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Earthquake Precursory Effects Due to Pore Fluid 
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We report the analysis of two mechanisms by which pore fluids could partially stabilize the earthquake 
rupture process in natural rock masses. These mechanisms are based on dilatancy strengthening and on 
the increase of elastic stiffness for undrained as opposed to drained conditions. Both are studied in 
relation to an inclusion model in which a zone of strain weakening material, possibly representing a highly 
stressed seismic gap zone, is,embedded in nominally elastic surroundings subjected to steadily increasing 
tectonic stress. Owing to the coupling between deformation and pore fluid diffusion, the inclusion does 
not exhibit an abrupt rupture instability; rather, a period of self-driven precursory creep occurs which 
ultimately accelerates to dynamic instability. The precursory time scale is reported for a wide range of 
constitutive parameters, including fluid diffusivity, ratio of undrained to drained stiffness, and factors 
expressive of strain softening and dilatancy. Our conclusions are that the precursory times for a spherical 
inclusion of l-km radius are of the order of 15-240 days for a range of constitutive parameters that we 
suggest are representative. The predicted times are shorter by a factor of approximately 10 for a flattened 
ellipsoidal inclusion that we analyze with an 18:1 aspect ratio. It is suggested that perhaps only toward the 
latter part of the precursory period are the effects of accelerating inclusion strain detectable in terms of 
surface deformation or alteration of transport or seismic properties. 

INTRODUCTION 

We consider the possibility that rock near sites of shallow 
earthquakes is infiltrated with groundwater and examine 
quantitatively processes by which mechanical coupling of rock 
deformation and pore fluid diffusion could transiently stabilize 
the rock against rapid failure. The stabilization results from 
dilatant strengthening within a fault region and from time- 
dependent relaxation of the effective elastic unloading stiffness 
of the surroundings from undrained to drained conditions. 
Both mechanisms are shown to allow failure to occur in a less 

abrupt manner than was predicted without consideration of 
fluid coupling. Instead of an instantaneous dynamic instabil- 
ity, there is a period of initially quasi-static deformation that 
proceeds on a time scale governed by pore fluid diffusion and 
nonelastic deformation characteristics of the failing material 
and that ultimately accelerates to dynamic instability. 

The time scale and character of this quasi-stable deforma- 
tion has interest as a possible basis for discernible precursors 
to earthquakes, in the form of accelerating strain or tilt and 
local pore pressure alterations. Our aim in the present work is 
to develop quantitative estimates of these precursory processes 
on the basis of mechanically consistent models of the failure 
process. In doing so, we do not, of course, claim that all time- 
dependent precursory phenomena are traceable to such me- 
chanical effects of pore fluids in an essentially deformation- 
rate-insensitive rock skeleton. Indeed, some precursory effects 
arise inevitably from the amplification of local fault region 
strain rates over remote tectonic strain rates as instability 
conditions are approached [e.g., Rice, 1977a]. Also, time de- 
pendence from corrosive microcracking of stressed rock, creep 
processes at depth, time-dependent adherence at frictional 
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contacts, and perhaps other mechanisms could be important in 
different settings. 

The first mechanism of fluid coupling that we consider, 
namely, dilatant hardening, is well known in the mechanics of 
granular materials [Reynolds, 1885]. Because rock masses and 
fault zones typically dilate when deformed inelastically, the 
local pore fluid pressure will decrease unless the deformation is 
sufficiently slow to permit alleviation of the induced suctions 
by diffusion. This decrease in pore fluid pressure causes the 
effective stress (that is, the total stress minus the pore fluid 
pressure) to increase in compression, thereby inhibiting in- 
elastic deformation mechanisms such as frictional sliding and 
microcracking. The relevance of dilatant hardening to seismic 
processes was first suggested by Frank [1965], and it has been 
studied in the laboratory deformation of rock by Brace and 
Martin [1968]. A preliminary analysis of the role of dilatancy 
in stabilization of faulting, in the spirit of that to be discussed 
here, has been given by Rudnicki [1977b]. 

The second mechanism by which the interaction of deforma- 
tion and pore fluid diffusion can stabilize against rapid failure 
arises because of the dependence of fault instability conditions 
on the effective elastic stiffness of the fault's surroundings. 
Such stiffness dependencies are well known in laboratory stud- 
ies of failure [Jaeger and Cook, 1976]; the stiffer the loading 
apparatus, the more rock can be deformed stably into the 
postpeak range. For fluid-infiltrated rock the surroundings are 
elastically stiffer for stress alterations which are rapid in com- 
parison to diffusive relaxation times than for long-term stress 
alterations. If the time scale of deformation is rapid in com- 
parison to that for diffusion so that the fluid mass in material 
elements remains constant, the response is termed 'undrained' 
and is elastically stiffer than the long-time or 'drained' re- 
sponse for which the local pore fluid pressure is constant. This 
time dependence provides a mechanism of transient stabiliza- 
tion as discussed by Rice et al. [1978] and Rice [1977a] on the 
basis of analyses using the linear elastic theory of Blot [1941] 
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(a) 
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Fig. 1. Types of failure models. (a) Deformation of'inclusion' of 
different mechanical properties. Runaway instability based on strain 
soœtening of inclusion and elastic unloading stiffness. (b) Isolated 
region oœ slippage on preexisting fault, spreading quasi-statically at 
small speed V. 

for porous solids. Similar effects have been studied in prob- 
lems related to aftershock mechanisms by Booker [1974]. 

Our analysis of both of the foregoing pore fluid coupling 
effects is based on a model for the inception of faulting in- 
troduced by Rudnicki [1977a]. This model considers the defor- 
mation of a rock mass which contains an ellipsoidal inclusion 
in which the properties are uniform but different from those of 
the surroundings (Figure la). Rudnicki [ 1977a] interpreted this 
inclusion as deforming nonlinearly and exhibiting a peak stress 
as a consequence of weakening by faulting, whereas the sur- 
rounding material remains nominally elastic. Rice [1977a], 
however, has indicated that the model applies as well and, 
indeed, may be more pertinent if the inclusion is interpreted as 
sustaining higher stresses than its surroundings. This would be 
the case if the inclusion had undergone less strain due to past 
faulting than the surroundings and is, in effect, a 'seismic gap' 
zone. Because of the large local stress, the inclusion [Rudnicki, 
1977a] exhibits a peak stress, whereas the surrounding mate- 
rial remains elastic. 

In either interpretation the slow increase of tectonic stress 
drives the inclusion material past peak stress. At some point 
the slope of the descending stress-strain curve for the inclusion 
material becomes sufficiently negative so that no further in- 
crease of tectonic stress can be accommodated quasi-statically. 
This dynamic 'runaway' is interpreted as the occurrence of an 
earthquake. As we shall see, and as was suggested by prior 
discussions of the inclusion model by Rudnicki [1977a, b], Rice 
et al. [1978], and Rice [1977a], the effect of fluid coupling 
mechanisms of the type discussed earlier is to cause this insta- 
bility to occur not abruptly but rather in a more gradual 
manner with a time scale controlled by fluid diffusion, and, 
possibly, with discernible precursors. 

Despite the simplicity of this model it is motivated by the 
idea that prefailure processes are likely to be dominated by 
large-scale heterogeneities of mechanical properties which re- 
main as a result of the past history of faulting. Indeed, because 
the material properties and the geometry of such fault zones 

are at present so poorly known, it seems unwise to concoct 
overly detailed models, although we do believe that simple 
analyses founded upon consistent mechanical principles are 
useful for identifying the salient features of precursory proc- 
esses. 

Although our discussion here is organized primarily with 
reference to the inclusion model, another model which is rele- 
vant and may be more appropriate in many circumstances is 
one in which nonelastic deformations are assumed to be local- 

ized along a narrow fault from the outset and in which the 
slipping zone along the fault can propagate in a shear-crack- 
like mode (Figure lb). In the presence of an infiltrating pore 
fluid, both the stabilizing effects of dilatant hardening and of 
time-dependent stiffness of the surroundings are applicable 
here as well, as has been remarked by Rice and Cleary [1976]. 
Rice and Simons [1976] examined further the stabilization 
which results from time-dependent elasticity by solving for the 
stress concentration near the tip of a quasi-statically propagat- 
ing shear crack in a fluid-infiltrated porous elastic solid. They 
found that for a range of crack speeds comparable to propaga- 
tion rates inferred for episodic creep events in central Califor- 
nia [King et al., 1973], the crack extended stably in the sense 
that with increasing propagation speed an increase in far-field 
driving stress, relative to frictional resistance, was needed to 
maintain the same stress intensity near the tip. Also, by adapt- 
ing an earlier.analysis developed for slip surface propagation 
in overconsolidated clay soils, Rice [1977a] developed an ex- 
pression for the increase in far-field driving stress that is re- 
quired, with increasing propagation speed, to overcome the 
augmented frictional resistance due to dilatantly induced suc- 
tions from the shear 'breakdown' process near a fault tip. The 
result suggests that the maximum induced suction and re- 
quired driving stress increase approximately in proportion to 
V •/• at low speeds, where V is the propagation speed. These 
studies of pore fluid effects on the criterion for propagation of 
a shear crack suggest precursory effects similar to those that 
we discuss here on the basis of the inclusion model. In the 

inclusion model as we present it, an entire zone deforms into 
the inelastic range and ultimately becomes unstable. The shear 
crack model is more complicated because it involves the grad- 
ual enlargement of the nonelastic (slipping) region. Fluid ef- 
fects of the kind discussed above provide a possible mecha- 
nism for control of the time scale and extent of enlargement of 
the slip region before an unstable, dynamic spreading of the 
slip zone occurs, just as the effects may control the time scale 
and extent of nonelastic strain in the inclusion model. We 

leave as a goal for future work the quantification of the pre- 
cursory time scale predicted on the basis of the shear crack 
model and concentrate here on the inclusion model. 

