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Local Changes in Gravity Resulting From Deformation 
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The horizontal and vertical components of gravity change when tectonic stresses deform the earth 
because mass is redistributed relative to the gravity meter. We analyze the change in gravity resulting from 
deformation in a homogeneous elastic half-space. We derive expressions in closed form which give the 
change in horizontal and vertical components of gravity measured at the surface for any specified 
distribution of dislocations at depth. For example, the change in the vertical component of gravity 
observed by a gravity meter fixed in space above an infinitely long thrust fault is found to be proportional 
to the local change in height, whereas the change due to a spherically symmetric source of dilatation is 
zero. Analysis of the change in the horizontal component shows that error in measurements of uplift 
resulting from changes in level is negligible for these sources. 

INTRODUCTION 

Gravity changes determined from surveys made before and 
after the Alaskan (1964) earthquake [Barnes, 1966], the San 
Fernando (1971) earthquake [Oliver et al., 1972], and the 
lnangahua (New Zealand, 1968) earthquake [Hunt, 1970] were 
found to be proportional to local changes in elevation. The 
close correlation between uplift and gravity change suggests 
that the tectonic straining which produced the uplift also al- 
tered the local gravity field. Changes in elevation and horizon- 
tal surface displacements have become an important source of 
information about tectonic processes occurring before and 
during earthquakes, and sophisticated analyses of these data 
are now possible. Clearly, developing similar techniques for 
analyzing changes in the gravity field is of great practical 
importance. 

Whitcomb [1976] suggests that measurements of uplift may 
themselves be affected by changes in gravity. Redistribution of 
mass due to tectonic straining changes the horizontal com- 
ponent of gravity as well as the vertical component. Changes 
in the horizontal component cause local changes in level, and 
although these are small, Whitcomb suggests that they become 
appreciable when integrated over long traverses. 

Deriving the volume integral giving the change in gravity 
resulting from a specified displacement field is straightforward. 
However, displacement fields produced by even the simple 
sources used to simulate faults or dilatancy are too com- 
plicated to permit direct computation of gravity changes ex- 
cept numerically. As a consequence, simple models have been 
used to get approximate results. In these models [Whitcomb, 
1976; Ruff et al., 1976], uplift is simulated by uniformly de- 
forming a cylinder imbedded in the earth's surface; deforma- 
tion in the cylinder is decoupled from the surrounding rock, 
which is unstrained. The deformation field in these studies is 

highly idealized, and so application to real tectonic events is 
uncertain until results from more realistic models are available 

for comparison. 
We have developed a technique involving, in effect, the 

reciprocal theorem, which allows more sophisticated models 
of tectonic events to be analyzed. We assume that the earth- 
quake covers a sufficiently small volume that the earth can be 
considered to be a half-space. We assume further that the rock 

is linearly elastic, homogeneous, and isotropic. Deformation 
of the half-space occurs as a consequence of some as yet 
unspecified displacement source at depth. After developing 
general equations below, we use them to calculate the gravity 
changes due to a center of dilatation and to a long thrust fault. 
The model and the sources are thus the same as those used in 

traditional analyses of surface displacements resulting from 
faulting and dilatancy. 

ANALYSIS 

Vertical and Horizontal Components of Gravity 

The gravimeter is represented in Figure 1 by the point mass 
suspended above the elastic half-space. The material in the 
half-space exerts a gravitational pull on the point mass, and so 
the vertical force Pz is needed to keep it in equilibrium. The 
gravitational force vector is, in general, not vertical, and so 
horizontal forces, represented by Pr in Figure l, may also be 
needed. The gravitational pull of the point mass generates 
stresses in the half-space; the stresses acting along an arbitrary 
surface s are denoted by ao in the figure. The stress associated 
with self-gravitation of the half-space is neglected, a standard 
assumption in the theoretical faulting calculations referred to 
above. 

