
J. Mech. Phys. Solids Vol. 26, pp. 61-78 
0 Pergamon Press Ltd. 1978. Printed in Great Britain 

THERMODYNAMICS OF THE QUASI-STATIC GROWTH 
OF GRIFFITH CRACKS 

J. R. RICE 

Division of Engineering, Brown University, Providence, RI 02912, U.S.A. 

(Received 7 September 1977) 

ABSTRACT 

RESTRICTIONS on the quasi-static extension, or healing, of Griffith cracks are developed in the framework of 
irreversible thermodynamics. It is emphasized that thermodynamics requires that (G - 2r)I > 0, where i is 
crack speed, G the Irwin energy release rate, and 2y the work of reversible separation of the surfaces to be 
fractured. Implications for ‘lattice trapping’ models of cracks and for thermally-activated crack motion are 
discussed, as are the effects on crack growth and healing of a surface-reactive environment, in which case y 
must be given a definition appropriate to adsorption-altered surface properties. 

1. INTRODUCTION 

THE CONDITIONS governing quasi-static extension, or healing, of Griffith cracks are 
discussed here in the framework of irreversible thermodynamics. By ‘Griffith crack’ is 
to be understood a crack which moves in an ideally-elastic lattice without the 
generation or motion of dislocations, twins, etc. Such conditions are apparently 
attained in glasses and many ceramics (EVANS, HEUER and PORTER, 1977). They are 
met much less frequently in metals. But approximate criteria may be given for which 
an atomistically-sharp crack-tip configuration is stable against blunting by 
dislocation nucleation from its tip (KELLY, TYSON and COTTRELL, 1967 ; RICE and 
THOMSON, 1974) and when these conditions are met up to the point of rupture, it may 
be assumed that Griffith-like conditions prevail locally near the crack tip. Similar 
criteria for atomistically brittle response have been given for cracks on interfaces 
between grains or phases (RICE, 1976; MASON, 1977). When such conditions are met it 
is possible even in nominally ductile materials that fractures, or segments of 
macroscopic fractures (e.g. in nucleation of a cavity by cracking of a particle-matrix 
interface), could take place with Griffith-like conditions in a zone immediately 
adjacent to the crack tip even though there may be appreciable dislocation motion in 
surrounding material (THOMSON, 1977). 

In the present discussion, Griffith cracks are assumed to be able to undergo quasi- 
static extension or, in certain conditions, contraction (healing) under sustained, 
constant loading, at least for a suitably restricted range of loadings. There is ample 
experimental evidence for this kind of behavior in the presence of reactive 

environments (see the reviews by WACHTMAN (1974) and LAWN and WILSHAW (1975, 
Ch. S)), and the thermodynamic formalism to be discussed is wide enough to include 
such cases. But even for crack growth in high vacuum, some range of quasi-static 
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crack growth is to be expected because of ‘lattice trapping’ effects (HSIEH and 
THOMSON, 1973; LAWN and WILSHAW, 1975, Chs 7, 8). According to this concept, 
lattice discreteness causes the stress intensity required for rapid (dynamic) growth of a 
crack to be finitely greater than that required for rapid crack healing. Thus, quasi- 
static crack motion is possible, e.g. by thermal activation, in the range between these 
limits, and it is of interest to note that WACHTMAN (1974) cites several observations of 
quasi-static crack growth in ceramics and glasses under vacuum conditions. 

Observations of crack healing are also cited. 

1.1 Summary of thermodynamic restrictions 

Restrictions on crack growth processes will be developed in the next sections 
based on standard methods of irreversible thermodynamics. The result is a refined 
interpretation of the GRIFFITH (1920) criterion which, by contrast, focuses on the 
calculation of an equilibrium crack length and cannot deal with kinetic aspects or with 
the normally, but not always, observed irreversibility of cracks against healing. 
However, the restrictions on crack growth are first stated directly here, as an 
introduction, by citing some relevant results from studies by the present writer on the 
thermodynamics of non-elastic deformation of solids due to structural rearrange- 
ments, on the microscale, of constituent elements of material (RICE, 1971, 1975). 
These rearrangements were characterized by a set of internal variables, each having 
associated with it a thermodynamic force. While the earlier work focused on 
rearrangements by dislocation motion, or crystalline slip, the latter work (RICE, 1975) 
identified forces conjugate to other types of rearrangement, including those by the 
extension of Griffith cracks. 

In particular, the force per unit length of crack front, conjugate to Griffith crack 
extension over the distance 61 normal to the considered portion of crack front, is 

f’= G-25’. (1) 

Here, G is Irwin’s elastic energy release rate and 2y is the work of reversibly 

separating the fracturing surfaces. Such ‘forces’ are well known from dislocation and 
crack mechanics, and are defined so that the integral offsl around all segments of 
crack front is the negative of the free energy difference between equilibrium states 
before and after the alteration of crack size. 

Now, as discussed in the work cited, when actual time-dependent non-elastic 
processes can be modelled suitably as sequences of constrained equilibrium states (i.e. 
when instantaneous states during processes are essentially indistinguishable from the 
equilibrium states which would result if the internal variables were frozen at their 
instantaneous values), the standard methods of irreversible thermodynamics are 
applicable. Specifically, where i represents the local crack speed 61/6t, the condition 
for a non-negative entropy production rate was shown to be 

j.,fids 3 j (G - 2y)ids 3 0. (2) 
c.f. 

