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OVERVIEW NO. 2 

NON-EQUILIBRIUM MODELS FOR DIFFUSIVE 
CAVITATION OF GRAIN INTERFACES 

TZEJER CHUANG,* KEITH I. KAGAWA,? JAMES R. RICE and LESLIE B. SILLSS 

Division of Engineering, Brown University, Providence, RI 02912, U.S.A. 

(Rrceirc~ 30 Junr 1978) 

Abstract- Existing models for the diffusive growth of voids on grain interfaces, at elevated temperature, 
are for the most part based on quasi-equilibrium assumptions: surface diffusion is assumed to be 
sufficiently rapid that the cavity has a rounded, equilibrium shape. and hence cavity growth is assumed 
to be rate-limited only by grain boundary diffusion. However, creep rupture cavities sometimes have 
narrow, crack-like shapes and it is appropriate to investigate non-equlibrium models for diffusive rup- 
ture. We do so here by comparing the quasi-equilibrium model to another limiting case based on 
a narrow, crack-like cavity shape. Criteria for choosing between the models are given on the basis 
of representative relaxation times for the surface diffusion process, and also by examining the properties 
of a ‘self-similar’ sotution for cavity shape. By a suitable choice of parameters which measure the 
growth rate, this solution can be made to give results corresponding to either limiting case. and aids 
the interpolation between them. The results suggest that if s is the ratio of the applied stress to 
that which just equilibrates cavities against sintering, then for circular cavities on a grain boundary 
with diameter equal to a quarter of their average center-to-center spacing, the quasi-equilibrium mode 
applies when s < 1 + 6A and the crack-like mode when s > 2 + 9A. Here A is the ratio of surface 
to grain boundary diffusivity. Also, the stress dependence of the growth rate and rupture lifetime 
is established in each case, and the results are discussed in relation to the interpretation of experimental 
data. 

R&sum&La plupart des modiies de la croissance des cavitks intergranulaires par diffusion, aux tem- 
piratures Clevkes, reposent sur des hypothises de quasi-kquilibre: on suppose que la diffusion en surface 
est suffisamment rapide pour que La cavitii ait une forme sphkrique d’tquilibre, de sorte que la vitesse 
de croissance de la cavitt- n’est limitee que par la diffusion interg~nulaire. Cependant, les cavit& 
de rupture en Ruage ont parfois des formes &roites, ressemblant B des fissures, si brin qu’il est utile 
d’itudier des mod4es hors-d’kquilibre de la rupture par diffusion. C’est ce que nous faisons ici, en 
comparant le mod&le de quasi-tquilibre a un autre cas limite, qui repose sut une forme Ctroite de 
la cavittt, analogue i une fissure. On donne les crittres qui ~rmettent de choisir entre les deux modtles 
it partie de temps de relaxation reprtsentatifs pour Is m&can&me de diffusion superficielle, et kgalement 
en ktudiant les propri&&s d’une solution “semblable 6 elle-m&me” pour la forme de la cavitt-.. En 
choisissant convenablement les parametres qui mesurent la vitesse decroissdnce. la solution peut donner 
les resultats de I’un ou de I’autre des cas limites, ce qui facilite I’interpolation entre ceux-ci. Nos 
r&uitats montrent que si s est le rapport de ia contrdinte appliquke i celie qui t-quilibre juste la 
cavitation par rapport au frittage. dans le cas de cavitks intergranulaires circulaires dont le diametre 
est Cgal au quart de leur distance moyenne de centre h centre, le mode de quasi-Cquilibre s’applique 
lorsque s < 1 + 6A, et le mode de type fissure lorsque s > 2 + 9A. A est ici le rapport de la diffusiti 
en surface B la di~usivit~ intergranulaire. Nous avons tgalement obtenu dans chaque cas la variation 
de la viressc de croissance et de la duree avant rupture en fonction de la contrainte: ces rPsuitats 
sont discutes en liaison avec les rt!sultats expkrimentaux. 

Zusammenfassung-Die vorhandenen Modelie fiir das Wachstum von Hohlrtiumen an Korn- 
grenziI5chen bei haheren Temperaturen iiber ~iffusionsprozesse bauen ~berwiegend auf der Annahme 
von Quasi-Gieichgewicht auf: die Oberflichendiffusion wird als geniigend schnell angenommen. so 
da13 der Hohlraum die runde Gleichgewichtsform annimmt; das Hohlraumwachstum wird also nur 
von der Korngrenzdiflusion bestimmt. Alterdings haben Hohlrgume nach Kriechbruch manchmal eine 
enge. ri~~hniiche Form: daher scheint es geraten. Njchtgleichgewichtsmodeile des di~usionsinduzierten 
Bruches zu untersuchen. Hier wird das Quasigleichgewichtsmodell mit einem Model1 fiir den Grenzfall 
der engen rifilhnlichen Hohlraumform verglichen. Es werden Kriterien ftir die Wahl zwischen beiden 
Modellen angegeben. die auf den fiir die Oberfliichendiffusionsprozesse typischen Relaxationszeiten 
aufbauen. und die aul3erdem aus den Eigenschaften einer “selbstZhnlichen” L&ung fiir die Hohlraum- 
form erhalten wurden. Mit einer passenden Auswahl der Parameter fiir die Wachstumsrate kann diese 
Liisung so gestaltet werden, daR sie Ergebnisse fiir jeden der b&den Grenzf5lle entsprechend liefert 
und Interpolationen erleichtert. Die Ergebnisse legen folgendes nahe: ist s das Verhgltnis zwischen 
angelegter Spannung und der Spannung, die gerade die Hohlrlume vor dem Sintern bewahrt. dann 
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11Bt sich fir einen runden Hohlraum an einer Korngrenze mit einem Durchmesser von einem Viertel 
des gegenseitigen mittleren Abstandes das Quasigleichgewichtsmodell anwenden, wenn s i 1 + 6A 
und das riDPhnliche Modell, wenn s > 2 + 9A, anwenden. Hierbei ist A das Verhgltnis zwischen 
Oberfllchen- und Korngrenzdiffusivitlt. AuBerdem werden die Spannungsabhgngigkeit von Wach- 
stumsrate und Bruchstandzeit fiir beide FIlle bestimmt; die Ergebnisse werden im Hinblick auf Interpre- 
tation experimenteller Daten diskutiert. 

1. INTRODUCTION 

Under creep conditions, polycrystalline solids often 
rupture prematurely by the growth and coalescence 
of grain boundary voids. Experimental findings indi- 
cate that a concentrated void population generally 
forms on grain boundaries oriented in a direction per- 
pendicular to the applied tensile loads [l-3]. 

These voids can be nucleated at grain junctions 
(w-type voids) or at grain boundary inclusion inter- 
faces (r-type voids). Here we investigate the kinetics 

of void growth by diffusion, giving special attention 
to non-equilibrium aspects of the problem. Specifi- 
cally, rather than assuming a quasi-equilibrium void 
shape (e.g. one of uniform curvatures) during growth, 
we allow the void shape to be determined as part 
of the analysis. 

Indeed, numerous studies of the growth of voids 
on a planar grain boundary perpendicular to the 
applied stress have been made, on the assumption 
that surface diffusion is rapid enough to give an essen- 
tially spherical void shape. Hull and Rimmer [4] and 
Speight and Harris [S] estimated the time to rupture 
a material with an array of spherical voids located 
on a planar grain boundary in which atoms were 
transported from the surface of the cavity along the 

grain interface. A correction to the model was made 
by Weertman [6], who considered the appropriate 
boundary condition to be one of zero vacancy flux 
on the grain boundary at the midpoint between the 
voids. Vitovec[?] then estimated the strain rate by 

considering the change in stress acting across the 
grain boundary which results from changes in the 
ligament size. Raj and Ashby [S] investigated the 
combined contributions of nucleation and growth of 
voids to the rupture lifetime, again assuming a quasi- 
equilibrium growth model, and have included effects 

of grain boundary sliding. 
However, the assumption of an equilibrium void 

shape may not always be satisfied, and it is well 
known that rather elongated rupture cavities are 
sometines observed. Thus Chuang and Rice [9] exam- 
ined the problem of a long, crack-like cavity located 
on a planar grain boundary. Their work was limited 
to a determination of the cavity shape for a given 
speed of growth. Here we extend that work to a gen- 
eral examination of non-equilibrium cavity shapes, 
and of relation between applied stress and growth 
rates over a wide range of conditions. We consider 
the growth of pre-existing voids along a planar grain 
boundary, perpendicular to the applied tensile stress 
and give results for two cases: (i) a long cylindrical 
void in which case we assume plane diffusive flow 
in directions perpendicular to the axis of the cylinder, 
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Fig. 1. (a) Quasi-equilibrium void and (b) crack-like void, 
each situated along the grain boundary; n-t) denotes the 
angle between the tangent to the void at the void tip and 

the .x-axis. 

and (ii) an axisymmetric void, in which case the diffu- 
sive flow is also assumed to be axisymmetric. 

We start the analysis with the two limiting cases 
of slow, quasi-equilibrium growth, in which the void 
has a rounded shape of uniform curvature (i.e. the 

case already examined by Hull and Rimmer [4] and 
others) (Fig. la), and of very rapid growth, in which 
case there is inadequate time for the void to develop 
a rounded shape and, instead, it remains thin and 
crack-like (Fig. 1 b). 

The practical cases lying between these two 
extremes are difficult to treat mathematically. How- 
ever, we find by linearizing the governing equations 
it is possible to develop a class of self-similar solu- 
tions, analogous to those of Mullins [lo] for grain 
boundary grooving, in which the cavity radius a 
varies with time t as a = ct’14, where c is a constant. 
We find that results for large and small c agree, re- 
spectively, with the limiting results based on the 
assumptions of crack-like and quasi-equilibrium void 
shapes. By interpreting these results and by examining 
characteristic times for surface relaxation, we are able 
to provide guidelines as to which of the two simpler 
limiting cases is most appropriate in given circum- 
stances. 

The matter which diffuses from the void surfaces 
is assumed to flow along the grain boundary, joining 
the crystals on either side. The crystals themselves 



are assumed to move as if they were rigid, rather 

than elastically deformable, and this is seen to be jus- 

tified by estimates of representative elastic relaxation 
times. Indeed, these relaxation times and those associ- 

ated with various modes of surface shape and grain 
boundary alteration are given in the Appendix. 

Preliminary versions of the results given here, as 
limited to the long cylindrical void model, are given 
in theses by Chuang [l 1] and Kagawa [12]. 

2. PROCESSES IN DIFFUSIVE 
VOID GROWTH 

In order to understand clearly the processes to be 
modelled, a description of the mechanisms which gov- 
em diffusive void growth and the behavior of the 
grains and their boundary is presented here. 

