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ABSTRACT 

ANALYSIS of the deformation field consistent with a Prandtl stress distribution travelling with an advancing 
plane-strain crack reveals the functional form of the near tip crack profile in an elastic-plastic solid. The 
crack opening 6 is shown to have the form 6 N r In (const./r) at a distance r from the tip. This observation 
coupled with data generated from finite element investigations of growing cracks in small-scale yielding 
permits the construction of a relation characterizing the deformation at an extending crack tip. A ductile 
crack-growth criterion consisting of the attainment of a critical opening at a small characteristic material 
distance from the tip is adopted. Predictions of the stability of a growing crack for both small-scale yielding 
specimens and those subject to general yielding are discussed. 

1. INTRODUCTION 

THE DISTRIBUTIONS of stress and strain accompanying stationary cracks in various 
elastic-plastic materials and various modes of loading are available from analytical 
and numerical solutions, e.g. RICE (1976). These investigations, together with 
extensive experimental studies, e.g. BEGLEY and LANDES (1972, 1976) and GREEN and 
KNOTT (1975), have led to the characterization of the onset of crack growth in terms 
of a critical value of the J-integral, J,, for plane strain, or equivalently a critical value 
of the crack opening displacement, 6,,, assuming that certain minimum specimen size 
limits are exceeded. These parameters are useful in quantifying the onset of fracture; 
however, the question of whether such fracture is initially stable or catastrophic 
remains unresolved and there is evidence for stable crack growth in many ductile 
metals, e.g. CLARKE et al. (1976) GRIFFIS and YODER (1976), PARIS et al. (1977) and 
CLARK et al. (1978). 

The analytical investigation of extending cracks is difficult mathematically, 
although some progress has been made in the Mode III or anti-plane strain case 
(MCCLINTOCK and IRWIN, 1965). For the tensile or Mode I case, only the general 
functional form of the near tip singular strain field is known. This was given by RICE 

(1968a) in an analysis of steady-state plane-strain crack growth in elastic ideally- 
plastic solids, and his analysis has been extended in different ways by CHEREPANOV 
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(1974) and RICE (1975) for general non-steady growth. Also, AMAZWO and 
HUTCHINSON (1977) give the form of the singular crack-tip strain field for steady-state 
growth in isotropically-hardening solids with flow strength increasing linearly with 
strain. Results in the ideally-plastic case indicate that the strain at the crack tip is 
governed by a (In r)-singularity as opposed to the stronger (l/r)-singularity in the 
stationary case. This reduced strain concentration originates in the irreversible 
straining in the plastic zone surrounding the crack tip so that complete refocusing of 
the strain at the tip of the extended crack tip is prevented. In this sense, elastic strains 
are destabilizing, since their reversibility promotes additional straining at an 
advancing crack tip (DRUCKER and RICE, 1970). The reduced strain concentrations 
accompanying extending cracks partly explain the phenomenon of stable crack 
growth. 

Numerical investigations of stable crack growth include the plane-strain studies of 
KFOURI and MILLER (1976) and SORENSEN (1977) and the plane stress studies of DE 

KONINC (1977) and ANDERSSON (1973). These latter two investigators conclude that a 
possible parameter for the characterization of continuing fracture is the crack-tip 
opening angle, the angle between the separating crack surfaces behind the extending 
crack tip. The difficulty with this parameter, as shown by RICE (1975), is that an 
extending crack in an elastic-plastic material exhibits a displacement profile 
proportional to r In r (where r is measured from the crack tip) and this implies a 
vertical tangent at the crack tip with a correspondingly ambiguous definition of the 
crack-tip opening angle. However, this objection is not present at a small but jinite 
distance away from the crack tip where perhaps a meaningjiil definition of this 
parameter may be made. 

KFOURI and MILLER (1976) propose a Griffith-like critical separation energy as a 
criterion for continuing fracture. This quantity is defined as the work per unit depth of 
specimen expended in extending a crack by a distance Al divided by that distance. 
Although intuitively appealing, such a separation energy is zero for infinitesimal 
crack advance when the stress level at the advancing crack tip is finite (RICE, 1966). A 
more serious shortcoming of this quantity is its failure to account for strain 
accumulations at the crack tip as the critical separation energy is traction controlled. 
In the limiting case of an elastic perfectly-plastic material at limit load, similar values 
of the critical separation energy may be obtained for crack advance under the same 
stress state but vastly different levels of near tip straining. For strain-dominated 
fracture mechanisms, such as void growth and localization of shear, it seems 
inappropriate to employ a fracture parameter which does not reflect the strain state at 
the crack tip. 

The recent experiments of GRIFFIS and YODER (1976) and CLARKE et al. (1976) 
indicate that under monotonic loading the (nominal) J-integral continues to rise 
monotonically with crack advance. GREEN and KNOTT (1975) report similar increases 
of the (nominal) crack opening displacement with crack extension. These 
observations have prompted attempts to characterize stable crack growth using J and 
6 as macroscopically measurable quantities, e.g. PARIS et al. (1977) and CLARK et al. 
(1978). The following discussion lends support to this kind of characterization but 
also suggests limitations to the universality of the stable growth representations thus 
obtained. 
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2. A RELATION FOR CHARACTERIZING CONTINUING FRACTURE 

SORENSEN (1977) presents finite element solutions for crack advance under well- 
contained, small-scale yielding, plane-strain conditions. These solutions simulate 
crack advance through the finite element grid by the successive relaxation of nodal 
constraints; the external load is held constant during crack advance and is 
incremented at constant crack length between crack growth steps of one element 
each. Typically, during the growth process, the maximum radius of the plastic zone 
was S-12 times the size of the near tip elements (although the plastic zone extends 

directly in front of the crack only over 2-3 elements). The material was modelled as 
an elastic-plastic Mises material satisfying the Prandtl-Reuss flow rule, and strain 

hardening was modelled by a power-law hardening formulation, such as that used by 
TRACEY (1976), namely 

a - 3Ed N 
-= 

[ 
a+ 

00 00 I 2(1 +v)a, ’ 