In addition to the mechanical effects of the pore fluid, there 
are also surface chemical effects. These seem to be important 
in time-dependent crack growth in quartz-based rocks [e.g., 
Martin, 1972; Scholz, 1972; Swolfs, 1972; Martin and Durham, 
1975; O. L. Anderson and P. C. Grew, 1977], and they may be 
significant in determining the strength of rocks on a time scale 
comparable to that for tectonic alterations in stress. The con- 
stitutive description of these effects, however, is as yet in- 
sufficient to permit incorporation into the rupture models 
discussed here. Their presence, as well as the presence of time 
dependence of the frictional resistance of rock [Dieterich, 
1972, 1978], would not invalidate the mechanical effects of 
pore fluids that we discuss here but would add additional 
components to the overall precursory time-dependent defor- 
mation. 
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We will begin by reviewing in more detail the inclusion 
model for instability based on the deformation of an in- 
homogeneous zone. Then we will analyze the stabilizing effects 
of the pore fluid by employing the solution of Rice et al. 
[1978], discussing dilatant hardening on the basis of the work 
of Rudnicki [1977b] and time-dependent stiffness on the basis 
of the work of Rice [1977a]. In particular, we will demonstrate 
that both the mechanisms of dilatant hardening of the in- 
clusion material and time dependence of elastic stiffness of the 
surrounding material can stabilize the rock mass against dy- 
namic failure at a point where runaway would occur if the 
infiltrating fluid were not present. The subsequent deformation 
is initially slow but is self-driving and ultimately accelerates to 
dynamic instability. Because this self-driven accelerating de- 
formation may display itself in observable precursors, such as 
accelerated creep or anomalous tilting of the ground surface, 
we estimate its time duration on the basis of the models 

presented here and the incorporation of plausible material 
properties. 

INSTABILITY OF A ROCK MASS WITH 

AN INHOMOGENEOUS ZONE 

As discussed in the introduction, we consider a rock mass 
containing an inclusion in which the mechanical properties 
differ from those of the surroundings (Figure la), and for 
convenience of analysis we assume that the inclusion is ellip- 
soidal in shape. For the present we neglect pore fluid effects 
and consider the material surrounding the inclusion to be 
linearly elastic. If, in addition, the inclusion material is ho- 
mogeneous, the inclusion deforms homogeneously [Eshelby, 
1957] even if its material is nonlinear. As a result the difference 
between the uniform strain of the inclusion (•u)-,c and that 
applied in the far field (eu)= is related linearly to the corre- 
sponding difference in stresses: 

where (eu)• is related to (•ru)• by the elastic constants of the 
surrounding material. The tensor Qukt depends on the geome- 
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Fig. 2. Deformation and instability of inhomogeneous zones. (a) Weakened zone. (b) Approach to instability. (c) Seismic 
gap zone. 
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Fig. 3. Stabilization of inhomogeneous zone by dilatant hardening; dynamic instability delayed to point D' [Rice, 1977a]. 

try of the inclusion and the elastic constants of the surround- 
ing material but not on the inclusion properties (as long as 
they are homogeneous). In particular, (1) pertains whether the 
inclusion material deforms linearly or nonlinearly. Ex- 
pressions for Qtjnt in specific cases have been given by Rudnicki 
[1977a, b]. 

The state of the inclusion at a particular level of far-field 
stress may be deduced from a simple graphical construction 
based on (1). Following Rice et al. [1978], we consider the 
component of (1) for a single shear stress as illustrated in 
Figure la. Then if •, denotes the 'engineering' shear strain, 

'¾1n½ -- '¾• -- (•IG)(7'• - 7'inc) (2) 

where G is the shear modulus of the surroundings and • a 
shape factor. This equation is plotted in Figure 2 as the Esh- 
elby line of negative slope G/•, along with the stress-strain 
relation for the far field, •-• = G•'•, and the nonlinear 
versus %no relation for the inclusion. If •-• has its value at point 
A in Figure 2, the stress in the inclusion is given by the value at 
point A', that is, the intersection of the •'•n• versus %n• curve 
with Eshelby line through point A. As •'• is increased, the 
successive states in the inclusion traverse the •'•n• versus 
curve as illustrated schematically in Figure 2b. When •-• has 
reached its value at point B, the Eshelby line is tangent to the 
inclusion stress strain curve at B'. No further increase of •'• 
can be sustained quasi-statically, and a dynamic runaway of 
the inclusion shear strain occurs. 

The parameter • in (2) is given by the following expressions 
[Rudtiicki, 1977a]: 

2(4- 5re) 7- 5re (3) 
for a spherical inclusion, 

4(1 - •) a (4) 

for a narrow axisymmctrical ellipsoidal inclusion, and 

(1 - v•)a (5) •= •'b 

for a narrow ellipsoidal inclusion in plane strain, where v• is 
Poisson's ratio in the surrounding material and a and b are the 
semimajor and semiminor axes of the ellipsoid. (The second 
expression is a correction by Rice [1977a] of a formula given 
by Rudnicki [1977a].) An examination of (3)-(5) reveals that 
the slope of the Eshelby line is less negative for narrow in- 
clusions than it is for nearly spherical ones, and, consequently, 
runaway occurs nearer to peak stress for the more narrow 
zones. 

Using the construction of Figure 2b, wcscc that an increase 
of local shear strain rate is predicted as the instability point is 
approached. In Figure 2b, •'• is increased in equal increments, 
but it is evident that the corresponding increments of 
increase in size. This acceleration of the local strain rate is a 
general precursory effect, but whether it is sufficient to bc 
observable in terms of surface deformation is unclear. 

The graphical construction corresponding to the seismic gap 
interpretation is shown in Figure 2c. Because the inclusion has 

inclusion 

drained Eshelby line 

•undrained ,, ,, 

Dynamic 
Instability 

Y 

Fig. 4. Stabilization due to time-dependent elastic stiffness. The solid straight line represents the unloading stiffness for 
drained (d) conditions, and the dashed line that for undrained (u) conditions. Actual stiffness changes, d to u, will be smaller 
than shown [Rice, 1977a]. 
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undergone less strain than the surroundings, the peak of the 
rinc versus 71no curve is drawn to the left of the line r= = G'r=. 
Therefore the stress sustained by the seismic gap is always 
greater than r=. That %n• is initially negative is in- 
consequential and results because the strains are measured in 
relation to those corresponding to the unloaded state in the far 
field. Otherwise, the analysis is the same as that for the 'weak- 
ened zone' interpretation of Figures 2a and 2b. 

The r•n• versus %n• curve in Figure 2 is to be regarded as the 
relation appropriate to in situ conditions. If the inclusion 
material dilates in response to shear, as is typical for brittle 
rock near failure, it must do so against the constraint of the 
surrounding material. The induced compressive stresses wilt 
then inhibit further inelastic deformation and effectively ele- 
vate the r•nc versus '•lnc curve over that for constant mean 
stress. These effects have been addressed by Rudnicki [1977a] 
for general deformation states, but it suffices for the purpose of 
the constructions in Figure 2 simply to regard the r•,• versus 
'rl,c curve as drawn so as to incorporate the effects of dil- 
atancy-induced compression. Rudnicki [1977a] has also shown 
that prior to runaway instability, critical conditions of the type 
discussed by Rudnicki and Rice [1975] will be met, beyond 
which the deformation pattern in the inclusion need not re- 
main homogeneous but can begin to bifurcate into localized 
shear zones. Thus it is appropriate to regard the stress-strain 
relation of the inclusion as representing the overall response of 
a nonelastically deforming region even if the deformation is 
not locally homogeneous. 

Effects of Pore Fluid Coupling 

Before examining mathematically the stabilizing effects of 
coupling of the deformation with pore fluid diffusion, we 
discuss these effects qualitatively in terms of the schematic 
illustration of instability in Figure 2b. It is evident that Figure 
2b may be altered in two ways to prevent instability at B': The 
local slope of the r•n• versus 'Y•n• curve may be increased, or the 
Eshelby line may be steepened. These correspond to the two 
mechanisms of stabilization which were discussed in the Intro- 

duction, namely, dilatant hardening of the inclusion and 
stiffening of the elastic response of the surroundings due to 
undrained conditions. 

We consider separately each of the stabilizing mechanisms. 
First we neglect the time-dependent stiffness of the surround- 
ings and concentrate on dilatant hardening of the inclusion 
material. The relatively rapid deformation induced near point 
B' will cause the slope (dr/d'r)•n• to have its elevated, un- 
drained value, which is denoted by u in Figure 3, reproduced 
from Figure 4 of Rice [1977a]. (We shall later show the rela- 
tion of this undrained slope to the drained slope and to other 
constitutive parameters.) Consequently, runaway instability 
will not occur at B'. If r• deviates only slightly from its value 
at B' (assumed to be the critical value predicted on the basis of 
drained response), the subsequent deformation will follow the 
Eshelby line rather than the continuation of the stress-strain 
curve for drained deformation (shown as a dashed curve in 
Figure 3). Continued softening, however, will diminish the 
value of (dr/d'r),• for both drained (d) and undrained (u) 
responses (e.g., point C' in Figure 3). Ultimately, the value of 
the slope for undrained response falls to the value of that for 
the Eshelby line, and instability occurs at D'. 

Similarly, we can neglect the changes in the r•nc versus 'rin• 
curve which are induced by dilatant hardening and focus on 
the stiffness changes due to time-dependent response of the 
surroundings (Figure 4, reproduced from [Rice, 1977a, Figure 

5]). Because of rapid deformation near B', the response of the 
surroundings will not be drained, as indicated by the solid line 
at B' in Figure 4, but rather increments of inclusion and far- 
field deformation will be related according to the stiffer re- 
sponse appropriate to undrained conditions, as indicated by 
the dashed line in Figure 4. Although the r•n• versus 'r•n• curve 
is not tangent to the dashed line at B', continued softening will 
reduce the value of (dr/d'r)•n• until it equals the slope of the 
Eshelby line for undrained response at D'. Thus instability is 
delayed beyond B', but it occurs at D'. 

