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ABSTRACT

The theory of strain localization is reviewed with reference both to
local necking in sheet metal forming processes and to more general three
dimensional shear band localizations that sometimes mark the onset of
ductile rupture. Both bifurcation behavior and the growth of initial
imperfections are considered. In addition to analyses based on classica)
Mises-like constitutive laws, we discuss approaches to localization based
on constitutive models that may more accurately model processes of
slip and progressive rupturing on the microscale in structoral alloys.
Among these non-classical constitutive features are the destabilizing
roles of yield surface vertices and of non-normality effects, arising, for
example, from slight pressure sensitivity of yield. We also discuss anal-
yses based on a constitutive mode! of a progressively cavitating dila-
tional plastic material which is intended to model the process of ductile
void growth in metals. A variety of numerical results are presented. In
the context of the three dimensional theory of localization, we show
that a simple vertex model predicts ratios of ductility in plane strain
tension to ductility in axisymmetric tension qualitatively consistent with
experiment. We also illustrate the destabilizing influence of a hydrostatic
stress dependent void nucleation criterion. In the sheet necking context,
and focussing on positive biaxial stretching, it is shown that forming
limit curves based on a simple vertex model and those based on a simple
void growth model are qualitatively in accord, although attributing insta-
bility to very different physical mechanisms. These forming limit curves
are compared with those obtained from the Mises material model and
employing various material and geometric imperfections.

INTRODUCTION

A remarkably common observation in highly deformed ductile solids is that a
smooth deformation pattern rather abruptly gives way to one involving a band
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(or bands) of localized deformation. Here, we review a theoretical framework
which associates this localization of deformation with a material instability. More
specifically, we consider an element of a solid, constrained so as to rule out
geometric instabilities, subject to loading that could give rise to a homogeneous
deformation and determine the conditions under which the constitutive relation
of the solid permits a highly localized deformation pattern to emerge. Within this
framework, the onset of localization can occur as a bifurcation from a homoge-
neous deformation state or it can be triggered by some initial inhomogeneity,
possibly well before a bifurcation would occur if the (small) inhomogeneity were
absent. Although not all observed localization phenomena can be expected to fit
within this theoretical framework, it is broad enough to encompass descriptions
of the localized necking mode characteristic of ductile metal sheets (when these
are viewed as two dimensional continua) as well as of the ‘‘shear band™ locali-
zations that seem to be important precursors to ductile rupture.

As is not surprising, given the point of view adopted here, the onset of local-
ization will depend critically on the assumed constitutive law. We base our
analyses on the classical rate independent Prandtl-Reuss equations (suitably mod-
ified to account for finite deformations) and departures from this idealized model
that include the effects of (i) yield surface vertices, (ii) deviations from plastic
“‘normality’’ and (iii) the dilational plastic flow (and possible strain softening) due
to the nucleation and growth of voids.

The effects of these deviations from the idealized Prandtl-Reuss material model
on the predicted onset of flow localization are illustrated and compared. Particular
emphasis is given to the example of local necking in metal sheets subject to
positive biaxial stretching, where both vertex effects and the weakening induced

by ductile void growth appear to provide plausible explanations of observed
behavior.

CONSTITUTIVE RELATIONS

The constitutive relations on which we base our discussion are the classical
Prandtl-Reuss relations and generalizations of these to allow investigation of (i)
yield surface vertex effects as predicted, e.g., from models of the crystalline slip
process, (ii) slight pressure-sensitivity of yield and deviations from an associated
flow rule, and (iii) dilational plastic flow, and, possibly, strain softening due to
micro-rupture by the nucleation and growth of cavities. Although not considered
explicitly here, significant departures from isotropy are also important in appli-
cations to sheet materials.

We write the rate of deformation D (symmetric part of dv/dx where v is the
particle velocity) as

D=D*+D* (¢))

where, assuming elastic isotropy and small elastic dimension changes, the elastic
part, D¢, is

N - v
D—ZG[U l+vltr(a‘)]. )
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Here tr{ ) denotes the trace, p2 is the Jaumann (or corotational) derivative of
Cauchy (true) stress and is related to the ordinary material time rate o by

. =6+ -0v _ Ar
where the spin £ is the anti-symmetric part of av/dx. The plastic part, D”,
according to the Prandtl-Reuss model, is (e.g., Hill [1])

1o,. 1 osjouv

D§ = Tt )

“2hr, ¢ ah 1.
where o' is the deviatoric part of &, & is the plastic hardening modulus in shear

and 7. is the “‘equivalent’" shear stress, related to the equivalent tensile stress o,
and to o by

=c-02= 050§, )

Of course, the above form for D” is understood to apply only when the stress
state is at yield and the imposed deformations are such as to enforce continued
plastic flow; otherwise D” = 0. The value of the equivalent shear stress 7,
required for continued yielding is considered to be a function of the equivalent
*‘engineering'’ plastic shear strain ¥.?, or, alternatively, o, is taken to be a
function of the tensile equivalent plastic strain €.”, where

ye* = V3¢, = QDD{y)". ®)

Here, D"’ is the deviatoric part of D” (plastic dilatancy is considered subsequently)
and the plastic hardening modulus is given by

h = dr, [dy,> = % do, [de.? )

as depicted in Fig. 1.