where 5 is the equivalent tensile stress, go is the yield strength in tension, ZP is the 
equivalent plastic strain, E is the elastic tensile modulus, v is Poisson’s ratio and N is 
the hardening exponent. Numerical results for hardening and non-hardening (N = 0) 
analyses indicate that the stress distribution ahead of an advancing crack tip is 
essentially invariant when plotted against distance normalized by (K,,/o~)~. Further, 
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FIG. 1. Tensile stress cz2 ahead of the crack tip, from SORENSEN (1977). Points marked “steady state” 
correspond to final advancing crack solution. 
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this stress distribution is similar to those developed by TRACEY (1976) for 
monotonically-loaded stationary cracks. Figure 1 presents a plot of the tensile stress 
ahead of a crack tip before crack growth and following several increments of crack 
advance (curves taken from TRACEY (1976) are included on the plot). The essentially 
unchanging stress field (except that given stress levels extend over wider zones of 
material as K, is increased) argues for a deformation-dependent fracture criterion, at 
least when the fracture mechanisms are “strain controlled”, to control possible stable 
crack growth following the initiation of crack advance. 

The numerical investigations of SORENSEN (1977) provide crack surface 
displacements throughout the prescribed loading history. Figure 2 presents crack- 
surface profiles prior to crack advance and following the final step of crack growth. 
For the stationary crack, the value of 6J(J/(r0) in the non-hardening case (where 6, is 
the crack-tip opening displacement, extrapolated to r = 0 as shown in the figure, and 
J is equal to (1 -v2)Kf/E) is O-66. For the hardening cases, we use HUTCH~NSON’S 
(1968) and RICE. and ROSENGREN’S (1968), (denoted by HRR in the sequel), theoretical 
result that 6 _ I^~;(~+~‘) very near the crack tip, and write 

6 = 6,(r/rl)N,‘(1 +N’, 

where 6, is the opening displacement at the first node behind the crack tip and rl is 
the position of that node. This extrapolation is shown by the dashed lines on the 

Fle. 2. 
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Crack-surface displacements, stationary and final advancing crack solutions for 
based on SORENSEN’S (1977) numerical results. 
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figure. Then, following the procedure of TRACEY (1976), we define 6, as the opening 6 
at the place where a 45”-line drawn back from the crack tip would intersect the 

deformed crack surface. Thus, we set r = 46, in the above equation and solve for 6, to 
obtain ~?,/(_!/a,) = 0.47 and 027 for the two hardening cases N = 0.1 and 0.2, 
respectively. For comparison, TRACEY (1976) presents an approximate relation for 6,, 
based on his finite element solutions with singularity elements and the 45”-line 
intersection procedure, viz. 

6 +0.49$1+N) 
2(1+v)a,(l+N) N 

0 J 1 3EN ’ 

and PARKS (1975) argues that the factor 0.49 should be approximately 20 per cent 
higher, at least for the non-hardening case, due to the artificial path-dependence of J 
that seems (through comparison with a corresponding “deformation theory” 

solution) to be directly traceable to Tracey’s non-hardening singularity element. 
Values of 6,/(J/a,) obtained from the above expression when Poisson’s ratio v is 
taken equal to 0.3 and oo/E = l/1000, corresponding to the value used in SORENSEN’S 
(1977) analyses, are 0.65, 0.47 and 0.30 for N = 0.0, 0.1 and 0.2, respectively, and 
using Parks’ correction to the above equation. TRACEY’S (1976) analyses employ a 
small-strain formulation and singular elements, whereas MCMEEKINC (1977) obtains 
results for crack-tip openings using a finite-strain formulation. The latter investigator 
reports values for the non-dimensionalized crack opening displacement between 0.55 
and 0.67 in the non-hardening case, between 0.41 and 0.44 for N = 0.1, and between 
0.27 and @30 for N = 0.2. Thus, we conclude that the above estimates of 6, based on 
SORENSEN’S (1977) numerical results, namely 6,/(J/a,) = 066, 0.47 and 0.27 for 
N = 0.0,O.l and 0.2, respectively, are in reasonably close agreement with the earlier, 

and presumably more accurate, solutions of Tracey, Parks and McMeeking for 
monotonic loading of a stationary crack. 

Figure 2 also shows the crack profiles after the final steps of crack advance. They 
seem to be compatible with the logarithmic dependence of displacement on distance r 
from the tip, as noted by RICE (1968a, 1975) for crack extension in an elastic perfectly- 
plastic material. This logarithmic-displacement dependence is now derived and its 
consequences explored. 

2.1 Theoretical analysis of incremental deformations at a growing crack tip 

The Prandtl slip-line construction (Fig. 3) is thought to provide the limiting 
plane-strain stress distribution, aij(e) as r -0, for contained plastic yielding at the tip 
of a sharp crack in an elastic perfectly-plastic Mises material (RICE, 1968b). The 
theoretical basis is discussed further by RICE and TRACEY (1973) who note that stress 
fields given by such slip-line constructions become asymptotically valid solutions of 
the 3-dimensional Mises equations, even in elastically compressible materials, 
provided that D&/Dgax -+ 0 as r + 0. Here, Db is the plastic rate of deformation 
tensor and Dg,, represents its maximum value in the plane of straining; the limit of 
zero is expected since the crack tip is the site of undounded in-plane strain 
intensification while the plastic strain in the x,-direction is bounded by the plane 
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G-4 
FIG. 3. Prandtl slip-line field stress distribution 

strain constraint and must be the negative of the (bounded) elastic strain. The stress 
field given by the Prandtl construction arises as the non-hardening limit of the HRR 
crack-tip singular fields for power-law strain-hardening materials, and it also agrees 
closely with numerical stress predictions by finite element methods for stationary 
cracks in elastic-plastic materials (LEVY et al., 1971; RICE and TRACEY, 1973). 
Further, recent finite element results by SORENSEN (1977) for growing plane-strain 
cracks in elastic-plastic materials also suggest the Prandtl field as the limiting crack- 
tip stress state in the ideally-plastic case. 