Here, ‘cl.’ denotes ‘crack front’ and the integral with respect to arc length s is carried 
over all extending portions of crack front in the considered body. In the 
circumstances, it seems appropriate to assume that conditions at a given point along 
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the crack front are governed by the force at that same point, and hence to rewrite the 
preceding condition as the requirement that 

(G - 2y)i 2 0. (3) 

This last inequality, rather than the more usually cited condition that G = 2y for 
the onset of crack extension, is, I believe, the preferable form of writing the Griffith 
condition. In the case of stable crack growth by thermal activation over lattice traps 

in a high vacuum (to avoid environmental effects), the inequality requires that 1 
cannot be of a sign different from that of G - 2~. This implies that the reversible work 
of separation must lie in the range between the critical G levels for rapid growth (say, 
Gf ) and rapid healing (G-): 

G- <2-y < G+. (4) 

It is of interest that a discrete lattice model of crack growth developed by ESTERLING 
(1976) leads to a result at variance with (4), in that G- is found to exceed 2y, e.g. by as 
much as 50 per cent. Indeed, Esterling reaches rather strong conclusions on the 
inadequacy of y for characterizing the fracture resistance, but a later analysis by 
FULLER and THOMSON (1977) showed that this violation of (4) is not a true 
consequence of the Esterling lattice model, and resulted instead from certain 
approximations that were introduced to deal with non-linearities of the force law. The 
exact lattice analysis is consistent with (4), as required for consistency with 
thermodynamic principles. It may further be noted from (3) that kinetic rate laws for 

quasi-static crack growth, in which ! is taken as some function of G, must give i = 0 
when G = 2y if they are to be consistent with thermodynamics. In this regard it is 
interesting to note that FULLER and THOMSON (1977), in their study of non-linear 
lattice models of fracture, seem to regard it as an open question as to whether what 
they call the ‘thermodynamic’ surface energy (y, or half the work of reversible 
separation) could differ in general from what they call the ‘Griffith’ surface energy 
(half the value of G which makes the thermally-activated crack growth function, 
i = i(G), vanish), and, while rightly critical of Esterling’s conclusions, they seem 
nevertheless to regard it as possibly fortuitous that the two surface energies are found 
to agree exactly for the particular lattice models that they studied. The present results 
show, however, that by the principles of thermodynamics the two surface energies 

that they define must be identical in all cases of crack motion under what is 
understood here as Griffith-like conditions. 

It will further be shown that for crack growth in a reactive environment which can 

adsorb on the newly-created fracture surfaces, inequality (3) remains valid so long as 
y is interpreted as a surface energy as altered appropriately to account for adsorption. 
The implied restriction on kinetic laws has obvious implications for environmentally 
influenced crack growth. These will be discussed, as will be a new viewpoint that 

emerges on the normally observed irreversibility of cracks against healing. 

2. CRACKED SOLID AS A THERMODYNAMIC SYSTEM 

For simplicity, consider a cracked solid which is constrained to deform in plane 
strain (Fig. 1) in a vacuum or completely inert environment. Here, P represents the 
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FIG. 1. Cracked solid in contact with heat reservoir. 

forces per unit thickness (into the plane of the diagram) exerted on the body, A is the 
work-conjugate displacement (i.e. j PdA is the work of the applied forces) and I is 
crack length. The surface of the solid is maintained at temperature T,, shown 
schematically by contact with a heat reservoir in the figure, and Q is the heat 
adsorbed per unit thickness. It is assumed that all crack motion to be considered is 
sufficiently slow that the body, viewed macroscopically, acquires negligible kinetic 
energy and has a temperature field which differs negligibly from To (typical 
experimental studies of ‘slow’ crack growth involve crack speeds ranging from lo-i0 

to 10-3ms-‘; see, for example, WACHTMAN (1974)). In this sense, the body, during 
crack motion, can be regarded as traversing a ‘sequence of constrained equilibrium 
states’ corresponding to the sequence of instantaneous crack lengths, and in such a 
case there would seem to be no disagreements among different schools as to the 
attachment of meaning to thermodynamic functions or to the proper form of 
generalization of the laws of equilibrium thermodynamics to irreversible processes. 
Obviously, thermodynamic restrictions on faster crack motion processes, e.g. with 
significant temperature non-uniformities and/or with inertial effects, are also of 
interest. But such cases require for their discussion the determination, and local crack 
tip interpretation, of non-equilibrium continuum fields. As such, they would seem not 
to allow the definitiveness of conclusions, and certainly not the simplicity of analysis, 
of the present, albeit limited, case. 