The differential dE in energy (elastic and gravitational) of 
the system when the point mass is displaced vertically by dcz 
and increments dui of relative displacement are imposed on s is 

dE = P• dc• + f•ao du• ds• (1) 

(Here the sign convention is such that if the sides of s are 
labeled positive and negative and if ut is defined as the dis- 
placement on the positive side minus that on the negative side, 
then the directed area element ds• points from positive to 
negative.) Now consider the following two processes, in both 
of which the mass is moved a small vertical distance Ac• and 

the displacements ut are imposed on s. For the first process we 
move the point mass by Ac•, thereby changing ao to ao q- 
(c•ao/c•Cz)u,AC•, and then we impose the displacements u• on s. 
The change in energy, to second order in zXc, and ut, is 

aE = P, ac, + t(OPz/Oc,)•,(ac,) 2 

(2) 
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Pz 

Fig. 1. Forces Pz and Pr hold a gravitating point mass (solid 
circle) above an elastic half-space, producing stress a u on surface s. 
Equation (1) gives the change in energy when the point mass is moved 
a small vertical distance dcz and the surface s is allowed to undergo 
relative displacement du,. 

fixed. For the second process we impose the relative dis- 
placements ut on s, thereby changing P, to Ap,, and then we 
move the point mass by Ac,. The energy change (again to 
second order) is 

AE = fs(o.u + }?u)u, ds• + (P, + Ap,)Ac, 

+ •(gL/gC,)u,(Ac,): (3) 

The expressions for AE in (2) and (3) must be identical, and 
so the change Ap, in vertical force on the point mass due to u• 
is 

AP, = J's(c9o.u/c9C,)u,U, ds• (4) 

The force P, is mg,, where g, is the vertical component of 
gravitational acceleration, and so (4) can be written 

fig, = (1/rn )f •( c3o.u/ c3 c, )u,ut dsj 
or in simpler notation, 

S* ag, = f• u u• ds• (5) 
where 

u (1/m)(c9o'u/c9c,)u, 

Note in (5) that the change in the vertical component of 
gravity due to any dislocation u in the half-space can be found 
once we evaluate &/. This term is simply the change in stress 
o.u in a dislocation-free half-space due to moving the reference 
mass a small vertical distance. 

The change Agr in a horizontal component of gravity is 
found following the same procedure, with the result 

where 

-' fs S r dSj (6) Agr t• tit 

Stjr = (1/m)(c9o.t•/C9Cr)u, 

Here, we must find the change in o.u due to moving the 
reference mass a small horizontal distance (in a direction op- 
posite to that chosen as positive for gr). Notice that the stresses 
resulting from moving the reference mass must be calculated 
only once; once they are known, the change in gravity resulting 
from any specified distribution of displacement at depth can be 
found from (5) and (6). 

The stress field o.u due to a gravitating point mass, at height 
c above the surface of an elastic half-space (as in Figure 1), is 
derived in the appendix. The results are 

o.** = Gmoz(z + c)/R 3 

o.rz -- Grnprz/R a 

o.• = -Gmpz/R(R + z + c) (7) 
o.rr -- Gmp[z/R(R + z + c) - z(z + c)/R a] 

where R ø' = r ø' + (z + c) ø', G is the gravitational constant, and p 
is density. Note in (7) that o.. = o.rr '3- o.oo '3- o.zz -' 0, that is, the 
point mass induces no dilatation in the half-space. Expressions 
for Su*, defined by (5), for a point fixed in space very near the 
earth's surface (c = 0) are found from (7) to be 

Srr z -' (Gpz/R3)(1 - 

Soo* = Gpz/R • 

S*** = (Gpz/aa)(1 - 3zø'/a ø') (8) 

&**= - 3Gprz:/a • 

S•? = Srr z + Soo z + Szz z = 0 

To calculate Su x, we first express o-u in (7) in rectangular 
coordinates as follows: 

(o.x,. try,) = (x, y)(o.r,/r) (9) 
(o.•, o.•y, o.yy) = (1, O, 1)o.oo + (x:, xy, ya)(O'rr -- o.00)/? 

