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The paper reviews recent work on fundamentals of elastic-plastic finite-element analysis and its applications to the 
mechanics of crack opening and growth in ductile solids. The presentation begins with a precise formu~tion of in- 
cremental equilibrium equations and their finite-element forms in a marines valid for deformations of arbitrary mag- 
nitude. Special features of computational procedures are outlined for accuracy in view of the near-incompressibility 
of elastic-plastic response. Applications to crack mechanics include the analysis of large plastic deformations at a 
progressively opening crack tip, the determination of J integral values and of limitations to I characterizations of the 
intensity of the crack tip field, and the determination of crack tip fields in stable crack growth. 

Introduction 

Our paper begins with fundamentals of elastic-plastic finite-element analysis for deformations 
of arbitrary magnitude. Here there is a close association with the pioneering studies of Professor 
W. Prager on the foundations of plasticity theory and the mechanics of continua, and of 
Professor J.H. Argyris on the finite-element analysis of elastic-plastic and other non-linear prob- 
lems in structural mechanics; the paper is dedicated to them in honor of their respective 75th and 
65th anniversaries. After reviewing the fundamentals we discuss recent computational solutions 
for crack tip defo~ations in elastic-plastic fracture mechanics. As we use the term for the present 
discussion, “plasticity” will refer to strain-rate insensitive inelastic response. 

1. Incremental elastic-plastic formulation for deformations of arbitrary magnitude 

The finite-element analysis of elastic-plastic continua was begun by Argyris I 11, Pope [2] , 

Swedlow et al. [31, and Marcaf and King [4] within the geometrically linear (or “small strain”) 
approximation. Oden [S] reviews finite-element formulations in the non-linear elasticity context 
for arbitrary strains. The first elastic-plastic formulation appropriate to deformations of arbitrary 
magnitude was given by Hibbitt, Marcal and Rice [61, and related fo~ulations, based likewise on 
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suitably spin-invariant generalizations of the Prandtl-Reuss equations and accompanied by numeri- 

cal examples, were given by Needleman [ 7, 81 and Osias and Swedlow 191. Later, McMeeking 
and Rice [ IO] showed the relation of these formulations to Hill’s [ 1 1 ] variational principle for 
incremental deformations, demonstrated the relation of the constitutive and initial stress stiffness 
matrices to the adopted measures of stress and strain, and discussed various proposed approaches 
for large-strain analysis in light of the rigorous formulation. We follow the presentation by 

McMeeking and Rice in this review. 
In its reference configuration the body considered occupies the region V’ with surface So, and 

position vectors of its particles are denoted by X. In its current configuration the same quantities 

are given by V, S and x. Then, following Hill [ 111, the conditions for continuing equilibrium in 
incremental deformations are given by a rate form of the virtual work equation 

for arbitrary 6x, where 6x is understood to vanish on the portions of So where x is prescribed. 
Here the notation is dyadic; t is the nominal stress (nits transpose is sometimes referred to as the 
first Piola-Kirchhoff stress); b is the body force per unit volume of reference state;f is the surface 

force per unit area of reference state v= na . t at a surface element having normal no in the 
reference state). The superposed dpts denote time rates and it is well to recognize that in typical 

problems the nominal force rates f may not be fully prescribed on So -- e.g., a rate of fluid pressure 

may be prescribed. In such cases f can be split additively (see [ 61) into a prescribed part and another 
part of geometric origin which is linear in ai/dX. The latter joins ), also a function of &/ax, on 
the left side of (I) as part of the unknown rate field x to be determined and contributes an “initial 
load” term to the overall stiffness. 

There are many approaches from (1) to a finite element formulation. For example, the analysis 
may be carried out directly in terms of finite elements laid out in the reference configuration or. 
when the terms of (1) are transformed to integrals over V and S, to elements laid out in the cur- 
rent configuration. Particularly, an “updated Lagrangian” formulation is useful in which the varia- 
tional principle is transformed to the current configuration while the finite elements are fixed 
relative to material points and convect with the deformation. Additionally, there are various mea- 
sures of stress and strain which may be found convenient in particular constitutive representa- 
tions. Thus, while f can always be written as a linear expression in &-i/&Y and the rate of the 

adopted stress measure (see Prager [ 12, 13 I and Hill [ 141 for discussions of relations among stress 
rates), it is often convenient to let the stress and deformation rate measures of the adopted con- 
stitutive relation enter directly into (1). 

In view of these remarks, two types of transformations of (1) are of special interest for elastic- 
plastic analysis. First, in terms of the current configuration, true (or Cauchy) stress u, and rate of 
deformation D = 4 (&$/ax) + +(&/ax)‘, there results [ 10, 111 

s {(a* + e trD) : 6D - +U : 6[20 .D - (ai/ax)’ f (ax/ax)] } dV’ 
V 

(7) 
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for arbitrary 6i and associated 6D. Here again 6 and _? are nominal rates, but based on a reference 
configuration with which the current configuration is supposed to be coincident instantaneously. 
It is noted that t = e and 

i=i+otrD-(C)i/&)-o (3) 

when the reference and current configurations coincide; tr D denotes the “trace” (or first invari- 
ant) of D; u* is the co-rotational (or Jaumann) stress rate (e.g., [ 131) 

a*=i-n.u+a-n (4) 

where fi = $(&z/h) - + (a?/&)’ is the spin rate; the combination (a* + u tr 0) is the co-rotational 
rate, r*, of Kirchhoff stress where z = u dV/dV’ and the reference and current states coincide. 

Another approach, which we will not develop in detail here, is to introduce work-conjugate 
symmetric stress and strain tensors S and E, defined [ 141 so that 

(5) 

for arbitrary &/ax, where E is any isotropic tensor function of (&/ax)’ * (&v/ax) - i.e., E is a 
“material” strain tensor. McMeeking and Rice [ 101 demonstrate the manner in which contribu- 

tions to the tangential “constitutive” stiffness and “initial stress” stiffness vary in a compensatory 

manner for different choices of strain measure. But for computation of E without resort to deter- 
mination of principal stretches, the most convenient and widely used form for E is the Green 
strain, 

E = f [(ax/ax)' . (ax/ax> - II , (6) 

and the conjugate stress measure is the second Piola-Kirchhoff stress 

S = t. (ax/ax)-” = det(aw/aX)(ax/aX)-l . u a (b/ax)-’ t. (7) 

In terms of this (1) becomes [ 111 

S{S:~~+fS:6[(~/ax)'.(a;/ax)]} dp = 1 d&dl/” +/f+dSO. 
vo vo so 

(8) 

There is a close connection between this principle, in terms of S and i, and the preceding ver- 
sion, eq. (2), in terms of r and D. It becomes apparent when the dyads T and D are referred to 
base vectors which are convected with the deformation but coincide, in the reference configura- 
tion, to the set of fixed base vectors to which S and E are supposed to be referred. Then in 
curvilinear tensor notation, 

ii = pi, D, = iii. (9) 
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Indeed, it is this observation which serves to show that the variational formulation in terms of S”’ 

and E, employed by Needleman [7, 81 and Hutchinson [ 151 coincides with that of (7). Further. 
although it was apparently not recognized at the time, a generalization of stress-strain relations 
for isotropic hardening due to Budiansky, used in [7, 8, 151 and phrased in terms of,?‘j and I?!,. 

is seen by virtue of the above remark to coincide with the classical Prandtl-Reuss equations when 
u* and D are used as the stress and strain rate. 

In fact, all of our numerical examples are given in terms of the classical Prandtl-Reuss equa- 
tions and these have the form (when, e.g., a classical formulation like that of Hill I 161 is gener- 

alized to the co-rotational stress rate) 

D= 1 +v - e* 
E 

ilO) 

Here the last term is present only during plastic response; E is Young’s modulus; v is Poisson’s 
ratio; (I’ is the deviatoric stress; 0 is the equivalent strength in tension and is given such that 

(2/3)G2 is the maximum value of u’ : e’ attained up to the present instant; I? is the slope of the 
true stress versus logarithmic plastic strain curve in a tensile test. This form of the Prandtl-Reuss 

equations is invariant to superposed spins and properly embodies the approximately symmetric 
relation between true stress and logarithmic strain in tension and compression, as suggested by 

experiments on annealed metals [ 161. More complicated expressions are necessary for problems 

in which effects represented by kinematic hardening or vertex yield models are to be included. 
As has been discussed more fully in [ 7, 10, 151, in using the preceding form of the Prandtl-Reuss 

relations it is most convenient to replace u* by T*(= e* + e tr D). This preserves symmetry of the 

contributions to element stiffness arising from the constitutive term, a feature which should neces- 
sarily be present for (hyper)elastic material response. Further, since there is no plastic dilation. the 
difference between use of u* and r* is barely detectable in typical circumstances ~~- for which elas- 
tic dimension changes are small. 