The first law of thermodynamics requires, for the system considered, that 

&PA = 0, (5) 

where U = U(A, 1, T) is the internal energy (per unit thickness) of the solid. Note that 
there is no work term on the left side that is conjugate to 1 and, in this sense, I can be 
regarded as an ‘internal state variable’. The second law of thermodynamics asserts 
that an entropy state function S = S(A, 1, T) exists for the body and that, in the given 
circumstances of heat delivery at a uniform surface temperature, 

S > Q/T, (6) 

with equality characterizing ‘reversible’ alterations of state. This last expression may 
be rewritten in the form 

S=A+i)T, A 3 0, (7) 

where A is called the entropy production rate. Now, when Q is eliminated between (5) 
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and (7) we have 

where 
TA=Pi\+T&hPPi\-6200, 

0 = U-TS = @(A,I,T) 

(8) 

is the Helmholtz free energy (per unit thickness) and the presumed constancy of 
temperature is recalled. The last expression may finally be written as 

TA = [P - L@(A, 1, T)/aA]A - [aQ(A, I, T)/XJi 3 0. (9) 

We recall that the difference in the Helmholtz function, between two states at the 
same temperature, can be calculated as the work of reversibly and isothermally 
transforming the system from one state to the other. This work will not, of course, 
generally coincide with the work of actual forces acting during an actual, generally 
irreversible, transition from the one state to the other. Accordingly, let us set @ = 0 in 
the uner~~ked, unlu~ed state (I = P = 0) at temperature T, so that @(A,l, To) is the 
reversible work of isothermally creating the state of Fig. 1. One may create this state 
by the following two-step sequence of operations: (i) Separate reversibly the two 
layers of atoms forming the crack walls by pulling against cohesive forces until the 
layers are effectively out of range of one another. By ~e~~~t~u~ of the quantity 2y as the 
reversible work of (isothermal) separation per unit area, the contribution to the free 
energy Q, is 2yI. (ii) Deform elastically each element of the body lying outside the 
crack so that such elements have the same strain-state as that actually induced in the 
body when the crack length is 1 and the imposed displacement is A. Following 
GRIFFITH (1920), this work can be equated to the isothermal “elastic strain energy” 
W(A,f) of the body (per unit thickness) as would be computed from the ordinary 
continuum elastic solution for a cracked solid at temperature Tb, without regard for 
the effects of any cohesive molecular forces acting near the crack tip, We note from a 
well-known property of the elastic strain energy that 

PdA = [dW]irixed, or P = ~~(A,l)/~A, (10) 

and also that the Irwin energy release rate G is dejined by 

G = - aIV(A, ryar. (11) 

Now, from the above considerations, 

0 = 2yI + W(A, I), (12) 

and the derivatives which enter the expressions (9) for the entropy production rate are 

X@A = aW/aA = P, m/at = zy-aw/% = 2y-G. 

Accordingly, the entropy production rate is 

A = - [acD(A, I, T)/a@/T = (G - 2y)i/T, (13) 

and the requirement of a non-negative entropy production rate is, since T > 0, 

(G - 2y)i 2 0, 

as stated earlier in (3). 
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Only minor changes are necessary to deal with a three-dimensional, rather than 
plane strain, configuration. Thus, for a crack of area A, not necessarily straight- 
fronted, 

Q, = 2yA + W(A, crack position), (14) 

where now @ and W have units of energy rather than energy per unit thickness. 
Analogously to (11) G is defined at points along the crack front (c.f.) by the 

requirement that 

[6W],,ixed = - S GG’ds, (15) 
C.f. 

to first order in the b-quantities for arbitrary distributions 61 = 61(s) of infinitesimal 

advance 61 of the crack normal to its front. The entropy production rate during a 
crack growth process may then be shown, by similar steps to those above, to be 

A = ; { (G-2y)ids, 
c.f. 

(16) 

where i denotes the local speed of the crack normal to its front. Hence A > 0 implies 

the inequality (2) and, given the relation of G to the local field of stress prevailing near 
the crack tip, it seems reasonable to interpret this as a requirement that inequality (3) 

apply pointwise along the crack front. 

2.1 Comparison with cohesive zone and lattice models 

Figure 2 illustrates an Elliot-Barenblatt ‘cohesive zone’ model of the crack-tip 
region. The effect of molecular forces is represented by cohesive stresses CT which 
restrain the crack walls from relative displacement 6; CJ is regarded as some function 
of 6 and, because of the definition of 2y as the reversible work of separation, 2~ is 
equal to the area under the CJ vs 6 relation. The material outside the cohesive zone is 
modelled as an elastic continuum but now, in contrast to the classical elastic crack 
solution, it sustains no singularity of crack opening stress. It is of interest to note that 
the external loading which just equilibrates the crack against growth or healing (the 
distinction between the two loads vanishing in this case) has been shown to be 

G = 7 (r(6)d6 = 2y, 
0 

(17) 

where G is the energy release rate based on the classical elastic crack solution and 
where it is assumed that the cohesive zone size is negligible by comparison to overall 

(T 

;/\ 

area 
= 2y 

6 

6, 

FIG. 2. Cohesive zone crack model. 
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crack size ; 6, is defined in Fig. 2. The result was proven by WILLIS (1967) based on a 
linear elastic model of the surroundings and by RICE (1968) for general non-linear 
elastic models, using path-independent integrals taken around the cohesive zone in a 
manner later extended by ESHELBY (1970) to the full inclusion of geometric non- 
linearities. 

