

J = 
~c f a{~)d~ -= 2y" 

o 
(l3) 

But it is known also that J = G for a math­

ematically sharp crack- [19], i.e., with no 

cohesive zone. When the cohesive zone is 

present, 

J = G + O{w/a) (14) 

\\here w is the size of the zone. Hence the crack 

growth condition for this cohesive zone model is 

that G = 2Y, in agreement with the Griffith 

criterion, in typical circumstances for which w« 
a. 

However, when models for crack growth in idealized 

crystal lattices (with non-linear force-distance 

relations between atoms, falling to zero force at 

large distance) are considered [10-12], it is 
+ found that the value of G (say G ) to grow a crack 

differs finitely from that (say G-) for crack 

healing, and neither coincides with 2Y. This is 

the phenomena of "lattice trapping." 

Nevertheless, for cracks of macroscopic si ze the 

principles of thermodynamics must be respected and 

thus (II) requires that 



(15) 

i.e., that the reversible work of separation fall 

within the trapping range for G. The validity of 

this result was put into doubt by Esterling's [11] 

results for crack growth in crystal lattices: he 

concluded that in general the Griffith value of 

G(=2Y) did not fall within the trapping range. If 

such were so it would be a contradiction of 

thermodynamics, and close examination of 

Esterling's work [20] suggests that he arrived at 

this conclusion by comparing his lattice 

calculations of G+ and G- with the form of the 

Griffith criterion for an isotropic elastic 

continuum rather than for that which is the 

continuum limit of his lattice model. The effect 

is to increase all his reported values of the 

Griffith load by \f:2, bringing it into the trapping 

range except for a few cases which seem to be due 

to certain approximations in treatment of the 

non-linear force laws in his analysis, as remarked 

by Fuller and Thomson [12]. 

Evidently, the effect of lattice trapping is to 

give as a criterion of crack growth 

+ -G=G =2y where 2y = 2"'( + ToA ~ 2y. (16) 

That is, the effective fracture energy 2Y includes 

2y plus the dissipation resulting from entropy 

production. Of course, in microscopic terms the 

entropy production corresponds to energy 

dissipation in phonon vibration waves, which are 

inevitably generated as the crack proceeds through 

the discrete atomic structure of a solid. 

The concept of lattice trapping in the sense of a 

vanishing a for G- < G < G+ applies strictly at 

OOK, leading to a growth rate versus G relation as 

in fig. Sa. However, at finite temperature, 

quasi-static crack growth (or healing) becomes 

possible by thermal activation processes [13,14], 

and the crack growth rate relation has the form 

(17) 
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r G- t 
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(0) 
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(b) 

----+1~· d~2IYO _. G 

~ reduction by odsorption 
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-+--t-0 --7f-1 ~I~_" G Py 2>-;, 
(d) 

(e) 

Fig. 5. Thermodynamically admissible kinetic 
relations, a = a(G), for Griffith crack growth. 
(a) Lattice trapping; 2Y must lie in trapping 
range. (b) Thermally activated growth with 
lattice trapping. (c) Effect of reduction of Y by 
adsorption from environment. (d) Case of 
environment limited kinetically from access to 
separating crack tip bonds. (e) Case of 
kinetically-limited access but sufficiently strong 
adsorption so that 2Y is negative; crack healing 
is impossible. 

Fuller and Thomson [12] leave as an open question 

that of whether the G value corresponding to a = 0 

necessarily coincides with 2Y in general, although 

they note that it does for simple models that they 

analyze. However, if the thermodynamic 

requirement (11) is not be to violated it is seen 

that quite generally the G value for a = 0 must 

equal 2Y, and this is illustrated by the schema! ic 

form of the a vs. G relation in fig. 5b. 



Fig. 6a shows data of Wiederhorn, quoted by 

Wachtman [13], on crack growth in glass under high 

vacuum at several temperatures, and this may be an 

example of thermally activated growth against 

trapping barriers. 

3.1 SURFACE CHEMICAL EFFECTS 

The statement of thermodynamic restrictions on 

growth has been extended [9] to the case of a 

chemically reactive environment which adsorbs on 

the surfaces of the crack. The formulation begins 

by assuming that the adsorbing species is present 

in a fluid phase contained in a rigid chamber 

which surrounds the cracked body and heat source 

of fig. 3, and which is fitted with a piston to 

maintain a uniform pressure p. In the manner of 

Gibbs [21], an adsorbed mass f=f (p,T) per unit 

area of crack surface is defined by first 

defining the volume of the uniform fluid phase as 

the difference between the volume of the container 

and that of a loaded elastic solid of crack length 

a. The mass of this uniform fluid phase is 

defined to be p times its volume, where p = p (p,T) 

is the mass density of homogeneous fluid, and the 

excess fluid mass, not accountable for in this 

way, is written as f times the total area over 

which surface adsorption occurs, thus defining f. 

In this case one writes 

<P= <P elastic + <P fluid + <P surface (18) 

where the terms refer, respectively to the strain 

energy W of the loaded elastic solid, the strain 

energy (Helmholtz free energy) of the uniform 

fluid phase, and the surface excess of Helmholtz 
• I!. 1\. h free energy, wrItten as 2~ where ~ IS t e surface 

free energy per unit area of the solid surface and 

adsorbate. By applying the prin?iples of 

thermodynamics in this case, Rice [9] showed that 

the thermodynamic restriction on crack growth is 

that 

(19) 

where now the symbol Y has the meaning 

Y = ~ -,uf (20) 

where ,u is the chemical potential (equal to the 

Gibbs free energy per unit mass of the uniform 

fluid phase, satisfying d,u = dp/p(p) at fixed T). 

Further, by recourse to the Gibbs adsorption 

equation [21], it was shown that 
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Y= Yo - sP [f(p)/p(p) ]dp (T = const.) (21) 
o 

where Yo' the value of Y for an indefinitely 

dilute fluid phase (i.e., a vacuum, p = 0), 

coincides with the term Y as used previously. 
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1 1 . , , 
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Fig. 6. Data of Wiederhorn on time-dependent 
crack growth in glass. (a) 61%-lead glass in 
vacuum. (b) Soda-lime-silica glass in 
environments of nitrogen gas with water vapor. 



Thus, the effect of the adsorping species is to 

reduce the thermodynamic threshold for crack 

growth, and it is interesting that the amount of 

the reduction can be calculated from the 

apparently unrelated experiment of determining the 

adsorption isotherm (that is, the relation f = 

f(p) at the temperature of interest). Fig. 5c 

shows schematically the reduction of the threshold 

for time dependent crack growth, and fig. 6b shows 

an example of environmentally influenced growth 

from data of Wiederhorn [13] on crack growth in 

glass in Ni gas containing different 

concentrations of H20 (vapor), the chemically 

active agent. It is not definitively established 

that H20 acts through the kind of surface 

adsorption process considered here, but this seems 

to be the most promising framework (versus, for 

example, one based on surface dissolution [22]) 

for explaining the effect. 