The components of St? in (6), corresponding to changes in the 
horizontal component of gravity, are given by (1/rn)(•o.u/•x) 
because of the translational invariance of o.tl. We find that the 
components of Su • are 

LR:½ (R + 

&,* = -3Gaz:x/R • 

ß = (Gzy/R R:r: + - 4• • • • (10) 
&/ = (Gaz/n')( - 3x:/n:) 

Sy, • = -3G•xyz/R • 

S. • = S** • + S• • + &,* = 0 

Corresponding expressions for Su y can be found by ex- 
changing x and y in each equation in (10). 

Change in Potential and Error in Uplift 

We see from (5) and (6) that the change Ag• in any specified 
component of the gravity vector is 

Ag• = (l/m) • (•o.u/•c•)ut dsj 
or, equivalently, 

Ag•= (•/•c•)Ef•(o.t•/m)utds•l (11) 
The change Ag• in a component of gravity is defined in terms 
of the change A V in potential by the relation 
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ag• -- (o/oc•)(av) (•2) 

Comparing (11) and (12), we see that the change A V in poten- 
tial is given by 

av = f (13) 
where ao is given by (7). 

As proposed by Whitcomb [1976], changes in the horizontal 
component of gravity cause error in measurements of uplift if 
the resulting change in level is not corrected. Let us assume for 
simplicity that the leveling route is along the x axis. The 
change Aa in level resulting from a change Agx in the horizon- 
tal component of gravity is then 

Aa = Agx/gz (14) 

where gz is the vertical component of gravity. Changes in the 
vertical component are small relative to g,, and so we can 
assume that g, is constant. The error e in uplift for a traverse 
which starts a great distance from the source is 

x e = (Agffg•)dx (15) 

Substituting (12) (for ck in the x direction) into (15), we find 

(aaV/ax)(•/g•) dx = -aV/g• 

or, from (13), 

e = - • (ao/mg,)ut ds• (16) 
Clearly, (16) is valid whatever route is used, so long as the 
traverse begins where the change in potential is zero. 

EXAMPLES 

Vertical Component of Gravity 

We see from the expression for Su • in (8) that the change in 
pressure due to moving the point mass is zero everywhere in 
the half-space. Therefore, from (5), the change Agz in gravity 
resulting from any spherically symmetric dilatational source, 
as observed by a gravity meter fixed in space, is 

ag,: o (•7) 

Of course, this result is for a dilatational source in dry rock. 
Rock is usually saturated with water in situ, and gravity 
changes due to fluid migration can be expected to occur. 

Consider now a very long thrust fault parallel to the y axis as 
in Figure 2. We see from (5) that-we must find the shear 
component Ssn ß on the fault surface s. To find Ssn •, we first 
transform expressions for Sd given in (8) into Cartesian 
coordinates; the resulting expressions relevant to the problem 
here are 

S•x • = (Gpz/RS)( l - 3x:/R •) 

Sz, • = (Gpz/RS)(l - 3za/R •) (t8) 

S• • = -3Goxz•/R 5 

The expression for S•a* for an element of fault surface dipping 
at an angle/5 from the horizontal is found from (18) to be 

S•,•* = (3Goz/2RS)[2xz cos 2/5 - (x: - z :) sin 2/5] (19) 

The change in gravity Ag, on the surface is therefore 

•x 

z 

Fig. 2. Surface s is a thrust fault in a half-space parallel to the y axis 
and dipping at angle •. 

Ag• = • S•,•u ds 
where u is slip displacement, which in general, may vary along 
s, and S•,• z is given by (19). We assume that u and /• are 
uniform in the y direction. Carrying out the integration over y, 
we find 

[ z Ag• = 2Go (x • + z•)• [2xz cos 2/• - (x • - z •) sin 2/5]u ds (20) 

For comparison we calculate the uplift resulting from slip 
on a long fault parallel to the y axis. We find following the 
analysis given in the appendix that the uplift h resulting from 
slip which is uniform in the y direction is 

f.• z h = (l/a') (x • + z•)• [2xz cos 2/5 - (x • - z:) sin.2/S]u ds (21) 
Combining (20) and (21), we find that the change in the 
vertical component of gravity is uniquely related to the local 
uplift by 

Ag• = 2•rGoh (22) 

for any very long fault where the slip distribution is uniform 
along the direction of strike. 