Of course, the GRIFFITH (1920) equilibrium crack condition is G = 27, so what is 
being said is that cohesive zone models of the type just discussed are in exact 
agreement with the Griffith model. However, experimental results can diverge from 
the predictions of these models (although not from (3)), in that loads in excess of the 
Griffith level can be sustained even when there is no discernible evidence of plastic 
flow processes in the crack wake. Of course, cracks are known also to be essentially 
irreversible against healing in normal circumstances, but this matter is best deferred 
to the inclusion of surface reactions with the surrounding environment in Section 3. 

The divergence between representative experimental results and the 
Griffith/cohesive zone models may to some extent be attributed to lattice effects. As 
has already been mentioned, the studies of HSIEH and THOMSON (1973) and ESTERLING 
(1975) support the concept of ‘lattice trapping’ of cracks, in that G+ is finitely greater 
than G-. But, analogously to the continuum model of Fig. 2, these lattice models are 
formulated in a manner that tacitly assumes ideally elastic (in fact, linear) response of 
all lattice bonds except those bridging the prospective crack plane. This precludes the 
possibility of, for example, the nucleation of incipient shear dislocations above and 
below the crack in circumstances for which the dislocations are not driven out beyond 
a few lattice spacings (at which point they would become unstable and move to much 
greater distances (RICE and THOMSON, 1974)), but serve nevertheless to greatly 
diminish the concentration of stress ahead of the crack. Such incipient dislocations 
would, presumably, be withdrawn from the material by the large surface ‘image’ 
forces that dominate after the crack progresses, so that they leave no permanent 
record. But they could, perhaps, greatly increase G+ over 2y, perhaps so much so that 
thermally-activated crack motion proceeds at an undetectably slow pace unless 
G & 2~. This discussion is, of course, highly speculative although some support seems 
to be provided by the limited results reported by GAHLEN, HAHN and KANNINEN 
(1973) based on a non-linear bee lattice model with two-body potentials intended to 
simulate the properties of Fe. 

In any event, such lattice considerations serve in principle to illuminate the 
structure of kinetic laws relating i to G (and T) in particular materials, but do not 
contribute to the basic thermodynamic restriction that (G-2y)i > 0, which applies 
independently of the atomistic details of Griffith cracking. 

3. CRACK GROWTH IN A SURFACE-REACTIVE ENVIRONMENT 

Now, with reference to Fig. 3, consider a cracked specimen in a single phase, 
surface-reactive fluid environment at pressure p. This situation is represented by the 
rigid outer wall and piston arrangement containing the cracked specimen and its fluid 
environment, both in contact with the heat reservoir at temperature T,. It is assumed 
that the newly-created surfaces emerging from the crack tip adsorb an ‘excess’ I-, in 
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FIG. 3. Cracked solid and surface-adsorbing fluid environment, in contact with heat reservoir. (r is excess 
surface concentration due to adsorption.) 

the Gibbs’ sense, of mass per unit area from the fluid phase and, for simplicity, it is 
assumed that this adsorption process has reached completion (i.e. no further increase 
of the local I-value) while points on the newly-created surfaces are still very near to 
the crack tip. Obviously, the question of whether adsorption takes place during the 
stretching of crack tip bonds, or instead only after these bonds are fully separated, is 
of great importance to the actual kinetics of the process but not to the form of the 
thermodynamic restriction that emerges. 

If V is the total volume (per unit thickness into the plane of the diagram) enclosed 
by the rigid outer wall and piston, then the first and second laws of thermodynamics, 
as in (5) and (7) become 

Q+Pi\-pti = ii, (18) 

s = b&T, A > 0, (19) 

where now U and S are the total energy and entropy of the system, including solid, 
fluid and surface with adsorbate, Q is the net heat given out by the source and T the 
essentially uniform temperature of the enclosed system. Hence, by introducing the 
free energy 0 = U- TS we have, analogously to (8), with ? = 0, 

TA = Pi\-pb6. (20) 

We consider the volume V to be made up of that occupied by the solid, V,, and 
that occupied by the fluid, Vr, 

V= v,+v,, (21) 

treating the surfaces with adsorbate in the spirit of the Gibbs’ concept of a 
mathematical dividing surface of zero volume. To make the definitions precise, V, is 
taken as the volume that would be occupied by a classical elastic continuum loaded 
with pressure p and force P, and having a crack of length 1, and Vr is then dejned as 
V- V,. (Note that if the ‘actual’ fluid mass taken up as adsorbate per unit area is I’, 
and if the adsorbate increases the nominal volume of the solid by adding an effective 
thickness h to its surfaces, then the Gibbs ‘excess’ mass per unit area as here defined is 
I = I’ - hp,, where pr is the mass density of homogeneous fluid at the given pressure 
and temperature.) The fluid phase is considered to be homogeneous right up to the 
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mathematical dividing surface, and thus we say that the muss of the fluid phase is 

p,l/, = m,-2rl. (22) 

where m, is the mass of the fluid phase per unit thickness when there is no crack. 
Indeed, since V, is already defined, this last expression is to be taken as the 

dejinition of the excess I. The free energy @ is the sum of that of the solid, taken as the 
ordinary elastic strain energy W(A, &I), plus that of the fluid, regarded as 
homogeneous and filling the volume V, with Helmholtz function (or ‘strain energy’) 
w = w,(p, T) per unit mass, plus the excess free energy 4 per unit area due to 

the presence of the surfaces with adsorbate. Of course, this suffices to define C#J and, 
using (22) for the fluid mass, the total Helmholtz free energy is 

@ = W(A, V,, E) + (m. - 2I-I)w, + 241, (23) 

where the dependence of quantities on p and T is not explicitly noted since these 
remain constant during the crack growth process. 