With this modification the incremental stress-strain relations (lo), when inverted. become 

s*=L:D, (11) 

where Cartesian components of the fourth-rank tensor L are 

for elastic-plastic response; the last term, involving e’, is deleted for elastic response. 

2. Approximations inherent in the “small strain” formulation 

The classical “small strain” elastic-plastic formulation, as carried out in terms of a geometrically 
linear formulation, specifically with neglect of continuing geometric changes of the body on the 
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form of the incremental equilibrium equations, is based on the principle of virtual work in the 
rate form 

jO:6DdV= jL&dV+ ji&dS. 
V V 5 

(13) 

This is tantamount to assuming that the incremental equilibrium equations have the form 
v. 6 + 6 = 0 in V, n . & = f on S, both of which are imprecise in that 6 must be supplemented by 
terms of order e times ax/ax in the correct versions of these expressions (although V- u + b = o 

and n - CJ = f are valid instantaneously). The incremental stress-strain relations are taken, in this 
formulation, to have the form 6 = L : D which embodies the classical form of the Prandtl-Reuss 
equations when L is chosen as in (12). 

Comparison between (2) and (13) reveals the approximation in calculations based on the con- 
ventional small-strain elastic-plastic formulation - or in a sequence of updated Lagrangian incre- 
mental calculations based on successive use of the small-strain equations for each deformation in- 
crement. In particular, it is seen that terms of order (I times ax/ax are deleted from the virtual 
work principle in comparison to those of order L times D. In part these include the spin terms, of 
order e times a, which make the rigorous formulation invariant to superposed rigid motions. 
These spin terms have a well-known role, for example, in the buckling of slender struts for which 
typical n terms can be much larger than typical D terms so that u times n is of the same order as 
L times D (e.g., see Prager’s [ 131 discussion of strut stability in terms of the general 3-D theory). 
But the neglected terms also include those of order u times D which, while typically negligible in 
elastic structural analysis, can be of the same order as L : D for large elastic-plastic deformations. 
In particular, whenever the plastic hardening modulus, h, is of the same order of magnitude as 
current stress levels, these terms must be retained for a rigorous analysis. 

It may be recalled that h = 0 is the elementary Considere criterion for neck formation in a 
tensile bar, and hence when strains of the order of those for neck formation are attained, the rig- 
orous formulation differs significantly from that based on successive use of the small-strain for- 
mulation. 

Under these same circumstances it is essential to distinguish between the effects of choice of 
different spin-invariant stress measures in the constitutive relations. For example, the use of 
S=L:Einplaceofr * = L : D, where L is given by (12), would result in inaccuracies of the order 
of u in certain components of L. Specifically, in the dominant components of L for continued 
plastic response, namely those which are of the order h, the inaccuracy would be significant when 
h and u are of the same order. This is seen most clearly in the case when the current and reference 
configurations are instantaneously coincident (r = S = a) and the stress rates are related by (e.g., 
Hill [ 143) 

r*=i+u-D+D-a. (14) 

Thus, for uniaxial tension in the xi direction at stress (Jo I = ii, 7T1 = hD, I (when h Q E) and (14) 
i.mplies S, 1 = (h - 2ii)D11. Thus, implementation of the Prandtl-Reuss equations in the form 
S = L : E, as opposed to T * = L : D, would imply that S, 1 = hD, 1 under the present circumstances, 
and would overestimate the tangential stiffness by amount 26. 



The foregoing discussion leads to the following interpretation of analyses based on the small- 
strain formulation: In problems for which the strains are indeed negligible by comparison to unity, 
and in which rotation increments are of the same order as strain increments (e.g., eliminating 

slender strut buckling-type problems), the essential inaccuracy of the small strain fo~ulation is 
that the true incremental stiffness of the material is represented in the calculation only to within 

terms of the order of e. Thus, for example, when h is of the order of u, use of an ideally-plastic 

approximation (h = 0) or of any other form for h which differs by an amount comparable to e 

from the actual h, gives a solution for the overah structural stiffness of accuracy comparable to 

that based on the actual h. 

3. Finite-element equations 

Let u be the vector of n (generalized) displacements constituting the nodal degrees of freedom 

of the adopted finite-element mesh, presumed to be of the updated Lagrangian type. Then the 

velocity field in the medium is given by 

where Nij = N&Y) are elements of the 3 X n (2 X R for 2-D analysis) continuous field of shape 
functions, constructed piecewise within each element in the usual way, and 

D = B *zi, Bijk = (aNi,/axj + aNj$xi)/2, (16) 

whereBis3X 3Xn(2X 2Xnfor 2-D) matrix and is typically restructured into a 6 X n (3 X II 

for 2-D) matrix referring to the independent components of deformation rate. 
When implemented within the small strain formulation, for which updating of the mesh is ig- 

nored, (13) is used as the principle governing incremental deformations and one sets 6 = L : D. 

There results the well-known equations 

K-li =r;, (17) 

where 

K=JBbL:BdV 

v 
(18) 

and 

P= j-Nf *r; dV+j-Nt +lS. 
v s 

(19) 

Here Nji = Nii, Biik = B,,. The prescribed nodal displacement rate quantities (including those cor- 
responding to free rigid motions, if possible) due to im+posed values of .$ on part of S are removed 
in the usual way, supplementing the force-rate vector P when these are non-zero. 
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The procedure is similar for the general formulation, appropriate for arbitrary deformations, 
and based on (2) with 

r*za*+atrD=L:D, (20) 

but now there are the following modifications: the overall stiffness equations become 

(K + K,) . zi = P, (21) 

where K and i are defined as above and where K, is the “initial stress” stiffness matrix, defined 
to correspond to the second group of terms on the left in (2), namely 

6zi’~K;ti= ~~o:s[(ax/ax)‘.(a~/an)-2D.D]dV 
V 

(22) 

or 

K&q = ./- aii(aNk,/axiaN,,/axj - 2BikpBkjq)dV; (23) 
V 

further, as discussed earlier and shown in examples by Hibbitt et al. [ 61, the nominal force rates 
d and f which enter P are not always fully prescribed but instead may have the forms 

d =&?& +bgeom, f=_Lad +f geom’ (24) 

where the subscript “load” denotes the portion which is prescribed in terms of the given rate of 
increase of some loading parameter (e.g., surface pressure for f) and where the “geom” portion 
depends, in the most general case, on the unknown values of i and, forf, on &?/ax at the point 
considered. 

Thus, 

hgeo, = c G, jgeom = g -X + h : (ak/ax), (25) 

where c and g are 3 X 3, and h 3 X 3 X 3, dyads defined in terms of the current configuration, 
and typically proportional to current values of parameters representing the intensity of loading. 
Hence, after removal of the prescribed nodal displacement rates, the overall stiffness equations 
become 

(K + K, + Kp) * ti = J;oad, (26) 

where PIoad includes the contributions from inserting iload and iload into (19), and where KP is 
the “initial load” stiffness matrix 
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K,=-.SN’.~.NdV-S[~.g.N+N’.h:(a~/ax)’]dS, 
V s 

i77 I 

We observe that K will be symmetric if the incremental modulus tensor L is symmetric, i.e., if 
Lijkr = Lkrij which is, for example, the case with our adopted form of the Prandtl-Reuss equations, 
(12). Further, the initial stress stiffness 1y, is symmetric but the initial load stiffness K,, when 
present, will generally be unsymmetrical except for conservative forces b andf, i.e., forces which 
can be represented by a potential. 

Our applications are in terms of the Prandtl-Reuss equations, most simply stated relative to the 
current configuration in the form t * = L : D. However, in other cases (e.g., finite elasticity, non- 
isotropic hardening) it may sometimes be convenient to phrase the constitutive relation in terms 
of second Piola-Kirchhoff stress S and Green strain E, both.referred to some definite initial state. 
Thus, if the incremental stress-strain relation has the form S = M : E where Arl is a 4th rank tensor 
of moduli, M = M(E), one tinds from the transformations among stress and deformation rates 
given by Hibbitt et al. [t;] that 

i=FZ+F. 

where F s ax/ax, and hence that on a Cartesian background frame 

(28) 

(29, 

In our elastic-plastic calculations an iterative procedure is used in each load increment. In par- 
ticular, initial estimates of the associated strain increments are made based on the solution for the 
previous load increment, and these estimates are used to form L, and hence to form K, according 
to the partial stiffness method of Marcal and King 141 (for elements which pass from elastic to 
plastic) and the method of Rice and Tracey [ 171 and Tracey [ 181 for assigning an average outer 
normal to the yield locus during the increment. The stiffness equations are then solved for AU and 
the procedure is repeated iteratively, using the new strain increments as estimates, until satisfac- 
tory convergence is attained within the load increment. The program used is a version of the MARC 
program, developed by P.V. Marcal and co-workers, and modified in various ways in our work to 
incorporate, for example, singular elements, near-incompressible analyses, finite deformations, etc. 
Alternatives to the tangent stiffness method, appropriate within the small strain formulation, are 
reviewed by Argyris and Scharpf [ 191. 