Accordingly, for the present analysis of deformation fields at the tip of a growing 
crack, we assume that the Prandtl stress-state ~~~(0) prevails in some small zone near 
the crack tip and examine the consequences of having this zone move through the 
material with the advancing crack. As such, our work carries out in detail an 
integration of the incremental deformation equations as considered in general terms 

by RICE (1975). A somewhat similar analysis has been given for the case of an 
elastically incompressible material by CHEREPANOV (1974), in an extension of RICE’S 
(1968a) steady-state growth analysis to non-steady conditions. Note that for the 
Prandtl field, the deviatoric part, sij, of the stress tensor is such that sS3 = 0 and 
CJ~~ = 0 where u = +(a,, +a,,+a,,) is the mean normal stress. 

Within the usual assumptions of the “small strain” approximation in stress 
analysis, the Prandtl-Reuss flow rule takes the form 

D, = DFj+D$ = 
1+v 1-2v 
__ 

E 
Sij + -E- 6,~ 1 + nSij, 

where D, = )(&Jdxj+ avj/Zxi), vi is the velocity field, and the distinction between the 
deformed and undeformed geometry is neglected ; and E is the elastic modulus, v 
Poisson’s ratio, and A a non-negative scalar. We observe that 

Sij = ~;~(0)4 = G;~(Q) sin 0 i&, (2) 
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where t!) is computed at a fixed material-point and the prime denotes a derivative with 
respect to 8. Further, within the centered-fan zone where the focusing slip-lines allow 

strain singularities to develop, a’(e) = - 2r,, where t ,, = ~,/a is the yield strength 

in shear. Also, letting ei(0) and hi(e) [ = e:(e)] b e unit vectors in the r- and &directions 

respectively, one has 

d 
ei$jej = (eisijej)’ - 2hisijej = z (s,,) - 2.~~0 = - 220, 

since s,, = 0 in the fan and s,, = zo. 

Thus, when we multiply both sides of (1) by eiej to form the radial component, we 

obtain 

7. sin 8 . 
eiDijej- O,,=$= -2(2-v)zrl, 

where u, is the radial velocity. 

Hence, - 
v,= 2(2-v)$)sinB/ln 0 : +f’(e), 

where i? is introduced as some effective cut-off radius to the logarithmic term and the 
functionf(8) describes the velocity distribution at r = l?. By noting that s1 r + sZ2 = 0 

in the fan, one has also from (1) that 

5. sin 8 . 
D,,+D,,~~+~+~~= -4(1-2~)~+ (6) 

From this result, we can determine ug as 

v,= -2(2-v)s($-cosO)i[-&+h(f)]-f(e)+&), (7) 

where g(r) is an arbitrary function of integration. 
Since o;(e) = 0 in the “constant stress” zones of the Prandtl field, where both slip- 

lines are straight, the elastic strain rates vanish in those zones and (1) reduces to 
D, = As,. This implies that the normal components of D, relative to the slip-lines 
vanish, and hence the velocity component in the direction of a given slip-line is 
uniform along the length of that line. Thus, the function g(r), giving ug on Q = 7c/4, 
must be finite at the crack tip for, otherwise, an unbounded velocity would be 
propagated along the slip-line at the front border of the centered-fan zone below the 
crack tip. 

We note that a velocity field of the type described by the terms withf(8) and g(r) in 
the expressions for v,, II, is of the same form as that which describes opening of a 
stationary crack (RICE, 1969b); and thus, as remarked generally by RICE (1975) the 
total velocity field is a combination of these with logarithmically singular terms 
proportional to i. 
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Now consider a point on the upper crack surface in the constant stress zone 
behind the crack tip (Fig. 3). If the total opening between upper and lower crack 
surfaces is 6, then v2 = )8 and 

Here, u, and vg are velocities along the slip-lines as shown, so ug = v, of the fan with 
0 = 37c/4 and v, is some bounded velocity in the other slip-line direction. Thus, the 
opening rate at a small distance r behind the crack tip is 

8=4(2-v):lln 5 + A, 
C-1 r 

where k embodies all terms except the logarithmically infinite term at the tip. In 
general, A will be linear in i and in rates of parameters describing the external loading. 
If, for example, the intensity of the external loading is correlated in terms of the J- 
integral value in the deformation field far from the crack tip, then we can write 

(10) 

where fi = 4(2 - v)/d = 3.93 for v = 0.3, where the additional terms in i within k 
have been absorbed into the definition of R (which replaces 8), and where 01 is some 
dimensionless coefficient. The analysis gives no indication of the value of R but, by 
dimensional considerations, we expect that it should scale with the size of the crack- 
tip plastic zone. 

We observe from (10) significant differences in the kinematics of the opening of 
stationary versus growing cracks (see also RICE (1968a, 1975)). Load increase (j > 0) 
at fixed crack length (i = 0) gives a discrete opening displacement immediately at the 
tip; its full details can be resolved only by a finite deformation analysis of the tip 
opening, as by RICE and JOHNSON (1970) and MCMEEKINC (1977). But, for i > 0 
during load alterations, we may integrate (10) to obtain 

(11) 

where e is the natural logarithm base and, for simplicity, we assume that r is small 
enough so that c(, R and dJ/dl can be considered as being sensibly constant during 
crack length changes of size comparable to r. 

This shows that the crack opening displacement is zero at the crack tip, although 
the slope d6/dr of the opening is logarithmically infinite at the crack tip. The result 
suggests, therefore, that a reasonably unambiguous definition of a “crack-tip opening 
angle” can be made only when the (dJ/dl)-term is large enough to dominate effectively 
the logarithmic term except for very small values of r. Indeed, as RICE (1975) showed, 
the concept of a crack-tip opening angle is unambiguous only for crack growth in 
rigid-plastic solids ; elastic effects lead to the logarithmic singularity of crack surface 
slope. 

We now examine (10) and (11) as a basis for analysis of SORENSEN’S (1977) finite 
element results for growing cracks. 
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2.2 Comparison with ,jinite element predictions of crack-surface displacement 
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Now, for a stationary crack subject to monotonic load, (10) integrates to the well- 
known relation 6, = aJ/a, for the crack-tip opening displacement and CI is a material- 
dependent non-dimensional number. SORENSEN (1977), in a finite element 
investigation of slow crack growth, prescribes various steps of crack advance followed 
by increments of external load at constant crack length and finds that the incremental 
relation 

d6 = a dJ/o, (12) 

between nominal crack opening displacement (that at the first node behind the 
advanced crack tip) and J is applicable for increments of load at constant crack 
length, with essentially the same a as for the stationary crack solution irrespective of the 
amount of crack growth. Values of CI are within 7 per cent of those corresponding to the 
stationary crack (see previous discussion) for hardening and non-hardening cases. 
Thus, increments in the J-value associated with the outer elastic field seem, at least 

for the small-scale yielding case examined, to be related in an almost unique manner 
to increments in the crack opening very near the tip, although the non-proportional 
stressing and unloading that accompany crack growth invalidate path-independence 
of the line integral for J on paths within the crack-tip plastic zone. The generality of 
this result, e.g. at large-scale yielding, needs to be examined further. 