The present framework also shows how environmental 

effects may contribute to the apparent 

irreversibility of crack growth even in solids 

which separate by "Griffith cracking." For 

example, fig. 5d shows schematically the effect of 

an environmental species which is inhibited by 

kinetic considerations from access to the 

bond-separation process at the crack tip. In this 

case, the threshold for growth is expected to be 

essentially unaltered from 2Y o ' but the 

thermodynamic restriction rules out crack healing 

unless G is reduced below the adsorption-altered 

level 2Y. As a special case, Which may in fact be 

rather typical of the effect of a strongly 

surface--reactive substance such as O2, present in 

common env i ronments, we note that 2Y may be 

negative. Indeed there is no reason, based on 

general thermodynamic principles, that adsorption 

could not be sufficiently strong to allow the 

integral in eg. (21) to exceed Yo in value, making 

Y negative. This corresponds to the case in Which 

the coherent solid is chemically unstable in its 

env ironment, but is preserved for long periods in 

a metastable state due to kinetic inhibitions 

against the environment gaining access to bonds 

between atoms of the solid. When 2Y is negative, 

as in fig. 5e, thermodynamics prohibits crack­

healing, and cracking is an essentially 

irreversible process. 

It should be noted, however, that if the crack 

surfaces are suddenly closed by removal of load, 

the thermodynamically favored desorption of the 

environmental species will be inhibited in the 

cases of figs. 5c and d, and in these cases as 

well as in that of fig. 5e it is possible that 

weak bonds (or an apparent, partial crack healing) 

can form on contact of the entrapped adsorbed 

layers. Further, for cases other than ideal 

Griffith cracks, with dislocation steps on the 

fractured surfaces or with the formation of small 

fracture debris particles, the resulting 

mechanical misfits may be the most important 

factors mitigating against crack healing. 

It should be mentioned also that the effect of an 

adsorbed species along a material interface on the 

avs. ~ relation (like that of fig. 4) for the 

interface has recently been analyzed [23]. Two 

limiting cases may be identified, namely "sloW" 

separation at constant potential M of the 

adsorbate, and "rapid" separation at constant 

adsorbate concentration f. In both limiting cases 

the effective reversible work, 2Y, of separation 

may be related to adsorption isotherms for the 

unstressed interface and for the two free surfaces 

created by separation. 
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4. PARAOOXES IN ENERGY BAlANCE APPROACHES 

TO CRACK GRCWTH 

The aim of this section is to emphasize an 

essentially negative result. Specifically, when 

perturbations due to lattice trapping were 

ignored, it was shown in the previous section 

(discussion in connection with fig. 4) that the 

cohesive zone fracture model leads to a result in 

agreement with the simpler Griffith energy balance 

for a mathematically sharp-tipped crack. 



Specifically, one gets the "right" result in this 

case by equating the release rate, G, of 

mechanical energy, calculated from a continuum 

elasticity solution for a mathematically 

sharp-tipped crack (Le., with no account of the 

actual finite-sized zone of gradual material 

separation, but instead with a point-singularity 

at the tip), to the energy 21 absorbed in the 

separation process. 

One is tempted to extend this energy balance 

procedure to cracks which grow in materials of 

non-elastic rheology, and there have been several 

attempts to do so. But it is important to"note, 

as will be reviewed here, that every attempt to do 

so, e.g., in elastic-plastic [24], visco-elastic 

[25,26], and diffuso-elastic [27] (e.g., fluid 

infiltrated) materials has led to physically 

unacceptable results. There is, of course, no 

defect in the notion that energy must balance. 

Rather, the problem lies with the tacit assumption 

of the approach that the energy flow to the 

fracture zone can be calculated in an uncoupled 

manner, based on a continuum mechanical solution 

for growth of a macroscopically sharp crack that 

contains no reference to processes over the 

finite, if small, size scale of the separation 

zone. 

4.1 ENERGY RELEASE RATE 

We begin by writing an expression for the 

quast-static rate G of energy release to the crack 

tip for crack growth in general non-elastic, 

single phase solids. The result is most simply 

obtained by generalizing the derivation by Rice 

[19] for crack growth in elastic solids, in a 

manner already adopted by Freund [28] for the 

elasto-dynamic case. Indeed, the principal result 

was obtained earlier by Cherepanov [29], although 

he did not emphasize certain restrictions on the 

expression and, while starting from a general 

thermodynamic approach rather than from the purely 

mech~nical approach- adopted here, seems to give an 

imprecise thermodynamical interpretation of the 

term which will be called where. 
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X' • 

Fig. 7. Notation for discussing energy flux to a 
mathematically sharp, structureless crack tip; the 
x', y axes, region A, and contour r move through 
the material with the tip. 

With reference to fig. 7, we consider a growing 

crack of length a(t). The Xl ,y axis system moves 

with the tip, and the contour r, fixed relative to 

this system of axes, moves through the material. 

T~e region enclosed by r is A and this is, of 

course, a region of everchanging material points. 

Let 

f 

W = faijdfij 
o 

t 
== S aij(x,y,t)ofij(X,y,t)/ot dt 

o 

(22) 

be the total density of accumulated stress working 

on the strain ~ at a material point x,y. Then the 

time rate, Ga, of energy flow to the crack tip is 

the difference between the rate of traction 

working on the contour r and the rate of stress 

working on the fixed set of material points which 

coincide, instantaneously, with the time-dependent 

reg ion denoted by A. Thus 

G~ = Ir n·a·u ds (23) 

-~ f w dA + ~ r w nx ds 
dt A Jr 

where the last integral arises because the region 

A moves relative to the material. 

If we now define the integral J r by 

Jr =5 (w n - n·a·ou/ox) ds , r x - - - (24) 



and recall that 

~ = 3~(x,y,t)/3t 
= 3~(x' ,y,t)/3t - a a ~(x,y,t)/3X 

then the expression for G becomes 

G~ = Jr~ + [f n·a.ilu(x' ,y,t)/3t ds r - - -

- ~t fA w(x' .Yot} "". dY] . 

It is interesting that the bracketed 

(25) 

(26) 

quantity 

vanishes in certain cases, and for these C~3es 
G = Jr = J (27) 

(i.e. independent of path r) . 

Specifically, this occurs for 

(i) elastic materials which are homogeneous, at 

least in the x direction; in that case a simple 

application of the divergence theorem (valid in 

the moving ~oordinates) shows that the two 

. integrals of (26) cancel one another (19]; and 

(ii) any material, elastic or non-elastic, but 
homogeneous in the x direction,' in which crack 

growth takes pla~e under conditions of steady 

state relative to the moving crack tip; i.e., 

~(x' ,y,t) and w(x' ,y,t) are independent of t and 

both integrals in the brackets of (26) vanish. 