In the remainder of the paper we will examine these proc- 
esses more precisely and concentrate on the time evolution of 
the system from point B' to point D' in Figures 3 and 4. For 
this purpose we require the extension of the Eshelby relations 
(equation (1)) for application to a fluid-infiltrated solid. This 
generalization has been accomplished for spherical inclusions 
by Rice et al. [1978], and in the next subsection we will review 
their results. Although these relations apply rigorously only 
for spherical inclusions, the results for a more narrow zone can 
be approximated by an appropriate modification of parame- 
ters. 

Eshelby Relations for a Fluid-Infiltrated 
Elastic Solid 

Rice et al. [1978] observe that when an unbounded fluid- 
infiltrated elastic solid containing a spherical cavity is sub- 
jected to a sudden alteration of pore pressure and surface 
traction (derivable from a homogeneous stress tensor) at the 
cavity wall, the wall displaces as if the cavity interior had 
undergone a homogeneous deformation. This enabled them to 
generalize the Eshelby relations of (1 and 2) to spherical in- 
clusions in fluid-infiltrated solids, on the assumption that the 
inclusion is sufficiently permeable by comparison to its sur- 
roundings that pore pressure is effectively uniform within it. 
This assumption seems reasonable in the present context, since 
the inclusion material is in the dilatant, strain-softening range 
in the time scale over which we make use of the analysis. 

Consequently, the strain and pore pressure fields are ho- 
mogeneous within a spherical inclusion, and, following Rice et 
al. [1978], the Eshelby relation of (2) connecting the mismatch 
of shear stress and strain between the inclusion and the far 
field is generalized to 

%no(t) -- 'y•(t) = • •, + (• - •u)f c(t- t ). _• a 2 

ß ['?=(t') - '?me(t')] dt' (6) 

where t is time, the overdots denote time differentiation, G is 
the elastic shear modulus of the material surrounding the 
inclusion, a is the radius of the inclusion, and c is the diffusiv- 
ity which appears in the porous medium equations [e.g., Blot, 
1941; Rice and Cleary, 1976]. The parameters • and •, are 
given by (3) with the value of Poisson's ratio of the surround- 
ings appropriate for drained (t,) and undrained (t,u) deforma- 
tion, respectively. (Of course, • > •, since t, < t,•,; some 
numerical estimates are given in a subsequent table). Con- 
sequently, (6) reduces to the forms of (2) which are appropri- 
ate for undrained and drained response when the non- 
dimensional function f(ct/a 2) takes on its limiting values for 
short and long times, respectively: 

f(O)= 0 f(•)= 1 

The complete variation of f(O), where 0 = ct/a •, is shown in 
Figure 5 from Rice et al. [1978, Figure l] for their rt = 0.8 
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Fig. 5. Function f(O) arising in response of spherical cavity to a step 
shear loading, from Rice et al. [1978]. 

and 1.0. (The dependence of f(O) on • is very weak, and • itself 
varies only from 0.8 to 1.0 for representative material param- 
eters.) 

It is convenient to have a version of (6) which involves only 
finite times t. Specifically, we assume that prior to t = 0 there 
are no excess pore pressures and the inclusion is in equilibrium 
with its surroundings on the basis of the fully drained elastic 
properties of the surroundings. That is, prior to t = 0 the 
deformations are assumed to take place slowly enough so that 
(6) reduces to (2) with • based on the drained elastic proper- 
ties, whereas deformation for t > 0 involves the coupling with 
diffusion discussed above. In that case it is straightforward to 
rewrite (6) as 

"Yinc(/) -- "y,•(l): 3 ['/',•(0) -- 'rlnc(O)] 

l for(, [c(t-t')]}[•'.(t')-•',nc(t')]dt' + • "+ (•-•.)f a • 
(7) 

As mentioned earlier, the response of the inclusion to shear 
may be coupled to that for compression by dilatancy-induced 
compressive stresses. Thus for a complete analysis the Eshelby 
relation for the hydrostatic component of deformation is 
needed. The appropriate special case of (l) is [Rudnicki, 
1977a]. 

G[•inc(t) -- •(t)] : •[ffinc(t) -- ff•(t)] (8) 

where the strains • and stresses a (positive in compression) are 
the hydrostatic components, • = •, and a = -a•/3. As 
shown by Rice et al. [ 1978], this same relation applies for fluid- 
infiltrated solids whenever a• and • change with time in a 
manner consistent with a constant fluid mass content at in- 
finity. This includes the special case which we will consider, for 
which a• and • are taken to be constant as r• is increased. It 
is remarkable that the dilational Eshelby relation of (8) in- 
volves only the total hydrostatic stress a•n• within the inclusion 
and, for a given a•n•, is dependent of the pore pressure P•n•. 
This feature follows from the solution to the Biot equations as 
developed by Rice and Cleary [1976] for simultaneous appli- 
cation of a total stress and pore pressure alteration to the wall 
of a spherical cavity. 

One additional equation is needed to relate the pore fluid 
pressure p•n•(t) in the inclusion to the fluid mass m•n•(t) per 
unit volume within the inclusion. Rice et al. [1978] have ob- 
tained this equation by again taking advantage of the solution 
by Rice and Cleary [1976] for the pore pressure distribution 
induced outside a spherical cavity by sudden application of a 
pore pressure to the wall of the cavity. The mass flux into the 
cavity, as computed from the pore fluid pressure distribution 

outside the cavity and Darcy's law, is required to balance the 
rate of fluid mass accumulation at the cavity wall. The result, 
after extension by superposition to arbitrary time variation, is 
[Rice et al., 1978] 

30k {p rh,nc(t) = a •. ,no(t) - p•(t) 

+ •[•rc(t - t')] •/•' [/3,nc(t') -/J•o(t')] dt' (9) 
where • is the density of the pore fluld in the material sur- 
rounding the inclusion • is assumed to be spatially uniform 
except for small pressure-dependent changes due to fluid com- 
pressibility) and where k is the permeability coefficient of the 
surroundings, defined so that Darcy's expression for the mass 
flux rate of pore fluid crossing unit area has the form •k•p. 
Sometimes k is written as k' (with units of area, measured in 
darcies) divided by viscosity of the pore fluid [see Rice and 
Cleary, 1976]. Again, p• and a• are assumed to vary in a 
manner that m• is constant; for our calculation we will take all 
to be constant. 

lhus we wish to use (7)-(9) to analyze the inclusion model, 
assuming that $• = • = 0 and that some uniform tectonic 
shear stressing rate q• is given. In order to complete the 
analysis of time-dependent response it is necessary to specify 
three constitutive relations for the inclusion material which 

relate its 'strain' quantities %n•, •n•, and m•n• to its 'stress' 
quantities r•n•, a•n•, and P•n•. For simplicity of analysis and 
clarity of presentation, the effects of dilatant hardening of the 
inclusion and of the time-dependent stiffness of the surround- 
ings will be considered separately. Constitutive relations for 
the dilatant hardening analysis are given in the next section, 
and for that analysis we neglect the time-dependent stiffness of 
the surroundings implicit in (7), replacing (7) by (2). For the 
analysis of time-dependent stiffness effects it suffices simply to 
view r•n• as a function of •n• without dilatancy effects, as in 
Figures 2 and 4, and the analysis can then be based on (7) 
without explicit consideration of (8) and (9). 

Our inclusion model as based on (2) or (7) and (8) and (9) 
obviously regards the fault zone as being of small extent by 
comparison to other relevant dimensions. As such, its proxim- 
ity to the earth's surface is neglected, as is also the nonuni- 
formity of rock properties with depth. These are important 
limitations (but removable by more elaborate modeling) on 
the application of our results to large crustal earthquakes. 

STABILIZATION BY DILATANT HARDENING 

In this section we will examine in detail the manner by which 
dilatant hardening can delay the onset of rapid failure and give 
rise to a period of initially slow but accelerating deformation. 
For convenience the complementary mechanisms due to time- 
dependent stiffness of the surroundings will be neglected. This 
simplification corresponds to using (2), which we will assume 
relates rates of stress and strain, rather than (7) as the Eshelby 
relation for shear. First, however, we will introduce constitu- 
tive relations for the inclusion which are intended to model the 
frictional, dilatant response of brittle rock. 

Constitutive Relations 

The constitutive relations employed to describe the response 
of the inclusion material are analogous to those which were 
introduced by Rice [1975], generalized to arbitrary deforma- 
tion states by Rudnicki and Rice [1975], and used by Rudnicki 
[1977a, b]. These relations are intended to describe both elastic 
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response and frictional, dilatant inelastic response of com- 
pressed rock due to slip on nominally closed fissure surfaces 
and to microcrack growth from local tensile stress concentra- 
tions. 

Consider a material element which is subjected to a hydro- 
static stress a (positive in compression), a shear stress r, and a 
pore fluid pressure p. If the material responds elastically, the 
shear strain rate • and volume strain rate • may be written 

? = (10) 

(11) 

where G is the incremental shear modulus, K is the incremental 
bulk modulus for drained response, and Ks is the bulk modu- 
lus of the solid constituents. The combination a - p(1 - K/ 
Ks) is the form of the 'effective stress' which has been shown by 
Nur and Byerlee [1971] to be appropriate for elastic response. 
In general, however, an increment of deformation involves 
inelastic response, and these contributions to the strain rate 
must be added to those of (10) and (l 1). Following Rice 
[1977a], we write the complete incremental stress-strain rela- 
tions as 

5 = q/G + [•- #(•- t•)]/h (12) 

& =-(b - tJ)/K - P/Ks + l•[•' - •(b - •)]/h (13) 

where u is a friction coefficient and • is a dilatancy factor 
which expresses the ratio of inelastic increments of volume 
strain to inelastic increments of shear strain. Estimates from 

experimental results for values of • and • by Rice [1975], 
Rudnicki and Rice [1975], and Rudnicki [1977a, b] lie in the 
ranges 0.5-1.0 and 0.2-0.5, respectively. The 'hardening' mod- 
ulus (or 'softening' if h < 0) is related to the slope of the r 
versus • curve for drained response at constant a by 

•aoa- 1 +h/G &=0 (14) 
In general, all of the constitutive parameters may vary with the 
deformation, although the variation in h is typically most 
substantial. 