4. Problems arising from the near incompre~ibi~ty of el~tic-plastic materials 

A possible source of error in elastic-plastic finite-element analysis relates to the inadequacy of 
certain element types and mesh layouts for near-incompressible material response. For example, 
tangent stiffness solutions for plane strain and axially-symmetric (and, presumably, general 3-D) 
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type problems can, with certain mesh types, exhibit much too stiff a response in the fully plastic 
range. Nagtegaal et al. [ZO] have examined the problem in the elastic-plastic context; there is 
also experience in computation with completely incompressible material models (e.g., rubber 
elasticity, Oden [ 5 ] ), and recent results in this as well as the near-incompressible case are sum- 
marized by Argyris et al. [ 2 1 I . 

Following [ 201, it is pertinent to consider first ideally-plastic Prandtl-Reuss materials, analyzed 
within the small strain formulation. In this case the exact solutions to boundary value problems 
exhibit a limit-load (e.g., Prager and Hodge [ 22]), at which unlimited deformation can occur 
without further load increase. But it was shown [ 201 that the discretized finite-element equations 
(assuming precise integration in forming K, a point to which we return) admit a limit load only 
if the mesh can deform in a pointwise incompressible manner. This is a strong restriction and var- 
ious examples f 20, 2 1) show that many standard meshes cannot deform in this manner, or can 
do so only by exhibiting artificially constrained deformation patterns. For example, with refer- 
ence to figure la, a rectangular mesh of singly skewed constant strain triangular elements can de- 
form incompressibly in plane strain only if every element marked with an asterisk (*) in the 
figure deforms with the same values of DX, and D,,, . 

As shown by numerical examples 1201, the difficulties are not restricted to the ideally plastic 
case, and overall structural stiffness tends to be overestimated in the strain hardening range. There 
are two kinds of resolutions of the problem: one may choose elements that are not overly con- 
strained in incompressible deformation; or one may modify the basic variational formulation of 
(2) or (13) in a manner appropriate to the near incompressibility. Concerning the first approach, 
it was shown by NagtegaaI et al. that meshes made of quadrilaterals, each composed of four con- 
stant strain elements formed by the crossing of diagonals as in fig. lb, are free of such constraints. 
At least, this is true for small-strain analysis or for updated finite deformation procedures in which 
the center node is always at the crossing of diagonals; the element will not necessarily be suitable 
at finite deformations if the center node convects with the material and fails to remain at the in- 
tersection of diagonals [ 2 1 I. 

w 4 

0 

2 

Y 

I 

3 

i-x 

(a) (b) 

Fig. 1. (a) Example of ~compre~ibi~ty constraint for plane strain deformation of a mesh of constant strain elements 1201. AH 
the elements labelled with the asterisk * have the same stretching rates DXX and ‘)uv 04 Quadrilateral of four constant-strain tri- 
angles formed by crossing diagonals is constraint-free [20, 211. 



Table 1. Evaluation of plane strain elements for use with incompressible or nearly incom- 
pressible material models, from [ 201. The last column gives the ratio N/C of degrees of 
freedom to incompressibility constraints for indefinitely extended meshes of the element 
types shown. 

/ Ratio 1 Ratio 

I Element Type 
Constraints 1 Nodes IDeg.Freedo 
Element 1 Elements IConstraint 

_a constant strain 
triangle 

1 112 1 

la h-node 
quadrilateral 

Ii 
Lb. 

linear strain 

i? triangle 
3 2 413 

K-7 8-node quadrilateral 1 6 to 8 1 3 / 1 to 3/4 

A more general procedure to evaluate the suitability of a mesh of, e.g., some indefinitely ex- 
tended array of a given element type is to determine the ratio n/c, where II is the number of de- 
grees of freedom per element in the assembled mesh and c is the number of constraint equations 
per element necessary to enforce incompressibility. If n/c > I the mesh is suitable, but not other- 
wise. Table 1, adapted from [201, shows the ratio n/c as its last column for a variety of elements 
for plane strain analysis. The ratio for constant strain triangles increases to 4/3 when these are 
arranged as in figure 1 b, since one of the incompressibility constraints for the element array be- 
comes irrelevant in that case. 

A more versatile approach, applicable e.g. with elements such as the four-noded quadriIatera1 
in table 1 that have inadequate R/C ratios, is to found the unite-element equations on a modified 
variational principle given by Nagtegaal et al. [20] and analogous to that of Key [23] for elastic 
materials. The idea is to let displacement rates X define only the deviatoric part of D, i.e.. 

D’ = 3 [(ax/&~) + (&+/ax)’ ] ~- 1 tr(G/ax), (30) 

and then to regard k and the dilation rate Cp as independently varied parameters related in a 
Lagrange multiplier sense. For example, the small strain formulation based on (13) becomes, in 

materials for which tr b = 3~ trD (where K is a bulk modulus), 

s {[ci’ : 6D’ + Kq%(tr &?/‘&x)] + fc(tr &x!/ax - t&l&j} dV= j=& * Sit dV + j“* 6;i: dS (311 
V V s 

for arbitrary S$ and 6X, with associated 6D’. In fact this principle, as well as its generalization to 
arbitrary deformations 2201 by modification of (3 1) in the spirit of (2), can be put in the form 
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6 (functional of i and c$) = 0 when the forcing rates are fully prescribed or conservative in origin 
and when t*’ : 6D’ (or 4’ : 6D’ in the small strain formulation) can be written as SU(D’) for some 
scalar “rate potential” C&D’); such a rate potential does exist when we adopt the form of the 
Prandtl-Reuss equations given previously. 
. Plainly, the variational expression (3 1) when implemented for a continuum implies that 

4 = tr(&/ax), and when this is substituted into (3 l), (3 1) reduces to (13). In a similar manner, 
when the variational principle is implemented within the finite-element scheme, it is possible to 
solve universally for 4 in terms of the nodal displacement rates. This is done by requiring that the 
adopted interpolations of 6 (not necessarily continuous at element boundaries) and i satisfy that 
portion of (3 1) which follows from arbitrary Si: 

SK&id V = JKtr(ai/ax)&jd V. 
V V 

(32) 

As discussed in [ 201, the guideline to choice of an interpolation for 4 can be phrased in terms of 
the reduction of incompressibility constraints that is necessary to make a given element type 
suitable from the standpoint of the n/c ratio. Thus, for example, in the case of 4-noded quadri- 
lateral elements as in the 2nd line of table 1, and also for their 3-D generalization as 8-noded 
“bricks”, it suffices to interpolate @ as a constant within each element. Hence, the last equation 
gives, when K is uniform, 

6 = $tr(ax/ax)dV= (tlBiijdV)ti,, 
V V 

where now the integration extends over a given element and defines 6 within that element. When 
this expression for 6 is substituted into (3 1) and the regular finite element procedure is imple- 
mented, we obtain overall stiffness equations identical to (17), or to (26) in the formulation for 
arbitrary deformations, but with the expression (18) for K changed to 

K= _/-$:L :BdV. 
V 

(34) 

Here the effective strain-displacement matrix 5 is given within each element by 

Biik = Bijk - f GiiBppk + f 6ii f SB,,, dV. 
V 

(35) 

That is, the deformation rate fi defined by i. zi reproduces precisely the deviatoric part of D but 
does so for its volumetric part only in a volume average sense, uniform within each element. The 
modified variational principle when implemented for the type of element considered is therefore 
Equivalent to an ordinary finite element formulation, but based on a strain-displacement matrix 
B which effectively finds the volume average dilation in each element and uses this as the uniform 
dilation for the element. 
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Fig. 2. Net section stress versus displacement for plane strain tensile loading of an ideally plastic bar with deep external cracks. 
Regular 4-noded isoparametric elements overestimate stiffness; “constant dilation” isoparametric elements refer to those used in 
the procedure of Nagtegaal et al. [ZO] for nearly incon~pressible materials. 

Indeed, we have recently noted that the dilation at the center of a 4-noded plain strain quadri- 
lateral in isoparametric coordinates is in fact the volume-average dilation for that element. Thus, 
the above approach can be implemented efficiently in the plain strain quadrilateral by using the 
center dilation as the uniform dilation, i.e., giij equals Biii at the element center. This is entirely 
equivalent to Hughes’ [ 241 under-integration method for nearly incompressible problems, as used 

earlier in a more ad hoc manner by Fried [ 251 and Naylor [ 261. Indeed, for the general axis- 
symmetric quadrilateral no point can generally be found for which the local dilation is equal to the 
volume-average dilation for the element. Thus averaging the dilation over integration stations as in 
the procedure of Nagtegaal et al. 1201 would seem to be the most straightforward technique. 