Error in Uplift 

We see that error in uplift can be calculated from (16) using 
expressions for at• from (7). As a first example, consider a 
spherically symmetric source of dilatation. Because au in (7) 
vanishes, the error in uplift is zero for this source. 

Next consider a thrust fault which, for simplicity, is parallel 
to the x-y plane with displacement u in the x direction. Uplift 
is small for this configuration and Ag•, is large, thereby produc- 
ing a larger relative error in uplift than for other fault configu- 
rations. Error in uplift is calculated from (16) using the ex- 
pression for •,• from (7). We find that the error e for a fault at 
depth d is 

e: -(3/4;r)(p/pe)(d/Re) f• (x/Ra)u(x, y) dx dy (23) 
where •e (= 5.5 g/cm •) and Rs are the average density and 
radius of the earth, and we have introduced the approximate 
relation g, = (4;r/3)•eGRe. 

For comparison, we calculate the actual uplift h using an 
application of the reciprocal theorem in three dimensions simi- 
lar to the two-dimensional form in the appendix. We obtain 
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h = f, (bu/Q)u, ds• (24) 
where bu is the stress field induced in an elastic half-space by a 
vertical point force Q at the origin [Timoshenko and Goodier, 
1951, p. 364]: 

b** = -( 3Q/ 2;r )za/R 5 

brr = -(Q/2;r)13r:z/R •- Lu/(A + #)I/R(R + z)} (25) 

boo = -[Q#/2;r(X + #)][1/R(R + z)- z/R a] 

•rz -- -(3Q/2•r)rz:/R • 

Uplift h found from (24) and (25) for the horizontal fault is 

h = -(3/2;r) d: f, (x/R•)u(x, y) dx dy (26) 
Comparing expressions for e and h above, we see that the 
relative error (e/h) contains the factor (d/Re), and so errors in 
uplift are negligible for events of practical interest. For ex- 
ample, if the fault is infinitely long in the y direction and 
extends from x = l• to x = l:, we find, for uniform dis- 
placement u, that 

3u p d log(/::+d:) (27) e - 4;r p• Re 1•: + d: 
whereas 

h = _u___ d:(l:: - 1•:) (28) 
;r (1:: + d:)(l•: + d:) 

Thus if the observation point is directly above one end of the 
fault (l• = 0) and the fault width is W(= l:), 

e 

= 4Re(1 +• log •-+ 1 (29) 
which is always negligible. 

DISCUSSION 

We develop in the analysis above algebraic expressions 
which can be used to calculate the changes in gravity due to 
any specified sources of displacement at depth. These theoreti- 
cal results are applied to two types of sources, a center of 
dilatation and a very long thrust fault, and the changes in both 
the vertical and horizontal components are examined. The 
change in the horizontal component is found to be sufficiently 
small that the error in measurements of uplift due to errors in 
level is negligible. Whitcomb [1976] found that error in level 
led to appreciable errors in uplift in his model. The lack of 
agreement in our conclusions apparently is due to the differ- 
ences in the deformation fields. All density change occurs in a 
thin layer near the surface in Whitcomb's model, and so grav- 
ity changes are much greater than those in the model analyzed 
here, where deformation is not confined to bounded regions. 

We find that the change in the vertical component of gravity 
due to deformation alone is zero for any purely dilatational 
source and proportional to the local uplift for a very long 
thrust fault of any dip (see (17) and (22)). In our analysis the 
gravimeter is assumed to be fixed in space in order to eliminate 
the free air correction from the calculations. In actual field 

surveys the gravimeter is positioned on the earth's surface, 
which moves, and so the free air correction must be included. 
Therefore according to our calculations, the change in gravity 
which will be observed for a dilatational source is 

Ag = Ag•, A (30) 

and, for a very long thrust fault, 

Ag = Agra + 2•rGph (31) 

where Agra is the free air correction (-• -0.309 mgal/m) and h 
is positive for uplift. Note that (31) gives a value which is the 
same as if material were taken from regions of subsidence and 
piled in regions of uplift. The change in gravity for this case 
must be equal to the sum of Bouguer and free air corrections; 
this is just the value given by (31). 