The form of the effective stress which enters the inelastic 

contributions in (12) and (13) is a - p. Recently, Rice [1977b] 
has shown rigorously that this is the appropriate form in 
describing the inelastic response which arises from slip at 
isolated asperity contacts and/or from local cracking at the 
tips of sharp microfissures. 

One additional constitutive equation is needed for the fluid 
mass content m per unit volume, which is related to the appar- 
ent volume fraction v of pore space by m = ov, where o is the 
mass density of the homogeneous pore fluid. It is convenient to 
express m in terms of the stresses by using reciprocity relations 
[Biot, 1973; Rice, 1975] to deduce the form for the elastic 
portion of dv and by assuming dVv = dv• for the inelastic 
portion [Rice, 1975]. The latter has been shown [Rice, 1977b] 
to follow rigorously in the same circumstances for which the 
use of a - p for the inelastic effective stress measure is justi- 
fied. The result, written in rate form, is 

•_ v• [• 1 •(b_•)_ v . [•-•(&-•)] 
(15) 

where K t is the bulk modulus of the pore fluid • = p•/Kt) and 
the remaining quantities have been defined previously. 

The stiffness of response for shearing under undrained con- 
ditions (rh = 0) may now be calculated and compared with the 
corresponding stiffness for drained conditions (equation (14)). 
Assuming b = 0 and setting rh = 0 in (15) yields 

= + (16) 

where 

1 1 v l+v 
-- = --+ (17) 
K' K K t K, 

By substituting (16) into (13) we obtain the stiffness of re- 
sponse for shear at constant hydrostatic stress under com- 
pletely undrained conditions: 

•a•,,•oa - 1 + (h + #•K')/G b = 0 (18) 
Comparison of (18) with the analogous expression for drained 
response (equation (14)) reveals that the effective slope of the r 
versus • curve has been augmented by an amount correspond- 
ing to the replacement ofh by h + #•K'. The stiflened response 
under undrained conditions is depicted schematically in Figure 
3 by the arrows labeled u. For representative values of #, fl, 
and K' this effect is substantial and may be sufficient to cause 
the slope for undrained response to be positive, while that for 
drained response is negative. 

For heavily fissured rock, Ks >> K, Kt/v, and therefore 

K' -• KKt/(K t + vK) (19) 

If K t has a value appropriate for liquid water (K t = 22 kbar) 
and v < 0.10, as is typical of brittle rock, K' - K. High 
temperatures, low pore pressure, or the presence of entrapped 
gas may, however, cause K t to be reduced well below vK, so 
that K' -• Kt/v and the dilatant hardening effect disappears in 
the limit as K t -, O. 

Of course, the foregoing constitutive description is based on 
the assumption that the state of the pore fluid can be charac- 
terized by a single parameter, namely, a pore pressure p, which 
is valid only when deformations are sufficiently slow that there 
is local pressure equilibrium between all fissure and pore 
spaces occupying what is regarded as a 'point' in the contin- 
uum model of the material. This may hot be the case in the 
presence of rapid deformations; some estimates of equilibrium 
times and generalizations of the pore pressure concept are 
considered by Cleary [1977] and O'Connell and Budiansky 
[1977]. Indeed, some discussions of dilatancy [e.g., Nur, 1972] 
consider the possibility that the effect may be so strong as to 
open substantial vapor-filled, or 'dry,' crack space in rock that 
is otherwise liquid saturated. Such a concept seems to be 
widely associated with the term 'dilatancy' and is consistent 
with alterations of seismic wave speeds. But it is important to 
realize that far milder dilatancy, insufficient to cause the open- 
ing of dry crack space and thus to affect seismic wave transmis- 
sion, may nevertheless be present during a failure process and, 
possibly, be a major factor in controlling the time scale of that 
failure through the processes to be described. 

Dilatant Hardening and Instability 

In order to apply the results of the last section to the 
inclusion problem, we adopt (12), (13), and (15) as the consti- 
tutive laws for the inclusion material and employ them in 
conjunction with the Eshelby relations (2), (8), and (9). The 
analysis follows that of Rudnicki [1977b, chapter 2]. Thus the 
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relations between rates of stress and strain are, from (2) and 
(8), 

?•.•(t) - +•(t) = 3 [•(t) - fi.•(t)] (20) 
•me(t) = (3/4G)b•.e(t) (21) 

where we have assumed in (21) that b• - 0. If(12) and (13) are 
combined with (20) and (21) to eliminate -i-•.• and b•.•, the 
results are 

( KG ) #131ncKoz(l+4G/3Ks) (22) q the = q• 1 ør h - ha + h- ha 

flGa O/•Jln c 

K #flKa(1 + 4G/3Ks) (23) ß 1 +•ss- h-ha 

where • = •/(1 + •)and a = 1/(1 + 4G/3K)= (1 + v)/3(1 - 
v) and we have assumed for simplicity (hat the elastic moduli 
of the inclusion are identical with those of the surroundings. 
(Rudnicki [1977b] has given the corresponding expressions if 
there is elastic mismatch between the inclusion and the sur- 

roundings but assuming effectively incompressible solid con- 
stituents for the inclusion (Ks • oo.) The parameter ha is the 
value of h for which the ratio q•/q• in (22) becomes un- 
bounded under completely drained conditions (/3 - 0) and 
corresponds to the onset of dynamic runaway (point B' in 
Figure 3): 

ha = -G/(1 + t•)- #fig/(1 + 3K/4G) (24) 

The first term on the right in (24) would result from equating 
the right-hand side of (14) to the slope of the Eshelby line 
(-G/t•). whereas the second term reflects the inhibiting effect 
of dilatancy-induced compressive stresses. In other words, the 
hardening modulus corresponding to the in situ stress-strain 
curve of the inclusion is 

H = h + #ilK/(1 + 3K/4G) 

In order to demonstrate that the stiflened response to un- 
drained deformation (compare (18) with (14) or u with d in 
Figure 3) can in fact stabilize against runaway at h = ha, we 
again consider completely undrained conditions. First, using 
(13) we can rewrite (15) as 

• = 0/3 -1 t- (aln c -- 0/3) -1 t- •Inc (25) 
p gt Ks 

where we here and subsequently drop the designation 'inc' 
from rh and/3. Eliminating i•,• and &•,•e from (25) by means of 
(21) and (23) yields the rate of pore fluid pressure decrease in 
the inclusion 

where 

-flGKr'q• (26) (d[J)undralned = h - hd "[- Ol#•gl't(1 "[- 4G/3Ks) 

1 _ v (1-Kr/Ks) 1 ( K) Kt' aK t (1 + 4G/3Ks) + • 1 - • 
Substituting (26) into (22) yields 

gG •1 (27) qlnc = qm 1 q- h - ha q- •#flgr'(1 q- 4G/3Ks) 

and demonstrates that the ratio qlnc/qm remains finite at h = 
ha. Even if the rock mass is constrained to deform in a com- 
pletely undrained fashion, however, q•n•/q• does become un- 
bounded at 

h = ha -- ha- a#flKt'(1 + 4G/3Ks) (28) 

which corresponds to point D' in Figure 3. The discussion of 
(28) in cases of limiting behavior for K t' follows the earlier 
remarks for K'. 

Although dilatant hardening can stabilize against the onset 
of rapid failure at h = ha, the subsequent deformation is self- 
driving [Rudnicki, 1977b]. More precisely, Rudnicki [1977b] 
showed that in a segment of constant h (and other constitutive 
parameters), any perturbation of %n• from its equilibrium 
value corresponding to some fixed r• is stable if h > ha (i.e., 
prior to point B' in Figure 3), in the sense that the perturbation 
decays with increasing time. However, when ha > h > ha (i.e., 
for states between points B' and D' in Figure 3), perturbations 
in %n• grow exponentially with increasing time, and the rate of 
growth becomes unbounded when h = ha. We define the 
precursor time as the time which elapses from the onset of this 
period of self-driven deformation at B' to dynamic instability 
at D'. 

In order to determine the evolution of the inclusion state 

and thus the precursor time it is necessary to solve the system 
of equations consisting of the constitutive laws (12), (13), and 
(15) and the Eshelby relations (20), (21), and (9). The number 
of governing equations may, however, be reduced to two: (22) 
and a single equation for the alteration in pore fluid pressure 
p(t). The latter can be obtained by using (21) and (23) to 
eliminate dlnc and iln c from (25), which then becomes 

rh a(1 + 4G/3Ks) 
• Kt'(h - ha) [SGq• + t3(h ha)] (29) 

where K t' and ha have been defined in (26) and (28). Com- 
bining (9) with (29) yields 

tvtJ(t)= _ flKt'Gq•to _ [ 3K t' • h-ha h-h• a(1 +4G/3K,)N h-h• 

X p(t) + [•c(t - t')] m •(t') dt' (30) 
where to = a•/c is the diffusion time, p(t) is now measured in 
relation to the ambient value which exists in response to the 
constant hydrostatic stress at infinity, and the lower limit of 
the integral has been chosen by taking p(t) = 0 for -m < t • 
0. The parameter N = c/k is an additional elastic modulus 
which Rice and Cleary [1976] have shown may be written as 

N = 2G(1 - v)B2(1 + Vu) 2 
9(1 - .u)(.u - 

where ,u is Poisson's ratio for undrained response and B is the 
ratio of pore fluid pressure decrease to mean normal stress 
increase for an increment of undrained deformation. 

The dependence of h and, in general, of all of the constitu- 
rive parameters on the deformation couples (30) to (22). In 
solving these equations we will assume, however, that the 
variation in all the parameters except h is small enough that 
they may be treated as constant. Although this may be a poor 
approximation in the case of • and Kr, so little is known about 
the details of their variation that assuming they are constant 
seems justified in the interests of simplicity. The simple numer- 
ical procedure which was used to solve (30) and (22) is out- 
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Fig. 6. Inclusion stress-strain relation. 

lined in Appendix 1. Results of the calculations and a dis- 
cussion of the constitutive parameters which were used are 
presented in the following subsection. 