Figure 2, taken from [ 203 , shows the small-strain solution for net stress, (INET. versus end-to-end 
displacement, 6, for the plane strain tensile loading of an ideally plastic bar with deep double edge 
cracks. Solutions were carried out for two identical meshes of isoparametric (4-noded quadri- 
lateral) elements. One mesh used regular elements, i.e., with no special provisions for near-incom- 
pressible deformation, and gave a load-displacement curve that is badly in error in the fully plastic 
range, rising well above the theoretical limit load of uNET= (2 + ~)0,/44 = 2.97 u0 as shown in 
figure 2. (Here CJ~ is the tensile yield stress.) The other mesh used the “constant dilation” scheme 
within each element, as outlined above, and is seen to give very reasonable results in relation to 
the theoretical limit load. 

For fully plastic analysis of materials which are modelled as completely incompressible, an ef- 
fective although specialized analysis procedure has been developed by Needfeman and Shill 1271. 
This is intended for 2-D meshes of quadrilaterals of the type in figure lb, and in which the quadri- 
laterals extend in strips from one boundary (possibly internal) to another of the body. The direct 
elimination of nodal displacements to enforce the incompressibility constraint can then be im- 
plemented efficiently in formulation of the stiffness matrix. Once a convergent solution for u and 
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hence for the deviatoric stresses u’ is determined, tra is obtained in their method by direct appli- 
cation of the virtual work principle. For general meshes which are capable of deforming incom- 
pressibly, a similar determination and imposition of appropriate constraint equations is possible 
in principle, and Argyris et al. 1281 discuss the formulation of the constrained stiffness equations. 
However, these authors caution that in the general case, unexpected linear dependencies between 
constraints may arise. For example, it is just a linear dependency of this kind which makes the 
quadrilateral of constant-strain elements, arranged as in fig. lb, suitable for incompressible solids, 
whereas general constant-strain element meshes are not [ 20, 21 I. 

5. Elastic-plastic crack mechanics 

Rice has given a recent review of elastic-plastic fracture mechanics [ 29 ] and also a discussion 
of some problem areas for which finite-element solutions seem well-suited to aiding the develop- 
ment of crack growth criteria [ 301. Here we restrict ourselves to a discussion of plane strain 
crack tip deformation fields due to monotonically increasing tensile (Mode I) opening loads. The 
aim of the studies is to contribute to the understanding of the onset of crack growth, and of the 
process of stable crack growth, in ductile structural metals. 

As background for the computational results to be reviewed in subsequent sections, we men- 
tion the following points which have emerged from various analytical and nume~cal studies on 
elastic-plastic fields at a plane strain crack tip (e.g., reviewed in [29] and based on work in 
[3lL43, 17, IS]): 

(i) For an elastic-ideally-plastic material undergoing contained plastic yielding at a crack tip, 
the limiting stress distribution as r + 0 (r is distance from the crack tip) is, according to analyses 
within the small strain fo~ulation, identical to that given by the Prandtl field of slip lines, 
figure 3. (In figure 3, r0 is the yield strength in shear; r0 = o,/fi) This result is suggested by 
asymptotic studies of the crack tip field [ 33, 35-37, 171 and confirmed by various numerical 
solutions 139, 17, 18,421. Notable features of the field are that stresses ahead of the crack are 
elevated well above the yield level in uniaxial tension and that plastic strains, while bounded di- 
rectly ahead of the tip, become singular within the centered fan regions where slip lines focus. 
The near-tip details are modified by actual large geometry change effects [38], as will be dis- 
cussed subsequently. 

Within the centered fan sectors the shear strain e,, becomes unbounded in the form, for 
monotonic loading of a stationary crack, 

(here F(0) is a function which must be determined by a full solution) and the associated displace- 
ment field is such that there is a discrete opening displacement, 6,, between upper and lower 
crack surfaces at the tip. Details of the crack tip shape on the scale of 6, can be resolved only by 
appeal to the large geometry change analysis. 

In contrast to the situation for contained yielding, the near tip fields of stress and strain asso- 
ciated with fully plastic, plane strain limit-load solutions for ideally plastic materials are strongly 
variable from one specimen geometry to another [ 3 1, 40,43 I. Slip line fields for bending and 
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ib) 

Fig. 3. Prandtl slip line construction provides the limiting 

stress state as r - 0 for contained plane strain yielding of an 

ideally plastic material. 

Fig. 4. Fully plastic plane strain slip line fields for: (a) cdge- 

cracked bar in bending, (b) center-cracked bar in tension. 

center-cracked tension geometries are shown in figure 4. The edge-cracked bar subjected to bend- 

ing has a near tip stress state very similar to that of the Prandtl field in figure 3, but deformations 

concentrate along a single slip line emanating from the crack tip. The center-cracked bar in plane 
strain tension has a stress field of very much reduced triaxiality in comparison to that of the 
Prandtl field, the maximum stress ahead of the crack is 1.15 o0 rather than 2.97 uO. Also, defor- 
mations concentrate along slip lines emanating from the tip at +45” as shown. Yet another ex- 

ample is provided by the tensile bar with deep double edge cracks, shown in the insert in figure 2. 
This has the Prandtl field as its stress state adjacent to the crack tip and, in contrast to the other 

two cases, distributed plastic straining with a l/r singularity continues within the fan region at 
limit load. 

(ii) When the material is modelled as strain-hardening in the plastic range according to a power 
law (i.e., T - y f or p ure shear, where T is shear stress and y shear strain), solutions within the 
small strain formulation exhibit characteristic “HRR” (references [35, 361 ) stress and strain sin- 
gularities of the type 

eii + r -ll(l+N)~ji(e)’ uii + r -Nl(l ‘N’Gii(@, (37) 

and the separation 6 of upper and lower crack surfaces very near the tip varies in proportion to 
#vI(‘+N). The f unctions Fii(e) and Gii(0) are determined apart from a multiplicative amplitude 
factor, which can be determined in terms of the crack tip J integral; see next topic. Now, in con- 
trast to the ideally plastic case, the characteristic singular fields are thought to be valid at the crack 
tip, again within the small strain formulation, irrespective of the extent of plastic yielding. 

(iii) Within the approximation of the “deformation” theory of plasticity (e.g., a theory in 
which (I is considered to be the function of E that would be obtained by integration of (lo), with 
D = i, for proportional stress increase) it is possible to characterize the severity of the crack tip 
field in terms of the J integral 133, 341. This is defined in terms of a contour r which begins on 
the lower crack surface and ends on the upper, and is 
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J = Jwwn, -n*a~au/ax,lds, (38) 

where ds is arc length, n is the outer unit normal to r, u denotes the field of displacement for pur- 
poses of this discussion, x1 is the direction of (incipient) crack growth, and 

W(a) = joiideii 
0 

(39) 

is considered to be a deformation-path independent function of E, consistent with the deforma- 
tion-plasticity (like non-linear elasticity) constitutive model adopted. For deformations of arbi- 

trary magnitude [45], u should be replaced by nominal stress C, r and n measured off in the un- 

strained reference configuration, xi replaced by Xi and W interpreted as the stress working per 
unit reference volume. 

The integral is path independent and thus if I’ is shrunk onto the crack tip, J can be interpreted 

as some integrated measure of the strength of the crack tip singularity. Thus, the amplitude fac- 

tor for the HRR singular fields above can be expressed in terms of J and lead to the forms [35, 361 

gij (0 ; N), (40) 

where r. is the yield strength in shear, G is the elastic shear modulus, and fij, gij are certain uni- 

versal dimensionless functions of 8, dependent on the hardening exponent N as a parameter. In 
the limit N + 0, corresponding to ideal plasticity, gij corresponds to a stress distribution identical 
to that of the Prandtl field in figure 3. 

Since J is path independent, for cases of contained yielding the integral can be carried out re- 
mote from the crack tip in material that is still elastic. Indeed, in the limit when the yield zone is 
small in size compared to crack length and other dimensions of the body (i.e., the “small scale 
yielding” limit), J has the same value as for a purely elastic material, and this is [ 33, 341 

J = (1 - v2)K2/E, (41) 

where K is the Irwin-Williams elastic stress intensity factor, defined so that on 8 = 0, 
uee + (2rrr)-l/’ K as r + 0 according to the linear elastic solution. For larger scale yielding, various 
methods for determining J can be based on its compliance interpretation, as discussed in a subse- 
quent section. 