Now, analogously to (10) and (11) one may note that, from the continuum elastic 
solution, 

P = aw(A, v,, l)/aA, -P = aW(A, v,, wav,, G = - aW(A, v,, Q/al, (24) 

where the latter defines G. Hence, 

6 = PA-pt-[G+2I-w,-24]i. (25) 

Also, by using (21) and (22) 

pP=pc+PVr= pi&(2rp/p,)!. (26) 

With these last two expressions the entropy production rate A of (20) is given by 

A = {G-2[#-(w,+p/p,)I-]}i/T 3 0. (27) 

To interpret this expression we note that (wf +p/pr) is the Gibbs free energy per unit 
mass of fluid. This quantity is usually referred to as the chemical potential ~1 and it can 
be regarded as a property of the adsorbate since the adsorbate is presumed to be in 
equilibrium with the surrounding fluid. Further, one may now define a quantity y so 
that 

Y = 4-(wr+P/Pr)I = 44, (28) 

and then the requirement (27) of non-negative entropy production has the same form 
as earlier, viz. 

(G-2y)i > 0, 

and this inequality restricts kinetic relations for environmentally influenced Griffith 
crack growth. 

We note that y as defined in (28) is well known in the thermodynamics of surface 
adsorption (see, for example, GIBBS (1878)), and is the ‘surface energy’ (i.e. the work 
of reversibly creating a unit area of surface) under conditions of chemical composition 
equilibrium with the adsorbing species in a bulk phase at potential ,u. Its role as an 
effective value for use in Griffith’s equation, G = 2y, was recognized some time ago by 
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PETCH (1956) in connection with hydrogen embrittlement. For completeness of the 
present account, the interpretation of ; and its relation to surface adsorption 
isotherms (i.e. equations of state I = I(p), or I = I(p), at fixed T) are developed in 
Section 3.1. 

3.1 Surface energy and surface adsorption 

We recall that C$ has been defined as the surface excess of Helmholtz free energy 
(per unit area) that arises when the system of Fig. 3 is regarded as an ordinary elastic 
solid surrounded by a fluid phase that is homogeneous up to the mathematical 
dividing surface with the solid. To interpret C/J consider the system of Fig. 4. 

FIG. 4. Adsorption of fluid substance on a solid surface 

maintained at temperature TO and consisting of a thin portion of solid having an area 
A exposed to, and in composition equilibrium with, a fluid under pressure p, now to 
be regarded as variable. 

In the circumstances, one may neglect any variations in volume or energy of the 
solid (the reader may wish to carry V, and W through as variables in the development 
to follow; and the same end result, equation (33) will be found). The entire volume 
between the exposed solid surface and the piston is V,, and when we regard this as 
homogeneous up to the interface, we say that the fluid phase has mass prV, and 
Helmholtz free energy w,p,Vr, where pr and wr pertain to homogeneous fluid at 
pressure p and temperature T as before. Then I and 4 are defined as the surface 

excesses of mass M of the fluid substance and free energy Q of the system: 

M = PfI/,+rA, (29) 

@ = prl/,w,+&l. (30) 

Now, when we compare two infinitesimally separated equilibrium states of the 
system, the alteration of free energy equals the work of external forces in the 
transition between states, and thus 

d@ = d(p,‘V,)w,+ (~,l/,)dw, + Add 

= -_pdl: = - (P/P,)~(P,~/,)- P(P,T/,)~U/P,). (31) 

The terms have been rearranged following the identity signs to take advantage of the 
facts that by a similar consideration applied to a mass of homogeneous fluid, 

dw, = -pJ(IIp,), (32) 
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and that since A4 in equation (29) is constant, &,I$) = -AC. With these, (31) 
becomes 

db = (w,+p/p,)dr = PdF, (33) 

which is the Gibbs equation for a surface undergoing isothermal adsorption. Further, 
a Legendre transformation enables one to re-write the Gibbs equation as 

dy = d(4 - Pi) = -up, (34) 

which involves the quantity y of (28) that enters the thermodynamical restriction on 
crack growth. 

In fact, (34) embodies the celebrated ‘Gibbs adsorption 

Y = yo- .F I(p’)dpc’, 
-a, 

theorem’, 

(35) 

where I = I+) is the surface adsorption isotherm at the given temperature. The 
lower limit, p = - 00, corresponds to the condition that the piston of Fig. 4 is 

withdrawn indefinitely, so that the fluid is reduced to a gas of vanishing density and 

pressure (note from (32) and the definition of n that dp = dp/p,, and that pr cx p for a 
dilute gas, so that p -+ -co as p -+ 0). This dilute limit corresponds, of course, to 
vacuum conditions and in that limit, y + 4 + yo, where now y. denotes the quantity y 
introduced in Section 2, and defined so that 21/, is the work of reversible separation in 
a vacuum (or a completely inert environment). Thus, the Gibbs adsorption theorem 
shows that if a fluid substance adsorbs (I > 0) as its potential is raised from that of 
vacuum conditions, then y is necessarily decreased relative to y. and hence the critical 
G-value, above which quasi-static crack growth is thermodynamically permissible, is 

reduced. Indeed, the amount of the reduction in Gcri, is 

2(~, - Y) = 2 i I(p’)dp’ = 2 s” [I(poip,(poidp’, (36) 
-Cc 0 

and is directly calculable from adsorption isotherms. Here, the latter form uses 
dn = dp/p, and envisions that the isotherm has been reported with I as a function of 
pressure in the fluid phase. 