Taking (12) to relate increments of crack opening displacement to increments of 
external load at constant crack length, the result in (10) suggests correlation of the 
finite element results for increments of crack-surface displacement accumulated 
during increments of crack growth with 

d6=orz+/?%ln 5 dl, 
0 

(13) 

although the second term on the right side of (13) is only rigorously valid as r + 0 and 
for perfectly-plastic materials. As such, (13) is at best approximate for hardening 
materials and for finite r, but it exhibits the appropriate behavior as r --* 0 in the non- 
hardening case and for external loading at constant crack length in the small-scale 
yielding case. 

Integration of (13) at a fixed position x (E xi coordinate in Fig. 3) as the crack 
grows from 1, to I, gives 

&x, 1,) - K? 11) 

= ;[JWJ(1111 + 82 h- [ 

where 1, > 1, > x and, to simplify the integration, R is treated as constant during the 
growth. By taking 1, = x, so that 6(x, II) = 0, and treating dJ/dl as constant in the 
growth from II to l,, this last equation gives the opening 6 at a small distance Al 
behind the tip as in (11): 

s=EAlg+/?$Alln g , 
( 1 

12 
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or, upon rearranging into a form which we will later take as the basis for a fracture 
criterion, 

(14) 

The theoretical value of fi = 3.93 based on the Prandtl field analysis has been noted 
earlier. 

A value of fl may also be estimated from the finite element solutions of SORENSEN 
(1977) whose small-scale yielding analyses prescribe increments of crack growth at 

constant external load so that the left side of (14) is zero. The plastic-zone size and, 
indeed, all geometrical sizes in a small-scale yielding solution for the monotonic 
loading of a stationary crack are proportional to EJ/ai. We expect the parameter R 
to scale with the size of the plastic zone and we know from SORENSEN’S (1977) 
solutions that the maximum extent of the plastic zone, at a given J, is essentially the 
same for a stationary and a growing crack. Accordingly, we assume in the 
interpretation of numerical results that R = AEJ/ai where ,I is a pure number to be 
determined. Hence, from (14) we expect the numerical result for crack growth at 
constant J to satisfy 

&F=Pln($&A+) 
0 0 

when Al is a sufficiently small fraction of the plastic-zone dimension. Figure 4 presents 

a plot of the incremental displacement 6 of the node immediately behind the crack tip 
versus In (eEJ/otAl) for both hardening and non-hardening analyses of one element 
growth steps at constant J based on the numerical results of SORENSEN (1977). Of 
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FIG. 4. Correlation of crack opening displacement with crack advance at 1st node behind the crack tip in 
SORENSEN'S (1977) analyses. 



Crack growth in elastic-plastic solids 173 

course, for purposes of the present correlation, Al has been set equal to the finite 

element spacing by which the crack has been advanced. Later, however, we shall wish 
to identify Al as a characteristic material length. The close correlation with a straight 
line shown on the plot in Fig. 4, not only for the non-hardening material but also for 
the hardening cases, lends support to our considerations, but the numerical results 
are best fit by /3 = 9.5 (versus a theoretical value of 3.9) and 1 = 0.04. The A-value 
corresponds to an R-value which is approximately l/4 of the maximum radius of the 
plastic zone. The discrepancy from the theoretical value of B may arise either because 
of constraints of the finite element grid over the one-element crack growth step or 
because the manner of unloading the element to simulate growth cannot precisely 
simulate continuous crack extension. On the other hand, it is well to remember that 
fracture can be discontinuous on the microscale and this may result in different 
effective p-values very near the tip over the size scale of the fracture process zone. 

For the second node behind the crack tip, the integration of (13) at constant J can 

be used as a theoretical basis for another estimate of /? and 1. Specifically, choosing 
the node one element spacing behind the crack tip and letting the crack grow at 
constant J by one additional element spacing (i.e. 1, -x = Al, 1, --x = 2Al), we have 

an opening A6 during the growth step given by 

or 

’ 

again assuming that Al is a small fraction of the plastic-zone dimension. Figure 5 
shows numerical results from SORENSEN (1977) plotted in this way. The correlation is 

0 N = 0.0 
X N=O.I 

0 N = 0.2 

x= 0.16 

FIG. 5. Correlation of crack opening displacement with crack advance at 2nd node behind the crack 
tip in SORENSEN'S (1977) analyses. Here, the 6 represents the additional opening in crack growth by one 

element spacing. 
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not as definite ; the fits corresponding to the line shown are p = 4.X and E; = 0.16. This 
latter value of 1 corresponds to a value of R that is approximately equal to the 
maximum radius of the plastic zone. However, two element sizes may be too far from 
the crack tip, given the extent of the plastic zone (typically g--12 elements), for the 
asymptotic formulation for 8 to apply. To resolve fully the near tip openings 
numerically, it seems necessary to perform an analysis for a substantially finer mesh 
than the already rather fine mesh used by SORENSEN (1977), so that the correlation of 
6 with Al may be definitely investigated. Such an analysis is costly and appears 
feasible only if performed on the latest generation of high speed computers, with a 
grid size such that the steps by which the crack advances are smaller than, say, l/50 of 
the maximum extent of the plastic zone. (We arrive at this estimate by noting that the 
finite element results can be expected to be valid only up to 2-3 elements from the 
crack tip, yet this distance must be very small compared to overall plastic-zone 
dimensions for the asymptotic results of (10) to be valid.) 