To the extent that the J-characterized singular fields as in (40) actually exist and dominate the 
total deformation field over size scales comparable to those over which fracture micro-mechanics 
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are active, a criterion for the onset of crack growth can be phrased in terms of the attainment ot’ 

a critical value of J. The approach has been discussed widely in the recent experimental literature 

(e.g., [46--481) and is generally considered to be valid provided that certain minimum specimen 
dimensions are exceeded. It is i~nportant to determine the limits of such a cl~aractcrizati~)Il of the 

onset of growth and the following paragraph as well as the next section will give some results on 

this. 
(iv) A variety of finite-element studies have been carried out [ 39, 17, 18.42 I within the small 

strain formulation to check and amplify the results noted above. These have etnployed elements 

adjacent to the crack tip which were capable of duplicati~lg singular strain behavior of the antic- 
ipated dependence on r, although the solutions were for the most part carried out before the prob- 

lems associated with nearly incompressible material’s response were identified and resolved. The 

main concern of published solutions has been with the small scale yielding limit, in which the 
crack is viewed as semi-infinite with asymptotic approach to the characteristic Irwin-Williams 

field at large Y. In practice, the elastic field is imposed along a circular arc of radius large com- 

pared to the maximum extent attained by the plastic zone. We take the work of Tracey I1 8 I. as 

modified and re-interpreted in some details by Parks 1421, as representing the most definitive 01 

this type of analysis. First, within the small strain formulation, J is found to be effectively path 
independent within the plastic zone. Its values for contours passing through the singular elements 
at the crack were found by Tracey [ 1 S] to range from 96 to 98% of the far-field value? effectively 
(411, for hardening exponents N = 0.1 to 0.3. Tracey reported a value of 80% at the tip for his 

ideally plastic case (N = 0). But a different near tip element was used in that case and Parks 1471 

found a comparable loss in value of J at the tip when the same element was used in a numerical 
solution for deformation plasticity theory, in which case J should be rigorously path independent. 

This implicates the element and suggests, in accord with many other studies (e.g.. [491), that .I is 
very close to path independent, at least within the small strain fornlL]latiotl. 

Many other details of the crack tip field are available. For example, figure 5 from Tracey [ 181 

shows the tensile stress directly ahead of the crack tip versus distance from the tip for small 
scale yielding. In this case Q~,,,,/o, is a function of x/(K/o,)*. The solid curves represent the finite 
element results, whereas the dashed curves with which they seem to agree asymptotically as 
Y + 0 are the HRR predictions of (40). 

The elastic-plastic boundary for small scale yielding is found to have a “butterfly” shape. For 
the ideally plastic case Rice and Tracey [ 171 report a maximum plastic zone radius, T~,,,~~~, and 
plastic zone radius directly ahead of the tip, rp,O, of 

(42) 

The maximum radius occurs at 8 * 7 1”. Larsson and Carlsson [41] show that solutions for vari- 
ous specimen configurations may deviate rapidly from this small scale yielding solution, even at 
K levels well below the limits set by ASTM standard procedures for determining consistent experi- 
mental K values. These workers show that a two term characterization, in terms of K and the 
second term in the Irwin-Williams series, representing a uniform stress acting parallel to the crack 
at its tip, can resolve the difficulty. 

Rice and Tracey [ 171 also give an expression for the crack tip opening displacement, but it is 
now thought, based on the studies by Parks [42], that this value may be low by approximately 
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Fig. 6. Slip line constructions for fields near a progressively 
blunting crack. The fan C of fig. 3 becomes non-centered 
and focuses into regions D as shown. (a) Smoothly blunting 
tip as analyzed by Rice and Johnson [38]. (b) Blunting with 
vertices retained on notch root (McClintock [40] and 
McMeeking [44] ). 

Fig. 5. Stress state near a plane strain crack tip for small 
scale yielding (from Tracey [ 181, based on small strain for- 
mulation). The solid curves are based on Tracey’s finite ele- 
ment solutions with singular crack tip elements. Results are 
shown for several values of the hardening exponent N in the 
power law relation r = -yN in the plastic range. Dashed lines 
represent the HRR singularity ([35, 361 and eqs. 40) as 
plotted in [ 381. 

20% and hence the best estimate of 6, for the ideally plastic case is 

6, = 0.59 K=/Eo, = 0.65 J/o, (43) 

for small scale yielding. Rice [43] evaluates ds, and dJ in terms of increments of load-point dis- 
placement from slip line solutions for the various fully plastic cases shown in figures 2 and 4, and 
finds values of dG,/d(J/o,) of 0.67,0.5 1, and 0.87 for the tension specimen with deep double 
edge cracks (figure 2) bend specimen (figure 4a), and center-cracked tension specimen (figure 
4b), respectively. On the other hand, if strain hardening is considered and is strong enough to give 
a one-parameter type of near tip field, there should be a unique relation between S, (appropriately 
defined; see [ 18, 50, 5 1 I > and J/o,, irrespective of specimen type and extent of yielding. 

(v) Solutions obtained within the small strain formulation suggest a finite opening of the crack 
at its tip and unbounded strains. To fully resolve the crack tip field on the scale of 6,, it is neces- 
sary to do a finite strain analysis. Further, the scale involved is a very small fraction of the maxi- 
mum extent of the plastic zone. For example, from (42) and (43), S, = 4(o,/E)r,,,,, which is 
typically on the order of 1% of rp,max. This small size of 6, means that great care must be taken 
in mesh layout to obtain an accurate finite element solution. On the other hand, it is precisely 
the smallness of tit/rp,,_ which makes possible the approximate analysis of large tip opening by 
Rice and Johnson [381 on the basis of slip line theory. Essentially, the result is that the near 
tip Prandtl field of figure 3 becomes slightly non-centered at the tip so that locally, over the size 
scale of 6,, the field looks like that in figure 6a or 6b. The crack tip shape is non-unique and solu- 
tions can be found to the slip line equations corresponding to a variety of geometrical shapes, as 
noted by McClintock [dol. For example, Rice and Johnson [38] obtained a solution for the 
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smoothly blunted shape as in figure 6a, and McMeeking [44J has recently presented solutions fol 
shapes with vertices as in rib. The latter type of solution involves the motion ol‘ originally interior 
points of the body to the surface and defor~nation kinematics of this type cannot bc l~a~~~llcd 
readily by finite elements. 

There are two main effects of the large, local crack tip geometry changes. I;irst, the stress tri- 

axiality necessary to the significant elevation of stresses above uO, as in figures 3 or S, cannot be 
maintained, and there is, effectively, a maximum concentrated stress level which can be achieved 

in the material. Second. the non-centering of the Prandtt fans serves to focus dcforrnatioI1 in- 
crements into the zone directly ahead of the crack, so that the regions marked D in figure h under- 

go very large strains, of order unity. Indeed, it is known from many experimental studies (e.g.. 
summarized in [29] and [ 511 that the onset of ductile crack growth by the microvoid mechanism 

can generally be explained as the attainment of a condition whereby the large strain region D has 
grown to a size comparable to the spacing of the void-nucleating particles. Thus, for the ductile 

crack growth process to be characterized by J, it is generally to be expected that the stress and de- 
formation fields over size scales comparable to 6, should correlate with ./. 

6. Finite element analysis of large plastic opening at a crack tip 

According to the previous section, an analysis of the finite strain region at a crack tip is neccs- 
sary to establish limits for validity of the J-integral crack growth criterion, and also to describe the 
mechanical environment in which ductile fracture processes take place. 

McMeeking 1.5 11 addressed this near tip finite strain analysis for the small scale yielding case by 
using the very fine mesh of 4-noded q~~ad~lateral isoparanletric elements shown in figure 7. The 
finite element method was formulated as described earlier for deformations of arbitrary magnitude. 
using the Prandtl-Reuss material model of equations (1 1) and (12). Further, the modified varia- 
tional principle of Nagtegaal et al. [ 201 was used to allow for nearly incompressible material rc- 
sponse, i.e., the constitutive portion, K, of the overall stiffness (equation 2 1) was formed accord- 
ing to the method of equations (34) and (35). 