To see that ‘J can indeed be interpreted such that 2yI is the reversible work of 
isothermally-creating crack surfaces of length 1 on which there is adsorption I, it is 
convenient to consider the following sequence of processes relative to Fig. 3 : First, 
with 1 = 0, we withdraw the piston to create a negligibly low pressure. Second, the 
new surfaces are created with reversible work 2y,l as appropriate to the vacuum-like 
conditions prevailing. Third, the fluid is brought again to its initial pressure under 
conditions of composition equilibrium with the new surfaces. The net reversible work 
of the first and third steps is 

P”o+ P,=P 

- 1 
P"P 

p’4mol~dp’)l -p, -5, + p’4moldp’) - 2~Up’V~,W)l> 

where the terms in brackets are the fluid volumes V, of (22) as appropriate to each 

step. These integrals combine after integration by parts to what may be identified 



72 J. R. RICE 

from (36) as 2(y-y,)l, plus the work 2lpT/p, that would be done at the piston m 
separation at constant fluid pressure, and hence the net reversible work of creating 
the crack with its adsorbate is 2~1. 

3.2 Further comments 

For simplicity, the preceding development has been given in terms of a single-phase 
fluid environment that is capable of adsorbing on the newly-exposed fracture 
surfaces. More generally, the environments of interest will contain several chemically 
distinct species (e.g. air consisting of N,, 0, and H,O vapor; liquid water with 
dissolved salts ; etc.) and each species may have its own surface composition excess, 
say, ri (i = 1,2,. . .), due to adsorption. Also, a chemical potential pi may be 
associated separately with each species in the surrounding environment and, when 
the environment is at composition equilibrium with the surface, these potentials may 
be considered properties of the surface. 

The net result is that the entropy production inequality for crack growth is 

A = (G-2&T 3 0, Y = 4- CPiri, (37) 

where C#J is again the surface excess of Helmholtz free energy. Also, (33) and (34) 
become 

d+ = CPidTi, dy = - 1 rid,ui. 
I I 

(38) 

It may further be noted that a thermodynamic analysis of the separation process 

per se has recently been developed by the writer (RICE, 1976), with reference to 
initially coherent interfaces between solid phases on which there is internal 
adsorption of elements dissolved in solid solution. The formulation distinguishes 
between adsorption effects at the limiting conditions of slow separation with 
composition equilibrium in the adsorbed layer (i.e. separation at constant p), and of 
more rapid separation with constant adsorbate composition (i.e. separation at 
constant I-). Generalizations of the Gibbs adsorption theorem are derived by which 
the adsorption induced lowerings of the work of separation in these two conditions 
can be directly evaluated from adsorption isotherms for the coherent solid interface 
and for the completely separated solid surfaces. 

4. THERMODYNAMICALLY ADMISSIBLE KINETIC RELATIONS 

In this section, some general features of kinetic relations for quasi-static crack 
growth are discussed in relation to the thermodynamic framework. Such a kinetic 
relation can be represented as a plot of crack speed i vs G (sometimes, the stress 
intensity factor, proportional to Gt, is used), and several such relations are illustrated 
schematically in Fig. 5. First consider crack growth in a vacuum or a completely inert 
environment. The relevant value of 2y in equation (3) is 2y,, the work of reversible 
separation in vacuum, and Fig. 5(a) illustrates the salient features of 

thermodynamically admissible kinetic relations for crack growth. These must satisfy 
(G-2y,)i 2 0 and the curve shown is intended to represent the effects of lattice 
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(b) 

FIG. 5. Thermodynamically admissible kinetic relations: (a) Thermally activated crack growth in vacuum; 
lattice trapping. (b) Environmentally assisted crack growth. (c) Three typical stages. (d) Environment is 
surface-active but unable to reach separating crack tip bonds. (e) Strongly surface-active environment 
makes 7 negative but is unable to reach tip; thermodynamics prohibits crack healing when ;I is negative. 

trapping as discussed in Section 1.1 and at the end of Section 2.1. The crack speed 
must vanish when G = 2y,, and thermal motions allow the possibility of growth or 
healing when G differs from 2y,. The speed becomes large and positive at G+, and 

large and negative at G-, where G+ and G- are the limits of the trapping range. 
WIEDERHORN et al. (1974) present data on crack growth in vacuum for six types of 

glasses and observe that four of these show a range of sub-critical crack growth, with 
a temperature dependence suggestive of a thermally activated process, whereas two 
do not. They argue that the presence or absence of sub-critical crack growth under 
these conditions is explainable in terms of crack tip structure, with a narrow cohesive 
zone at the tip giving rise to the possibility of thermally activated sub-critical growth 
and a wide cohesive region favoring abrupt failure. 