Indeed, changes in the shape of a void located on 
a grain boundary can be accomplished by self-diffu- 
sion along the surface of the cavity, by bulk diffusion 
through the lattice, and by evaporation and conden- 
sation. It is expected that at temperatures significantly 
below the melting point of the material it should be 
more difficult to move an atom (or a vacancy) 
through the lattice than along a free surface; thus 
lattice diffusion should be negligible compared to sur- 
face diffusion [ 131. As the temperature approaches the 

melting point, however, lattice diffusion should con- 
tribute significantly to the total atom flux. In order 
to more precisely determine which mechanism is 
dominant, it is useful to compare characteristic relax- 

ation times of a free surface with periodic curvature 

when atom flux results from lattice diffusion and 
when it results from surface diffusion (e.g. Mul- 

lins [lo, 141, summarized in the appendix). If r,, the 

characteristic time for surface diffusion, and TV, the 
characteristic time for lattice diffusion, are such that 
TJT, c 0.1, it can be expected that surface fluxes will 
be the more significant part of matter transport. From 
typical values of the quantities involved in calculating 
these characteristic relaxation times for some com- 

mon metals (see Tables 1 and 2) at temperature 
T = 0.5 T,,, and T = 0.8 T,,, (T, is the melting tem- 
perature), it is found that surface diffusion, indeed, 
does dominate over lattice diffusion as the mechanism 

governing void growth (see Appendix Al for details). 
In a similar manner, it is shown in the appendix that 
the contribution to matter transport by surface diffu- 
sion dominates over that by evaporation-condensa- 
tion (for example T,/T, < 0.1, where T, is the charac- 
teristic time for evaporation-condensation). Thus, at 
least for this temperature range, surface diffusion will 
be considered the only mechanism which determines 
void shape. 

Hence, the voids grow by the diffusion of matter 
along their surfaces toward the void tip. Near the 
void tip, in the region adjacent to the grain boundary, 
the atoms may be removed from the void surface 
either through the void tip and into the grain bound- 
ary or through the lattice. An examination of charac- 
teristic relaxation times for grain boundary and lattice 
diffusion reveals that grain boundary diffusion will 
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Table l.* Material properties of some common metals 

Metals A8 cu aFe YFe Ni Zn 
- 

T,(K) 
n(m’) x 10z9 
m(kg) x lo= 
@Pa) x lo-” 

WI 1234 

;2Z:; 
1.706 
1.79 

cm 7.58 
WI 0.38 

- 
1356 
1.181 
1.06 

12.40 
0.35 

1809 1809 1726 694 
1.177 1.177 1.094 1.524 
0.93 0.93 0.97 1.09 

19.60 19.6 20.70 9.70 
0.28 0.28 0.31 0.43 

t 
Ro(m2/sec) 
Q,(kcal/mole) 
Temperature 

interval (K) 

$ 
&(m2/sec) 
QJkcal/mol) 
Temperature 

interval (K) 

D10 (m’/sec) 
Q,(kcal/mole) 
Temperature 

interval (K) 

Cl83 4.5 x 1O-6 
11.7 

470-770 

[22] 1.2 x 10-s 
21.5 

623-753 

[22] 6.7 x 1O-5 7.8 x 10-s 
45.2 + 0.2 50.4 + 0.2 

803923 

2.0 x 1o-4 
60.0 

1191-1287 1123-1373 348-433 

4.9 x 10-s 1.27 x 1O-4 1.3 x 10-s 
67.86 k 1.45 67.2 21.9 

9131228 971-1334 973-1023 144331634 11431677 513691 

3.4 x lo-* 
38.2 

107&l 180 

10.0 
55.6 

0.4 
49.0 

117&1370 

2.85 x lo-’ 9.4 x 10-e 
37.7 k 3.8 6.7 

102CL-1370 885-1110 34&460 

10-54 2.5 x 1O-4 3.4 x 10-a 1.75 x 1o-6 2.2 x 10-S 
24.8s 40.0 39.0 28.2 k 2 14.3 

l Diffusion parameters were generally chosen so that the temperature ranges for the various types of diffusion processes 
would be (a) made to overlap and (b) near as possible to 0.5 T, and/or 0.8 T,,,. Note that in findine the diffusion 
coefficient (D,, Db or D,) extrapolation far outside the given temperature may lead to erroneous results. 

t Note that values for surface diffusion parameters are rather suspect with wide ranges in both the pre-exponential 
term Dso and the activation energy Q* 

$ DbO calculated assuming & = 5 x lo- lo m. 
5 Estimated in [21] : measurement not available. 
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Table 2.* Calculated values of A and A,,,,, at T = 0.5 T,,, and T = 0.8 T,,, 

Metals Ag cu xFe yFc Ni Zn 

At T = 0.5 T,,,: 
A = D,6,JD,S, 
P,(W 
LWd 

(for TJT, = 0.1) 

L,,(w) 

(for TJT, = 0.1) 

Lx (pm) 

(for T,,/T, = 0.1) 

At T = 0.8 T,,,: 
A = Ds&JDb& 
PO (Pa) 
I,,. 

(for T,/T1 = 0.1) 

I,,, Wd 
(for TJT, = 0.1) 

L,,(w) 

(for T,,/T, = 0.1) 

5.72 x IO’ 
[22] 5.3 X 10-b 

1.13 x 10’3 

8.4 x IO2 

9.89 X IO-‘8 

1.4 X IO_‘“$‘i 3.2 
[22] 2.9 x lo-’ 6.2 x 10-l 

1.98 x IO’% 2.6 x 10’ 

5.38’ 1.3 x IO’ 

7.03s 

7.9 x 10-Z 
3.8 x 1O-b 
8.1 x 10’S; 

7.4 

4.5 x IO4 

3.8 x 10’ 

3.09 
lo-’ 

1.17 x IO2 

2.18 x 10’ 

1.89 x 10’ 

8.02 x 10’3 
2.3 x 1O-4 
4.67 x lO’# 

1.69 x lo3 

2.91 x IO-‘8 

2.0% 
lo-’ 

5.96 x lo48 

2.74 x lo28 

1.45 x 104s; 

1.6 x IO’ 
2.3 x lO-4 
1.16 x IO’ 

1.07 x lo3 

3.52 x 10’ 

28.4$ 
7.4 x lo-’ 
1.31 x loha 

3.86 x 10’ 

2.31 x 10% 

8.6411 
8.5 x lO-3 
7.89 x lO’l/ 

4.9 x 1bq 

4.56 

1.30 x lo4 
2.6 x 1O-6 
5.98 x 10’s 

1.26 x IO3 

2.30 x 10’8 

2.08 x lo*@ 
4.1 

1.53 x 1oq 

7.W 

3.69 x lo-*$ 

* See footnote of Table I. 
$Calculated on the basis of Table 1; values for diffusion parameters, however, are outside the desired temperature 

range by more than 10%. 
I/ Calculated for D,, = 4.16 x IO-‘, Q, = 47.7, 1373 < T < 1523. 
r Calculated for D,, = 10”’ Q = 55.3 970 < T< 1220. . s . 

be the dominant mechanism (see Appendix A2 for 
details). As atoms diffuse into the grain boundary, 
there are various ways for the grains to respond to 

this additional matter. On the one hand, if grain 
boundary diffusion is sufficiently fast (with respect to 
void growth) so that the diffused atoms spread over 
the entire grain boundary, then the growth of the 
grain boundary 6 will be uniform or equivalently the 

grains on both sides of the boundary will separate 
evenly (Fig. 2a). Hence the grains behave as though 
they are rigid. If, on the other hand, diffusion is slow 
on the boundary, the grains must deform in order 
to accommodate the atoms which have accumulated 

near the void tip. In order to do this the grains 
deform elastically in this region (Fig. 2b). A first 
analysis of the accommodation of diffused matter by 

elastic deformation of the grains has been given by 
Chuang [l 11, who examined a semi-infinite crack-like 
void along an infinite grain boundary. (Chuang’s tech- 

(b) 

Fig. 2. Grain boundary thickening 6 which occurs if grains 
behave (a) rigidly or (b) elastically. 

Vitek [ 151. However, the conditions assumed along 
the void surface in [lS] involve a discontinuity in 
the void profile, in that a portion of the void is pre- 

sumed to have a constant thickness; this discontinuity 
is inconsistent with the equations governing surface 

diffusion and it is not clear as to what effect this 
has on the end results.) Indeed, a comparison of the 
elastic relaxation time with a time calculated on the 
basis of the rigid grain assumption (i.e. no elastic 
effects) indicates that the elastic effects generally occur 
on a time scale so short as to be negligible (see 
Appendix A3). 

3. GOVERNING EQUATIONS 

It is known from diffusion theory that differences 
in chemical potential constitute a thermodynamic 
force causing atoms to migrate from regions of high 
potential to those of low potential. In cases of small 
departures from equilibrium, the general assumption 
is that the rate of kinetic change along the diffusion 
path is everywhere linearly dependent on the gradient 
of the chemical potential. 

Thus for diffusion along a free surface, treated as 
isotropic in the plane of the surface for simplicity, 
the flux law has the form 

J, = - (D,S,/Rk T)d&s. (1) 

Here J, is the number of atoms per unit time crossing 
unit length in the surface, a/& is a derivative with 
respect to arc length along the surface in the flow 
direction, fi is the chemical potential per atom, R the 
volume per atom, kT the energy-per-atom measure 
of temperature, D, the surface diffusivity, and S, the 
thickness of the diffusion layer. Experimentally, D, 
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and S, cannot be separated and we adopt the expres- 

sion 6, = R’13. 
When a thin layer of matter is added to a curved 

surface, the surface area and hence the total surface 
energy is altered and thus there is an extra energy 
change in addition to that of adding matter to the 
bulk. Herring [16, 171 has analysed the problem and, 

since the increase in area is negatively proportional 
to the curvature where matter is added, we have 

P = PO - YJ@l + h.2) (2) 

where til, ti2 are the principal curvatures (positive for 
voids like those in Fig. l), ys the surface free energy, 
and p. is the potential of the bulk. Here it is assumed 

that there is no normal stress and the strain energy 
associated with stresses in the plane of the surface 
is neglected. Stresses are very small even at the void 
tip for the diffusive processes considered and the neg- 
lect of the strain energy term is readily justified 

(e.g. Cl 11). 
Furthermore, conservation of matter requires that 

for the axisymmetric void 

(Cl/r)ii(rJ,)/& = c, (3) 

where v, is the normal velocity, or recession rate, of 

the void surface relative to the adjoining solid mater- 
ial, and where r is the radius measured perpendicu- 
larly from the axis of symmetry. For the cylindrical 
void (i.e. the case of plane diffusive flow) we merely 
delete the two r’s, Hence the differential equation 
relating position and time dependent changes of the 
void profile is 

(B/r)8[r3(ti1 + ti2)/i%]/& = v, 

for the axisymmetric void, with 

(4) 

B = D,G,.fPy~kT, (5) 

and for the cylindrical void the same equation applies 
with the r’s deleted and ti2 set to zero. The parameter 
B has dimensions of (length)4/(time), and has a funda- 
mental role in the subsequent development. 