In order to allow a maximum concentration of elements in the plastic region. Tracey’s 118 1 

solutions for small scale yielding. based on the small strain formulation, were used in a manner 
described more fully by McMeeking [ 5 1 ] to set displacement boundary conditions on the outer 
radius in figure 7. In this way Tracey’s displacement results even well into his plastic zones could 
be used for boundary conditions. As long as the perturbations due to finite strains in crack tip 
blunting are contained in a region well inside the outer radius of McMeeking’s mesh (recall the 

smallness of 6 t/~p,,nax ) the solution obtained is valid for small scale yielding. 
The McMeeking calculations began with a finite crack radius as shown in figure 7. and the 

crack was opened up near the tip to at least 5 times its original opening in the various cases 
analyzed. When the crack tip opening was more than double the original opening, the solutions 
for colltinllil~g load increments were found to settle down to a steady state in which incrertlents 
of all quantities with length dimensions (e.g., crack tip opening, plastic zone size) scaled with in- 
crements of J/a,, where ,I is computed on contours remote from the tip. That is. the solution ap- 
peared to become independent of the initial root radius size, and this observation enabled 
McMeeking [ 5 1) to interpret and plot results so as to represent the solution for an initially sharp 
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SECTION A 

SECTION B 

Fig. 7. Undeformed configuration of finite element mesh for 
large strain anatysis of crack tip blunting by Mc~eeking [ 5 11 
Section B fits within A, and boundary conditions based on 
[17, 181 are applied at the outer radius of A. 

5 

4 

? 

Qpo 

- STRESS u&/u0 

---- PLASTIC STRAIN 

,6=0 

N = 0.1 
k?= 0 (FROM SLIP LINE SOLUTION 

t \ BY RICE 8 JOHNSON) 

IL. 

25 

.20 

.I5 

cp 

.I0 

.05 

0 
0 2 4 6 8 IO 

R/b 

Fig. 8. Result from McMeeking’s [5 11 fmite strain analysis of 
crack tip blunting: “true” stress CQ@ and equivalent plastic 
tensile strain P near the crack tip for power-law hardening 
material with N = 0.1 and UO/E = l/300. Distance R is mea- 
sured from the tip in the undeformed state; b is the current 
opening of the originally semi-circular crack tip, and has in- 
creased by a factor of 5 or more in the calculation. Strain dis- 
tributions agree well with those of Rice and Johnson [ 381. 

crack. The obvious difficulties in starting the calculation with an initially sharp tip could thus be 
avoided. 

McMeeking reported crack tip shapes which were similar to those found by Rice and Johnson 
[ 381 based on slip line theory and corresponding to the smooth type solution shown schematically 
in figure 6~. Recall that a solution of the type in figure 6b cannot be duplicated by finite elements. 

For the case E/u0 = 300, N = 0.1, the true stress uo8 and equivalent tensile plastic strain ?’ 
from the finite element results near the blunted crack tip have been plotted in figure 8 against dis- 
tance (measured in the undefo~ed state) from the crack tip. Distance has been normalized by b, 
which as indicated by the insert, is effectively a measure of the crack tip opening. It corresponds 
to the displacement of the point at the top of the semi-circular crack tip in figure 7. The results 
from many of the later increments of the calculation, after attainment of steady state, were 
plotted, and the smooth curves in figure 8 could be drawn through them. Far from the tip, the 
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stresses agree with the small scale yielding results of Tracey [ 18 1. As in Tracey’s results. figure 5. 
the stress rises due to increasing triaxial constraint as the tip is approached. But the triaxiaiity is 

limited by the free surface of the crack, so that the stresses fall off towards the crack tip. an of- 

feet noted in [381. The result is the peak of the uoB stress in figure 8, which coincides with a 
tnaxinlum for the triaxial stress. That the stress elevation near the tip is indeed caused much more 

by triaxiality than by hardening can be seen from the rather small equivalent plastic strains around 

Y = 2h. The equivalent plastic strain is high only very close to the tip surface where the openins 

must be ac~o~nmodated by stretching. This does lead to elevation of flow stress, but so ~10s~ tr) 

the tip that there is no significant effect at the centroids of the elements nearest the tip when 
N = 0.1. It should be noted that if the flow stress 0 eventually saturates to a constant value at 
large strain, then the upturn of stress near the tip could reach only limited levels. The results I5 1 -I 

for stress and plastic strain in the other cases E/o0 = 300, N = 0 and N = 0.2 and E/o0 = 100. 

N = 0 are similar to those plotted in figure 8 with peak stresses increasing and lying closer to the 

tip (in terms of R/b) with increasing N The peak stress uoO on .Y = 0 in both cases with :V = 0 is 

approximately 30, as predicted from slip line theory, figures 3 and 6. Plotted against R/h. the 
equivalent plastic strains are almost independent of material properties for the range of uO/l:‘ and 
N considered, and agree reasonably well with the slip line predictions of Rice and Johnson I38 1 

for a non-hardening material. This means that the strain-based approximation for hardening mate- 
rials developed by Rice and Johnson is relatively accurate, especially considering how inexpensive 
it is to calculate. 

As suggested earlier, the crack tip opening displacement rises linearly with the value of ,1/o, 
computed on a remote contour in the su~oLlnding elastic field. The coefficient in the linear rcla- 
tionship is the proportionality constant for the opening, 6,, of an initially sharp crack. in view of 
the insignificance of the original tip shape to the later results. There is, however, ;I degree of am- 
biguity in the exact value of the crack tip opening displacemen& which is illustrated by the curved 

tip shape shown in the insert of figure 8. An appropriate definition might be the opening at the 

point half an opening back from the very tip of the crack. Using this definition. the results for the 

crack tip opening of an initially sharp crack conform well to 

6, = 0.58 to 0.65 Jfuf&, (441 

where, fotlowing Rice’s [431 suggestion for unifying the results 

~fknv = 0 
,/!? N N ..___I_ - 

@ -1 2(1 + V) (1 +N)o()/E . 
(45) 

The 0.58 applied to the lower strength material with E/u0 = 300 and 0.65 arises for the higher 
strength material with E/a0 = 100. 

Path integral calculations of J on contours partly in the crack tip plastic zone of the finite ele- 
ment calculations indicate that J is path independent where the plastic strains are small. Close to 
the tip, on contours less than about 4b from tip in the undeformed configuration, there is quite 
strong path dependence of J. This is illustrated in figure 9 where contour values of J, normalized 
by J_ (the remote J value), are plotted against a distance representative of how far the contours 
are from the tip. The results seem to indicate that J + 0 as R + 0, a situation that also arises near 



JR. Rice et &/Recent finite element studies in plasticity and fracture mechanics 431 

0 

0.2 y I + 

CONTOUR FOR 
,’ CALCULATION 

I’ 
: 

OF J. (R IS THE 

: 
: REPRESENTATIVE 

_------- b ---+-THE CONTOUR 

-’ 

‘\ DISTANCE OF 

i FROM THE NOT0 
: ,’ : TIP WHEN 

‘\ /’ UNDEFORMED 1. 

‘\ I’ 
k___/ 

DEFORMED CRACK SURFACE 

0.11 
.05 

0 I I I I I I I I I I I I 

0 I 2 3 4 5 6 7 8 9 IO II I2 

R/b 

Fig. 9. Plot of I integral ~computed as a contour integral) versus distance of the contour from the tip as measured in the unde- 
formed state [S 1, 521. 

the blunting crack tips of a fully plastic, deeply double edge cracked panel analyzed by the slip 
line method [ 521. This case has features of triaxiality and intense stretching in a near-tip zone 
that are similar to the situation in small scale yielding. The path dependence in both cases seems 
to arise from the severe non-proportionality of straining that occurs in the near-tip zone. The zone 
of significant path dependence for small scale yielding lies within a radius of approximately 

12(001E)5,,maX where Y~,,,.,~~ of (42) is the maximum plastic zone extent. This radius typically lies 
between 2 and 10% of rp,max, and the effect seems to be detectable only when the significantly 
non-proportional straining paths associated with finite geometry changes are incorporated in the 
analysis. Thus, J is effectively path independent in the region within which small strain theory 
applies, and its value on contours of radius greater than some small fraction of rp,mox seems to 
provide a characterization of the near tip field. 

We have commented on the question of whether a field similar to that for small scale yielding, 
and parameterized in terms of J, continues to exist near the crack at large scale yielding. For 
example, the slip line solutions shown in figure 4 suggest that such will not be the case within the 
non-hardening idealization. As remarked, the relevant size scale over which a J-characterized field 
must dominate will typically be of the same order as the size of 6, at the onset of ductile crack 
growth. Thus, it is appropriate to examine the finite deformation zone very near the crack tip to 
resolve the issue. This has recently been done by McMeeking and Parks [ 531, who apply the finite 
element techniques mentioned previously to edge-cracked bend (ECB) and center-cracked panel 
(CCP) plane strain geometries, i.e., the same geometries as in figure 4. 