Numerical Results for 
Precursor Time 

As mentioned earlier, the precursor time is defined as the 
time which elapses from the onset of self-driven deformation 
at point B' (Figure 3) to instability at D'. For the calculation 
we assume that the in situ fine versus %n½ curve has the form of 
a linear segment of slope G up to an elastic limit and that this 
segment is connected smoothly to the following parabola (Fig- 
ure 6): 

G 

rm½ = rp - •- ('Ymc - 'Yp): (31) 
where •v is the strain at peak stress, 3, is the difference between 
% and the strain at the elastic limit, and G is the slope at the 
elastic limit. Because this represents the in situ stress-strain 
curve, the value of H = h + #I•K/(1 + 3K/4G) (see following 
(24)) is related to dr•½/d%•½ by 

dri,½ H 
d%,½ 1 + H/G 

In particular, we choose r• = I kbar, • = 6.25 X 10 -ø, X = 
2.5 X 10 -ø, and G = 200 kbar. For the remaining material 
parameters we assume v = 0.2, # = 0.6,/• = 0.3, N = 2.0G, 
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Fig. 7. Predicted precursor time tprec/tD as a œunction oœ the non- 
dimensional œar-ficld strain rate '•.tD. For values o• material parame- 
ters, scc the text. 
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Fig. 8. (a, b) History of postpeak straining of the inclusion and (c) 
the decrease of pore fluid pressure in the inclusion. Computed for 
= 1.4 X l0 -•. Points B' and D' are as in Figure 3, and 'YD' is the value 
of the strain at point D'. 

= 1.45G, and Ks = 5G. The value of N corresponds to using vu 
= 0.37 and B = 0.8 and is in the range, though toward the 
lower end, of values inferred from Rice and Cleary [1976, 
Table l]. The value of K/is based on an initial porosity of v = 
0.01 assuming Kr = 22 kbar. The calculation was begun at 
peak stress, where it was assumed the alteration in pore fluid 
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Fig. 9. Same as Figure 8 except '•tD = 1.4 X 10 -6. 
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TABLE 1. Predicted Precursor Times Based on Dilatant Hardening 
of a Spherical Zone 

a= lkm a=3km a=5km 

c = 1 m•'/s 
to = 11.6 to = 104 to = 289 

tprec = 55.4 tprec = 234 tprec = 411 

c = 0.1 m•'/s 
to = 116 to = 1042 to = 2894 

tvrec = 238 tvrec = 844 tpr,• = 1418 

Scholz et al. [1973] 
tprec • 8 tprec • 200 

Values of tpree and to are in days; tprec is the time for the transition 
from B' to D' in Figure 3. The precursor time for a = 1, c = 1 m•'/s was 
estimated by extrapolation of the curve in Figure 7. Data used were 
the following: tectonic stress rate i• = 1 bar/yr; peak strain parameter 
(Figure 6) 3` = 0.0025; frictional coefficient # = 0.6; dilatancy factor 
/5 -- 0.3; initial porosity v = 0.01; N = c/k = 2.0G; K8 = 5.0G; 
Kf = 22 kbar; G = 200 kbar; v = 0.2. 

pressure (taken to be zero at the elastic limit) was given by the 
steady state term in (30): 

p(H = 0)= - •a(l + 4G/3Ks)N 
3(-Ha) 

where Ha -- -G/(1 + • ). 
The dimensionless precursor time 0•,rec = t•,redto is shown in 

Figure 7 as a function of the dimensionless far-field strain rate 
•to. It is evident that the predicted precursor time does not 
simply scale with •to. In particular, although t•,• increases 
with to = a2/c, the increase is not proportional. 

The time history of postpeak straining is shown in Figures 8 
and 9 for •to = 1.4 X 10 -5 and 1.4 X 10 -6, respectively. The 
strain is given in terms of the parameter (%n• - %,)/('•o, -%,), 
where %, is the strain at peak stress and •o, is the strain at 
point D' in Figure 3. Point B' corresponds to the onset of the 
period of self-driven deformation. The dashed portion of the 
solid curve indicates where the numerical caluclation was trun- 

cated (see Appendix 1). The fully dashed curves in Figures 8b 
and 9b indicate for comparison the strain history in the ab- 
sence of pore fluid effects. Those were calculated by setting/3•n• 
= 0 in (22) and integrating for %• as a function of time. It is 
evident that dilatant hardening not only delays the onset of 
instability but also gives rise to a more dramatic acceleration 
of precursory strain. In Figures 8c and 9c the decrease in the 
pore fluid pressure of the inclusion is shown. It is noteworthy 
that the decrease is extremely rapid but occurs very close to 
final instability. This suggests that precursory phenomena 
which may be associated with the rapid decrease in pore fluid 
pressure may occur over a time period which is substantially 
less than the period of self-driving deformation. 

The results are shown in dimensional form in T•able 1. We 

consider three values for the radius of the sphere; namely, a = 
1, 3, and 5 km; and two values of the diffusivity, c = I and 0.1 
m2/s. The larger value of the diffusivity was suggested by D. L. 
Anderson and J. H. Whircomb [1975] as being reasonable for 
shallow earthquake zones, whereas c = 0.1 mUs is more in 
accord with well head measurements near the San Andreas 

Fault [Kovach et al., 1975]. The value of • was chosen to 
correspond to q• = I bar/yr, i.e., • - •'•/G, which is consis- 
tent with the centennial occurrence of a large earthquake 
having a stress drop of 100 bars. Strain accumulation measure- 
ments along the San Andreas Fault near Palmdale [Prescott 

and Savage, 1976] suggest a value of •, which is roughly an 
order of magnitude smaller, so that values of +•to which are 
smaller than those plotted in Figure 7 may be relevant. How- 
ever, because of the expense of computation for small values of 
•to, the precursor time for a = I km and c = I m2/s was 
simply estimated by extrapolating the curve in Figure 7. The 
values in Table I again indicate that although tv•c increases 
with the diffusion time a2/c, the increase is not proportional. A 
tenfold increase in a2/c corresponds to an increase of roughly 
4-5 times in tv•. 

The last row of Table I gives the 'best fit' correlation by 
Scholz et al. [1973] of precursory times (based on Vv/Vs anom- 
alies, radon emission, and crustal movements) with the length 
of aftershock zone. Individual data points may differ by a 
factor of approximately 2 from this time. The values in Table 1 
identify 2a with the length of the aftershock zone. Comparison 
of the calculated with the observed precursor times indicates 
that the calculated values are generally larger than but perhaps 
not inconsistent with those observed. The observation of seis- 
mic anomalies, for example, may be possible only toward the 
later stages of what is referred to here as the precursory period. 
This interpretation is consistent with the earlier remark con- 
cerning the prediction that rapid decrease of pore fluid pres- 
sure occurs relatively near final instability. 

The values of the material parameters which were used in 
the calculations were chosen to be consistent with the existing 
laboratory and field data. In order to assess the magnitude of 
the effect that variations in the more uncertain of these param- 
eters might have, we have performed a few additional calcu- 
lations for alternative values of the dilatancy factor/•, the peak 
strain parameter •, and the fluid bulk modulus Kt. The calcu- 
lations were carried out for •/•to = 1.4 X 10 -5, which corre- 
sponds to •-• -- 1 bar/yr, a = 3 km, and c = 0.1 m•/s. The 
results are summarized in Table 2. 

The values of/• which were quoted earlier were estimated 
from laboratory data for tests on intact rock. Because labora- 
tory tests have indicated that dilatancy may diminish some- 
what with cyclic loading [e.g., Scholz and Kranz, 1974; Zoback 
and Byedee, 1975] and with increased confining stress [Brace et 
al., 1966], smaller values of/5 may be more representative of in 
situ conditions. Table 2 shows the calculated dimensionless 

precursor time for values of/• equal to one half and one 
quarter of the value used for other computations & - 0.3). 
Reduction of/• by half apparently reduces tw•/to by slightly 

TABLE 2. Effect of Variations in the Dilatancy Factor/5, the Peak 
Strain Parameter 3`, and the Fluid Bulk Modulus Kf on 

Material 

Parameter Value 0pre½ 

Parameter •5 
0.075 0.16 
0.15 0.39 
0.30 0.81 

Parameter 3, 

0.00125 0.56 
0.0025 0.81 
0.0050 1.13 

Parameter Kr, kbar 
2.2 0.44 

11 0.76 
22 0.81 

All calculations were for '•to = 1.4 X 10 -• and values of other 
parameters as in Table 1. 
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more than half. Note, however, that even for/• = 0.075, 0prec "- 
0.16 corresponds to approximately 170 days in real time for a 
= 3 km and c = 0.1 m•'/s. This observation emphasizes that 
even a very small amount of dilatancy may have quite sub- 
stantial effects of the kind described here. 

The value of the peak strain parameter X is one of the most 
uncertain in the analysis, since laboratory investigations of 
postpeak behavior have been relatively sparse. Fortunately, 
the calculation does not appear to be especially sensitive to the 
value of X. The entries in Table 2 suggest that decreasing X by 
half reduces 0pre½ by about 30%. 

In the calculations for Table 1 and Figure 7 the bulk modu- 
lus of the fluid K r was assumed to have a value appropriate for 
liquid water, i.e., K t -• 22 kbar. We remarked earlier, however, 
that high temperatures, low pressures, or the presence of dis- 
solved gases may reduce K t. Table 2 shows the calculated 
precursor times for K t = 11 and 2.2 kbar. These correspond to 
values of K//G (K/is defined following (26)) of 1.2 and 0.5 by 
comparison with K//G = 1.45 for Kt = 22 kbar. We remark 
that an equivalent reduction of K r' to 0.5G can be accom- 
plished by an increase of porosity from v = 0.01 to v = 0.1. 
The reduction of K r by half reduces 0pre½ by only about 6%, 
and for Kt = 2.2 kbar the predicted precursor time is decreased 
by slightly less than half. 