Similarly, for diffusion along the planar grain 

boundary, also treated as isotropic in its plane, the 
atom flux rate is 

Jb = -(D,i&/QkT)dp/&, (6) 

where D, is the grain boundary diffusivity and 6, the 
‘thickness’ of the diffusion zone. Now we observe that 
where a thin layer of matter is added at a flat segment 
of grain boundary, joining the crystals on either side, 
there is no change in area of the interface and hence 
no contribution of grain boundary free energy yb to 
p. However, to insert the matter it is necessary to 
do negative work against the normal stress 0 acting 
on the grain boundary at the place of insertion, so 
that the chemical potential is 

p = PO - 00. (7) 

Again, the strain energy term is neglected, justly 
so[ll]. 

For conversion of mass it is necessary that 

(i2/r)d(rJ,)/& + &?/at = 0 (8) 

for the axisymmetric geometry, where we define 6 as 
the effective thickening at the grain boundary due to 
adding matter to the adjoining grains. For the cylin- 
drical void geometry, with plane flow, we replace & 

by 8.x (the x axis lies in the grain boundary, Fig. 1) 
and delete the two r’s, Hence, in view of the above 
expressions for Jb and p, the stress distribution and 
thickening in the grain boundary are related by 

(D,G,R/kTr)a[rs~/ar]/~r + d6Jiit = 0 (9) 

for the axisymmetric void. Again ?r -+ 3.x and the two 
r’s are deleted in the cylindrical case. 

Since we regard the grains as rigid, 26/i% is uniform 
as depicted in Fig. 2a. The more elaborate models 
explored by Chuang [l l] and Vitek [ 151 regard the 
grains as elastically deformable so that 6 is itself 
coupled to the stress distribution g. 

Now, equations (4) and (9) are the differential equa- 

tions to be solved. respectively, on the free surface 
(to determine its shape) and on the grain boundary 
(to determine its stress distribution). The regions in 

which the equations apply are themselves time de- 
pendent because the void grows along the grain 
boundary, and the solutions are coupled by contin- 
uity conditions at the void tip where it joins the grain 
boundary. First we note that the tip itself must have 
the equilibrium angle. from balance of local surface 
thermodynamic forces (as discussed, for example. in 
the analysis of grain boundary grooving [lo]). so that 

zy, cos cl, = y* (10) 

where $ is defined (see Fig. 1) so that n: - $ is the 

angle between the grain boundary and the tangent 
to the void surface at the tip. Furthermore, the chemi- 

cal potential must be continuous at the void tip 
(otherwise there would be an unbounded flux J there) 
and given the previous expressions for p this implies 
that 

‘Jo = Y&I + K2)np (11) 

where (TV is the normal tensile stress at the void tip 
and the curvatures are evaluated at the void tip. 
Recall that K* = 0 for the cylindrical void. Finally, 
continuity of flux at the void tip implies that 

whence 

(J&tin = 3 JA, ; (124 

ab = (2kT/D,&)( JAi,, 

= Cmhm‘m% + Kd/m;,, (12b) 

where ab is the first derivative of the normal stress 
with respect to r or x (whichever is applicable) at 
the void tip. 

The mathematical problem of determining the rate 
of void growth. for a given average tensile stress act- 
ing on the grain boundary, is too difficult to solve 
in generality. Nevertheless, it is useful to consider the 
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‘ideal’ solution procedure. We should let the cavity 
radius a vary with time in an arbitrary, yet to be 
determined manner, and determine the void shape by 
solving (4) subject to the conditions that the void 
height is zero and its slope angle is $ at the void 
extremities, r = a(t). Hence the void shape is a func- 
tional of the unknown function a(r), and therefore c0 
and ob of equations (11) and (12b) are, in principle, 
determined as functionals of a(t). We next solve (9) 
for the stress distribution Q on the grain boundary, 
subject to given values cc, and ah at r = u(t) and, 
for example, to a condition that the flux vanish mid- 
way between voids on the grain boundary. These 
three conditions over-determine the second order dif- 
ferential equation (9) for Q, and hence the value of 
d8/& (uniform along the grain boundary for the rigid 
grains model) that is compatible with given values 
of co and a; is determined also. But since these latter 
two quantities are functionals of u(t), the stress distri- 
bution o(r, t) on the grain interface, and hence the 
average stress, is likewise determined, in principle, as 
a functional of u(t). But the average stress is to be 
regarded as a prescribed function of time, and its rela- 
tion to a(t) therefore provides a non-linear hereditary 
relation from which the actual history a(t) of void 
growth is to be determined. 

Next we observe that a/v, where u G da/dt is the cavity 
growth speed, is a characteristic time associated with 
altering the equilibrium shape towards which the 
cavity surface is ever-proceeding by surface diffusion. 
Thus if 7, e a/u, or if 

a3v/B G 6(cyhnder) or 24(axisym.), (15) 

the cavity shape will be at equilibrium, whereas if 
7s % a/v, or if 

a3v/B 9 6(cylinder) or 24(axisym.), (16) 

the cavity shape will remain effectively unrelaxed and 
growth will occur in a crack-like mode. It may be 
observed that in the early stages of creep rupture a3 
and, presumably, v are small, but both increase in 
time. Hence it is possible that the early stages of 
growth occur in a quasi-equilibrium mode and the 
latter stages in a crack-like mode. 

As remarked, this program of solution is too diffi- 
cult to carry out in general. We therefore limit con- 
sideration to histories a(t) which are very slow (quasi- 
equilibrium, spherical void shape) or very fast (thin, 
crack-like void shape), and try to judge the inter- 
mediate cases on the basis of characteristic relaxation 
time estimates (Appendix) and the solution for one 
tractable family of growth histories, namely, self-simi- 
lar growth with a(t) cc t114. 

4.1 Quasi-equilibrium void shapes 

As previously discussed, when a3v is sufficiently 
small the void retains a quasi-equilibrium shape of 
uniform curvature during growth. Thus the cylindri- 
cal void is composed of two circular cylindrical seg- 
ments or caps and the axisymmetric void of two 
spherical caps. 

4.1.1 Long cylindrical void (circular cylindrical caps). 
For this case K~ = 0 and (see Fig. la) 

K, = sin */a. (17) 

Moreover, as a result of continuity of matter flux at 
both void tips 

4. VOID SHAPES 

42dWW = X2Q(Js)tipl (18) 

where the quantity in brackets on the left is the void 
volume per unit length along the cylindrical axis and 
where 

Our goal is to determine the boundary conditions 
oe, CT; at the void tip in relation to the time history 
of void growth. This is done here first for the limiting 
cases of slow, quasi-equilibrium growth and rapid, 
crack-like growth, and then for a family of inter- 
mediate cases based on self-similar solutions. The 
question arises, for a given history a(t) of cavity 
growth, how can we determine if we are close to one 
or another of the limiting cases? This can be done 
by first computing relaxation times associated with 
the attainment of equilibrium by surface diffusion, for 
initial disturbances from equilibrium with half-wave- 
lengths that we identify with the void diameter 2a. 
Thus for the long cylindrical void, we set l/2 = 2a, 
L = 00 in equation (A-11) to obtain a characteristic 
relaxation time 

f($) = (1(1 - sin J, cos $)/sin2$. (19) 

Note that in this case one cannot directly evaluate 
the flux into the tip by using the last form of (12b); 
this is because, effectively, the curvature gradient is 
very small and D, very large for near-equilibrium 
growth. Hence from equations (11) and (12b) we 
obtain 

60 = ys sin $/a, ah = (2W~,UfW)a~ (20) 

for the associated stress boundary conditions at the 
void tip. 

(Ts)cylinder = (16/7r4)a4/B z a4/6B, (13) 

B is defined in equation (5). For the axisymmetric 
geometry we should set l/2 = L/2 = 2a, since the void 
curves in two directions, and this gives a lower 
relaxation time 

4.1.2 Axisymmetric void (spherical cups). For this 
case the analogous expressions are 

K, = K2 = sin+/a (21) 

and 

dC(W3a3W)l/dt = 2d~(Js),i,l, (22) 

where the bracketed term on the left is void volume 
and 

(rl),,irym. = (4/7r4)a4/B z a4/24B. (14) h(G) = [l/(1 + cos $) - (cos 1(1)/2]/sin 1(1. (23) 
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Thus the boundary conditions on stress are 

co = 2~~ sin *iu, 0; = (2kT/RD,S,)h(i,Qrc. (24) 

This method of evaluation of co and crb coincides 
with that by Hull and Rimmer [IO] and in related 
studies. 

4.2 Crack-like shape 

In this limit we assume that a30 is sufficiently large 

and that there is inadequate time for the large 
amounts of diffusive mass transfer necessary to estab- 
lish a rounded, near-equilibrium void shape. Instead, 
the void remains thin and crack-like with relatively 
small curvatures everywhere except near its tip 
(Fig. lb), where tii and its gradient must be large 

in order to allow sufficient mass flow for the charac- 
teristic tip angle $ to develop. Assuming that the 

speed ~1 does not change appreciably over distances 
comparable to the void thickness near the tip, the 

near-tip shape is determined by the ‘steady-state’ 
analysis of Chuang and Rice [9]. In that analysis the 
void shape near the tip was assumed to remain un- 
changed, relative to an observer moving with the tip, 
during growth. This is an appropriate assumption for 
the high speed limit of void growth, as will be shown 
mathematically in the next section. The curvature and 
surface flux rate at the tip are then given by (see equa- 
tions (24) and (20) of [9]). 

K,,~ = 2 sin($/2)(u/B)1’3 

(J,),,, = 2 sin($/2)(B/Q)(r/BP3 

where B is defined by (5) and it is noted that 

(25) 

(26) 

2 sin(lC//Z) = (2y, - yb)“z/y~‘z. 

(To make contact with the notation of [9], we note 
first that the sign convention for I\’ is reversed here. 
and also that in [9] a term 11 representing the surface 
density of diffusing atoms is employed, and this term 
is replaced here by $1 = S,/Q. Further, the above 
expressions actually represent the first term in a cer- 
tain series solution, but were shown in [9] to be accu- 

rate to approximately 2% when compared to the 
exact, numerically obtained solution for steady-state 
growth.) The corresponding expression for the thick- 

ness, 2u, of the void in steady-state growth, at dis- 

era1 3-D voids, including the axisymmetric void. This 

is because at rapid growth speeds the principal curva- 

ture tii is large near the tip in the direction of growth 
whereas the curvature x2 remains small. For example, 
x2 = sin $/a at the tip of the axisymmetric cavity 
whereas ti, is the inverse of the near-tip radius of 
curvature, and is much larger for growth in a narrow, 
crack-like mode. Thus, in the rapid growth limit, the 
state of flow near the axisymmetric void tip 
approaches a plane flow state (see the next subsection) 
and (28), (29) are valid for that case also. 