A comparison of the relative magnitudes of the terms in (31 ) 
can be made by noting that, to a reasonable approximation, 

Agra = -(8;r/3)Gpeh (32) 

Combining (31) and (32) gives 

Agz = AgFa[l - (3p/4p•)] 

We find for o = 2.6 g/cm a that 

Agz = 0.65AGFA = --0.20 h mgal/m 

(33) 

Rundle [1978] calculated numerically the gravity change due to 
a point source of dilatation and for an infinitely long buried 
thrust fault dipping at 10 ø in a material where 3, = #. His 
results for the dilatational source agree with (30). He finds for 
the thrust fault that gravity changes are proportional to the 
local uplift, as in (31). The constant of proportionality is 
approximately the same as our value. 

In the three earthquakes for which data are available, local 
changes in gravity were found to be approximately propor- 
tional to the changes in height. We see in (31) that the analysis 
here predicts that uplift and gravity change should be linearly 
related, in agreement with the observation. Further, the con- 
stant of proportionality calculated from our analysis agrees 
well with the value derived from field data. The observed value 

(see Table 1) is approximately -0.2 regal/to. 
One possible cause of small discrepancies is that (31), which 

applies to very long faults, is not strictly applicable to the 
faults being considered, which were more nearly equidimen- 
sional. We studied the effect of finite fault length in an approx- 
imate way by analyzing the change in gravity for a small, very 
deep fault. We found that a correction factor must be applied 
to (31), which shifts the theoretical changes in gravity. The 
correction factor depends upon the location of the gravity 
meter, however, and so one cannot be sure that the agreement 
between theory and observation is improved without consid- 
ering each station individually. 

The relationship between gravity change and uplift in some 
earthquakes is not as simple as in the earthquakes that we use 
for illustration here. Gravity changes and elevation changes 
were observed before and after the Matsushiro (1966) earth- 
quake swarm [Nur, 1974; Kisslinger, 1975; Stuart and Johnston, 
1975] and the Heicheng (1975) and Tangsban (1976) earth- 
quakes [Chen et al., 1977]. These authors suggest that the 
migration of fluids such as water and magma occurred in 

TABLE 1. Observed Changes in Gravity and Uplift 

Reference Ag/h, mgal/m 

Alaska, 1964 [Barnes, 1966] 
lnangahua, 1968' [Hunt, 1970] 
San Fernando, 1971 [Oliver et al., 1972] 

-0.197 

-0.15; -0.20 
-0.215 

*Only two stations occupied. 
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(O•-C) 

••r •z) 
z 

Fig. 3. The radius vector R extends from a point mass located at 
(0, -c) in an infinite medium to an arbitrary point (r, z). Body forces 
due to the gravitating point mass produce displacements UR symmetric 
about (0, -c). 

conjunction with these events. The changes in the gravity field, 
which is the superposition of the changes due to fluid migra- 
tion and the changes due to elastic deformation that are ana- 
lyzed above, are complex functions of time, and so we have not 
attempted to interpret field data from these events. 

APPENDIX 

Change in Gravity 

As described in the text, we derive expressions for ao by first 
finding the stress field in an unbounded elastic body induced 
by a gravitating point mass m. Suppose that the point mass is 
located at (0, 0, -c), as in Figure 3. The body force Fn per unit 
volume due to the mass is directed along R and has the value 

Fn = -Gmp/R: (A1) 

where Ro. = r: + (z + c)o.. Because of symmetry, the only 
component of deformation is u•, and so-the equilibrium equa- 
tions in spherical coordinates [e.g., Fung, 1965] reduce to 