In all of the calculations it has been assumed that the hard- 

ening modulus was the only material parameter which varied 
substantially with the deformation. A more detailed calcu- 
lation should consider the variation of other material parame- 
ters. In particular, appreciable alteration of the dilatancy fac- 
tor • or of the bulk modulus of the pore fluid K r will probably 
be important. It seems evident that there must exist a limit to 
the amount of dilatancy which a rock may undergo. Thus it is 
likely that • may decrease at large strains and that the stabiliz- 
ing effect of dilatant hardening may be limited by the attain- 
ment of a least dense state corresponding to no further di- 
latancy. This is consistent with the measurements by Crouch 
[1970], which indicated a decrease in the rate of dilatancy 
relative to the axial strain after some amount of deformation 

past peak stress, although dilatancy did continue throughout 
the postpeak regime. 

A second limiting effect, which was mentioned earlier, is the 
increase in fluid compressibility. For the calculations per- 
formed here, the decrease in the pore fluid pressure from the 
ambient level which was assumed to exist when the inclusion 

material was at the elastic limit did not approach 100 bars until 
very near instability. The variations shown in Figures 8c and 
9c are typical, though the decreases became larger more rap- 
idly for larger values of 5/•to. Because the lithostatic pressure 
at 5-km depth is about 500 bars, the calculations suggest that 
substantial decreases of Kr may be difficult to achieve by pore 
pressure decreases alone, at least until very near instability. It 
should be emphasized that 'very near instability' in terms of 
the dimensionless precursor time may be of the order of days 
or even weeks in real time, as can be seen from Table 1. 
Furthermore, elevated temperatures and exsolution of trapped 
gas may contribute significantly to reducing K r. 

The calculations also apply rigorously only for spherical 
inclusions. A preliminary analysis by Rudnicki [1977b] for • 
flat elliptical inclusion in plane strain indicates that the time 
scale of stabilizing effects due to dilatant hardening is very 
much shorter for narrow zones. In particular, Rudnicki [ 1977b] 
derived an equation whose asymptotic long-time character- 
istics were similar to those of (30), except that the appropriate 
length which entered the diffusion time L•'/c was the short axis 

of the ellipse. This suggests that for an axisymmetric ellipsoid 
of aspect ratio a/b = 20, the diffusion time is 1/400 of that for 
a sphere of radius a. A more complete analysis is needed to 
determine the extent to which dilatant hardening effects are 
influenced by geometry. 

STABILIZATION BY TIME-DEPENDENT STIFFNESS 
OF SURROUNDINGS 

For the analysis of this mechanism we neglect any suctions 
i•duced in the pore fluid within the inclusion and assume that 
the inclusion response to shearing can be represented by a plot 
of fine versus %he as in Figures 2 and 4. As remarked earlier, 
this plot may be thought of as representing in situ conditions 
and hence as including effects of an increasing mean stress a 
induced by the constraint of the surroundings against inelastic 
dilation of the inclusion material. Thus letting 

r•n½ = F[%n½] (32) 

describe the stress-strain relation of the inclusion material, the 

mathematical problem is to solve (7) subject to this relation for 
a given history r•,(t). Since we assume in deriving (7) that there 
is equilibrium under fully drained conditions for t < 0, the 
state at t = 0 must satisfy (2), namely, 

%•(0) - •(0) = •[•(0) - •,•(0)] 
and this may be used to simplify the right side of (7). Hence by 
using (32) and r• = G'y•, (7) becomes the nonlinear integral 
equation 

1 

'y,n½(t) = 'y,n½(0) + •[r•,(t) - r•,(0)] 

+ + - )fLc(t- t') l} 
ß {•-•(t) - F'['r,n½(t')]5',n½(t')} dt' (33) 

where F•['Ylnc] = dF['Ylnc]/d'ylnc. This equation applies for t > 
0; r•,(t) is regarded as given, and %nc(t) is to be determined. 

This equation is rigorous for a spherical inclusion with •/and 
•/u calculated from (3) using the drained and undrained Pois- 
son ratios, •, and •,u, respectively, for •'e. As an approximation, 
however, we shall also assume that (33) applies to other types 
of inhomogeneous zones, specifically to the flattened ax- 
isymmetric ellipsoidal zone of semimajor axis a, for which •/ 
and f• are calculated from (4). For the function F['Ylnc] of (32) 
we use the parabolic stress-strain relation in Figure 6. We 
assume that the inclusion strain is at the peak of the curve 
when t = 0, %nc(0) = 3•p and that the remote tectonic stress is 
increased at a constant rate -i -• for all subsequent time. 

Equation (33) must be solved numerically, and the details 
are explained in Appendix 2. Essentially, we find that the 
solution can be put in the dimensionless form 

['Y,nc(t) -- '¾p]/['¾D' -- '¾p] -- g(O; R, •,/•u, •) (34) 

Here 'to, is the inclusion strain at the point corresponding to 
D' in Figure 4 (i.e., the undrained instability point, at which 
dynamic instability occurs), 0 = ct/a •' = t/to as before, and R 
is dimensionless measure of the tectonic stressing rate, namely, 

R = •(1 + •)(a•'/c)(•'•/GX) (35) 

Apart from the factor f(1 + f), which depends on the shape of 
the inclusion, R can be interpreted as the ratio of the charac- 
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TABLE 3. Estimates of Drained and Undrained Poisson Ratios for Fluid-Infiltrated Solids With 

Cracklike Pore Spaces 

Poisson Ratio (Undrained Stiffness)/(Drained Stiffness) = •l•u 

Narrow Narrow 

Crack Density Drained Undrained Elliptical Axisymmetrical 
Parameter Nr • v Vu Cylinder Ellipsoid Sphere 

0 0.25 0.25 1.00 1.00 1.00 
0.1 0.21 0.28 1.11 1.06 1.07 
0.2 0.17 0.32 1.22 1.12 1.15 
0.3 0.12 0.36 1.37 1.20 1.25 
0.4 0.08 0.41 1.56 1.29 1.39 

Based on self-consistent calculations of O'Connell and Budiansky [1974]. Also shown is the ratio of 
elastic unloading stiffness of surroundings for undrained conditions to same for drained conditions, for 
various shapes of the inhomogeneous zone. 

teristic diffusion time tD( = a:/c) to the time for the remote 
tectonic strain to increase by amount h, where h is defined in 
Figure 6. 

Some specific plots of the results represented by (34) will be 
shown subsequently. First we discuss the choice of parameters. 
We have examined the cases • = I and • = 10. The first 
corresponds to a near-spherical inhomogeneous zone (e.g., (3) 
yields • = I when a drained Poisson ratio v = 0.2 is assumed). 
The second corresponds to a flattened, slitlike zone; from (4), • 
= 10 is consistent with an axisymmetric ellipsoid with aspect 
ratio a/b • 18. Remarkably, our numerical results indicate 
that for given values of R and •/•,, the function g of (34) is very 
nearly independent of •. Results for the time 0 to go from point 
B' to point D' in Figure 4, for example, typically differ by 1% 
or less for • = I versus • = 10, except at the largest values of R 
that we considered (R • 3), at which the differences were still 
only of the order of 10%. 

The ratio •/•,, in (34) can be interpreted via (2) as the ratio 
of the elastic unloading stiffness of the inclusion surroundings 
under undrained conditions to the same under drained condi- 

tions. From (3), (4), and (5) the ratio is given by 

__• = (4 - 5v)(7 - 5v,,) 
•, (4 - 5v,,)(7 - 5v) 

•___ (l-v)(2-v.) • _ l-v 
•. (1 - v.)(2 - v) •. I - v. 

(36) 

for the cases of spherical, narrow axisymmetric ellipsoidal, and 
narrow elliptical inclusions, respectively. The ratio evidently 
depends on v and v,, and there is no direct source of in situ 
values known to us. Neither corresponds to the Poisson ratio 
inferred from seismic wave speed ratios, as noted by Rice and 
Cleary [1976] and O'Connell and Budiansky [1977]. Further, in 
situ values will almost certainly be dominated by the presence 
of joints and fractures and will thus differ significantly from 
values inferred for intact laboratory specimens. For example, 
Rice and Cleary [1976] summarize data on intact specimens 
and report values of v and v, of 0.27 and 0.30 for Charcoal 
granite, 0.25 and 0.34 for Westerly granite, 0.12 and 0.31 for 
Ruhr sandstone, and 0.20 and 0.33 for Berea sandstone. Large, 
partially opened joints or fractures reduce the drained vol- 
umetric stiffness of rock as much as a far larger volume frac- 
tion of equiaxed pores, yet they have almost no effect on the 
undrained volumetric stiffness, assuming full saturation of the 
flat pore space by liquid water. The effect is to reduce v and 
increase v, so that the presence of such joints could make the v 
and v, values for a granite rock resemble much more closely 

the values for intact, porous sandstones than the values for 
intact granites. 

An alternate approach to the effects of joints and fractures is 
to use the theoretical estimates of elastic properties of cracked 
rocks by O'Connell and Budiansky [1974]. What those authors 
refer to as the Poisson ratio • for dry conditions corresponds 
to our drained ratio v, and in Table 3 we summarize their 
results for v as a function of their crack density parameter 
N?(= e) for a rock having a Poisson ratio of 0.25 when crack 
free. Here N is the number of penny-shaped cracks per unit 
volume having radius r. The undrained Poisson ratio v, can be 
calculated from the values of the dry shear modulus G re- 
ported by O'Connell and Budiansky [1974] and from the un- 
drained bulk modulus K,, which, as we have noted, is essen- 
tially equal to the bulk modulus of the solid for flat cracklike 
pore spaces. The resulting values of v, are also listed in Table 
3. We note that for crack densities N? greater than approxi- 
mately 0.1 the crack interactions considered by O'Connell and 
Budiansky lead to results for v and v, that differ substantially 
from estimates made on the basis of dilute concentration for- 

mulae for G and K [Rice, 1977a]. 
With the results in Table 3 we can calculate the undrained to 

drained stiffness ratios •/•. of the surroundings from (36), and 
the results are shown in the table for different shapes of the 
inhomogeneous zone. Now, from observations on wave speed 
ratios Vp/VB prior to the 1971 San Fernando earthquake, 
O'Connell and Budiansky [1974] suggest that their crack den- 
sity parameter should have a range from 0.1 to 0.3 to fit one set 
of seismic data and from 0.2 to 0.4 to fit another. On perusing 
Table 3, this suggests that stiffness ratios •/•,, = I. l0 and 1.25 
might be taken as being representative, and we have used these 
two ratios in our numerical evaluations of the function in (34). 