4.3 Linearization of equations for void shape 

As stated previously, it is desirable to have general 
solutions for cases of void growth that correspond 
with neither of the two limiting cases just discussed. 
Such solutions have not been found for general void 
growth, but to make the governing equations more 
tractable the assumption is made that the slope of 
the void is everywhere small with respect to unity. 
That is, we linearize the governing equations. For 
most metals this assumption ($ << I) is violated at 
the void tip; see Table 3. It can be shown, however, 
that the results from the linearized analysis for the 
void tip curvature and flux rate, and hence for o. 
and u& do not differ significantly from the exact solu- 
tions in the previous two subsections for a large range 
of $ values. 

To accomplish the linearization we let w = w(x, t) 
or w(r. t) be the height of the void surface above the 
x or r axis in Fig. 1. we set i)/ds = d/dx or (7/i%, and 

write tii = d2w/iYx2 for the cylindrical void, or 
tii = a2w/ar2 and x2 = (l/r)rYw/& for the axisym- 
metric void. Further, the recession rate U, = ?w/dr. 
Thus equation (4) governing the surface shape reduces 
to 

BV2V2w + awlat = 0 (30) 

v2 = a2jaX2 or V2 = d2jar2 + (l/r)a/& (31) 

for the two cases, respectively. 

For boundary conditions at x or r = a(t), one must 
have 

w[a(t), t] = 0, w’[a(t), t] = - $ (32) 
tances back from the tip on the order of a few times 
the tip radius of curvature, is [9] 

where the prime denotes differentiation with respect 
to x or r. Furthermore, conditions of symmetry at 

2w = 4 sin($/2)(B/o)“3. (27) the void center must be met. For the cylindrical void 

By substituting K,~,, and (J&, into (11) and (12b), 
we find that the values of the stress and its gradient 

Table 3. Values of yb, y. and JI for some common metals 
from [24] 

at the tip for consistency with the presumed crack- 
like mode of growth are Material 

o0 = 2y, sin (1j/2)(u/B)“~ (28) 

rub = 4y, sin($/2)(D,SJD,G,)(o/B)2’3. (29) 2 

While these results were derived for plane diffusive cu 

flow, we note that they are valid not only for rapid 
Fe 

growth of the long cylindrical void but also for gen- 
Ni 

+Z$s) y,r$Y) $ = cos-l k 

0.79 1.14 1.22 
0.36 1.485 1.45 
0.65 1.725 1.38 
0.78 1.950 1.37 
0.69 1.725 1.37 
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these have the form rv’(0, t) = ~“‘(0, t) = 0; the latter 
condition implies zero matter flux at x = 0, and is 
to be replaced by the condition (d/dr)[V’w(O, t)] = 0 
for the axisymmetric void. 

To obtain quasi-equilibrium solutions for the 
linearized problem, we merely neglect the dw/& term. 
Then for both cases one obtains 

w = ($/2)(a - ?/a) (33) 

(replace r with x for the cylindrical void), which is 
the linear approximation to a circular cylindrical or 

spherical cap. Further, one may compare the void 
tip curvature ki = $/a predicted from the linearized 
analysis with (17) or (2 I) and, evidently, it differs from 

the exact quasi-equilibrium result only insofar as $ 
differs from sin $. 

To examine the case of rapid growth within the 
linearized theory, it is convenient to make the substi- 

tution 

and to write 

R = (a - r)/(B/o)1’3 (34) 

w(r, t) = (B/u)“~ G,(R, t) (35) 

in the equations governing axisymmetric void growth. 

Note that (B/o) l/3 is a characteristic length associated 
with surface diffusion near a disturbance that moves 
with speed u; see, for example equation (27). Hence 
R and d are coordinates of the void profile as scaled 
by this length. Further let 

E = (B/u%)“3 (36) 

be the ratio of this characteristic length to the void 
radius; we are interested in the limit E + O+. In terms 
of G, the differential equation for axisymmetric void 
growth is readily shown to take the form 

a49 3^ a2 a*+ a3 a\; -+2E;j+*~a~CE3;,a~ 
aR4 

* 
+a&+,$R~+~;~$=o. (37) 

Now, proceeding in the spirit of boundary layer 
theory, we focus on the limit of the above equation 
as e-t O+ with R remaining finite. One can view this 
limit as being one of extremely slow surface diffus- 
ivity, B + O+. There results 

a%/a~~ + aqaR = 0. 

It is straightforward to show that the same equation 
results, as E-+0+, when a similar analysis is done 
for the long cylindrical void case. Further the equa- 
tion has the unique solution, bounded for large R, 

D = w~aiv,=,[i - exp(-R)] = $[I -exp(-R)] 

or 
(38) 

w = (B/u)“~${ 1 - exp[-(a - ~)/(B/u)‘/~]} (39) 

for r near a. This result of the analysis is, of course, 

just the linearized version of the crack-like void pro- 
file discussed earlier and, indeed, this solution for w 
leads to a curvature and flux rate at the tip which 
differ from the exact results of equations (25) and (26) 

for the crack-like limit only insofar as 9 differs from 
2sin($/2). We do not present the details here, but 
the same boundary layer technique can be applied 
to the full non-linear equation (4) describing the void 
profile. The results confirm that the solution as 
E + O+ is the same for the axisymmetric and cylindri- 
cal geometry, and coincides with the ‘steady-state’ 
solution of Chuang and Rice [9] outlined earlier. 

4.4 Self-similar solution for uoid shape 

Equation (30) is seen by dimensional considerations 
to have a family of ‘self-similar’ solutions that corre- 
spond to an increase in void radius with time accord- 
ing to 

a = &(Bt)‘!4 (40) 

where to is an arbitrary positive constant. The associ- 
ated void profile is such that 

w = (B0”4!M5) 

where 

5 = (x or r)/(Bt)“4, (41) 

and where the function r)(r) must satisfy 

d4rl/dc4 - (5/4)dq/d5 + r1l4 = 0 (42) 

for the long cylindrical void, or 

d4qldt4 + (215) d3rlld5’ - (1K2) d2G152 

+ UK3 - 5/4)drl/d5 + ~14 = 0 (43) 

for the axisymmetric void. Evidently, 5 = to corre- 
sponds to the void tip, and the conditions 

r1(50) = 0, VITO) = - 1 (44) 

must be met there. Further, it may be anticipated 
that small values of <,, correspond to near-equili- 
brium conditions and large values to crack-like condi- 
tions. Solutions can be found in a power series form 

v = : 4,,5” (45) 
It&=0 

and results are discussed in the following subsections. 
4.4.1 Long cylindrical uoid. Of the four linearly inde- 

pendent solutions to equation (42) for 9, two can be 
discarded for failing to meet the symmetry conditions 
q’(O) = ~“‘(0) = 0. There remains 

1 
I 

1 + 1 s2(mK4” > (46) 
Ill=, 1 
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go(m) 

-1 

= (4)2”(m!)(4m - 1)[(4m - 2)(4m - 6). (2)] [(4m - - 3)(4m 7). .(l)] 
(474 

I 
g,(m) = (4)2”(m!)(4m + 1)[(4m + 2)(4m - 2). (6)][(4m - 1)(4& 5). (3)1, Wb) 

and where the constants A, and AZ are determined 

in terms of to by imposing the conditions (44). 
4.4.2 A.uisymmetric void. In this case the differential 

equation (43) for PJ has a regular singular point at 
< = 0 where, in view of the symmetry conditions, one 

has 

r/‘(O) = 0, 

[rj”(<) + q”(<)/< - T’(<)/<~] -+O as < 40. (48) 

The general solution for q consists of four linearly 
independent solutions, two of which have logarithmic 
terms that become unbounded at < = 0. The above 
boundary conditions are met if the coefficients of 
these logarithmic solutions are set to zero, and there 
remain the terms 

1 

where 

fob4 = - 
(- l)(3). (4m - 5) 

(4)4”(nI!)2[ I.3 (2m - I)]2 
- (50a) 

and 

,f2(m) = __!!!!?LL2!!!e_ 
(4)4”(m!)2[3,5.. (2n1 + I)]2 

( 5W 

and B, and B, are determined from the boundary 
conditions (44) as quotients of series in to. 

Expressions for curvature and flux at the void tip 
will not be shown in detail because of the complexity 
of the series expressions. These expressions can easily 
be derived. however, from 

(Ic,),,,, = -(~ia)i’orl”(ro). (KZ),,,, = $!cI (51) 

(J,),,,, = (W/Qu2) I- 5i$“(L,) - Sos”(Eo) - 11. 

(52) 

Further, the corresponding value of the stress and its 
gradient at the void tip are, from (11) and (12b) 

00 = (cl/Y&) c- <oV”(50) + 11 (53) 

ob = 2(0,6,/0,6,) (ir,la’) 

x c- GV”‘(50) - 5oV”(50) - 11. (54) 

Note that the series representation for any of these 
quantities is amenable to numerical computation. 

In addition, the velocity can be derived by differentiating 
equation (40) to obtain 

rz = 4(a3c/B). (55) 

Note that u3u/B is the same dimensionless speed 
measure which occurred in our earlier discussion 

based on relaxation times. 

4.5 Discussion 

Indeed, in order to develop a model of void growth 
using the various solutions found for the various 
stages of void growth, it would be instructive to com- 
pare the similarity solution to the equilibrium, as well 
as the crack-like solutions. For very small choices of 
co (corresponding to slow void growth) a good 
approximation to u from both (46) and (49) can be 
made by neglecting all but the first terms of the series; 
in this case 

r? = (50/2X1 - (5/io)21 (56) 

which is identical to equation (33) for the linearized 
equilibrium solution. Thus, the self-similar void shape 
approaches that of the linearized equilibrium void 
shape when a3c/B is chosen to be very small. Further- 
more. the shapes predicted by the similarity solution 
for co = I, 2 and 3 are compared to the linearized 
equilibrium shape in Fig. 3. Note the good agreement 
for the void shape in the neighborhood of the void 
tip; indeed, this is the region of interest since con- 

q EOUlLlBRlUM - - - - 

/A = 1 SIMILARITY 

0.2 0.4 0.6 06 IO 

Fig. 3. Axisymmetric void shapes predicted by the similarity solution for to = 1, 2, 3 and the 
librium solution. 

quasi-equi- 
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Fig. 4. Axisymmetric void shape predicted by the crack-like and similarity solutions for (a) &, = 8 
and (b) &, = 16. 
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Fig. 5. Graph of (a) non-dimensionalized curvature (xl) at the void tip and (b) non-dimensionalized 
flux at the void tip, each vs the non-dimensionafized void growth rate n’u/B for the axisymmetric 

void as computed from the quasi-equjlibrium, similarity and crack-like solutions. 
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tinuity of flux and chemical potential are enforced 
here in solving the complete void rupture problem. 