This latter case is, of course, a rather idealized 

one, but it is to be expected (and, indeed, may be 

'confirmed from known solutions) that for 

continuously growing cracks in elastic and 

non-elastic sol ids such "steady" conditions are 

approached asymptotically at the tip, in the sense 

that both integrals in brackets vanish as the 

region A is shrunk to zero size. In such cases 

the integral J r will, generally, be path-dependent 

but one may write 

G = lim J (=Jo ' say). 
r-O r (28) 

Some care is, however, necessary in usinq this 

last result, and the nature of the crack tip 

singularity must be known in each case in at least 
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enough detail to verify that the bracketed 

integrals of (26) do indeed vanish in the limit r 
- O. For example, the nature of strain 

singularities in elastic-ideally plastic materials 

is such that G ~ J at the onset of growth, o ---
because the l/r strain singularity associated with 

monotonic loading of a stationary crack changes tc 

a weaker log (l/r) singularity for a continuously 

growing crack (see the next section). In this 

discussion "continuously growing" is taken to 

denote a process of crack growth in which the 

applied loads vary continuously with crack length; 

it excludes cases of load alteration at fixed 

crack length and hence excludes the first 

increment of crack growth subsequent- to such load 

alterations. 

using the method of calculating G just outlined 

(or equivalent methods) for mathematically 

sharp-tipped cracks, one can now examine crack 

growth in materials of different non-elastic 

rheologies. What is found in each case is that 

the enforcement of an "energy balance" crack 

growth criterion in the form 

G = iy (29) 

where it is some "non-continuum" work of fracture 

associated with the separation process, leads to 

results which are rather different from what one 

might expect on physical grounds. Moreover, the 

energy balance criterion, as implemented for a 

mathematically sharp crack, is shown to be in 

conflict with a cohesive zone model analogous to 

that of fig. 4. The intent is, of course, not to 

argue that the simple cohesive zone model is an 

adequate description of the fracture process in 

all cases. The important point is that it 

provides a mechanically self-consistent model 

which leads to predictions of .crack growth without 

the necessity of introducing some postulate 

external to the model itself. As such, the 

failure of the energy balance approach to agree 

with it (in other than elastic materials) shows 

that the energy balance approach is inadequate as 

a general criterion of fracture, and suggests that 



a proper continuum mechanical model of crack 

growth must include at least some details of 

coupling, over a finite size scale, with the 

microscale processes of separation. 

4.2 LINEAR VISCOELASTIC SOLIDS 

AI though the fi rst indications of defects in an 

energy balance approach were given for 

elastic-plastic solids [24], the case of crack 

growth in linear viscoelastic solids is better 

known and simpler to analyze in detail. In this 

case the paradoxical nature of the energy balance 

criterion was pointed out by Kostrov and Nikitin 

[25] and Barenb1att et a1. [26], whereas 

formulations that recognized the importance of a 

finite-sized crack tip fracture process zone were 

further developed by Mueller and Knauss [30], 

Knauss [31] and Schapery [32]. 

K 

./2 y/C (al) 

(0) 

(b) 

• . 
(e) 

€= C(t)O", 

Fig. 8. Crack growth in linear viscoelastic 
solid. (a) Definition of creep compliance 
function C(t) for plane-strain tension test. (b) 
Expected form of relation between stress intensity' 
factor and crack growth rate. lc) Cohesive zone 
fracture model. 
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For basic notation, an element of material 

subjected to plane strain tension is shown in fig. 

8a, and the strain in response to a step in stress 

defines the creep compliance function C(t). 1he 

short and lung time limits (if the latter exists) 

correspond to instantaneous and long time elastic 

response, and 

C(co) = (l-voo)/2/L00 (30) 

where vo ' Vco and /Lo ' /L oo are the corresponding 
values of the Poisson ratio and shear modulus. In 
the simple loading cases which we will consider, 

i.e., plane-strain traction boundary value 

problems and isotropic materials, the in-plane 

stress field in a cracked body is the same as for 

a linear elastic solid of the same geometry. 

Indeed, the stress field has no dependence on 

constitutive parameters of the material, and is 

completely determined by the distribution of 

applied loadings and crack length. 

If, for simplicity, we consider a material model 

for which the work of fracture, 29, is independent 

of the (quasi-static) crack speed, a, then one· 

expects the following results: for very slow 

growth speeds the material responds as an elastic 

solid with the long-time modulus C(oo) and, from 

(3,30), the stress intensity factor K required for 

growth is given by 

2 -G = C(oo) K = 2y 
• + 

(a -0 ) (31) 

On the other hand, for rapid (but still 

quasi-static) growth the material responds with 

the instantaneous elastic properties and hence 

2 -G = C(O) K = 2y (a- 00) (32) 

The schematic form of an a versus K curve, 

consistent with these two limits, is shown in fig. 

8b. Evidently, within the limits indicated 

time-dependent crack growth is to be expected, 

with a increasing with the level of the applied 

load (for a given crack size, K is proportional to 

the applied load). 



However, this is not what the energy balance 

approach predicts. In particular, G can be 

evaluated from (28) as J o for a continuously 

growing crack. But the value of the J
r 

integral 

as r--O is determined by the response of material 

elements immediately at the crack tip. owing to 

the moving singularity of stress, these elements 

respond in the r -- 0 1 imi t in a manner that 

depends only on the instantaneous elastic 

properties of the material. Thus, the energy 

balance approach as implemented for a 

mathematically sharp, structureless crack tip 

leads to the result [25,26] 

G = C(O) K2 for all a (33) 

Since, for a given crack length, K is merely 

proportional to the applied load and not dependent 

on material properties, the energy balance 

criterion G = 2Y is seen to lead to the 

paradoxical prediction of a complete lack of crack 

speed dependence in the growth criterion; the 

expected form of the result, as indicated 

schematically in fig. 8b, is not obtained. 

The situation is entirely different when we 

examine the solution based on a cohesive zone 

model. For simplicity, the cohesive strength is 

taken as constant at a = Y out to a critical 

separation ~c~ as in fig. 8c. Obviously, 

Y~ = 21, the work of fracture. Further, we shall c 
deal only with the case for which the cohesive 

zone size w is very small compared to crack length 

and other dimensions of the cracked body. In that 

case the external loadings can be described in the 

conventional "small scale yielding" sense [19] as 

the imposition of the surrounding 

inverse-square-root singular stress field, of 

intensity K, on an infinite body·with 

semi-infinite crack. Then the cohesive zone size 

is related to K by [19, 31] 

2 2 
W= ",K /8Y (34) 

and this condition removes the singularity at the 

end of the cohesive zone. To find the opening 
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displacements ~ in the cohesive zone, we observe 

that for an elastic material with properties 

correspoding to C(O) the opening within the 

cohesive zone is [19] 

~= [C(O) K
2
/y] f [(x-a)/w] (35) 

(see fig. 8c for notation) where the function f(A) 

is [19], for 0 ~ A ~ 1, 

f(A) (I-A) 1/2 (36) 

(lI2) log ((1+(1_hl l/2j/(1_(1_A)112j ) • 

Note that f(O) = 1, f(l) = O. Accordingly, by 

correspondence methods [31], the crack opening in 

a iinear viscoelastic material can be given. In 

particular, one may solve for the displacement at 

the crack tip in the case of steady state crack 

growth (i.e., ~ depends only on x - at, where a is 

constant). When this crack tip displacement is 

set equal to ~ (=2Y/Y) as a criterion for crack c 
growth one obtains, by rearranging a result of 

Knauss [31], the equation 

~~: C(Awf~) dfUl] 
2 -K = 2y (37) 

where it is to be recalled that w is related to K 2 

by (34) and also that fifO,,) = lover the interval 

considered, since f(A) increases from 0 to 1 as A 

varies from the lower to upper limit on the 

integral. 