McMeeking and Parks [ 53 1 note that if J is to characterize the near tip field, then the stress 
and strain distributions very near the crack should be identical to those for the McMeeking [ 5 1 ] 
small scale yielding solution, when distance is plotted in terms of ~~(J/u~) in all cases. McMeeking 
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Fig. 10. Stress directly ahead of crack and equivalent plastic strain along line at 45” with tip, for fully plastic, finite deformation 
analysis by McMeekmg and Parks [ 531 of edge-cracked bar (fig. 4a) in plane strain bending. The solid and dashed lines show the 
corresponding results, with distance normalized in all cases by J/GO, for small scale yielding. 

and Parks used a mesh which also had an initially semicircular notch root of diameter L/5000, 
where L is the untracked ligament dimension in figure 4; L =: w - a. In results to be shown the 
specimen was deformed sufficiently to increase this diameter at the crack tip by factors in excess 
of 25. Their results for stress oYY directly ahead of the crack and equivalent plastic strain $’ along 
a line at 45” with the crack line are shown in figure 10 for a deeply edge-cracked bar in plane 
strain bending. The material has o,/E = l/300 and N = 0.1. All the numerical data shown by the 
points (open for stress, solid for strain j corresponds to the fully yielded range. The solid and 
dashed curves are the corresponding results from the McMeeking [ 5 1 I small scale yielding solu- 
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Fig. 11. Stress directly ahead of crack tip for centercracked 
panel (fig. 4b) in plane strain tension (from f 5 3 ] 1. Solid 
curve for small scale yielding. 

Fig. 12. Strain along 4.5” line from tip for center-cracked 
panel in plane strain tension (from (531). Curve shows result 
for small scale yielding. 
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tion. The agreement with them is very good, and the results would seem to support the use of J 
as a unique crack tip characterizing parameter over a wide range of yielding conditions in this case. 

On the other hand, as suggested by the comparison of the slip line field in figure 4b with that 
of figures 4a and 3, the situation is found to be very much different for the center-cracked panel 
subject to tensile loading. The stress distribution at various J levels (the last of which just corre- 
sponds to the onset of general yielding of the ligament) is shown in figure 11 and the strain in 
figure 12. In this case it is seen that already at well-contained yielding there are noticeable differ- 
ences in the (T,,,, distribution and also, although smaller, in that for ?’ . Thus, in this case the re- 
strictions on specimen size for correlation of the onset of crack growth in terms of J are very 
much more stringent than for the bend specimen. 

7. Virtual crack extension for determination of J 

As we have seen, within certain limits the J integral provides a one-parameter characterization 
of the near tip field, and a criterion for the onset of crack growth can be phrased in terms of it. 
Thus it is important to develop techniques for efficient determination of J, not only for the usual 
2-D idealizations of test specimens but for the 3-D crack configurations of actual test specimens 
and flaws in structural components. 

In two-dimensional planar configurations, the contour integral definition of J, eq. (38) can be 
readily computed from the results of finite element solutions. The effective path independence 
permits the evaluation on a contour (or contours) remote from the crack tip itself, and accurate 
results can thus be obtained with reasonably coarse meshes. However, in three-dimensional con- 
figurations, plane strain conditions are only asymptotically approached at the crack front, so the 
line integral definition of J may be utilized only very near the tip. In order to obtain sufficiently 
accurate values of the integrand there, a detailed mesh is necessary, and for three-dimensional 
problems the prohibitive costs of very fine near crack front meshes render the line integral defini- 
tion of J unusable. 

An alternative approach by Parks [ 54, 551 based on the compliance interpretation of J seems 
better suited for extensions to efficient three-dimensional analysis. Following [ 54, 551, we present 
the essentials of the method and discuss some of the results which have been obtained. 

For the present, we limit consideration to a cracked planar body of unit thickness and a con- 
stitutive relationship of the total strain or deformation plasticity theory type (i.e., non-linear 
elastic), although each limitation will subsequently be relaxed. In such cases, as Rice [34] has 
shown, the J integral can be interpreted as the negative of the rate of change of “potential energy” 
a with respect to crack length, 1: 

J=-2 

load 
(46) 

(n should be regarded as being defined by monotonic loading of a family of bodies that are iden- 
tical except for crack size, consistent with the deformation plasticity model [ 34,46, 57.1 

From any finite element solution for the deformations and stresses in this problem, we can 
readily construct an approximation to the potential energy as 



vr= CJWdV- ut *P(y) = c W(u, y) -. ut P(y) = n(u, y), (37) 
v 

where the summation is over the elements and y is the vector of nodal point coordinates. Note 
that P and W are dependent ony through the shape functions. 

Now consider the virtual crack extension indicated in fig. (13) by incrementing by a small SI 
the x-coordinates of all nodes on and within an interior contour I’* which surrounds the crack tip. 
The variation in potential energy which this virtual crack advance occasions is 

677 = 6y’ * p 
an + 6u’ * -- 
au * 

(48) 

But because the original finite element solution was at equilibrium, the vector &n”y, zr)/au 
vanishes, so that regardless of the value of the vector Su’, only the first term in (48) must be re- 
tained. 

Now by (46), 6~ = -J&l so that 

(49) 

If loading is accomplished other than by body forces or by loads acting on the crack surfaces 
within the part of the mesh distorted by crack extension, V/ay vanishes and we need only cal- 
culate changes in W over those elements between contours I’* and r, which are distorted in the 
virtual crack extension (fig. 13). 
_ The procedure is simplest to illustrate for meshes of constant strain triangles, in which case 

W = WA where A is element area. The functional dependence of A on nodal coordinates y is 
straightforward to determine. Further, 

where B =: B(V) is the strain-displacement matrix. Actual derivatives aA/ay, aB/ay, and aP/ay are 
cumbersome to form and it is simplest to evaluate them by numerical differencing [ 54, 55 I . 

For 3-D configurations in which J may vary along the crack front, the local J value is defined 
by 

tin = - +j- J(s) 6&s) ds, (Sl) 
crack 
front 

where 61(s) is the local crack front advance associated with the individual sets of nodal perturba- 
tions. By separately advancing nodes along the crack front, arc-length weighted J values can be 
computed along a general three-dimensional crack front. 

As to the other restriction placed on the development at the outset, deformation plasticity, 
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Fig. 13. Illustration of virtual crack extension in 2-D grid, with translation by 61 of all nodes on and within the contour r,-, (from 
Parks f 551). 

this too can be relaxed by defining a possibly loading-path dependent W as the integral of (39). 
Then, the virtual work of stress acting on the virtual strain increment due to nodal advance can 
again be inserted in (50) for J evaluation [ 54, 551. Of course, in this case there is no assurance of 
path independence, even in the continuum. 

It is noted that (49) is a generalization of the “stiffness-derivative” method used by Parks [ 561 
in the special case of linear elasticity where the strain energy has the quadratic form 
1/2u’X(y).uand&r= 1/2u’GX.u. 

The numerical results for the virtual crack extension method to date show great promise. In 
[ 551, results were obtained using elastic-plastic constitutive laws of both the deformation and in- 
cremental theory types using power law isotropic hardening and nonh~dening idealizations. The 
configuration examined was the deeply-cracked plane strain bend specimen, fig. 4a. For this con- 
gyration, J cm also be obtained directly from the overall moment~rotation curve [ 571. For all 
contours other than that immediately at the crack tip, the J values obtained from virtual crack ex- 
tension were within three to five per cent of that inferred from the moment~rotation curve at 
every increment of load for all constitutive laws used. At the crack tip, similarly good accuracy 
could also be obtained. However, this was true only if a mesh of quad~later~ elements was 
focussed into the crack tip, permitting non-unique crack tip nodal displacements. When regular 
elements with a unique crack tip nodal displacement were employed at the tip, the J estimates 
were typically fifteen to thirty per cent too low on the crack tip contour. 
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In [ 541, the method was applied to the plane strain center-cracked panel in incompressibl~~ 

materials of the pure power law type. Such material models can be used to estimate ./ in the t’uliv 
plastic range of elastic-plastic materials [58, 591. In the linear elastic case, agreement witli ;~i‘- 
cepted solutions [6 1 I was within three per cent for all contours. In the mildly nonlinear c;I%‘s 
examined the maximum difference among the J values computed on the three iontours was eight 

per cent, although there was some sensitivity of the results to the convergence criteria cn- 

ployed in obtaining the initial nodal displacements U. The J values obtained arc in good agreement 

with the recent calculations of Ranaweera and Leckie 1601 and of Hutchinson et al. I59 I Again. 

non-unique crack tip fields were employed by using degenerate quadrilateral elements. 
Although we are unaware of elastic-plastic applications of the method to date in other than 

planar configurations, the general framework presented here would seem ideally suited to suc~h 

extensions. Indeed, the method was successfully applied in [ 561 to axisymrnetric and threr-di- 

mensional problems for linear elastic response. 

8. Analysis of stable ductile crack growth and fracture instability 

It is typical of many ductile metals that the onset of crack growth is not coincident with a final 
fracture instability. Instead, cracks are observed to grow in an initially stable manner under in- 
creasing load (or, depending on the loading arrangement, load-point displacement) until critical 
conditions are attained. Due to the strain-path dependence of elastic-plastic stress-strain relations. 
the deformation field near the tip of a growing crack is different from that created by monotonic 
loading of a stationary crack. Indeed, the phenomenon of stable crack growth seems to arise be- 
cause of the permanence of plastic deformations, so that it is necessary to continue to deform the 
material in order to maintain a suitably concentrated strain field at the advancing crack tip. 