On the other hand, for larger choices of to (i.e. 
for higher growth rates) the similarity solution for 

the axisymmetric void is compared to the crack-like 
solution in Figs. 4(a) and 4(b). The shapes are not alike 
since by fixing to an acceleration and higher order 
time derivatives, as well as a velocity are imposed 
at the void tip. In fact, examination of the acceler- 
ation reveals a deceleration at the void tip. Hence, 
the combination of both this deceleration and the 

high velocity associated with large choices of to 
allows matter to be removed from the void tip to 
form a depression. But once again the agreement in 
the neighborhood of the void tip for these two solu- 
tions is quite good. 

Furthermore, since we are most interested in deter- 
mining the values of the curvature and flux at the 

void tip, it is worthwhile to make a comparison of 
these quantities as obtained from the various ‘linear- 
ized’ solutions. 

Figure 5(a) is a graph of non-dimensionalized curva- 
ture at the void tip vs the void growth rate parameter 
a%/B. It is seen that for slow growth the curvature 
found from the similarity solution and that derived 
by the linearized equilibrium solution agree well. For 
larger values of the growth rate parameter, the curva- 
ture obtained from the similarity solution and that 

obtained from the linearized crack-like solution are 
in close agreement. 

Next consider Fig. 5(b) which is a graph of non- 
dimensionalized flux at the void tip vs the void 
growth rate parameter. Again as in the case of the 

curvature til, for slower growth rates the equilibrium 
solution and the similarity solution for the flux at 

the void tip are in good agreement; furthermore, for 
a3u/B > 4 the similarity solution acts as a smooth 
transition into the crack-like solution. Thus it can 
be concluded that near the void tip and for a3v/3 < 4, 
either the equilibrium solution or the similarity solu- 
tion approximates well the void growth behavior; for 
faster growth rates (i.e. a30/B 3 100) the crack-like 
solution can be used to describe this phenomenon. 
Moreover, the results are consistent with our earlier 
discussion of the relaxation time of surface self-diffu- 
sion for the axisymmetric void, in which we have sug- 
gested a%/B 2 24 as representative in separating the 
two limiting cases. 

5. RIGID GRAIN MODEL AND STRESS 
VS GROWTH SPEED RELATIONS 

As discussed in Section 2, the grains can be 

assumed to separate rigidly as atoms diffuse into the 
grain boundary ahead of the void tip. Recall that elas- 
tic effects in the grains may be neglected under most 
circumstances since the elastic relaxation time is 
much shorter than any representative time of the void 
growth process. In this section, using the rigid grain 
assumption, the relationship between void growth 

and applied stress will be explored for each of the 
void shapes considered in Section 4 (i.e. equilibrium, 

self-similar, and crack-like) and in both two and three 
dimensions. 

5.1 Long cyclindrical void 

In order to model the growth of voids on a grain 
boundary transverse to an applied stress, consider a 

very large crystal with a periodic array of symmetric, 
cylindrical voids of length 2a and center to center 
spacing 2b located on a planar grain boundary as 
shown in Fig. 6(a). A uniform stress u L is applied per- 
pendicular to the grain boundary and at a distance 

large compared to 2h. 
The differential equation governing the normal 

stress U(X) at the grain boundary is given by equation 

(9) and is to be solved subject to the rigid grain 
assumption that the boundary thickening rate is inde- 
pendent of x. The boundary conditions are that the 
stress go and its gradient a; are specified at x = a, 

and that the flux J,, and hence the derivative &s/ax, 
vanishes at x = b. 

These conditions require that 

aqat = (D,S,syk7-)dJ(b - a) (57) 

and that the stress distribution be given by 

r7 = u0 + ab(x - a)[1 - (x - a)/2(b - a)]. (58) 

=a 
(a) 

(b) 

Fig. 6. (a) Cross-section of 2-D periodic array of voids 
along the grain boundary. (b) View of grain boundary con- 
taining axisymmetric voids with an average center-to- _. 

center spacing 26. 
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We regard the average remotely applied stress, o,, 
as being specified and this is given by 

1 b 
0, =- 

s b 0 
odx = (1 - d)u, + (1 - d)2bab/3 (59) 

to the given values o. and ob at r = a and to zero 

flux, au/& = 0. at r = b. Hence there results 

%/at = 2(Db&$l/kT)aba/(b2 - a2) (66) 

and the stress distribution is 

where d = aJb. (r = o. + [acrb/(l - a2/b2)] 
Recalling now that B,, and oh are expressed, in gen- 

eral, as functionals of the growth function a(t), the 
last equation relates the unknown growth to CJ,, 
regarded as given. As remarked, it is presently poss- 
ible to carry out the analysis only for special cases. 
Thus, for quasi-equilibrium growth (T,, and ah are 
given by equations (20), resulting in 

X [ln(r/a) - (r2 - a2)/2b2]. (67) 

The normal stress in the grain boundary can now be 
related to the applied stress a, through 

1 b 
Q, = 7 

s 7th (1 
2nrcr dr = (1 - d2)a,, + (1 - d2)2 Qbuhb/3 

(68) 1 - d ys sin $ 
cJX = __ 

d b 
+ +d(l - d)2 ;;; ---.f(lcl)u (60) 

b b 

where f($) is defined by (19) and reduces to 2$/3 
in the linearized approximation. Note that the speed 
0 appears only in the last term and, if we solve 

for 0, 

3aDbSb 1 - d ys sin $ 

’ = 2d(l - d)‘kTb2f($) 
-_____ 

d b 1 (61) 
we find the anticipated cut-off stress level below which 

sintering occurs. 
At the other extreme of void growth in the limiting 

crack-like case, o. and a; are found from equations 
(28) and (29), and the expression for 0, is 

2~~ sin (+/2)(1 - d) 
0, = 

b bSv 2/3 

+$8(1-d) s 
( )I 

(62) 

where we have introduced the notation 

A = D,6,/Db6,. (63) 

In this case the speed is related to cX by 

11 = (27/64)(B/b3A3)[(l + CA)“’ - 113/(1 - d)3 (64) 

where 

C = 4~7, b/[3y, sin ($/2)]. (65) 

5.2 Axisymmetric void 

Next consider an array of axisymmetric voids of 
radius a with average center to center spacing 2b 
located on a planar grain boundary as shown in 
Fig. 6b. As in the case of long cylindrical voids a 
uniform stress oX is applied transverse to and far 
from the grain boundary. The stress distribution is 
to be determined by solution of equation (9) subject 

where, again, d = a/b and the function Q = Q(d) is 
defined by 

Q = [3d/(l - d2)3] 

x [ln(l/d) - (3 - dz)(l - d2)/4]. (69) 

This function is evaluated in Table 4. We note that Q 
is not strongly variable over an appreciable range of d 
values; for example, it lies between approximately 
0.5 and 0.65 for all values of d > 0.1 (i.e. for voidage 

in excess of 1% of the grain boundary area). 
For quasi-equilibrium void growth u,, and a& are 

given by (24) so that 

0, = 
2 1 - d2 ys sin $ 

- b + $d(l - d2)2 Q gh($)u 
d b b 

(70) 

where h($) is defined by (23) and reduces to 3$/8 upon 
linearization. Thus the growth rate is given by 

3Q DbSb 1 - d2 yssin$ 

’ = 2d(l - d2)2QkTb2h(ll/) ‘Jr - 2 d b 1 
(71) 

under these conditions. 

On the other hand, for growth at the crack-like limit 
u. and ah are given by equations (28) and (29) so that 

2y, sin (G/2)(1 - d2) 
6, = 

b 
b3v 2/3 

+ $A(1 - d2)Q s 
(>I 

. (72) 

This can be solved for u to give 

v = (27/64)(B/b3A3) 

x [(1 + QXA)1’2 - 113/Q3(1 - d2)3 (73) 

where Z has been defined in (65) and A in (63). 

Table 4. Values of the function Q(d) appearing in solution for axisymmetric void growth; d = a/b = 
ratio of cavity diameter to average center-to-center spacing 

d 0 0.01 0.05 0.10 0.20 0.40 0.60 0.80 1.00 

%)Q,d : 
0.12 0.34 0.48 0.61 0.65 0.61 0.55 0.50 

(1 - 11.6 6.78 4.76 2.93 1.36 0.65 0.25 0 
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5.3 Comparisons based on the similarity solution 

The similarity solution provides, at the price of 

linearization, a means of interpolating approximately 
between the quasi-equilibrium and crack-like limiting 
cases. Our discussion here is limited to the axisym- 
metric model; a MSc. thesis by Kagawa [12] may 
be consulted for a somewhat analogous discussion 
based on the long cylindrical void model. 

To compare the above equilibrium and crack-like 

solutions with the similarity solution. we make the 
definitions 

and 

s = [a, /(I - @)]/[2r, sin $/a] (74) 

P = C(1 - d2)Q(d)/dl(D,s,/D,s,). (75) 

Observe that ax /( 1 - d’) is the average stress on the 
unvoided portion of the grain boundary, so that s 
is this stress normalized by the stress which just pre- 
vents sintering of an equilibrium-shaped void of 

radius a. The part of the parameter p that depends 
on d( = a/b) is given in the last line of Table 4; addi- 
tionally, p is proportional to what has been defined 
as A in (63). With these notations, the quasi-equili- 
brium solution (70) becomes 

s = 1 + [h($)/3 sin $]p(a%/B); 

and upon linearization 

s = 1 + (1/8)p(a%/B); 

the crack-like solution (72) is 

(764 

(76b) 

s = [sin($/2)/sin $1 [(u~u/B)“~ 

+ (2/3)p(~%/B)“~], (77a) 

whereupon linearization gives 

s = (1/2)(a’~/B)“~ + (1/3)~(a~~/B)*‘~. (77b) 

For the similarity solution, g0 and a; are determined 

by equations (53) and (54), and the results are 
inserted into (68) to solve for u, In terms of the 
linearized version of the stress measure s, 

s = (1/2)C- &J”&) + 11 

+ (1/3)~[- S;tl”‘(&,) - 5or1”(50) - 11 (78) 

where it is recalled that tt = 4a3u/B and, further, that 
a and v vary during the growth process as t’14 and 
te314 so that a3v is constant. This feature requires 
that u, has a rather artificial variation with time in 
order to be consistent with the presumed growth his- 
tory. However, our interest in the similarity solution 
is only in formulating a reasonable procedure for 
extrapolating between the quasi-equilibrium and 
crack-like limiting cases. 

The results are shown in Fig. 7 where the similarity 
solution and the two limiting cases are plotted for 
p = 1 and p = 10. It is seen that the similarity solu- 
tion approximates the equilibrium solution for low 

% 0 
100 

-60 
2(l-dz)y,smJI 

t’s) 

40 equilnbrwm - 
self-slmtlor ------ 

I 2 4 6810 20 40 60 100 

Fig. 7. Graph of non-dimensionalized stress vs void 
growth rate at p = I and IO for the linearized quasi-equili- 

brium, self-similar. and crack-like solutions. 

values of void growth and the crack-like solution for 
higher values of void growth. For both p = 1 and 
p = 10, the similarity solution can be thought of as 
a transition between the slower growing quasi-equili- 
brium solution and the faster growing crack-like solu- 
tion for values of (a3u/B) between 10 and 30. Note 
that this range of values for (a3~/B) is consistent with 
that found from a consideration of relaxation times, 
namely a3r/B 4 24 at transition. 