It is evident that the crack growth criterion (37) 

based on the cohesive zone model has the expected 

limiting behavior. As it -- 0+, the criterion 

reduces to (31); as a --~ it reduces to (32). 

Indeed, fig. 8b has been drawn to represent, 

approximately, the prediction of this criterion 

for a standard linear solid with C(~) = 4 C(O). 

While the cohesive zone model leads to 

fundamentally different results from those of the 

energy balance criterion (again, as implemented 

for a sharp, structure1ess crack tip model), it is 



possible to see how the prediction of (33) for the 

energy balance model arises. Indeed, if we 

consider the cohesive strength, Y, to increase 

without limit, then the zone size w-O and, in 

this limit, the cohesive zone model leads to the 

same result as the energy balance model, namely 
2 - • C(O) K = 2Y for all a. But, from (37), it is 

appropriate to take this limit, corresponding to 

the sharp, structureless crack tip, only when the 

characteristic time, w/a, associated with the 

decohesion process is very much smaller than any 

characteristic relaxation time of the material. 

Such a situation is obviously inappropriate for! 

consideration of the long time strength of 

viscoelastic solids. 

It would be difficult to argue that the simple 

cohesive zone model described here is an adequate 

representation of fracture in actual solids. The 

model is used here only to emphasize the 

inadequacy of the energy balance approach. In 

actual viscoelastic solids it may be inadequate to 

confine all material non-linearities to a single 

plane and to neglect time or rate dependence in 
the II versus fl relation for the separation zone. 

Nevertheless, impressive correlations of crack 
growth data over a wide range of growth rates have 

been made by Meuller and Knauss [30], Knauss [31], 

and Schapery [32], based on the simple cohesive 

model described or, in the cae of Mueller and 

Knauss [30], on yet simpler ways of accounti09 for 

the size of the cohesive zone. For example, fig. 

9 shows a plot by Schapery [32] of data from 

Mueller and Knauss on Solithane 50/50,·where the 

points depict exper.imental data and the solid 

li~es represent predictions of the cohesive zone 

model, based on writing C(t) as Co + C2 tl/2 and 

on choosing values of Y and Y to best fit the 

data. A similar fit of the data without recourse 

to the approximation of C(t) is given by Knauss. 
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~,o.c 

10 In 1m in (=.42 mm/s) 

Fig. 9. Data of Mueller and Knauss on crack 
growth in Solithane 50/50i solid lines from 
analysis by Schapery based on cohesive zone 
model. 

4.3 DIFFU50-ELASTIC SOLIDS 

This class of solids contains a mobile species 

which can diffuse under stress-induced changes in 

its chemical potential. The simplest case 

corresponds to the fluid-infiltrated solid of Biot 

[33], wherein state is characterized by the 

(total) stress tensor lIij and pore pressure p. 

Appropriate elastic constitutive laws relate the 

strain tensor € •• of the solid phase and the fluid 
1J 

mass content m, per unit volume of the porous 

material, to lIij and p, and a constitutive 

relation of the Darcy type relates the fluid 

diffusion rate to gradients in Pi see Rice and 

Cleary [34] for a recent review. It is 

appropriate to note that, analogously to 

viscoelastic solids, there are two limiting cases 

in which response corresponds to that of a 

classical elastic solid. For slow deformations 

(by comparison to the time scale for diffusive 

transport) material elements Which are connected 

by diffusion paths to a fluid source at fixed 

pressure can deform without associated cha~es in 

pore pressure. Such response is termed "drained," 

and in this limit an isotropic fluid-infiltrated 

material behaves as an elastic solid of shear 

modulus Jl. and Poisson ratio vd ("d" for drained). 



In the other limit, that of very rapid 

deformation, there is no time for alteration of 

the fluid mass content m in material elements, and 

deformation causes associated alterations of p. 

Response in this limit is termed "undrained," and 

the material behaves as a classical elastic solid 

with shear modulus p. and Poisson ration Vu ("u" 

for undrained). We note that Vu ~ vd' which means 

that the volumetric stiffness is greater for 

undrained than for drained deformation, although 

the shear stiffness is the same in both cases. 

Values of vd and Vu have been summarized from 

experiments on a variety of rocks [34] and from 

calculations based on flat, crack-like pore spaces, 

[35]. 

For plane strain deformations in the x,y plane the 

governing equations are [34] 

2 V [oxx +Oyy + 2f3 (vu -vd)p/(l-Vd)] = 0 (38) 

[v2 - (l/c) a/a t] (oxx + ° yy + 2 f3 p) = 0 • 

·Here, c is the diffusivity~ it is proportional to 

the permeability coefficient in Darcy's flow law 

and also· depends on elastic constants of the solid 

and its fluid constituent [34]. The parameter f3 

is most simply interpreted by observing that the 

alteration in fluid mass content m, from its value 

When ~ = p = 0, is proportional to the quantity 

(axx + 0yy + 2f3p). Hence, for stress application 

under undrained plane strain conditions the 

induced pressure is 

(39) 

Clearly, 0 ~ f3 ~ 1, the upper limit being 

approached for the case of separately 

incompressible solid and fluid constituents 

. (typical model of a water-saturated soil, in which 

case Vu = 0.5) and the lower limit for a highly 

compressible pore fluid (in which case Vu - vd). 
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Rice and.Simmons [27] have solved the problem of a 

plane strain shear crack (mode II) which advances 

under steady state conditions, i.e., ~= !!(x-

at,y) where a is the constant crack speed, in such 

a material~ the problem is discussed further by 

Simons [36,37]. The crack surfaces are loaded 

only over a distance L behind the crack tip by a 

uniform distribution of shearing traction T. In a 

classical elastic solid this loading would cause a 

(mode II) stress intensity factor 

K nom 
(8/?r) 1/2 T L 1/2 (40) 

where the subscript "nom" indicates that this 

should be regarded only nominally as a stress 

intensity factor for a fluid-infiltrated 

material. 

What Rice and Simons [27] find is that there is a 

r-l / 2 stress singularity at the tip, of identical 

form to that for a classical elastic solid and, 

further, the pore pressure p (or, better, 

alteration from ambient pore pressure) vanishes at 

the tip. That is, the r- l / 2 singularity 

corresponds to fully drained response. The stress 

intensity factor is found to be 

K = K h(aL/c) nom (41) 

where the function h decreases monotonically with 

increasing crack speed and has the limits 

h(O) 1 (42) 

h(oo) 

Now, the formalism for computing the energy 

release rate, eqs. (23-28), does not apply in this 

case because, in general, work of the pore 

pressure on fluid motion relative to the solid, 

and related energy alterations, has to be 

included. But owing to the fact that p = 0 (rl/2) 

at the tip and that the diffusive flow rate q = 

o (r-l / 2) , these terms make no contribution at the 

tip and G is given by J , which then coincides 
o 



with the ordinary expression (eq. 3) for the 

energy release rate in an elastic body having 

properties corresponding to drained response. 