Results of Numerical Solutions 
and Precursory Predictions 

As will be seen, a value of the tectonic loading rate parame- 
ter R = 10-: is representative of the middle of the range 
considered in some subsequent numerical evaluations, and we 
show in Figures 10 and 11 the solution of the integral equation 
(33) for stiffness ratios of 1.25 and 1.10, respectively. The 
points marked B' correspond to the drained instability point of 
Figure 4 beyond which the system is self-driving, and those 
marked D' to the undrained instability point at which dynamic 
failure occurs. The lower graphs in Figures l0 and I l have an 
enlarged time scale and show details in the neighborhood of 
the instability. For comparison the dashed lines curves show 
the corresponding progression to instability when pore fluid 
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Fig. 10. Postpeak strain history for constant tectonic loading rate, 
based on undraincd to drained stiffness ratio of 1.25. Dashed curve 

neglects pore fluid effects. Points B' and D' correspond to those in 
Figure 4. 
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Fig. 12. Precursory times as function of tectonic loading rate 
parameter R, based on time-dependent relaxation of elastic stiffness of 
material surrounding inclusion. 

effects are neglected (this corresponds to the construction in 
Figure 2b, and the details are explained in Appendix 2). 

The effects of the pore fluid are evident in leading to the 
more prolonged period of accelerating strain before the insta- 
bility, and, of course, the effect is more pronounced for the 
larger stiffness ratio (Figure 10) than for the smaller (Figure 
I l). The choice of a time interval which could be defined as a 
precursory period is, of course, somewhat arbitrary. As with 
our dilatant hardening analysis, we define 

0prec --' Ctprec/a 2= tprec/to 

as the time for traversal of the self-driven range between points 
B' and D', and this time interval is shown as a function of R in 
Figure 12. It is, evidently, a period over which local strains in 
the zone that is soon to be ruptured accelerate significantly 
over those accumulated in previous periods of comparable 
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Fig. 11. Same as Figure 10 but for undrained to drained stiffness 
ratio of 1.10. 

duration. Deformations at ground surface vary in proportion 
to the local strain within the inclusion (which can be regarded 
as an isolated time-dependent dislocation) and will show a 
similar time history. Also, the rapid deformations could con- 
ceivably lead to discernible variations in seismic and/or trans- 
port properties within the failing zone. 

Table 4 shows some specific predictions of precursory times 
in days based on the results in Figure 12. We consider in this 
table three values, 1, 3, and 5 km, for the radius a of the 
inclusion; and two inclusion shapes (i.e., values of •), a sphere 
(• = l) and a slitlike ellipsoid (• = 10; 18:1 aspect ratio for 
axisymmetric geometry). Also, two values of the fluid diffusiv- 
ity are considered, c = I and 0.1 m2/s, which appear to be 
consistent with various field [D. L. •4nderson and J. H. Whit- 
comb, 1975] and well head [Kovach et al., 1975] measurements. 
The first results shown for tprec are based on a stiffness ratio of 
1.10, and following these we show in parentheses the results 
for a ratio of 1.25. In preparing Table 4 it is necessary to 
associate a value of R (equation (35)) with each value of •, a, 
and c corresponding to an entry in the table. This is done by 
choosing a tectonic stress rate +• = I bar/yr and shear modu- 
lus G = 200 kbar as previously. Evidently, from Figure 12 a 
tenfold reduction in +• would lengthen all precursory times 
shown by a factor of 5 or so. The parameter 3, of (35) is defined 
with reference to the stress-strain curve of Figure 6, and, as 
remarked earlier, if the curve in Figure 6 is to have a peak 
strength of I kbar and to be linear up to ] of peak strength, 
with continuous slope where the linear portion joins the para- 
bola, then 3, = 0.0025. We use this value in the table. 

The results in Table 4 reveal that while tprec increases with 
inclusion size, it is again not directly proportional to the 
diffusion time a2/c. Indeed, a tenfold decrease in diffusivity 
increases tpre• by a factor of 2-3, and a fivefold increase in 
inclusion size (hence 25-fold in a 2) increases tpre• by a factor 
ranging from approximately 2 to 4. 

There is a significant effect of the shape of the in- 
homogeneous zone. Assuming, as we have, the same •'l,• ver- 
sus .yl,• relation in each case, the spherical zone has precursory 
times that are 10-20 times longer than those for the flat zone 
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TABLE 4. Predicted Precursor Times Based on Time-Dependent Elastic Stiffness of Surroundings 

Zone Shape a= lkm a=3km a=5km 

c = 1 m:/s 
Spherical(• = t) R = 1.27 X 10 -4 R = 1.14 X 10 -3 R = 3.16 X t0 -s 

tprec = 14(29) tprec = 36(92) tvr,• = 55 (150) 

Flat (• = t0) R = 6.96 X t0 -s R = 6.27 X tO-: R - 1.74 X tO-' 
tpr,• = 1.3 (3.9) tpr,• = 2.6 (8.9) tpr,• = 3.5 (12) 

C = 0.1 m:/s 
Spherical (• = t) R = 1.27 X 10 -3 R = 1.14 X tO-: R = 3.16 X tO-: 

tprec - 37 (96) tpr,• = 83 (261) tpr,• -- 122 (399) 

Flat (• = t0) R = 6.96 X tO-: R = 6.27 X tO-' R = 1.74 
tpr,• = 2.8(9.5) tpr,• = 4.5 (18) tprec = 5.2(22) 

$cholz et al. [1973] 
200 

Values of tvr,• and tD are in days. Precursor times are for the transition from point B' to point D' 
in Figure 4. First values shown are for undrained/drained stiffness ratio, •/•u, of 1.10; values which follow 
in parentheses are for ratio of 1.25. Other data used: ;:= = I bar/yr, G = 200 kbar, peak strain parameter 
h (Figure 6) = 0.0025. Flat zone corresponds to axisymmetric ellipsoid with 18: l aspect ratio. For 
c = t m2/s, tD = I 1.6, 104, and 289 days for a = l, 3, and 5 km, respectively. For c = 0.1 m2/s, tD = 116, 
1042, and 2894 days for a = l, 3, and 5 km, respectively. 

considered. There is also a significant dependence on the stiff- 
ness ratio; tvrec for •/•, = 1.25 is 2-4 times longer than it is for 
•?•, = 1.10. 

Comparing Tables I and 4, it is s½½n that tprec for spherical 
zones due to dilatant hardening is 2-$ times longer than the 
mean (for the two •/•, ratios) of that due to time-dependent 
stiffness. Of course, if smaller values of the dilatancy factor f• 
are considered, as in Table 2, the tprec values become more 
nearly comparable. We have commented that tprec due to 
dilatancy should be shorter for fiat zones than for spherical 
zones, but there are no comparisons to be made between the 
two mechanisms for fiat zones. 

It is interesting that the tprec values predicted by solving the 
integral equation (33) are not very different from those esti- 
mated by Rice [ 1977a] on the basis of an approximation to the 
response function f(0) of Figure $. Rice's procedure amounts 
to replacing f(0) by a simple exponential form appropriate to a 
'standard linear model' with relaxation time to/10. This has 
the effect of converting (3•) to a first-order nonlinear differen- 
tial equation. The resulting approximation to f(0) is not very 
clos½, but predicted tprec values agree within typically 25% or 
so with the more exact results in Table 4. The cost associated 

with solving (33) is much larger than it is for solutions based 
on the standard linear model, mainly because of the necessity 
of computing error functions in the complex plane to deter- 
mine f(O) in (33); see Appendix 2. Hence in future calcu- 
lations of the kind reported here, it may suffice to use the 
approximation based on the standard linear model. 

CONCLUDING DISCUSSION 

We have demonstrated that the coupling of pore fluid diffu- 
sion with deformation can delay the onset of rapid failure and 
give rise to precursory periods of quasi-static but accelerating 
deformation. Our calculations for the duration of this pre- 
cursory period indicate that the effects can be significant for 
values of the parameters which are consistent with existing 
experimental and observational data. More specifically, Fig- 
ures 8-11 demonstrate that the precursory effects are much 
more dramatic for fluid-infiltrated solids than they are for 
those for which the pore fluid is absent. Further, we have 
presented results for the precursory time so that its dependence 

on constitutive properties will be evident; see Figure 7 and 
Tables 1 and 2 for the dilatant hardening mechanism and 
Figure 12 and Table 4 for the mechanism based on time- 
dependent elastic stiffness. Tables 1 and 4 are based on a range 
of material properties which we think may be appropriate to 
crustal rocks at depths of the order of 5 km. The consequences 
of other choices for the constitutive parameters and loading 
rate may be estimated from Table 2 and Figures 7 and 12. 