5.4 Conditions for applicability of the quasi-equilibrium 

and crack-like models 

The solutions given in equations (76a) and (77a) 
are based on the assumptions that the voids grow 
with either a quasi-equilibrium shape or a crack-like 

shape, respectively. To check the consistency of these 
assumptions we must verify that the speeds L’ pre- 
dicted are appropriate for the given mode of growth. 
Thus based on our conclusions from Fig. 7, 
a3u/B c 10 implies growth in the quasi-equilibrium 
mode and a3u/B > 30 implies the crack-like mode. 
These inequalities translate directly into inequalities 

on stress, since by (70) and (72) cr I is a monotonic 

function of t’. 
Choosing the representative value ti = 75” (Table 

3), equation (76a) for the quasi-equilibrium mode 

becomes 

s = 1 + 0.237p(a3v/B) (79a) 

and equation (77a) for the crack-like mode is 

s = 0.630 (a3~‘/B)‘i3 + 0.420p(a3v/B)*“. (79b) 

Figure 8 shows a plot of equations (79a) and (79b) 
for several values of p. We expect that a more general 
solution to the problem would agree with the 

quasi-equilibrium solution for low values of &/B 
making a transition between that solution and the 
crack-like solution near a3v/B = 24. Using the value 

a3a/B = 10 in equation (79a). the quasi-equilibrium 
mode is predicted when 

s< lf2.37~; (80a) 

for the crack-like mode to be effective a3v/B 2 30, 
hence 

s > 1.96 + 4.06~ (8Ob) 

implies the crack-like mode of growth 
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400- 2(1-d’)y,sing 

Fig. 8. Graph of non-dimensionalized stress vs void growth rate at several values of p for the quasi- 
equilibrium and crack-like solutions with $ = 75”. 

To appreciate the restrictions involed, observe that 
over the range 0.1 < d < 0.5 it is reasonable to make 
the approximations (1 - d*) z 0.9 and p z 0.55 A/d. 
Thus growth occurs in the equilibrium mode when 

u, < 1.9(yJa)(l + 1.3A/d) (8la) 

and in the crack-like mode when 

u, > 3.5(y&)(l + 1.2A/d). (8lb) 

The quantity U&I is typically of the order of 1 MN/m* 
(140 psi); for example, this number follows if 
yS = 1.5 N/m and a = 1.5 pm. Thus for a given stress 
level, cavity growth in the quasi-equilibrium mode is 
favored when surface diffusion is much more rapid 
than grain boundary diffusion (i.e. when A is large), 
and also in the early stage of growth when the void 
radius a and the ratio d of the diameter to spacing 
are small. Conversely, the crack-like mode is favored 
when A is small, and in the later stages of growth 
when a and d are large. 

Consider, for example, a stress level of 20 MN/m’ 
applied across a grain boundary in a material with 
yS = 1.5 N/m, containing voids of 3 pm diameter and 
12 pm center-to-center spacing; this corresponds to 
d = l/4, i.e. approximately a 6% voidage by area of 
the boundary. Under these conditions the void would 
grow in a quasi-equilibrium mode if A > 2.0, and a 
crack-like mode if A < 0.9. Intermediate values of A 
would fit neither limiting case. When the same void 
has enlarged to 6pm diameter, growth would be in 
the quasi-equilibrium mode if A > 7.8 and in the 
crack-like mode if A < 4.3. Finally, if we consider 
again the initial 3 pm void diameter, d = 0.25, we find 
that growth would occur at quasi-equilibrium condi- 
tions at all stress levels up to 100 MN/m* if A > 10; 
on the other hand, any stress in excess of 10 MN/m’ 
would cause crack-like growth if A < 0.38. 

Tables 1 and 2 have been prepared on the basis 
of what we think to be representative surface diffusion 
values, estimated for the temperatures shown with a 
minimum of extrapolation from measured data. The 

entries in Table 2 show that A values can cover an 
extremely wide range and that in most cases A 
exceeds unity, sometimes substantially. Hence it will 
normally be the case at moderate stress levels that 
quasi-equilibrium or mixed conditions dominate, with 
crack-like conditions emerging only towards the end 
of growth, if at all. However, it is well to remember 
that D, values for a given material and temperature 
can vary be several orders of magnitude Cl83 and 
that results seem to be sensitive to impurities and, 
of course, the environment with which the surface 
makes contact. Thus, we are led to believe that very 
low A values could sometimes result, and in such 
cases crack-like growth would occur over a wide 
range of stress levels and void sizes. 

5.5 Rupture time 

We define a rupture time 1, as the time for a void 
to grow from some initial radius a0 to the limiting 
radius b, at which there is coalescence. Of course, 
in practical cases the time required to nucleate voids 
is an important component of the overall rupture 
time (see Raj and Ashby,[8]). By using the results 
of previous subsections, we have approximate means 
of solving for the speed v of cavity growth as a func- 
tion of stress Q, and radius a. For example, equations 
(71) and (73), when used in conjunction with the 
guidelines of the last two subsections as to which case 
applies, provide this relation for the axisymmetric 
void model. The rupture time t, is then given by 

(82) 

5.5.1 Growth in crack-like mode. Recall that growth 
occurs in this mode when the inequalities (80b) or 
(81b) are met. The rupture time when all growth 
occurs in this mode is, for the axisymmetric void, 

64 b4A3 (1 - u’)‘[Q(u)J”du 
t’=uB 

{[1 + Q(u)XA]“~ - 1}3 (83) 
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where do = aO/b and where the stress measure I: is 
defined by (65) and the function Q(d) by (69). This 
integral cannot be carried out in closed form. How- 
ever, by inspection of Table 4 it is seen that Q is 
not strongly variable for d > 0.1 and it suffices to 
use an average value G t 0.6 in the integral. Indeed 
the integrand becomes independent of Q when CA 
is very small, and depends on the 3/2 power of Q 
when ZA is very large. Thus the replacement of Q 
by g is not critical when do > 0.1 and there results 

t, = 0.234 ; H(dJ 
A 

1 

3 

(1 + 0.6XA)“’ - 1 ’ (84) 

where the function H(d) is 

H(d,) = (35/16) 
s 

’ (1 - u’)~ du 
do 

= (I -d,)[l -d&l +d,)(19- 16d~+5d~~/i6]. 

(85) 

The expression for t, has two limiting ranges. 
First if 0.6ZA < 0.5, it is suitable to write 
(1 + x)“’ = 1 + x/Z and thus (84) becomes 

t, = 8.67(b4/B)H(d0)/E3 

= 3.66(b4/B)(yJbg,)‘H(d,)sin3(lE//2) (86) 

where (65) for Z is used. Thus in this limiting case 
the rupture time varies as c;‘. Further, the result 
is independent of A, and hence of D, so that the 
rupture lifetime in this limit is controlled by the rate 
of surface diffusion; i.e. r, is inversely proportional 
to D, (note that B is proportional to D,). Of course, 
the inequality that must be met for validity of this 
limit, namely 0.6CA < 0.5, implies that A is small. 
Specifically, when $ = 75”, the restriction on A is 

A < 0.4y,lba,. (87) 

Hence, if we take ys = 1.5 N/m and b = 6pm as pre- 
viously, we find that the restriction, for validity of 
the inverse cube relation, is A < 0.02 when a, = 5 
MN/m’, A < 0.005 when a,, = 20 MN/m’, 
A < 0.001 when o,X = 100 MN/m’. All these com- 
binations of a, and A values would, generally, be 
sufficient to meet the basic inequalities cited earlier 
for validity of the crack-like growth model. However, 
it is rarely, if ever, the case that such small A values 
occur (see the discussion at the end of subsection 5.4) 
and thus a a; 3 law should not frequently be 
observed. We discuss work by Goods and 
Nix [i9,20] on silver subsequently; in that case the 
data on t, is well fit by an inverse cube law. 

The other limiting case is when 0.6CA > 100. It 
is then appropriate to write (1 + x)“’ - 1 = x1” and 
thus (84) becomes 

E, = 0.503(&4/B)H(d~)(A~)~‘2 

= 0.327(b4/B)(y,A/bo,)3’ZH(d0)sin3~2($/2) (88) 

Now the rupture time varies as the inverse 3/Z power 
of stress. Further, material parameters enter in the 
form A3”/B so that t, is controlled by the speed of 
both surface and grain boundary diffusion, and is in- 
versely propo~ional to Dz'*/Df “. Again setting 
$ = 7.5”, the restriction on A for validity of this limit- 
ing form is 

A > 76 y,jba x. (89) 

Again taking ys = 1.5 N/m. h = 6 pm, the inequality 
reads A > 4 for 6, = 5 MN/m’, A > 1 for 

6, = 20 MN/m’, and A > 0.2 for ax = 100 MN/ml. 
From Table 2 and what has been said earlier, those 
restrictions on A will typically, although not always. 
be met. Hence, if the applied stress is high enough 
so that the inequalities (80b) or (8lb) ensuring a 
crack-like growth mode are met, it is to be expected 
that the rupture lifetime will follow a 0~~‘~ law. This 
seems consistent with results on a copper bi-crystal 
specimen reported by Raj [21]. 

For the 2-D long cylindrical void model u is given 
by (64), assuming that conditions for crack-like 
growth are met. The integral (82) for t, can be done 
exactly in this case and we find 

t, = 0.593 ;(l - d,)4 
A ‘3 

(1 + zA)“z _ 1‘ 1 ’ (‘O) 

This is similar to the above result for an axisymmetric 
void, and exhibits similar limiting stress exponents 
for t,. 

5.5.2 Growth in quasi-equilibrium and mixed modes. 
Again consider the axisymmetric geometry. When the 
inequalities (80a) or (8la) are met (i.e. for low CT, 
or large A/d), growth in the quasi-equilibrium mode 
is insured and D is given by (71). The rupture time 
is calculated from (82) as 

t, = 
2k7-b3h($) ’ 

s 

~(1 - u’)‘Q(U)du 

3RD&,u. do 1 - 2[(1 - u2)/u] [&sin $,/a, b] . 