3. INVESTIGATION OF A POSSIBLE CRACK GROWTH CRITERION 

Equation (14) may be used to phrase a fracture criterion which permits 
investigation of the stability of a growing crack in small-scale yielding conditions. 
Take the term s/Al to be a material-dependent constant, in the sense that to achieve a 
growth step ACID in a material, where the size Al is considered characteristic of the 
material, it is assumed that a critical value of the crack opening displacement ii at 
distance Al must be achieved. This criterion requires that the near crack-tip openings 
must, in some sense, remain similar in size for continuing crack growth. Indeed, s/Al 
can be thought of as a measure of a crack opening angle. In this sense, our criterion 
for growth is the achievement of a critical opening angle although, as we have 
remarked, no such angle can be defined as r -+ 0 and our measure of an opening angle 
is based on the crack surface separation at a fixed, small distance Al behind the tip. 

Note that with R proportional to J in (14), i.e. R = &J/r& a J-level exists at 
which the (~J/~~)-value required for continued growth approaches zero. Denote J at 
these “steady state” conditions by J,,. The J,, can be identified in terms of s/At and Aht 
as 

J,, = (agAl/AeE) exp [(E/j.Gr,)G/Al] (15) 

and (14) becomes the differential equation 

(16) 

describing the J-history necessary for continuing stable crack growth. This equation 
may be integrated from initial crack length lo to current crack length 1, where a value 
of Jr=, marking the initiation of growth, is associated with t,. Of course, we assume 
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.I,, < J,, and the two parameters together describe the fracture resistance of the 
material. The result is 

4 (I-LJ EJ,=~[E,ln($)-E,ln~)], (17) 

where E,(x) is the exponential integral 

E,(x)= ;ydu. 

The fact that (I- 1,) becomes infinite whln J + J,, simply reflects the steady-state 
condition which permits infinite crack growth by definition. The second term on the 
right side of (17) is a constant which does not affect the general features of the curves 
presented on Fig. 6. These curves are obtained by evaluating E, In (J,,/J) for various 
values of J/J,, and plotting the results for the two (a, @)-pairs (0.5,9.5) and (0.5, 3.9) 
corresponding to a representative value of CI and the range of B obtained from 
numerical and theoretical considerations. The effect of the large B-value is to reduce 
the amount of stable growth crack growth predicted. The curves on Fig. 6 are used as 
follows. For a particular material, we know J,, and J,,, and we enter the curve at a 
level corresponding to Jlc/Jss as at the point so marked. The crack growth (I- I,) 
necessary for J to reach any given level is identified as shown on the curve, and the 

fa,P) = (.5,9.5) (a,P)=(.5.3.9) 

01 I I I I I 

0 .I 2 .3 .4 .5 

$ E, h(F) 

FIG. 6. Crack-growth curves for small-scale yielding as predicted by equation (16). The curves are entered 
at a point corresponding to (JJJ,,), and the dimensionless growth (l- 1,) corresponding to any (J/J,,) is 

measured as shown according to the scale on the horizontal axis. 
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dimensionless amount of crack growth, crg(l- &)/EJ,,, is measured according to the 
scale marked on the horizontal axis. 

For example, the two points shown correspond to J,, = 0.65,, and crack growth 
to a J-level of 0.95J,,. Taking E/a, = 300 and 6,, Z J,,/20, = 25 urn as representative 
of medium to high strength brittle materials, the predicted (I-&,)-value based on the 
(LX, /?)-pair (0.5,3.9) is 6 mm. For the given ratios of Jlc/Jss and J/J,,, the predicted 
amount of growth increases proportionally with E/a, and with 6,,. 

It is remarkable to note that the description of stable crack growth in (15)-( 17) 

and Fig. 6 is of the same mathematical form as deducted by WNUK (1974) from his 
“final stretch” crack growth criterion based on the Dugdale-Bilby-Cottrell-Swinden 
plane-stress yield model. In this model, yield is confined to a line ahead of the crack 
sustaining yield stress Y, and Wnuk proposes, essentially, that for crack growth an 
increment 6 of opening be attained in a small segment Al of the yield zone 
immediately adjacent to the crack tip. Assuming that AI is small compared to the 
Dugdale yield-zone dimension R,, where 

R, = rrK2/8Y2 = nEJ/8Y2 

for small-scale yielding, this criterion becomes (WNUK, 1974) 

with 

Hence, Wnuk’s equations can be put in the forms 

J,, = (2Y2A1/neE) exp [(nE/4Y)6/A1], (18) 

dJ/dl = (4Y2/nE) In (J,,/J), (19) 

which may be compared to (15) and (16). Indeed, taking fl = 3.93 and A = 0.16 as 
suggested earlier, there is close numerical agreement of (18) with (15) when Y = 3a,, 
and taking CI = 0.5 there is close agreement of (19) with (16) when Y = 2.50,. Both 
values of Y are in a range which might be considered reasonable in order to simulate 
the plane-strain constraint of the Prandtl field (Fig. 3) in the simple Dugdale model. 

Although J,, enters our description of growth as a limiting value, we note that the 
attainment of J,, is not a necessary requirement for unstable fracture. Rather, 
instability will occur when, under the given conditions of loading, the increment in 
the applied J-value associated with a given virtual increment of crack extension equals 
or exceeds the increments of J required to continue to meet the fracture criterion. For 
example, if Q denotes the intensity of some monotonically increasing parameter of 
loading, the function JA(Q, 1) denotes the applied J-value, and the function J(l-1,) 
denotes the crack growth criterion, then 

JA(Q, 0 = J(l- 1,) (20) 

must be satisfied throughout the growth process. Instability (dQ/dl = 0) occurs when 

aJ,(Q, l)/al = dJ(l- l,)/dl. (21) 
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The simultaneous meeting of equations (20) and (21) is often represented graphically 

in terms of a “resistance diagram” (e.g. RICE (1968a)). Thus, the value of dJ/dl is the 
proper measure of stability against rapid fracture. As shown by Fig. 6, this stability 
measure decreases from its initial value with increasing crack growth, at least under 
the small-scale yielding conditions envisioned, and rapid fracture occurs when it has 
fallen to the critical value associated with the particular cracked configuration under 
consideration. 