'!hus 

G 

and the energy balance criterion G 

the result that 

in order to grow the crack at speed a. 

(43) 

(44) 

Fig. 10. Shear crack growth in a fluid­

infiltrated elastic solid. Cbmparison of energy 

balance criterion with cohesive zone model. 

Curves are drawn for (l-vd)/(l-vu) = 1.33. Marked 

portion of speed axis corresponds to range of 

observed fault creep events; see text. 

This expression is plotted as the solid curve in 

fig. 10; what is paradoxical about it is that in 

the limit a - co, the expected result is not 

recovered. Indeed, in this limit it is to be 

expected that the material response is everywhere 

undrained, so that the material responds as a, 

classical elastic solid with constants Vu and~. 
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'!he K for any such classical elastic solid is 

K and, hence the expected result as a - co is ,nom' 

G (a-co) (45) 

or 

(46) 

(a-CXl) 

But, by contrast, what the energy balance 

criterion (for a sharp-tipped, structureless crack 

model) actually predicts is, from (44), using (42) 

for h(co) , 

(a-co) (47) 

Again, the paradox is resolved by appeal to a 

cohesive zone fracture model. In particular, the 

lower inset in fig. 10 shows a cohesive zone'of 

size w at the end of the crack, and Rice and 

Simons [27] solved the case in whic~ the shear 

strength is constant within the cohesive zone 

(analogous to the tensile case of fig. Bc). '!heir 
-3 . result, for the case w = 10 L, IS shown by the 

dashed line in fig. 10 and this does seem to have 

the correct asymptotic behavior (i.e., to agree 

with the prediction of eq. (46) as a - co) • 

Indeed, while the singularity at a sharp, 

structureless crack tip is always of a drained 

type, it is nevertheless true that at high 

velocities an effectively undrained field results 

outside the tip region. The distance to this 

effectively undrained zone, i.e., a kind of 

diffusion penetration distance, is of the order 

cia. When cia is much larger than any size scale 

involved in the fracture process, the sharp crack 

model and energy balance criterion are quite 

reasonable. But as speed increases, cia decreases 

and must finally become comparable to the fracture 

process zone. Indeed, at dimensionless speeds 

greater than 103 in fig. 10, cia is smaller than 

w, and in this range the energy balance and 



cohesive zone model diverge widely. Ruina [38] 

gives an analogous discussion of size effects for 

tensile crack growth in fluid-infiltrated solids. 

Note that by contrast to the viscoelastic case, 

fig. 8b, there is not a monotonic increase, but 

rather a peak, in the (nominal) driving force 

versus velocity relation. 

It is interesting to observe that the portion of 

the velocity axis between approximately 1 and 103 

corresponds to the range of observed "creep" 

events [27,39,40] on the San Andreas fault in 

Central california, assuming a value of c = 1 m2 

/sec, which is thought to be representative of 

field conditions [27], and identifying L with the 

length of the slipping region (0.1 to 10 km) and a 
with the propagation speed (1 to 10 km/day). This 

prompts the suggestion [27] that the stabilization 

of a shear crack by pore fluid effects (i.e., the 

fact that the required driving force is an 

increasing function of speed, initially) may have 

something to do with making possible stable creep 

propagations of slip offsets along faults. On the 

other hand, the analysis also suggests that if the 

process is overdriven (e.g., loading in excess of 

the peak of the curve in fig. 10) then no 

quasi-static SOlution will exist and, presumably, 

an unstable seismic propagation of the slip offset 

occurs. 

4.4 THERMOELASTICITY 

It may be noted also that the linearized equations 

of a Biot fluid-infiltrated elastic solid are 
analogous, term by term, to the linearized 
equations of coupled thermoelasticity [41,34]. 

Hence it is to be expected that when coupling to 

the temperature field is considered, the correct 

results will not emerge from an energy balance 

approach in the adiabatic limit of rapid crack 

growth (i.e., analogous to the undrained limit, 

whereas isothermal response is analogous to 

drained). 

The problem of a proper thermoelastic formulation 

is further complicated by the fact that the 

fracture process zone must be regarded, 

effectively, as a source of heat. But for the 
sharp-tipped, structureless crack model, this heat 

supply is in the form of a point source at the 

crack tip and hence leads to a temperature 

singularity there. It is not known if the laws of 

thermodynamics, when applied to a vanishingly 

small zone around this singularity, will lead to 

sensible results concerning crack growth. The 

preceding examples suggest that it will be 

necessary to include some account of the finite 

size of the fracture process zone. 

4.4 ELASTIC-PLASTIC SOLIDS 

The paradox associated with adaptation of the 

Griffith energy balance procedure to non-elastic 

materials was first noted in connection with 

elastic-ideally plastic solids. Indeed, as was 

shown for that case by Rice [24], the 

sharp-tipped, structureless crack model leads to 

the result G = 0 for crack growth, independently 

of the load level. Hence, there is no energy 

surplus, from the continuum solution for crack 

growth, which can be equated to the separation 

work, 2Y, and for this class of materials an 

energy balance criterion predicts that crack 

growth cannot occur. 

A different way of seeing the result is provided 

byeq. [28], expressing Gas J o for a continuously 

growing cracK (recall that this way of calculating 

G is not valid for the first increment of growth 

following load increase). It is easy to see that 

Jo ' and hence G, will be zero whenever 
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r !! a~a~ - 0 as r - 0 (48) 

at the tip. This vanishing limit does indeed 

result according to available incremental 

plasticity solutions for growing cracks in 

non-hardening [19,42-44] and linearly strain 

hardening [45] materials. For example, the strain 

and displacement gradient fields in non-hardening 

materials are singular only as log (l/r) and the 



stress is non-singular, so the condition of eq. 

(48) is met and G = o. 

This result has often been obscured in finite 

element or finite difference studies in which the 

crack is advanced grid point by grid point. '!ben, 

, a finite energy release inevitably results in each 

growth step, owing to the finiteness of the grid 

spacing, and one can be led to quite erroneous 

results for G. On the other hand, sensible 

plotting of finite-element results as in studies 

by Kfouri and collaboraors [46,47] serves to 

support the theoretical r'esul t G = O. For 
example, fig. 11 shows a quantity denoted by G~, 
which is the energy released in a one-element 

growth step divided by the new crack area of that 

step, as a function of the step size (i.e., 

element size) ~/. The results are based on an 
incremental elastic-plastic analysis for a 

center-cracked bar in plane strain tension. '!be 

material is of the Mises type with linear strain 

hardening. All results shown are for a range of 
loading in which the yield zone is very small 

compared to specimen dimensions. In the figure G~ 
is normalized by the energy release rate for a 

similarly loaded elastic material, and the step 

size ~ l is normalized by a quantity which 

measures, approximately, the maximum radius of the 

plastic zone under small scale yielding 

conditions. It is seen that the numerical results 

do ,indeed seem consistent (dashed-line 

extrapolation) with the theoretically expected 

limit of G~- 0 for a vanishing ratio of step size 

to plastic zone dimension. The results shown 
, ~ 

correspond to ~ average of G, for the last three 

of four growth steps beyond the crack length at 

which the specimen was first loaded. The inset 

figure shows typical boundaries of plastically 

deformed material and of the currently active 

plastic zone during such a growth process. 