Oo.u• ( l OUR u• ) = Gmo/Ro. (A2) (x + + 2(x + 

where 3` and tz are the Lam6 moduli. Solving (A2), we find that' 
displacement is uniform, with the value 

ua = -(Gmo)/2(3` + 2tz) 

Stress components corresponding to un in (A3) are 

azz = -[Gmp/R(3` + 2/•)](3` + 

err = -[Gmp/a(A + 2/•)](A + 
(A4) 

aoo =-(Gmp/R)[(X + /•)/(h + 2/•)] 

ar = (Gmp)O:/3` + 21•)(rz'/R a) 

where z' = z + c. Note in (A4) that vertical and horizontal 
'tractions' are present on the plane z = 0: 

a• = -[Gmp/R(3` + 2,u)](3` + (AS) 

•. = Gmp[#/(3` + 2•)](rc/Ro:) 

where Ro" = r: + c ø-. We must remove these in order to make 
the surface z = 0 stress free. We accomplish this by super- 
posing two additional stress fields. The first is the field due to a 
line of force in the z directon of intensity proportional to B per 
unit length distributed uniformly along the negative z axis 

between -c and -oo. Expressions for stress components are 
found by integrating the Kelvin solution [Timoshenko and 
Goodlet, 1951, p. 354] for an isolated point force. We find for 
this line source that 

o.• = -B(I/R) 2X+ 3• + 

O'rz = -B(l/r) ( 3, + 2ix 
o'oo = Bl•/(3` + Iz)R 

[A2 • 2 •a ) R(3` + •) R • 

(A6) 

O'rr = B(1/R) 3` + la 
The second field is due to a line of centers of dilatation along 

the negative z axis, which increase in intensity linearly with z, 
from -c to -oo. The stress field due to an isolated center of 

dilation is given by Timoshenko and Goodier [1951, p. 362]. 
Integrating these, denoting the rate of increase in intensity by 
A, we find 

a,, = -(,4/2R)[1 + (z'o./Ro.) - (zz'/Ro.)] 

O'rz = --(`4/2r)[1 - (z'a/a a) - (r:z/aa)] 
(A7) 

= - (z/r:) + (zz'/r:a)] 

= (,4/2)[(cz'/W) + (z/r:) - (zz'/r:R)] 

Expressions for a• and for arz from (A5)-(A7) are summed, 
set equal to zero, and the resulting equations are solved for ,4 
and B: 

`4 = 2Gmp 
(AD) 

B = -Gmp(3` + •)/(3` + 2•) 

The final expressions for the stress components are found by 
introducing (AD) into the sums of the stress components in 
(A4), (A6), and (A7); the results are given by (7). 

Uplift Resulting From a Long Thrust Fault 

Surface uplift is calculated by applying the reciprocal theo- 
rem to solutions for a line force on a half-space. Consider a 
half-space loaded by a vertical line force P per unit length on 

(A3) the surface, producing the stresses ao* at depth. Now consider 
an arbitrary surface s in the half-space loaded such that the 
surface is displaced a distance u, and a point under the force P 
is displaced a vertical distance h. Applying the reciprocal 
theorem to these two states gives 

Ph = • •*u• ds• 
or 

h = • (ao*/P)u• dsj 

(A9a) 

(A9b) 

Expressions for (a•*/P) needed for evaluating (A9) are given, 
for example, by Timoshenko and Goodlet [1951, p. 85]; we find 
for the case where the surface s is parallel to the y axis, that the 
expressions are 

exx*/P = (2Dr)(xo.z)/(xo. + 

a•*/P = (2/•r)(za)/(x o. + zo.)o. (AIO) 

ax**/P = (2Dr)(xzo.)/(xo. + 
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The shear stress ash* acting on an element of the surface s 
dipping at an angle • from the horizontal is therefore 

(asn*/P) = (z/•r)[2xz cos 2• 

- (x: - z :) sin 21•]/(x • + z:) • (All) 

Uplift at a point on the surface is found by evaluating (A9) 
using (A11 ). Note that the resulting integral is the same, except 
for a constant factor, as the integral giving the change in 
gravity at that point (see (20) and (21)). 
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