Figure 5(b) is drawn for the case of crack growth in a surface-reactive 
environment. Now, thermodynamics requires that (G-2y)i 3 0 with 7, defined by 
(28), being depressed in value relative to y0 by an amount dependent on the extent of 
surface adsorption as in (36). Now, the crack speed must vanish when G = 2y, and a 
range of ‘stress corrosion’ crack growth, or ‘static fatigue’, is possible under the 
environmental influence as illustrated. Since the physical-chemical processes of bond 
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weakening will, in general, be dependent on the diffusive kinetics of entry of the 
embrittling species to the crack tip region, the range of very rapid growth will be 
essentially the same as in vacuum, taking place near the upper limit of the trapping 
range between 2y, and G+. 

Indeed, this concept of the influence of a surface reactive environment is broadly 
consistent with the range of sub-critical crack growth data for ceramics and glasses, 
mostly under the influence of water vapor, as surveyed by WACHTMAN (1974) and 
LAWN and WILSHAW (1975). It seems typical from these studies that environmentally 
influenced kinetic relations can be divided into the three regimes shown in Fig. 5(c). 
In regime I, the environmental influences are dominant and result in an increasing 
speed of crack growth with increasing G. But a plateau regime II follows, presumably 
because of the difficulty of diffusing the environmental species to the crack tip at the 
speed of crack growth. This is followed by a regime III as shown which is essentially 
independent of the concentration of the embrittling species and in which the crack 
growth kinetics become similar to the case without environmental effects. It may be 
remarked that while in principle the environment-reduced surface energy term 2y sets 
the lower limit to the range of sub-critical crack growth, there has not, to the writer’s 
knowledge, been any definitive study reported in which 2y is calculated independently 
from the thermodynamics of adsorption (equations (35) and (36)) and thereby shown 
to coincide with the threshold G-level for crack growth. 

LAWN and WILSHAW (1975, Ch. 7) develop a microscopic theory of crack growth in 
a reactive environment, based on thermal activation and a ‘kink’ mechanism of crack 
growth (see also ESTERLINC; (1976)) which can proceed when a molecule from the 
environment surmounts local energy barriers and attaches itself to a separating crack 
tip bond. Their model seems most appropriate for regime I and, except for the fact 
that they neglect ‘backward’ jumping in their thermal activation calculations, their 
model would lead to a result consistent with the thermodynamic requirement 
(G - 2;l)i >, 0 with 7 calculated as appropriate for dilute adsorption from an ideal gas. 
POLLET and BURNS (1977) develop a similar thermal activation formalism for crack 
growth. 

4.1 Thermodynamics and crack healing 

Crack growth is normally regarded as a non-reversible process, and often this 
non-reversibility is abetted, in materials which do not exhibit Griffith-like conditions 
of crack growth, by the mechanically ill-fitting fracture surfaces that result when 
dislocation steps or large plastic tears are left on the crack surfaces. But when Griffith- 
like conditions prevail, crack healing is not ruled out by thermodynamics or by 
experiment. 

Indeed, the classic work of OBRIEMOW (1930) and OROWAN (1933) on the partial 
reversibility of crack growth in mica is well known, and the extent of healing was 
found to be strongly sensitive to the presence of the surrounding environment. 
Further, WIEDERHORN and TOWNSEND (1970) have studied crack healing in soda-lime- 
silica glass cracked in laboratory air. For example, they report an 80 per cent strength 
recovery for cracks that are transiently opened under shock loading conditions and a 
20 per cent recovery for cracks that are held open to the atmosphere for several 
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minutes. They attribute the time effect to the increased surface adsorption of some 
environmental species, presuming it to be either 0, or H,O vapor. 

It has, of course, long been recognized as a difficulty of the Griffith theory that the 
presumed full reversibility of a crack is in rather poor accord with experience. For 
example, GRIFFITH’S (1920) critical equilibrium condition is one of unstable 
equilibrium at which the crack, according to his model, must be regarded as able to 
extend indefinitely or to completely close and disappear. 

The present irreversible thermodynamics formulation leads, I believe, to a far 
more satisfactory basis for discussion of the problem. First, it is to be observed that 
the inequality (G - 2y)i B 0 neither prohibits nor requires negative i when G < 21/ ; the 
theory recognizes properly that it is the detailed kinetics on the crack-tip scale, lying 
outside the scope of macroscopic thermodynamics, which will determine if healing 

will actually occur in some given case. The schematic crack growth relations of Figs 
5(b, c) have been drawn so as to indicate healing, i.e. a negative i for G < 2g, since this 
is a thermodynamically permissible response. But whether healing actually occurs will 
depend to a large extent on the ability of the adsorbed films to diffuse back into the 
environment (their thermodynamically preferred state) as the crack surfaces pinch 
upon them. The kinetics of this process may be very slow and, if the crack is 
completely unloaded, it seems probable that large islands of adsorbed film would be 
trapped by the crack surfaces so that healing would be a far from complete process, as 
observed. 