Kfouri and Miller [46] suggest that a viable 

fracture criterion can be obtained ~y an energy 

balance approach, effectively by considering the 

step size ~I as a property of the material '[ <17] 
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and equating the resulting G~ to some critical 

value. '!bis may be thought of as corresponding, 

in some very approximate way, to the inclusion of 

a finite-sized zone of decohesion in the fracture 

model. A more extensive discussion of 

quasi-static crack growth in ductile 

elastic-plastic solids is given in the following 

section. 

1.0 - - - - -~:::=a----. 
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Fig. 11. Elastic-plastic finite-element results 
of Kfouri for energy release rate based on finite 
crack growth steps (equal to element si ze, A l) • 
Growth step is normalized by approximate meaSUre 
of the maximum extent of plastic zone, and results 
seem consistent with theoretical result that G=O 
for continuously growing crack. 

5. ELASTIC-PLASTIC MODELS FOR STABLE CRACK GRcwm 

For ductile structural metals in which crack 

growth occurs by a plastic "tearing" mechanism 

(e.g., involving microvoid nucleation and plastic 

growth, rather than brittle cleavage), it is 



typical that the first increments of crack 

extension are not immediately unstable. Rather, 

stable crack growth occurs under increasing 

imposed force or, depending on the nature of the 

loading method, under increasing imposed 

displacement of the load point(s). Finally, a 

state is reached at which no further increment of 

the imposed loading quantity (force or 

displacement, as the case may be) is required in 

order to continue to meet the critical condition 

for growth at the crack tip, and at that state the 

process of quasi-static crack growth becomes 

unstable and gives rise to a running fracture. 

Here the concern is with elastic-plastic materials 

for which strain-rate effects are insignificant 

over the range of response considered and, 

accordingly, the stable growth phenomenon is 

analyzed within the context of rate-insensitive 

elastic-plastic constitutive models. 

There has been extensive progress on 

characterizing the onset of crack growth, as 

reviewed recently by Rice [48], but at present 

there is no well agreed upon method of analyzing 

the subsequent stable crack growth. Several 

approaches are being explored in current research. 

For example, the use of an energy balance 

criterion in finite growth steps has been 

mentioned at the end of the previous section 

[46,47] and various approaches based on J-integral 

methods [49-51], critical near tip openings 

[44,51], and other, mostly-numerical-based, 

methods [52] are being explored. In this section 

progress in two of the more promising approaches 

are explored, in connection with the somewhat 

idealized case of plane strain crack growth 

(practical cases frequently involve significant 

3-dimensional effects, e.g., fonnation of ductile 

shear lips adjoining, or even obscuring 

completely, the flat plane-strain-like fracture 

surface in cracked plates). These approaches 

are: 

(i) Use of the J integral, based not on 
its interpretation as an energy release 
rate but rather on its interpretation 
within "deformation" plasticity theory 

as a parameter characterizing the 
strength of the crack tip deformation 
field [17,53,54]; such an approach is 
widely used for the onset of growth 
[55,48] and what is being considered 
here is its extension to at least small 
amounts of subsequent stable growth, 
and 

(ii) Precise, incremental 
elastic-plastic analyses of fields near 
growing cracks, with a crack growth 
criterion being based on the intensity 
of some measure of the near tip field; 
approaches of this kind have been widely 
successful for the onset of growth, 
especially in relating macroscopic 
toughness parameters to microscale 
fracture mechanism [48]; for the growing 
crack, at present, the approach is 
reasonably well developed only within 
the ideally plastic (non-hardening) 
material model. 

The approaches are summarized in turn. 

J integral methods: The J integral is defined by 

[17,19] 

(49) 

and within an appropriate "deformation theory" 

version of the elastic-plastic Prandtl-Reuss 

equations (or other elastic-plastic constitutive 

equations) so that the stress working density w of 
(22) is a function only of strain ~, the integral 

is independent of path r. Alternately, within the 

same deformation theory approximation, J may be 

evaluated by "compliance" methods based on the 

difference between load-displacement curves for 

identically loaded bodies, with stationqry cracks, 

that differ only with respect to crack size [48]. 

Since the contour rcan be shrunk arbitrarily 

close to the crack tip, J can be interpreted as 

some integrated measure of the strength of the 

crack tip singular field, i.e., as a crack tip 

"characterizing parameter." Indeed, in the case 

of a monotonically loaded stationary crack in a 

power-law hardening material, i.e., 

N 
't oc Y in the plastic range, (50) 

where 't and Yare the Mises equivalent shear 
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stress and shear strain measures, Rice and 

Rosengren [53] and Hutchinson [54] observed that 

within a "small strain" elastic-plastic solution 

there were characteristic singularities of the 

form 

l/(HN) 

[,O~ J !(O,NI as r- 0 

(51) r ] N/(l~) 
~ - era ~o ~ ~(8;N) as r- 0 

where ero is the tensile yield strength, E is 

Young's modulus, and ~ and 2 are certain universal 

functions. This field is referred to as the HRR 

singularity, and its strength is evidently 

determined by J. Hence, to the extent that the 

deformation plasticity model is appropriate, and 

that the HRR singularity actually does dominate 

the near tip field over a size scale inclusive of 

the fracture process zone (see McMeeking and Parks 

[56] for a fuller discussion of this 

requirement--it is not met in all fully plastic 

geometries), it is reasonable to phrase the 

condition for onset of crack growth as the 

attainment of a critical value of J. 

Fig. 12. Early stages of ductile crack growth and 

definition of J IC • R denotes zone dominated by 

the J-characterized singularity at crack tip. See 

text for discussion of conditions under which the 

J versus a-ao relation may be considered as a 

"resistance curve," characteristic of the 

material. 
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Fig. 12 shows in schematic terms the typical 

analysis of experimental results to determine J rc 
(the J value at onset of growth). The points on 

the diagram represent values of J versus change in 

crack length, and the sketch is made for the case 

in which there is a relatively sharp demarcation 
between growth associated with progressive plastic 

opening of the crack tip and that associated wi th 

the plastic tearing process. The extrapolated 

intersection with the blunting line defines J IC ' 

as shown. 

lbwever, in many materials the (nominal) J value 

continues to rise in such a steep manner with 

crack growth [49] that it is overly conservative 

to base a limiting strength prediction on J IC • 

Accordingly, Hutchinson and Paris [50] have 

attempted to establish conditions under which the 
entire J versus a-ao curve, or at least some early 

portion of it corresponding to a-a «b (the o 
uncracked ligament size), might be considered as 

some universal characteristic of the material. In 

such cases stable growth may be predicted by 

equating J, viewed within the deformation 

plasticity model as some function of load and 

crack size, to the experimentally determined J 

versus a-ao curve. That is, if Q is some measure 

of the monotonically increasing load parameter, 

either force or load-point displacement as the 

case may be, and if J A (Q,a) is the "applied" J 

value, then within the formulation the crack 

growth criterion is 

(52) 

where the function JR(a-a
O

) represents the 

experimental "resistance" curve as in fig. 12. 