3.1 Numerical estimates of the fracture parameters 

We now investigate the relation of the parameters S and Al of the fracture criterion 
to the value of J,, and to the initial value of dJ/dl. By its manner of introduction, Al 
should be of a size comparable to that of the zone of ductile material separation at the 
crack tip, e.g. the zone in which holes open at particles or inclusions and join together 

with the macroscopic crack. Now, from various theoretical and experimental studies 
(RICE and JOHNSON, 1970; HAHN, KANNINEN and ROSENFIELD, 1972; GREEN and 
KNOTT, 1976; RICE, 1976; MCMEEKING, 1977), it is known that for the onset of ductile 
fracture from the tip of an initially sharp crack, the tip opening displacement 6 must 
attain a size comparable to that of the fracture process zone. Hence, 6,, (= crJ,,/~,) is 
an approximate measure of this zone size. The result occurs because the opening 
determines the size of the region in the material over which plastic strains of order 
unity occur, and rupture takes place when this region envelops material elements of 
size comparable to the spacing X, of void nucleation sites. The ratio C&/X,, is found 
in the studies cited above to cover a considerable range ; and 0.5-2.0 is representative. 

High values are favored when voids are not readily nucleated from particles; and low 
values when there is a large volume fraction of particles, or when a second population 
of void-nucleating particles is activated, and/or when the ductile hole joining process 
is terminated by a shear localization. 

In accord with these observations, we suggest that 

Al = /4, = ~~J,ch,, (22) 

where p is of order unity and might typically lie between 0.5 and 2. For the numerical 
examples to be presented we shall always take p = 1. With the above expression 
for Al, equation (15) yields 

JsslJlc = (w/~e)hl~) exp CWB~&VA~l 
z l.l5(a,/E) exp [0.25(E/00)6/A1], 

when p = 1, B = 3.9, i = 0.16 and CL = 0.5. 

(23) 

If JSS/JIC is extremely large, as favored by a small strength level (i.e. low co/E) 
and/or large opening angle parameter d/Al, we must conclude that unstable fracture 
under the presumed small-scale yielding conditions is impossible in reasonably sized 
specimens. Instead, quite stable crack growth occurs under steeply rising load until 
fully-plastic conditions are attained, and final rupture instability occurs through a 
necking-like loss of load-bearing area or perhaps by the type of fully-plastic crack 
growth instability considered by PARIS et al. (1977). The latter is discussed in 
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TABLE 1. Numerical estimates 

For d/Al = 0.1 

a,lE JsilJ,c T”i, 

@0015 3.0 x 104 80.4 
0~0030 14.4 20.8 
oGO45 1-3 2.0 
OGO60 0.5 (spontaneous) 
00075 0.03 (spontaneous) - 

For a,/E = 0.0045 

S/Al JsJJ,, Tnit. 

0.05 0.8 (spontaneous) _ 
0.10 1.3 2.0 
0.15 21.5 23.9 
0.20 346 45.6 
0.25 5570 67.3 

For spontaneous failure (i.e. Jss/Jlc < 1) 

S/Al < 

00015 O-03 
00030 0.07 
0.0045 0.09 
OX)060 0.12 
0.0075 0.14 

Section 3.2. On the other hand, for high strength materials (i.e. high a,/E) or for 
materials requiring only a small opening parameter d/Al, equation (23) may lead to a 
result less than unity for Jss/JIC. In this case, we conclude that unstable fracture will be 
spontaneous with the attainment of JI, and no stable crack growth will result. 

Table 1 shows the results of various estimates of Jss/JIC and of the initial value, 
calculated from (16) by setting J = JIC, of a dimensionless resistance parameter 

7- = (E/o;)(dJ/dl), (24) 

introduced by PARIS et al. (1977) and HUTCHINSON and PARIS (1977). Given the 
tentativeness of our estimates of various parameters from the finite-element solution 
and of our estimate of Al, the table should be regarded as suggesting trends rather 
than dtlfinitive results. First, we consider an opening angle parameter d/Al = 0.1 and 
show Jss/JIC and ‘I&it. for strength levels ranging from co/E equal 0.0015 to OW75. 
The first entry is a case for which unstable fracture under contained yielding is 
practically impossible; the last two are cases for which fracture would be 
spontaneous, without stable growth. Next, we consider a strength level a,/E = 0.0045 
and show the results for different opening parameters. Finally, the range of opening 
parameters for which fracture would be spontaneous is given as a function of strength 
level. 
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PARIS et al. (1977) summarize experimental data for plane-strain-like stable crack 

growth in fully-yielded specimens of a wide variety of ductile materials. They indicate 

that when growth is correlated in terms of the (nominal) value of J, an effectively 
constant value cf T results typically for growth on the order of a few millimeters. The 
range of T-values reported extends from 220 for a cast steel at 149 “C to 0.15 for a 
stainless steel at -296 C; the majority of T-values are in the range 25125. While 
the relation of T-values in fully-yielded specimens to those appropriate for well 
contained yielding remains a point of speculation (see Section 3.2 and HUTCHINSON 
and PARIS (1977)) it is interesting to note that the T-values listed in Table 1 are within 
the general range of available data. Also, from (16) with CI = @5 and /I = 3.9, 

(25) 

so that T-values on the order of 100 correspond to values of JSS/JIC on the order of 
105-10h. Unstable fracture is then essentially impossible under contained yielding. 

CLARK et al, (1978) report similarly the results of fibrous crack growth tests in 
small, fully-plastic bend specimens of a variety of pressure-vessel steels. They find that 
the opening displacement at the initial crack tip increases in an approximately linear 
way with crack growth on the order of a millimeter or so. It is somewhat speculative 
to identify the slopes which they report in these data with d/Al of our fracture criterion 
based on (14). One might, for example, argue that the observations more closely 
represent the left side of (14) although the difference will not be great for low 
strength, highly ductile solids. We report in Table 2 the values of JSS/JIC and qnit. 
which would be estimated for the fracture properties of these same materials in 
specimens which are large enough to allow well-contained yielding. The materials and 
conditions of heat treatment, or of preparation in the case of weld deposits, are given ; 
6,, and d/Al are listed directly as the reported tip openings and slope of the opening 
versus crack length curve at the onset of growth (averaged over approximately 1 mm 
growth); o,/E is based on the average of the 0.2 per cent proof stress and ultimate 
strength when the latter is reported. All tests were at room temperature; less ductile 

TABLE 2. Crack growth parameters for spec$c pressure vessel steels 
(based on data O~CLARK et al. (1978)) 