Because much of the discussion of precursory pore fluid 
effects has concerned their role in connection with the possi- 
bility that dilatancy may cause alterations in seismic wave 
speeds, we emphasized that the effects described here can be 
important even if conditions are not suitable for wave speed 
alterations. Indeed, the mechanism of time-dependent stiffness 
of the surroundings is not contingent upon the dilatant in- 
elastic opening of pores or cracks. Moreover, our calculations 
for the dilatant hardening mechanism suggest that an amount 
of dilatancy much smaller than that necessary to affect wave 
speeds can have a considerable effect of the kind described 
here in stabilizing the rupture process and that the magnitude 
of the pore pressure decrease induced by dilatancy alone be- 
comes large only in close proximity to instability. For ex- 
ample, reductions of seismic wave speeds are sometimes postu- 
lated to result from the opening of vapor-filled or dry crack 
space in extensive regions of rock, and this process would be 
accompanied by large suctions in the pore fluid. But results 
such as those in Figures 8 and 9 suggest that large suctions can 
result only very late in what we identify as the precursory 
period, and it is not clear as to whether they will typically be 
large enough to alter wave speeds significantly. Further, there 
is nothing in our analysis which suggests a source of the return 
that is sometimes suggested of seismic properties to normal 
levels just before rupture. These conclusions could, however, 
be a consequence of oversimplifications in our model. For 
example, the weakening zone is regarded as being spatially 
uniform up to dynamic instability, and no provision is made 
for a gradual concentration of deformations into a narrow 
fault zone. 

Because of the uncertainty of precursor time estimates based 
on observations prior to earthquakes, it is difficult to draw 
definitive conclusions by comparison of our predicted pre- 
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cursor times with observations. In addition, while our defini- 
tion of precursor time is unambiguous within the context of 
our model, it is likely to be an upper limit for precursory times 
as detected by surface observations. This is because the strain 
within the inclusion continuously accelerates (Figures 8-11), 
and it may only be toward the latter portion of the precursory 
period that effects are significant enough to be observed at 
ground surface. Of course, strain and tilt at the surface will 
have a time history similar to that of the inclusion strain, 
although the magnitude will be attenuated approximately in 
proportion to the inverse square of distance from the source. 
I n addition, the accelerating strain near failure may also have a 
discernible effect on transport properties in the source region, 
for example, on electrical resistivity due to the progressive 
microfracturing that accompanies inelastic straining. We note 
that transport properties seem likely to be more affected than 
seismic properties, at least to the extent that for significant 
alterations the latter require suctions that are large enough to 
deplete pore spaces of liquid. 

To establish minimum estimates of the precursory time in- 
terval, we adopt the more conservative estimates of the size of 
constitutive parameters expressive of coupling between the 
rock and its pore fluid. Then it would appear that precursory 
times would be in the neighborhood of 10-50 days for an 
approximately spherical weakening zone of 1-km radius. For 
example, if we modify the entries in Table 1 by use of the 
lowest dilatancy factor in Table 2 (/5 = 0.075, one quarter of 
the value that we suggest as being representative of laboratory 
triaxial tests on coherent rock), we obtain tprec • 11-47 days 
for a range of fluid diffusivities between 1 and 0.1 m2/s. Simi- 
larly, from Table 4 and using the smaller ratio of undrained to 
drained elastic stiffness, •/• = 1.10, we find tpree • 14-37 days 
for the same range of diffusivities. If, for example, the last fifth 
of the precursory time interval is regarded as being 'readily' 
detectable, in view of the rapid acceleration of strain near 
instability, this minimal estimate of the precursory period for a 
spherical zone of 1-km radius is in the range of approximately 
2-10 days. We would suggest this sort of period as being most 
appropriate in searching for precursory effects of the kind we 
describe. 

Larger spherical zones lead to longer precursory periods, 
but the predicted effect does not scale directly with the charac- 
teristic diffusion time, to = aVc. Instead, a much less rapid 
variation occurs, more nearly proportional to a to the power 1 
or lower, although no single power can fit all the size depend- 
encies documented in Tables 1 and 4. 

An analysis of the dilatant hardening mechanism has not 
been possible for the nonspherically shaped zones, although an 
approximate analysis of the time-dependent stiffness mecha- 
nism has been possible for ellipsoidal zones. The results in 
Table 4 correspond to a flattened axisymmetric ellipsoid of 
approximately 18:1 aspect ratio, and in this case the pre- 
cursory times are reduced by a factor of approximately 10. The 
results for other aspect ratios can be obtained from Figure 12, 
using the appropriate value of tj. When precursory deforma- 
tions are concentrated from the start on a single fault plane, it 
is probably inappropriate to model the process by a narrow 
inclusion as in the present work. Instead, a model like that 
suggested in Figure lb seems more appropriate. This involves 
the spread of a slipping region along an existing fault under the 
driving force of the stress concentrations at the edges of the 
slipping region. We leave the fuller analysis of this case to 
subsequent work. 

The model which we have employed here is of course ideal- 
ized, and we have made many simplifications. We have consid- 

ered separately each of the two stabilizing mechanisms of the 
pore fluid, but it seems evident that the effects will be more 
pronounced when both act together. For a given rinc versus 
%n• curve, undrained runaway generally occurs at a larger 
strain for the dilatant hardening mechanism than for that 
of time-dependent stiffness, although the strains at final insta- 
bility are comparable for smaller values of the dilatancy factor 
/5 or the modulus K r' (see (28)). Although we have considered 
only parabolic rm• versus 7m• curves, the computations do not 
appear to be strongly sensitive to their shape as expressed by 3,. 
Nevertheless, the form which we adopted has a continuously 
decreasing slope so that dynamic rupture is inevitable. There 
does, however, exist the possibility that the inclusion stress- 
strain relation reverses curvature before point D' is reached in 
Figures 3 and 4 (e.g., see Figure 2c). In such cases it is possible 
that the pore fluid effects allow the inclusion to undergo strain 
in the form of a wholly stable creep episode. 

More generally, we have shown that if fissured rock masses 
are fluid infiltrated, then the coupling of the deformation with 
the diffusion of pore fluid will be important in processes prepa- 
ratory to faulting. As we remarked earlier, consideration of 
pore fluid effects has been primarily limited to aspects which 
we would regard as secondary to their role as setting the time 
scale of the failure process. We would argue that pore fluid 
stabilization of faulting merits more attention, but at the same 
time we stress that these processes are sensitive to values of 
material parameters and transport properties and there is a 
need for better data in this regard. 

APPENDIX 1 

Equations (22) and (30) were solved numerically for œ(t) and 
%n•(t) by discretizing the convolution integral in (30). We first 
write the convolution integral as a sum of integrals over each 
time step A0 = O/n: 

o 1 dp (O')dO' 
=•f•,,o I dp 

where 0 = t/to. For each integral, dp/dO was assumed to vary 
linearly between its values at the limits. The remaining in- 
tegrations can be performed analytically, and the result may be 
rearranged to yield 

I • (4/3)(AO/•)•/o-(15,, + b,,15o + •.•K•15,,_•) (A1) 
where 

_@ 

b,, = (3/2)n •/" - n :•/" + (n - 1) 

Kn = (k + 1) a/•- 2k •/• + (k- 1) a/• 

Using (A1) in (30) yields 

=- + (h - 

ß -h•+a(h-h•)T (A2) 
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where 

,4 = 3Kt' 
a(1 + 4G/3Ks)N 

Standard fourth-order Runge-Kutta integration formulae 
were used to solve (A2) and (22). 

It is clear from the form of (A2) and (27), and from the 
asymptotic analysis of Rudnicki [1977b] that '•loc and/• become 
unbounded as the point D' in Figure 3 is approached. Con- 
sequently, the numerical calculation must be truncated before 
h = hu. Nevertheless, the contribution to the precursor time 
which was omitted by the truncation was negligible within the 
accuracy needed, and no special effort was made to resolve the 
final instability. Typical examples are shown in Figures 8 and 
9, where, although the calculation was truncated well before 
the strain had reached its value at final runaway, the inclusion 
obviously would have reached this strain in an extremely short 
amount of additional time, at least as measured by 0. 

APPENDIX 2 

To solve the integral equation (33) subject to the stress- 
strain relation (31), we introduce the notations 

g = - 

as in (34), noting that 'YD' -- 'Ys, = 3,/•u and a = •/•. Then (33) 
becomes 

g(O)- g(O)/2 = [(a + + + (a (a - 

fo ß f(O - O'•[•aloz2(1 + •) + g(O') dg(O')/dO'] dO' (A3) 

From Rice et al. [1977], 

f(O) = I + 213r/(4 - 3r/)] -'/2 Im [/5 exp (/520) erfc (/50'/2)1 
(A4) 

where 2/5 = 3r/ - i[3r/(4 - 3r/)] x/2 and Im means 'imaginary 
part of.' The function is shown in Figure 5 and is not very 
sensitive to r/over the allowable range; we use r/ = 0.9 in our 
calculations. 

The time interval in (A3) is divided into a series of steps. A 
small initial step is assumed, and each new step is chosen so 
that the increment in g, predicted from the last calculated 
value of dg/dO, is smaller than some limiting size chosen to 
guarantee numerical convergence (the necessary step sizes de- 
crease in approximate proportion to the size of R). The right 
side of (A3) is evaluated by assuming that dg/dO is constant 
(Ag/AO) in each step and by treating f(O - 0') as constant in 
each step, using the midstep value of 0'. Consequently, at the 
end of each step (A3) becomes a quadratic equation which is 
solved for g(O) so that calculations for a new step can begin. 
The results for R = 10 -2 are shown as the solid curves for g in 
Figures 10 and 11, and the resulting precursory times are 
shown in Figure 12 for a wide range of R values. As remarked, 
for given values of R and a, there are negligible differences 
between results for • = 1 and 10. 

The dashed curves of Figures 10 and 11 correspond to 
neglecting pore fluid effects on stiffness and are equivalent to 
replacing f by its long-time value of unity in (A3). Thus by 
elementary calculations one shows that the equation of the 
dashed curves is 

.g -- - %,)/x = - - 2no)'/' 

and the inclusion strain rate becomes unbounded at 0 = 1/2R, 
corresponding to the attainment of point B' in Figures 2 and 4. 
This shows that R may additionally be interpreted as half the 
ratio of the diffusion time to to the time for remote loadings to 
bring the inclusion strain from that at peak strength to that at 
instability. 
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