(911 
The denominator in the integrand equals 1 - l/s, 
where s, as defined in (74), is the ratio of the applied 
stress to that which just equilibrates the void against 
sintering. Hence, when s * 1 the denominator can be 
replaced by unity and there results, when Q is given an 
average value of 0.6 as is appropriate when d > 0.1, 

t, = 0.067 kTb3h(+)(1 - d;)3/RD,6,u, . (92) 

Hence the lifetime is inversely proportional to o,, and 
to L),. This expression must be used with care, how- 
ever, because the condition s >> 1 will be inconsistent 
with the basic inequality of (SOa), which must be met 
for validity of the quasi-equilibrium model, unless 
p =: 0.556/d >> 1. When s is not large, an approximate 
procedure which slightly underestimates the rupture 
time is provided by evaluating the denominator in 
the integrand at its lower limit. This is equivalent 
to replacing 

era by a,. - 2(1 - d$y, sin ~/bd~ 

in the expression for t,. 
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To assess the error involved when rupture time is 
estimated by the quasi-equilibrium model, but when 

the crack-like model is the more appropriate, we cal- 

culate the ratio of the rupture time prediction of (92) 
to that of (88) noting that the latter is appropriate 
for the crack-like model at representative stress levels 
(say, l~lOOMN/m*) if A is of the order of unity or 
larger. Thus, evaluating the expressions for $ = 75” 
and do = 0.25, we find 

(tr)quasi-equiI/(rr)crack-Ii~e = 0.47(a,b/Y,A)“‘. (93) 

Suppose that ys = 1.5 N/m and b = 6 pm as pre- 
viously. Then for A = 1 and stresses 0% between 10 
and lOOMN/m’ (well beyond typical stress levels for 
validity of the quasi-equilibrium model), the above 
rupture time ratio ranges from approximately 3 to 
9, and there is significant error. of course, larger A 
values diminish the error, in proportion to A-“‘. 

It may frequently happen that the early stages of 

void growth are best decribed by a quasi-equilibrium 
model and the later stages by a crack-like model. To 
estimate an a/b ratio, say dl, at which the description 
of growth should change from quasi-equilibrium to 
crack-like, take the average of equations (8Oa) and 
(80b) so that 

s = 1.5 + 3.2~ (94) 

or approximately, for 0.1 < dl < 0.5, 

u, b/y, = (2.6/d,)(l + 1.2A/d,). (95) 

Choosing several representative values for A, Fig. 9 
shows the regions in which each mode prevails. As 
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Fig. 9. Graph of non-dimensionalized stress vs non-dimen- 
sionalized void radius at which void growth becomes 
crack-like. Arrows indicate the direction in which each 
mode of growth is applicable; similarly directed arrows 

can be attached to each curve. 

expected, for lower values of A, the crack-like mode 
of growth prevails at lower stress levels, and con- 
versely. To estimate rupture time assuming a process 
in which both modes are active, use equation (92) 
to obtain the time for the quasi-equilibrium portion 

of growth by replacing (1 - d@3 with 
[(l - d@3 - (1 - df)‘], and to this add the result of 

equation (84) for the time spent in crack-like growth, 
replacing H(d,) by H(d,) in that equation. 

6. DISCUSSION OF EXPERIMENTAL 
RESULTS 

Raj [21] has recently reported results of elevated 
temperature fracture experiments on copper bi-crystal 
specimens containing silica and copper oxide particles 
along a grain boundary oriented perpendicular to the 
direction of tensile loading. Of the 12 specimens stud- 
ied, Raj observed that 4 failed entirely or in part by 
the plastic-flow induced growth of holes, initiated at 
silica particles, and 2 failed due to “incompatibility 
of the matrix slip at the grain boundary.” The remain- 
ing 6 specimens, for which the results are summarized 
in Table 5, were reported to have failed by cavity 
growth through diffusional transport. These cavities 
did not initiate at the silica particles but rather at 
more distantly spaced copper oxide particles, and evi- 
dence was presented to show that the voids formed 
very early in the deformation history. 

The first two columns of Table 5 correspond to 
Raj’s system for identifying the specimens; the next 
columns give the applied stress (labelled cm here), the 
temperature, one-half of the reported center-to-center 
spacing of the rupture cavities on the fractured grain 
boundary (i.e. the distance referred to as b here), and 
the observed time to rupture. 

Comparison with theory is hindered by the lack 
of experimental data on D, for Cu. The numbers 
listed in Table 1 for D,, and Qb in this case are merely 
estimates by Raj [21], based on analogy with other 
metals, but no measurement has been reported and 
these values may be subject to substantial errors. The 
surface diffusivity results, however, do result from 
measurements at temperatures just slightly above 
750°C by Bonzel and Gjostein, reported in [18], and 
are consistent with results for other f.c.c. metals, 

except Ag, when D, is plotted following Gjostein 
against T,,jT (e.g. Fig. 17 of [18]). From these results 
for D, we compute an “average” value of the dimen- 
sionless speed parameter a3u/B by setting a = b/2 and 
evaluating v as b/(tJobrr where (t&,\ is the observed 
rupture time in Table 5. Thus 

avg(a3u/B) = b4/8B(t,),,,,. 

Calculating B from equation (5) and the data in 
Tables 1 and 3, we show this average in the third 
to last column of Table 5. The numbers are all large 
and suggest that the inequality a3v/B >> 24, ensuring 
growth in the crack-like mode, is met for all speci- 
mens except for B7 and perhaps Bl. Thus, for all 
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but these two specimens, the rupture times should 

be given by equation (84). All the quantities which 
enter this expression for t, are available to us except 

for A, equation (63), which depends on f&. In view 
of the uncertainty in D, we have adopted two 
approaches. First, we have attempted to fit the results 
for the cases of large avg(a3v/B) in Table 5 with a 
single value of A, taken as the same for all cases. 

We find that it is possible to bring the calculated 
rupture time, (&_ into reasonably close agreement 
with the experimental results by taking A = 0.5: this 
is shown by the second to last column of Table 5 
where we list the ratios of calculated to observed 
times. The calculations have been based on do = 0. I 
Raj does not report initial cavity (i.e. oxide particle) 
sizes but the calculation is not very sensitive to d,. 
The value of 0.5 inferred for A is also consistent from 
the stand-point of the inequality (80b), which should 
be met since the observed growth seems to be in a 
crack-like mode. For example, taking h = 12 pm as 

representative and yS from Table 3, we find from (8la) 
and @lb) that when u = h/4, the crack-like growth 
mode is ensured when (T, > 6.9 MN/m2 whereas the 

quasi-equilibrium mode can occur only when 
0, < 2.8 MN/m2. Further, as a increases to h/2. the 

crack-like mode is ensured when 0, > 2.3 MN/m2 
whereas the quasi-equilibrium mode can occur only 
when g, (: 1.3 MN/m2. Thus the adopted value of 
A is consistent with a crack-like growth mode being 
produced for all but the lowest stress levels in Table 5 
(i.e. all but specimen Bl and perhaps B7). 

The second approach is to adopt Raj’s estimate of 
D,,, i.e. to use the values of D,,, and Q,, in Table 1. 
Then one calculates that A varies with T. the results 
being A = 0.72 (600”(I), 1.09 (65o”C), 1.58 (700°C) and 
2.22 (750°C). These values for A have been used in 
calculating, from (84), the rupture times, shown in 
ratio to the observed times, in the last column of 
Table 5. The agreement is less good but perhaps 
reasonable in view of uncertainties in material par- 
ameters. The large values of A are, however, consis- 
tent with a crack-like mode of growth at the stress 
levels of the experiments only when a is greater than 

about h/2. Thus it may perhaps be the case that in 
the temperature range of the experiments Db values 

are a factor of two to three times larger than pre- 

dicted on the basis of Raj’s estimates; such larger D,, 

values (and hence smaller A values) seem to give a 
consistent explanation of the results. 

Goods and Nix [ 191 and Goods [20] have pres- 
ented creep failure results on polycrystalline silver 
with water vapor bubbles of I pm diameter spaced 
approximately 10 pm apart along grain boundaries. 
As they point out, based on a privately communicated 
version of our result in equation (90) for crack-like 
growth of the long cylindrical void, the low stress. 
low A. limit of the crack-like model, with t, x a~~. 
fits their data very well over the temperature range 
examined (20&55o”C). Further, as Goods and 
Nix [19J comment based on their own studies, the 
result for crack-like axisymmetric cavity growth is not 
very different; e.g. compare (84) and (90). By rapidly 
cooling a specimen immediately after fracture. so that 
there is no time for surface diffusion to round-out 

the cavities. these authors also observe that the cavi- 
ties are flat and crack-like. 

As Goods and Nix discuss, however, the difficulty 
of a direct interpretation of their results in terms of 
an inverse-cube expression like (86) for t, is that this 
expression is valid only when A K 1 (see the discus- 
sion in subsection 5.4) for stress levels in the range 

of approximately 5-~80 MN/m’ as in their experi- 
ments. But the values for D, and D, in Table 2 lead 
to A = 300 for T = 400’ C, a middle-range tempera- 
ture for their experiments, and a A value of this mag- 
nitude is inconsistent with crack-like growth. Rather 
than the Dso and QS values in Table 1, Goods and 
Nix use Q, = 20 kcal/mol (84 kJ/mole) (they do not 
report a DrO value). attributing this value to a study 
by Gall, Gruzin, and Yudina [29]. However, this 
value for activation energy (E, in [29] of 19.9 kcal/ 
mole) seems to us to have been miscalculated in [29] 
from Fig. 3 of that paper. and should be 9.0 kcal/ 
mole. Indeed. Goods and Nix [I91 conclude that 
based on D, values for Ag, A is too large to justify 
the inverse cube relation. They speculate that some 

Table 5. Comparison of data by Raj [21], on diffusive-mode fractures of Cu bi-crystals, with predictions of crack-like 
model 

Spec. 
Batch No. 6, (MN/m’) T(“C) h (pm) (L),,h. (s) avg(tr%lB)* (~,L,&,),ht ~~rLlcii(~r)“hrS 

I Bl 1 700 16 1.60 x lo6 146 5.9 20 
I B2 13 700 10 4.63 x lo4 770 0.6 2.9 

II B7 5 750 8.5 1.8 x 10’ 64 0.4 2.4 
III B8 10 700 12 7.03 x 104 1052 1.0 4.5 
III B9 10 650 13 1.98 x IO5 1411 1.2 3.2 
III BlO 10 600 13.5 4.31 x 105 2336 1.8 2.9 

* Average value corresponds to a = h/2; computed from surface diffusion data of Table 1 and observed rupture 
time, using h4/8Bt,. 

t Calculated from equation (84) for the crack-like model using d, = 0.1 and surface diffusion data of Table 1, and 
assuming A = 0.5 in all cases. 

$ Calculated from equation (84) as for previous column, but obtaining A from the estimate (no measurement available) 
for D, by Raj [21]; A = 0.72 (600°C). 1.09 (650°C). 1.58 (700°C). 2.22 (75O’C). 

A.M. 2713. R 
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segregant, possibly oxygen or hydrogen, at the grain 
boundaries could greatly enhance the transport there, 
giving rise to a much lower A which would be consis- 
tent with the observed crack-like cavity shape. 

In any event, for sufficiently small A (i.e. less than 
approximately 0.001 for the range of stresses in their 
experiments) the expression (84) for t, becomes inde- 
pendent of A and reduces to (86). Using the value 
of Q, noted above, Goods and Nix show that this 
expression predicts reasonably the dependence of t, 
on (r I, T and h over the range examined. 