Material 4, (mm) a,lE 

A533B (1 hr 670 “C, 
36 hr 620 “C) 
A533B (4 hr 650 “C) 
HY-80 (5 hr 650 “C) 

HY-80 (20% prestrain) 
HY-130 (2 hr, 610 “C) 
Weld deposit L 
(HY-80 MMA cl-pass) 
Weld deposit N 
(HY-100 MMA 4-pass) 

0.19 0.74 00024 8 x 103’ 555 

0.18 
0.125 

(average) 
0.045 
0.06 
0.03 

0.03 

0.20 0.0028 2 x 105 94.5 
0.39 oGO35 5x 109 174 

(average) 
0.12 0.0046 3.6 10.0 
0.13 00045 7.1 15.3 
0.02 0.0035 0.02 (spontaneous) 

(base material) 
0.06 0.0037 025 (spontaneous) 

(base material) 
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behavior would, of course, be expected with lower temperatures, radiation damage, 
or high loading rates, significantly so when the fracture mechanisms change from 
fibrous to cleavage. 

Evidently, the first three materials listed could not fracture under conditions of 
contained yielding, and the last two would fracture spontaneously. We recall, from 
the elasticcplastic solution for small-scale yielding (TRACEY, 1976), that the crack-tip 
opening displacement is 

where r,,, max is the maximum radius of the crack-tip plastic zone (occurring at 70” 

from the plane prolongation of the crack). Thus, using the reported 6,,- and (J,,/J,,)- 
values in the table, we estimate that the pre-strained HY-80 would require rp,max 
equal 3.26 mm at J,,-conditions and 11.7 mm at J,,-conditions. Further, from Fig. 6, 
approximately 21 mm is the estimated amount of stable crack growth to reach 95 per 
cent of J,,. For HY-130, the corresponding values are rp,max equal 4.44 mm at JIC, 
31.6 mm at J,,, and approximately 59 mm of stable growth to 95 per cent of J,,. The 
results suggest the general order of sizes required for fracture under well contained 
yielding in these materials. 

It is well to remember that our predictions of the extremely large (J,,/J,,)- and T- 
values in materials of low (0,/E) and/or high (S/Al) result from the assumption that 
the ductile crack growth process is deformation controlled. That is, it is assumed that 
a constant opening angle is required for growth irrespective of the spatial extent of the 
plastic zone. But, as J (or K:) increases, the region of large, triaxially elevated stress 
levels shown towards the left of Fig. 1 envelops a proportionally larger region of the 
material. In some cases, these high stresses, prevailing over an ever-increasing spatial 
extent, might serve to nucleate a greater density of microcavities and hence to 
decrease the opening angle required for continuing growth. 

3.2 Possible implications for fracture under fully-plastic conditions 

For a plane-strain specimen deformed well into the general yielding range, the 
spatial extent of yielding is limited by the dimension of the remaining ligament. 
Assuming that the analysis leading to (lo), (11) and (14) remains approximately valid 
and that conditions are met under which the near tip deformation increments can be 
suitably characterized in terms of some outer-field J-value, it would appear that the 
dimension R, reflective of the scale of plastic yielding, would then (by dimensional 
considerations) be proportional to the ligament size, the coefficient of proportionality 
depending on specimen type and hardening. The second term on the right side of (14) 
is then expected to remain near constant during crack advance (at least for (l-1,) 
much smaller than ligament size). Thus, equation (14) predicts dJ/dl z const. This 

seems to be consistent with the observations of PARIS et al. (1977), mentioned earlier, 
of an effectively constant (dJ/dl)-value (based on nominal J-values) for fully-plastic 
specimens. It also seems consistent with the observation by CLARK et al. (1978) of an 
approximately linear increase of the nominal 6,,, with (l- 1,) for small amounts of 
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crack growth, if we assume that the nominal c&,- and J-values remain in 

approximately the same proportion to one another as for small-scale yielding. 
An important issue for the characterization of plane-strain crack growth under a 

wide range of yielding conditions (e.g. from well contained “small scale” yielding in 
large specimens to fully-plastic yielding in small specimens of a variety of 

configurations, such as edge-cracked bend, externally- and internally-cracked 
tension, etc.) is the clarification of the extent to which some universal, specimen- 
independent description of the growth process is possible. The matter has received 
recent attention in relation to the characterization of the onset of crack growth in 
terms of J and &,. Such procedures have theoretical justification when there is 
sufficient strain-hardening that the near tip state is dominated, over a size scale that is 
large compared to that of the fracture-process zone, by a one-parameter singular 
strain field of the HRR-type regardless of the specimen type or the extent of yielding. 
For small amounts of stable crack growth, HUTCHINSON and PARIS (1977) argue 
similarly that so long as some appropriately dimensionless measure of (dJ/dl) is large, 
conditions validating the deformation-plasticity basis of the J-integral and HRR 
singular fields will be met everywhere except in some small vicinity of the crack tip. 
They argue, thereby, that J continues to be a valid measure of the intensity of the 
outer-field surrounding the fracture zone and suggest on this basis that a universal, 
specimen-independent relation between J and (l-1,) may exist as postulated 
previously by PARIS et al. (1977). 

A full assessment of this viewpoint is not possible because the theoretical 
description of crack growth that we have developed in Section 2.1 is based on ideal 
plasticity and does not include the strain-hardening effects which are essential to the 
Hutchinson-Paris discussion in terms of one-parameter HRR-fields. We do find, 
based on limited numerical results by SORENSEN (1977) that J retains some role as a 
crack-tip characterizing parameter during growth, in that (c( &/a,) gives, in (lo), the 
near tip opening d6 in the absence of further growth, with an approximately constant 
c1 irrespective of the amount of growth. However, the last terms in (lo), (11) and (14) 
arise from the contributions of growth dl to the opening. These terms all contain the 
parameter R which seems to be essentially proportional to the plastic-zone size at 
small-scale yielding but, as remarked above, to the untracked ligament dimension in 
fully-yielded specimens with a Prandtl-like near tip stress field. Hence, the last terms 
in (lo), (11) and (14) suggest at least some dependence of (dJ/dl) on the extent of 
yielding and specimen type. 