This determines the relation Q versus a, and 

instability occurs when dQ/da = 0, i.e., when 

(53) 

This instability condition has a well known 

graphical interpretation: the critical point is 

reached at the value of Q and a for which the plot 



of J A versus a for fixed Q makes tangential 

contact with the resistance curve. 

Of course, a limitation on any such approach, 

based on deformation plasticity, occurs because 

the process of crack growth necessqrily involves 

elastic unloading and significantly 

non-proportional straining near the crack tip. 

Hutchinson and Paris [50] evaluate this 

restriction in the following way. With reference 

to fig. 12, let R be a measure of the size near 

the crack tip over which the J-characterized 

singularity (e.g., the HRR field) can be 

considered, within deformation plasticity, to 

dominate the overall deformation field. A basic 

requirement for validity of the J IC concept is 

that R be large enough to fully envelop the crack 

tip fracture process zone. For ductile tearing 

mode fractures, extensive metallurgical studies 

suggest that this zone is typically of the same 

order of size as the crack tip opening 

displacement at the onset of growth [48], i.e., of 

the order of JIcirro. This consideration leads to 

the conclusion that the J IC concept is valid for 

specimens which are sufficiently large that a 

typical dimension-like ligament size b meets the 

inequality [48] 

b > f (specimen type, N ) JIC/a 0 (54) 

and while the function f has not been determined 

experimentally, it is usually accepted on 

empirical grounds that for specimens of the type 

shown in fig. 12, f ~25 to 50. 

With this background, Hutchinson and Paris 

consider the early stages of crack growth, in 

which J increases with a. The increments in J are 

considered to result in continued proportional 

straining of the HRR type, whereas the increments 

in a cause strongly non-proportional straining. 

The former will dominate over distances comparable 

in size to R if [50] 

dJ/J » da/R • (55) 
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When this condition is met it is argued that the 

stable growth process takes place over a size 

scale that is well embedded within the 

J-characterized zone, and hence that the concept 

of a specimen-independent resistance curve, J 

versus a-a o ' is valid. Since R scales 

approximately with overall size of the specimen 

when fully plastic conditions are attained, the 

condition for validity of the resistance curve 

concept may then be restated as 

b »J/(dJ/da) • (56) 

The factor on the right in this inequality is 

approximately the amount of crack growth necessary 

for J to double in value over J IC • For materials 

with a large resistance to crack extension--for 

example, exhibiting a doubling of J for growth of 

the order of 1 mm--it seems plausible that this 

size criterion could be met for at least the 

thicker of the typical range of sizes of specimens 

and structural parts (e.g., b greater than 25 mm 
or so). In such cases, which are not uncommon 

(see below), the concept of a J versus a-a o 
resistance curve, viewed as a fundamental material 

property, seems justified at least for limited, 

and not yet well quantified, amounts of growth. 

Of course, the approach does not seem to be viable 

for materials with significantly lower resistance 

to crack growth, i.e., higher values of J/(dJ/da), 

except when attention is limited to such 

unrealistically large sizes that response is 

essentially in the elastic fracture mechanics 

range. 

Paris et al. [49] give an extensive tabulation of 

values of J IC and dJ/da for structural alloys. 

From this data, some representative values of 

J/(dJ/da) at the onset of crack growth are: 0.6 

mm for G.E. Ni-Mo-V rotor steel (ASTM-A469), 0.9 

mm for Ni-Cr-Mo-V rotor steel (ASTM-A47l), 1.6 mm 
for AISI-403 12 Cr stainless rotor steel, all at 

l50·Ci 0.8 mm for AISI-4340 steel, 2.5 mm for 

HY-130 steel, 2.9 rom for 2024-T35l aluminum alloy, 

and 5.0 mm for 606l-T65l aluminum alloy, all at 



room temperature (the results for HY-130 and 

2024-T35l were privately communicated by Dr. J. 

Landes of Westinghouse Research Laboratory). This 

range of values suggests that many, although 

certainly far from all, cases of plane strain 

ductile crack growth in specimens of substantial 

size (say, b > 25 mm) can be analyzed in the 

manner described, in terms of a J versus a-a o 
relation that is regarded as characteristic of the 

material. An experimentally-based understanding 

of restrictions on the approach has not yet been 

attained. 

5.1 ELASTIC-PLASTIC INCREMENTAL ANALYSIS 

OF GROWING C~CKS 

The second approach to be described is, as 

remarked, limited presently to the ideally plastic 

material model. The incremental Prandtl-Reuss 

equations are analyzed to establish the nature of 

the near tip singular field for a growing crack. 

For well contained plastic yielding near 

stationary cracks, subjected to monotonic load, it 

is now well established [48,57] that within "small 

. strain" theory the limiting stress state as r - 0 

at the crack tip is the same field as that 

described by the Prandtl slip-line construction 

shown in fig. l3a. Indeed, the arguments of Rice 

[17] and Rice and Tracey [57] \\hich lead to the 

Prandtl field at the tip seem, as remarked by Rice 

and Sorensen [44], to be equally valid for growing 

as for stationary cracks, and recent fncremental 

elastic-plastic finite el~ent solutions for crack 

gr~wth under small scale yielding conditions by 

Sorensen [58] and, with a much finer mesh, by Sham 

[59] seem to give near tip stress states that are 

consistent with the Prandtl field. 

Accordingly, the nature of the strain singularity 

can be established [19,42-44] by applying the 

Prandtl-Reuss equations to the stress state of 

fig. l3a, assumed to move through the material 

wi th the crack tip so that for small r, ~ = ~ (8) , 

I---V-- 0 ---

____ ~T, .. :: 
(1+11')'0 

r- (E/C1'02) dJ/do 

(for a· 0.65,.8=4) 

r/R 

.04 .03 

(0) 

.02 

(b) 

E8/C1'oR 

2.0 

1.5 

1.0 

.5 

0 
.01 0 

Fig. 13. (a) The Prandtl ·slip line field, shown, 

is assumed to prov ide the 1 imi ting stress state, 

!! = !! (8) as r-O, at the tip of a stationary or 

growing plane-strain crack in an ideally plastic 

material with well-contained yielding; the 

prandtl-Reuss incremental constitutive equations 

are integrated for this field in order to obtain 

the fonn of the near tip strains and crack opening 

displacement~. (b) Crack opening II versus 

distance from tip for continuously growing crack 

under small scale yielding conditions. R is 

undetermined by the asymptotic analysis but is 

assumed, on the basis of numerical sol utions, to 

scale with the size of the crack tip plastic zone. 