7. CONCLUSION 

We have shown how non-equilibrium aspects of 
surface diffusion can affect the creep cavitation pro- 
cess. The discussion is organized around two limiting 
cases: the quasi-equilibrium and the crack-like mode 
of cavity growth. Further, by recourse to character- 
istic relaxation time estimates, and to a self-similar 
solution for cavity growth within the linearized 
theory, we have shown when one model or the other 
applies and how to interpolate between them. More 
quantitative guidelines are given in Section 5 but, 
essentially, the quasi-equilibrium mode is favored 
when the stress level is low, when the cavity diameter 
and ratio of diameter to spacing is small, and when 
the parameter A, giving the ratio of surface to grain 
boundary diffusivities, is large; the crack-like mode 
is favored at high stresses, larger diameters, and small 
A. The parameter a3u/B is identified as a proper 
dimensionless measure of speed, in order to ascertain 
whether the cavity is more nearly of quasi-equi~brium 
or crack-like shape. 

The relation of applied stress to cavity growth rate 
is different according to the cavity shape. These rela- 
tions and expressions for the rupture time are devel- 
oped in Section 5. While uncertainties remain due 
to the lack of definitive surface and grain boundary 
diffusion data, the experimental results of Raj [Zl] on 
Cu bi-crystals, and of Goods and Nix [19,20] on Ag 
polycrystals with grain boundary water vapor bub- 
bles, exhibit features that seem consistent with our 
rupture time predictions based on the crack-like 
mode of growth. 
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APPENDIX 

Characteristic Rel~ation limes 
for Matter Transport 

In order to determine the conditions for which self-diffu- 
sion along the surface of the void and along the grain 
boundary ahead of the void are the only significant mech- 
anisms of matter transport, it is useful to compare the 
charac!eristic relaxation time for each mode of transport 
which results from a periodic disturbance. Mullins [IO, 141 
derived characteristic times for the flattening of a periodic, 
two-dimensional free surface; the extension to three dimen- 
sions (Section Al), as well as an examination of the charac- 
teristic relaxation time for grain boundary self-diffusion 
(Section AZ) are presented here. In addition, the rigid grain 
assumption is examined in Section A3. 

Al. Mass transport at a surface 

Indeed, there are several mechanisms which may con- 
tribute to the process of mass transport at a surface: 
namely, surface set-diffusion, lattice elf-diffusion, and eva- 
poration-condensation. To calculate characteristic relaxa- 
tion times for these processes, consider a semi-infinite, iso- 
tropic solid occupying the half-space z Z w, where w is 
a surface given by 

w(x, Y. tf = AWwC24xll + y/f41 (Al) 

with I and L being the wavelengths of the periodic disturb- 
ance in the x and y directions respectively, and A(t) taken 
to be much smaller than both I and L. 
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Conservation of mass at the surface requires that 

ii(J,)Jax + a(J,),& + Jz + A0 = (I/Q)(iiw/at) (A2) 

where (J,), and (J,), are surface fluxes. J, is the lattice 
flux in the : direction and A0 = 0 - O0 where 0, is the 
rate of evaporation from a flat surface. In linear diffusion 
theory the fluxes in equation (A?) are given by 

(./,I,,, = -(D,ii,.!Q~T)?{c/?Y. ij.. 

JT = -(D,,‘Rk7Ji~l~?~ (A3) 

where D, is the coefficient of lattice diffusion. 
For a free surface, the chemical potential is given by 

equation (2). Since the slope of the surface is small every- 
where, 

(P),.Tf&< = p0 - Q~J2W(.X. )‘, t) (A4) 

where cz = (2x/l)* + (2n/L)‘. Following Mullins [14] and 
Herring [27] if we assume that the flow within the crystal 
is essentially divergenceless (short relaxation time for 
attainment of local vacancy equilibrium). then p must 
satisfy Laplace’s equation and 

p = pco - Ry,c’ exp( - CI)W(.X, y, t). (A5) 

To complete the analysis of equation (AZ), we again fol- 
low Mullins [14] and consider the matter transport which 
results from the process of evaporation-condensation. 
From kinetic theory [25]. the flux from the surface can 
be approximated by 

A0 = Apl(2ntnkT)“’ 646) 

where Ap = p - pO, p being the vapor pressure at the sur- 
face, p,, the pressure at a reference state, and m is the 
mass of a molecule. Presuming the surface to be in equilib- 
rium with its own vapor at this pressure p. that the vapor 
is a perfect gas, and that p is close to p,, 

Equating the chemical potential of the solid phase (A4) 
to that of the vapor phase (A7) at the surface, with both 
referred to the same reference state, implies that 

AP/P~ = - (fP;,c’jkT)w(x, y, t). 

Therefore, equation (A6) becomes 

A0 = - [poR~,c2~(2nm)“*(kT)” 2]w.x, y, r). 648) 

Substitution of equations (A3). (A5) and (A8) into 
equation (A2) leads to a differential equation for the 
amplitude of the disturbance as 

A’(r) + (FTC4 + F,? + F,.c’)A(t) = 0 (.49) 

where 

F, = D,ci,R*,~,~:k T 

F, = D,Ry,/kT 

and 

F,. = ponZ;‘,/[(2nm)‘:2(kT)31*]. 

Solution of equation (A9) gives the shape of the free 
surface as 

w(x. y. r) = 4, exp [ -(F,? + F,? 

+ F,c’)t] exp [2rri(u// + j/L)] ; (A 10) 

indeed, each of the terms in the first exponential of equa- 
tion (AlO) gives the contributions to the flattening of the 
periodic surface by surface self-diffusion, lattice self-diffu- 
sion and evaporation-condensation, respectively. From 
equation (AlO) it is seen that the characteristic relaxation 

time for each mode of transport is given by 

Ts = (k T/D,Wy,) ( l/c? 

for surface self-diffusion, 

(All) 

71 = (kT/D,Ry,)(llc3) 

for lattice self-diffusion, and 

(A12) 

~~ = [(2nm)“z(k~3’2/po~*y~](1/c2) (A13) 

for evaporation-condensation. 
An estimate of the contribution to the total atom flux 

on a free surface for each of these mechanisms can be 
made by examining the ratios of the characteristic relaxa- 
tion times. Equations (Al 1) and (A12) imply that 

%/T, = (Q/D,&)(l/c). (A14) 

Assuming the wavelengths of the disturbance to be the 
same in the x and J’ directions (i.e. I = L = I.), equation 
(A14) reduces to 

T,/T, = (D,/D,&)(Q2\/2z). (A15) 

Similarly, equations (Al I) and (A13) imply that 

T,/T, = [poR/[D,6,(2nmkT)“2] ) (l/c*) (‘416) 

or for I = L = i. 

T,/T, = (p,R/[2D,6,(2nmkT)“2]) (i/2n)‘. 6417) 

If r,/r, K 1 and TJT" cc 1 for a given 1. surface diffusion 
can be expected to be the dominant mechanism of matter 
transport for free surface disturbances of wavelength less 
than 1. For some common metals, Table 2 lists values 
of I,,, for these ratios of relaxation times equal to 0.1. 
These maximum wavelengths are all within reasonable 
bounds for the consideration of intergranular voids. Hence 
it can be concluded that surface self-diffusion is the only 
mechanism which need be considered for the temperatures 
of interest in this study. 

A2. Matter transport in the grain boundary 

A similar analysis will be pursued in order to study the 
dominant mode of mass transport at the grain boundary. 
Consider a local grain boundary thickening 6 and its as- 
sociated normal stress distribution cr, on the grain interface 
produced by placing matter selectively along the grain 
boundary. Generalizing Weertman’s [26] two-dimensional 
analysis, the grain interface can be modelled as the surface 
of a semi-infinite, isotropic, linear elastic solid occupying 
the half-space ; > 0. If the stresses at the surface are of 
the form 

and 

cn = CT,, = B(t)exp[Zni(x/l + y/L)] (Al8) 

oyr = o,, = 0, 

the linear elastic solution (Fung [28]) gives a grain bound- 
ary thickening 

6 = - 2(l - v)o,/Gc (A19) 

where cz = (27r/l)* + (2x/L)‘, and [(l - v)/G]B(t) is 
assumed much smaller than 1; G is the elastic shear 
modulus and Y the Poisson ratio. 

Mass transport at the grain boundary can result from 
either grain boundary or lattice diffusion; hence conserva- 
tion of mass at the grain boundary requires that 

a(J,),/ax + &JJ,),/Zy + 2(5,) = (l/Q)(%/~t) (A20) 

where (JJx and (J& are the grain boundary fluxes in the 
x and y directions respectively, J, is the lattice flux in 
the : direction and &3/i% is the grain boundary thickening 
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rate. As before, the fluxes can be related to the chemical 
potential through the following relations 

(Jr& )’ = - (D,G*/Qk ?)?p/ix, ?y. 

J; = -(D,/QkT)?p/?-_. 6421) 
By an argument similar to that in Section Al, the chemical 
potential throughout the entire crystal is found to be 

p = fiO - Da, exp( -cz). (A22) 

Substitution of equations (A21), (A22), (A18) and (A19) into 
equation (A20), leads to a first order linear ordinary differ- 
ential equation for B(t). Solution of this equation reveals 
the characteristic relaxation time for grain boundary diffu- 
sion to be 

rb = [2(1 - v)/G](kT/D,G,R)(I/c3) (~23) 

and the characteristic relaxation time for lattice self-diffu- 
sion to be 

r, = [(I - v)/G](kT/D,R)(l/c2). (~24) 

Comparing these relaxation times shows that 

rb/r~ = 2(WVs)(W) (~25) 

or for 1 = L = 1 

Q.I~, = UW’&W./W. 6’6) 

If T,+/T, -K 1 for a given I, grain boundary diffusion will 
be the dominant mechanism of matter transport near grain 
boundary disturbances of wavelength less than 1. Table 

2 gives 1,,, for some common metals with T&, = 0.1; it 
is seen that for these metals grain boundary diffusion is 
expected to be the dominant mechanism of matter trans- 
port. 

A3. Elastic effect 

Appropriateness of the rigid grain assumption will be 
examined by comparing the (elastic) relaxation time of the 
grain boundary with a time which is computed on the 
basis of the rigid grain assumption. From the analysis in 
Section 5 which is based on a rigid grain model, equation 
(61) says that 

where u is the void growth rate for the two-dimensional 
equilibrium configuration, and e,,, is the net section stress. 
A representative time 7, based on this model can be defined 
as 

r, = (b - a)/u = (I/u,.,)(kT/D,G,R)[a(h - a)‘]. (A27) 

From equation (A23) for the (elastic) grain boundary relax- 
ation time 

r& = I@ - 4/alb.,,/G). WW 
Since the net section stress is much smaller than the shear 
modulus, Q K r,; thus effects resulting from elastic defor- 
mation become negligibly small after a time which is short 
in comparison with that for which the process of void 
growth is active. 