To investigate this dependence we re-write (14) in terms of the T-parameter of 

PARIS et al. (1977) as 

T = (E/co*) dJ/dl = (E/a,a)6/Al- (/3/a) In (eR/Al). 

First, by evaluating R as appropriate for small-scale yielding at conditions near JIE, 
we find that the term containing R is typically only a small fraction of T for the 
smaller (a,,/E)- and larger (b/Al)-ratios considered in Tables 1 and 2. Thus, for highly 
ductile, low strength materials (i.e. large T), the specimen dependencies would appear 
to be minimal so long as a Prandtl-like near tip stress state is present in each case. 
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Also, by considering different specimen configurations of the same material, denoted 
by the respective subscripts 1 and 2, one has 

7” - T2 = (b/cl) In (R1/R2) z 8 In (R,/R2). (27) 

Thus, for example, taking R, = 5R, as representing rather extreme differences 
between specimens at the onset of growth (say, 1 is a large specimen with well 
contained yielding and 2 is a small fully-plastic bend specimen with an untracked 
ligament dimension that is small compared to the plastic zone of l), we find 

T, - q z 13. This is a small difference for the more ductile materials considered by 

PARIS et al. (1977) with Tin the range 100 or larger. Obviously, it becomes significant 
for less ductile materials. The observation also suggests that small, fully-plastic bend 
specimens may yield T-values that tend to overestimate the initial T-value for cases of 
well contained yielding. In addition, we expect rounded J versus (I- I,) curves as in 
Fig. 6 for contained yielding, but approximately straight-line J versus (I - 1,) curves, 
with a larger slope, in the fully-plastic specimens. 

The preceding discussion of specimen dependencies is not necessarily at variance 
with BEGLEY and LANDES’S (1976) experimental results which indicate very different 
@J/d/)-values for fully-plastic compact tension and center-cracked specimens of the 
same material. For the ductile rotor steel which they studied, this discrepancy may be 
caused by different paths of crack advance; along 45’-lines in the center-cracked 
panel and straight ahead in the compact tension specimen. The occurrence of 45- 
crack growth would seem to mean that conditions in the center-cracked specimens 
were well removed from those for existence of a unique near-tip HRR singular field, 
characterized by J. Indeed, a recent finite element analysis by MCMEEKING and PARKS 
(1977) suggests that the HRR-field may not generally result over any significant near- 

tip size scale in fully-plastic center-cracked specimens. But for 6061&T651 aluminum 
specimens (Professor J. A. Begley (Department of Metallurgical Engineering, Ohio 
State University) and Dr J. D. Landes (Westinghouse Research Laboratory, 
Pittsburgh), unpublished private communication) for which crack advance is straight 
ahead in both specimens, the significantly different T-values (approximately 3 for 
compact tension, and 23 for center-cracked panel) might be explained by the low 
ductility and different values of R in the different specimens. As discussed by RICE 
(1976), the region over which the characteristic HRR-singularities dominate the 
strain field is expected, from consideration of the ideally-plastic limit, to be 
considerably larger in a bend specimen than in a center-cracked tensile specimen (if, 
indeed, any such region exists in the latter case ( MCMEEKINC and PARKS, 1977)), and 
the parameter R should show a similar trend. Thus, the specimen-dependent (dJ/dl)- 

values for aluminum may be consistent with (14) and (26) since R is expected to be 
much smaller for the center-cracked case. These considerations are, of course, high!! 
speculative but their more detailed examination seems approachable within the 
framework that we develop here, assuming that suitably mesh-refined numerical 
calculations are carried out in future work, for fully-plastic specimen geometries as 
well as for the contained yielding case remarked upon earlier. 

Finally, we remark on the significance which PARIS et al. (1977) attach to the 
dimensionless crack-growth resistance parameter T s E(dJ/dl)/d, in fully-plastic 
specimens. By modelling the specimen material as elastic ideally-plastic and 
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considering virtual crack extensions under conditions for which the load-point 
displacement is held fixed, these authors calculate by methods similar to those of RICE 

(1975) the additional deformations imposed on the fully-plastic untracked ligament 
due to the incremental unloading of the elastic regions of the specimen. From this 
additional deformation they calculate the increment in the (nominal) applied J,- 
value, and hence calculate the smallest value of the material resistance (dJ/dl) that is 
consistent with stability against rapid crack extension. The results take the form that, 
for stability, T must exceed some critical value which depends only on the geometric 
configuration (typically, on the ratios of the ligament dimension to specimen length 
and width) but not on the specimen material. PARIS et al. (1977) suggest from 
experiments on long edge-cracked bend specimens that a stability criterion of this 
type is consistent with observations of stable versus unstable crack growth under 
imposed displacement conditions. 

4. CONCLUSIONS 

A relation describing the deformation accompanying extending cracks in elastic- 
plastic solids is obtained from theoretical and numerical calculations. This relation is 
used as the basis for a fracture criterion for ductile crack advance based on a critical 
opening displacement at a characteristic near-tip distance. The model suggests a 

strong dependence of the stability of crack growth on strength level and ductility. 
Low values of (a,#) and/or high values of the required tip opening parameter (6/A/) 
suggest a steeply rising J versus change-in-crack-length relation and an impossibility 
of unstable crack growth under conditions of well contained yielding. The model also 
seems consistent with differences in observed features of crack growth under small- 
scale yielding and fully-plastic behavior. Namely, more stable growth is predicted for 

the fully-plastic specimens and a nearly constant value of (dJ/dl) results in this case 
with effects of specimen geometry dependent on material ductility. The quantitative 
aspects of the relation are less certain due to the imprecise nature of the nominal 
plastic-zone dimension R which is fundamental to the fracture model. To quantify 
more precisely the nominal plastic-zone dimension, finite element investigations 
similar to those of SORENSEN (1977) but with a higher degree of mesh refinement in the 
vicinity of the extending crack tip are desirable, particularly for fully-plastic 
configurations. In uddition, it is well to remember thut the theoretical considerations of 
the present paper are based on the simplest isotropic hardening (or non-hardening) 
‘;flow” theory of plasticity. This may not be fully udequate for characterizing 
deformations due to the strongly non-proportional stressing paths experienced near a 
growing crack tip. 
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