Stable growth has been discussed in the anti-plane strain context by McClintock and Irwin 13 1 ] 

for ideally plastic solids, and analyses of the singular structure of deformation fields near growGng 
plane-strain tensile cracks have been given by Rice [ 34, 43 I , Cherepanov [ 62 I , and Rice and 
Sorensen [50]. Due to the difficulties of having a mesh which remains highly focussed at the tip as 

the crack grows, finite element solutions for this case (e.g., [49, 50, 63--651) have not yet been 
nearly so successful as for the stationary crack in contributing to an understanding of the stress 
and deformation fields very near the tip. Further, given the strongly non-proportional stress his- 
tory experienced by a material point as the crack passes by, there are as yet unresolved questions 
as to the adequacy of the Prandtl-Reuss model or, indeed, of any simple classical plasticity model 

in describing the actual path of plastic response. 
Nevertheless, working with the Prandtl-Reuss model as specialized to the ideally plastic, small 

strain formulation, the results shown in fig. 14 for the stress history near a growing crack were ob- 
tained by Sorensen [64]. The mesh is made up of quadrilaterals of constant strain elements of the 
type in fig. lb, to allow for near incompressibility, and a detail of the mesh near the original 
crack tip is shown. Analogous to the mesh shown in fig. 7, the overall shape is semi-circular and 
the diameter of the semi-circle is approximately 26 times the length of the mesh detail shown (or 
230 times the side length of the near-tip quadrilaterals). Displacements consistent with the elastic 
singular term were imposed at the outer radius of the mesh (i.e., the usual small scale yielding for- 
mulation), and the load versus crack length relation that was imposed is shown at the top of fig. 14. 
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Fig. 14. The imposed load versus crack tength history, a near-tip detail of the ~mite~~ement grid, and stress histories in the shaded 
sub-element for Sorensen’s f64j analysis of plane strain quasi-static crack growth in an ideally plastic materiah There are 5 growth 
steps of one element each. The stress histories shown by the dashed lines correspond to the Prandtl field of fig. 3. The plastic zone 
at the onset of the fist growth step has a maximum extent of approximately 7 times the near-tip quadrilateral element edge. 

Here K, is the load to bring the most highly stressed sub-element to yield, and the level Ki at 
which the initial step of crack growth is imposed corresponds to a m~imum plastic zone extent, 
r p,mox = 0.1 5(Ki/a,>2 by eq. (42), of approximately 7 times the quadrilateral edge length. 

The crack growth I - I, has been normalized by this quantity, and each of the total of 5 
growth steps imposed corresponds to growth by approximately 14 per cent of the maximum 
plastic zone dimension at the onset of growth, or by approximately 50 per cent of the radius rp,e 
of the plastic zone directly in front of the crack. Each step of crack advance has been accom- 
plished by reducing to zero in 5 equal increments the nodal forces which acted before the crack 
passed through a given node. Obviously, this is a poor representation of continuous crack growth 
except at distances from the tip which are large compared to each growth step. 

The points connected by solid lines in the lower portion of fig. 14 show the stresses calculated 
numerically in the shaded sub-element as the crack grows by it. The points connected by dashed 
lines show the stresses that would have been predicted on the basis of the Prandtl field of fig. 3 
if this had moved through the material with the crack tip. We note that the asymptotic arguments 
[33, 17, 501 leading to the Prandtl field (as the r + 0 limit of the total stress field) seem to be 
equally valid for growing as for stationary cracks. Thus the results of fig. 14 can be interpreted 
as being consistent with the notion that the Prandtl field is moving through the material with the 
growing crack (at least as r + O), although the test is far from definitive because the shaded sub- 
element is both close enough to the tip to be affected by the discontinuous nature of the crack 
advance, and sufficiently removed from the tip (recall that rp,max = 7 quadrilateral edges) that it 
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may not closely duplicate Y + 0 behavior. As Rice and Sorensen [ 501 comment, it appears thar 
the issue can be resolved only by solution for a very much finer mesh so that the plastic zone cx- 
tends over distances on the order of 50 element dimensions as the crack grows. 

Rice and Sorensen [ 501, on the basis of earlier work by Rice [34, 43 I and Cherepanov [6X1. 
present a discussion of the near tip deformation field associated with integration of the Prandtl- 

Reuss equations on the assumption that the Prandtl fan zone of fig. 3 moves through the material 

with the crack tip. In this way they show, e.g., that the rate of increase of the opening displace- 
ment 6, between upper and lower crack surfaces, at distance Y from the tip is given in the limit 

r-Oby 

for simultaneous increase of crack length 1 and remote loadings (assumed to be adequately charac- 

terized for contained yielding by the far-field J value). Here /3 = 4(2 - v)/dT = 3.93 for v = 0.3; 

the pure number CY and quantity R, having length dimensions, are undetermined by the asymptotic 
analysis. However, by determining the further increments of near tip nodal displacements for the 
portions of the loading history in fig. 14 for which K (or J) increases at fixed 1. Sorensen [ 641 is 
able to determine (Y and finds it to be nearly constant, 7 per cent variation being typical. Rice and 
Sorensen [ 501 suggest that the parameter R may scale with the extent of the plastic region, and 
hence be proportional to EJ/aE for small scale yielding. This is not inconsistent with their numeri- 
cal results but the mesh is too coarse to resolve the issue or, indeed, to provide a definitive check 
of (52). For fully plastic conditions in a specimen geometry which retains a Prandtl-like field at 
limit load, it is expected that R would saturate in value to some fraction of the untracked ligament 
dimension, L, [ 501. 

Taking QL as a constant, let us compare the predicted crack opening profile for a stationary 
versus a growing crack: in the stationary case I= 0 and (52) integrates to 

6 = ctJ/uo. (53) 

That is, there is a discrete opening displacement near the crack tip and associated with this is the 
l/r strain singularity discussed earlier, eq. (36). But for a crack which grows as the load is in- 

creased, (52) may be integrated to obtain [501 

(54) 

where e is the natural logarithm base and where r is small, and it is assumed that dJ/dZ and R are 
sensibly constant for crack advance over distances on the order of r. Note that now there is no dis- 
crete opening displacement at the crack tip, 6 + 0 as r -+ 0, although the crack profile has a vertical 

tangent at the tip. Further, the theoretical analysis predicts a considerably lessened strain concen- 
tration for a growing crack, with E becoming unbounded in the fan regions as log( 1 /r> rather than 
as l/r. 
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Equation (54) can serve as a qualitative basis for discussion of stable crack growth if, following 
[ 501, we tentatively adopt the simple, model criterion that for continuing growth a certain critical 
opening 6 must be maintained at a fixed distance r = AZ behind the tip. Then (54) gives 

6 CYdJ 00 -= 
Al o. dl 

---f$ log (55) 

We note that for a sufficiently large opening angle parameter, s/AZ, dJ/dZ must initially be positive 
to meet the growth criterion. However, as J and the extent of the plastic region increase, it is to be 
expected that R increases and hence that dJ/dl reduces in value. Two limits may occur: first, if the 
crack-containing body is large enough, the plastic zone extent and hence R can increase suffi- 
ciently that dJ/dl will drop in value to zero; then further crack growth will occur at fixed J in 
what is presumably a steady-state configuration relative to the advancing tip. The second limit is 
that full plasticity conditions are reached before dJ/dl has reduced to zero. Then it is expected 
that R saturates in value to some fraction of the ligament dimension, and thus further growth 
takes place at an effectively constant value of dJ/dl, at least for growth increments which are 
small compared to the overall ligament size. 

These observations seem at least qualitatively consistent with observed behavior, as summarized 
e.g. in [ 50, 66, 671. Fracture instability occurs when, and if, the dJ/dZ value required for con- 
tinuing growth falls below the value of dJ/dl that would be enforced by the loading system for an 
increment dl of growth without a further increment of load, or of load-point displacement, or of 
whatever “loading” parameter is imposed in the case considered [ 66, 671. 

Clearly, the understanding of crack tip behavior is far less developed in the growing crack case 
than in the stationary case. For example, there is little understanding at present of the effects of 
strain hardening on the preceding discussion, and even the description for the ideally-plastic 
model is rather tentative. This is an important area for continuing work, directed toward both the 
obtaining of more accurate solutions by mesh refinement and the development of new computing 
techniques. For example, it would be useful to have a finite-element technique which would allow 
a highly focused mesh to move relative to the material with the advancing crack tip. 
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