\\here the origin of the polar coordinate system 

moves with the tip. Thus the strain rate f 

satisfies 

l+v· l-2v • ll .. 
. 

Eij = E Sij + -E- C1 1) + A Sij (57) 
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where O'is the mean normal stress, ~ is the . 
deviatoric stress tensor, and A ;;:> 0 for plastic 

resp:.mse (A = 0 for elastic); the (Mises) yield 

d ·· . 3 2 con Itl0n IS s .. s .. = 20' • Also, the stress 
IJ IJ 0 

rates are computed, for small r, by writing 

0' .. 
IJ [dO' . . /dO]O = [dO' .. /dO] (a/r) sinO (58) IJ IJ 

where dO' .. /dO denotes derivatives of Cartesian 
IJ 

stress components of the Prandtl field and a is 

the crack growth rate. 

The resulting expressions for the polar coordinate 

components of material velocities at small rare 

[44], within the centered fan zone of fig. 13a, 

vr = ((J0'0/2E) a sino In(R/r) + df(O)/dO 

((J0'0/2E) a (cos8-1;v2) [in(R/r) 

- 3v/(2-v) ]-f(O)+g(r) , 

(59) 

where A, again undetermined by the asymptotic 

analysis, is independent of r. 

Since the material model is rate independent, A, 

as well f and g above, must be homogeneous of 

degree one in a and in the rate of some parameter 

measuring the rate of loading. For cases of 

contained yielding one may take this latter 

par-ameter as the far-field value of J and then, 

assuming linearity of A in j and a, 

a j/O' + {J (0' /E) ~ in(R/r) 
o 0 

r - 0 ,(62) 

where a is undetermined by the analysis thus far 

and where R replaces R and accounts for the a 
dependence of A. Integrations of (62) in two 

cases are of interest. First, for monotonic 

loading of a stationary crack the term with a 
vanishes and one obtains a discrete opening 

displacement at the tip. Indeed, in the "small 

scale yielding" limit it can be argued on 

dimensional grounds that a is constant and in this 

where {J = 4 (2-v)/V3 ( = 3.93 for v = 0.3) and case 

where the length R and (bounded) functions f(O) 

and g(r) are undetermined by the present analysis. 

Note that the terms which remain when a = 0 

correspond to the well known result for a 

stationary crack [17]. The nature of the 

singularity in plastic strain rates within the 

centered fan is such that only the rO (shear) 

component is singular, and it has the form 

. 
(fJ0' 0/4v2 E) (a/r) in(R;r) 

+ [f"(0)+f(0)]/2r (60) 

as r - 0, for appropriate Rand f(O). Finally, 

the rate of change of opening displacement, ~ , 

between material points of the upper and lower 

crack surfaces at small distances r behind the tip 

is [44] 

. . 
~ = A + (J (O'o/E) a in(lVr) , r- 0 (61) 
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(63) 

where the numerical value of a comes from recent 

numerical solutions [44,61]. Full details of the 

tip opening in this case can be resolved only on 

the basis of a finite strain analysis, as by Rice 

and Johnson [60] and McMeeking [61]. 

The other case is that of a continuously growing 

crack, i.e., J varies continuously with a, and in 

that case eq. (62) can be integrated [44] to give, 

for very small r, 

~ = a (dJ/da) riO' + /3(0' /E) r[l + in(R/r)] • (64) 
o o. 

Note that for the continuously growing crack there 

is no discrete opening at the tip: The crack 

surface profile is shown in dimensionless form in 

fig. 13b for different values of the parameter 

(65) 



assuming fJ = 4 and a = 0.65. '!he value of a used 

is the same as for the stationary crack; Rice and 

Sorensen [44] observe that numerical results for 

crack opening at fixed a due to load increase, 

following various previous histories of J versus 

a-ao ' seem to suggest an approximately constant 

value of a. '!he parameter R used to scale lengths 

in fig. l3b is expected, on dimensional grounds, 

to scale with the size of the plastic zone, at 

least for well-contained yielding. Indeed, Rice 

and Sorensen [44] suggest tentatively, from their 

finite element results for crack growth, that 

(66) 

(Which is also equal approximately to the maximum 

radius of the plastic zone) for small scale 
yielding. '!he factor 0.16 is likely to be revised 

with more accurate numerical solutions, intended 

to resolve the undetermined parameters and 

functions in eqs. (59-62). Note that the crack 

profiles shown in fig. 13b are not consistent with 

the notion of a crack tip opening angle. Instead, 

eq. (64) involves a vertical tangent at the tip. 

But for highly ductile materials, i.e., large 

values of T, the logarithmic term in eq'. (64) is 

relatively unimportant except for extremely small 

values of rlR, and an effective crack tip opening 

angle can be defined (e.g., the case T = 100 in 

fig. l3b). 

The strain fields are also different for the 

stationary versus the growing crack. In the first 

case, for small scale yielding [19] 

as r- 0 
(67) 

within the fan region, whereas for the growing 

crack 

e~. - _1_ ddJ 
G .. (0) + (lEO H

1
.
J
. (0) in[Rr(O)]. 

IJ (10 a IJ (68) 

The functions ~, g and R are not determined by the 

asymptotic analysis. 

An approximate crack growth criterion can be based 

on the field very near the crack tip. Ck1e might 

expect that during the growth process a 

geometrically similar deformation pattern prevails 

at the crack tip as the crack grows. The 

equations for S do not admit a solution of this 

type, since R in (62,64) seems to vary with the 

size of J. However, following Rice and Sorensen 
[44] an approximate condition of geometric 
similarity may be enforced by requiring that a 
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certain fixed displacement, say S , be achieved at c 
a fixed material distance di, behind the tip, 

Where di might be regarded as a measure of the 

fracture process zone size [44]. '!hen eq. (64) 

leads to 

(69) 

Which may be regarded as a differential equation 

governing crack growth when the dependence of R on 

J (and, possibly, the previous growth history) is 

specified. Rice and Sorensen integrate this 

equation for the choice of R in eq. (66), intended 

to correspond to small scale yi€ldipg. This 

defines a "resistance curve" for the material, 'and 

instability conditions are phrased as in eqs. 

(52,53). '!he resistance curve, however, is not 

expected to be universal within this approach and 

would, for example, be different for fully plastic 

specimens. For fuller details and discussion in 

terms of observed crack growth parameters for 

structural steels, the reader is preferred to the 

paper by Rice and Sorensen [44]. Predicted 

resistance to growth increases strongly with the 

opening angle parameter, Sc/di, and decreases with 

material strength level, as measured by (lo/E. 

It may be mentioned in closing' that the solution 

described for the growing crack may also be of 

interest for processes of stress corrosion 

cracking of ductile materials. 
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