There would seem to be need for a far wider experimental study of crack healing 
than yet reported. For example, it would seem profitable to study crack behavior at 
G-levels just slightly below the growth threshold, presumably identifiable as G = 27, 
so that there is a minimum of film pinching and entrapment to slow the kinetics of 
desorption. One possible application is to the crustal rocks of the Earth which are 
known to exhibit macroscopic inelasticity in shear by the slippage on existing 
microfissures and the opening of tensile fissures, in the prevailing macroscopically 
compressive stress fields, due to intense local stress concentrations. Such materials are 
extremely brittle and are known to exhibit stress-corrosion-cracking behavior which 

is strongly sensitive to the presence of H,O (e.g. SWOLFS (1972); MARTIN and DURHAM 
(1975)), typically available in the form of groundwater. This type of local 
environment-influenced cracking behavior may be of importance in allowing long- 
term shear strength reductions of natural rocks prior to faulting, and the 
comparatively modest stress reductions upon faulting (typically 10-100 bar on 
average within focal regions) may allow the possibility of significant strength recovery 
by the time-dependent healing of sharp microcracks. 

Another important aspect of the crack irreversibility problem emerges when it is 
recalled that strongly surface-reactive environments may have no detectable influence 
in causing time-dependent crack growth. Oxygen in dry air is a case in point. The 
ready oxidation of freshly exposed crack surfaces suggests a strong surface reactivity 
with 02, but it may be presumed that due to the size of the molecule, or to blockage 
by oxide films already formed, the molecule cannot actually get to the crack tip 
cohesive zone and cause its thermodynamically permissible reduction of the separation 
energy from 27, to 2~. 

In such cases, thermodynamics still requires that (G -2y)i 2 0, but it seems 
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appropriate on physical grounds to rewrite the entropy production rate, when i > 0, 
as 

A = (G - 2?)ip = (G - 2y,)i/T + 2(y, - y)i/T 2 0. (39) 

Here, the first term represents the entropy production in the crack tip separation 
process, and this process can now be assumed to proceed as if no environment were 
present. The second term represents the entropy production of the non-equilibrium 
adsorption process which occurs as the freshly exposed surface comes into chemical 

contact with the environment. Since the two processes are essentially decoupled when 
i > 0, it seems appropriate to interpret the requirement of non-negative entropy 
production, in the given circumstances, as the pair of inequalities 

(G - 2y)i 3 0 for all i, (G-2y,)i 2 0 for i > 0. (40) 

As illustrated in Fig. 5(d), the result is that imust vanish for all values of G between 2y 
and 2y,. When G > 2y,, crack growth can occur in a manner similar to growth in a 
vacuum or inert environment. When G < 2y, crack healing is thermodynamically 
permissible as illustrated in the figure, although such healing will be subject to the 
kinetic limits discussed earlier for desorption from the pinched or entrapped film. 

Finally, it may be remarked that there appears to be no thermodynamic 
impediment against the occurrence of negative values of y. As is clear from (36) 
whenever the surface adsorption is sufficiently strong at the prevailing levels of 
adsorbate potential (or pressure in the fluid environment) to cause the integrals 
occurring in (36) to exceed 2y0 in value, then y is negative. Such behavior may be 
taken as reflecting the fact that many solids are thermodynamically metastable in 
their environment and would, judged energetically, tend to react to some new form, 
except for the overriding kinetic barriers to such a process. We recall that G is 

necessarily non-negative. This is clear in linear elasticity since G is proportional, by 
Irwin’s relation, to the square of the stress intensity factor. More generally, as RICE 
and DRUCKER (1967) observed, in any loaded elastic system which satisfies the 
principle of minimum potential energy, advantage may be taken of the fact that the 
displacement field prevailing before an increment of crack extension is a kinematically 
admissible field for the state after crack extension, which has the direct consequence 
that G 3 0. Thus, when y < 0, the thermodynamic inequality 

(G - 2y)i >, 0 implies i 3 0. (41) 

Hence in this case, which may be rather common under ordinary environments of 
crack growth, thermodynamics prohibits crack healing. 

Indeed, Fig. 5(e) has been drawn on the presumption that a strongly surface 

reactive environment is present, so that y < 0, but that this environment is 
kinetically limited from access to the crack tip. In such a case, the environment is 
without effect on the forward process of crack growth, possible when G 2 2y,, and no 
crack healing can occur. 

4.2 Summary 

Irreversible thermodynamics restrictions on the quasi-static growth of Griffith 
cracks have been derived with due attention to the effect of the surrounding 
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environment. The formulation would seem to offer advantages over the classical 
Griffith equilibrium crack model, not least because of the scope illustrated here for 
inclusion of lattice trapping and stress corrosive effects within the theoretical 
formalism, and for the insights afforded on the normal irreversibility of cracks against 
healing. Since the theory is thermodynamic in nature, nothing is given beyond global 

restrictions on the detailed molecular kinetics of crack growth. Obviously, this is an 
important topic for further study, as are also cases of crack growth in less brittle 
solids, for which plastic flow is an essential part of the separation process, and of more 
rapid crack growth processes in which equilibrium elasticity is an inadequate model 
for the crack-containing solid. 
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