We remark that these constitutive relations involve a D? that has a direction
“‘normal”’ to the yield surface in stress space. Furthermore, this surface is smooth,
with a unique normal at the current state. Therefore, the direction of D? is
independent of that of the stress rate & and, in fact, the yield surface is imagined
to expand isotropically, having the mathematical expression 7. = f(v.”). The
criterion for yield is pressure insensitive and the plastic flow is volume preserving
(the two go together when normality is assumed).

Now, investigations of the stability of plastic flow against localization (Rudnicki
and Rice [2]; Rice {3)]) suggest that results can be very sensitive to deviations
from the various attributes just discussed. Thus we consider several generaliza-
tions of the Prandtl-Reuss relations and, following a formulation of conditions
for localization in the next section, we examine their consequences.

First consider the smooth yield surface assumption, with its consequent re-
quirement that the direction of D* is not influenced by that of &. This assumption
is at variance with models for polycrystalline aggregates based on single crystal

* oY), = 0aQly.
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Fig. 1. Stress-strain curve showing the tangent modulus 4 and the secant modulus 4,.

plasticity. Hill [4] remarks that the associated discreteness of slip systems in each
grain leads to the prediction of a vertex on the yield surface, at least when the
yield surface is defined for very small offset plastic strains. Specific calculations
for various polycrystal models carried out by Lin {5} and Hutchinson {6} do, in
fact, exhibit such yield surface vertices. Unfortunately, no simple mathematical
formulation of response at a vertex has yet been developed, but an approximate
model, useful when the prior deformation has been carried out at conditions near
to proportional stressing, has been developed by Rudnicki and Rice [2] and
Storen and Rice {7]. These authors introduce two hardening moduli; 4, as intro-
duced before, characterizes the hardening when 3 merely continues the direction
of &’. But owing to vertex effects, a new modulus A, (>h) comes into play to
characterize the response to that portion of & directed tangentially to what is
taken as the yield surface in the isotropic hardening model. This is illustrated
schematically in Fig. 2. The adopted form is
T,
Df;""il;“b%“'z—:l—l(gb_ab’é) @®

where it is assumed that & is not strongly different in direction from ¢ ’. Indeed,
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on the basis of a simplified plasticity theory based on crystalline slip, Sanders
{8] constructed a flow theory, that for stressing paths that were ‘‘fully active,”
in the sense that every slip system, once stressed to yield, is subject to a
monotonically increasing shear stress, coincided with the simplest **deformation™
theory. Sander’s considerations were based on infinitesimal strain and several
generalizations of deformation theory to large strains were examined by Storen
and Rice. In particular, they showed that if a deformation measure of the type

ID”dt,

but suitably modified to eliminate effects of the spin history {2 on re-orientation
of material directions, is taken to be coaxial with o’ (again, corrected for rota-
tions), with the ratio between the two depending on 7., then the expression (8)
for D? results with

1
h, = 7e/7ep=§o'e/fep‘ )

That is, the vertex modulus h, is the plastic *‘secant modulus’’ as illustrated- in
Fig. 1. Stéren and Rice mention other possible generalizations of deformation
theory and one of these, based on the logarithmic strain tensor, is adopted by
Hutchinson and Neale [9] in a companion paper in this volume. As discussed in
[23] and [9] the value assumed by the vertex modulus A, can, in certain circum-

Smooth Yield Surface
Through Current State

Normal to Smooth

p° Yield Surface
= ]
Yield Suﬂoc/e. o 0
gl
o—l
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o'’ ’
= O’  Yield Surface
With Vertex
(a) Smooth Yield Surface Theory (b} Vertex Theory

Fig. 2. Schematic representations of yield surfaces in deviatoric stress space, showing
the directions of the deviatoric stress rate &' and the corresponding plastic strain rate for
(a) Flow theory with a smooth yield surface and (b) Flow theory with a vertex at the
current state: a hypothetical smooth yield surface passing through the current state is also
shown.
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stances, depend significantly on the choice of deformation measure on which the
deformation theory is based.

Although a deformation theory type formulation of yield vertex effects may be
appropriate for the analysis of bifurcations from previously homogeneous, and
nearly proportional, deformation paths such a model is undoubtedly not versatile
enough to treat finite stress alterations in a diregtion different from that before
bifurcation.

As a means of investigating the effects of dilatant plasticity and pressure
sensitive yielding, in a manner that includes the possibility that these do not
satisfy an associated flow rule (i.e., ‘‘non-normality’’), we adopt the simple
generalization of the Prandtl-Reuss equations studied by Rudnicki and Rice {2].
In this case we write

1
Df = zPungu (10)
where
o B T, M
=—+= =+ =~ 5.
Py 7T, 350, Ou 5., T3 o 11

Here, P gives the ‘‘direction’ of plastic flow (and in this sense, vertex effects
are not included since P is assumed independent of ¢vr) while Q gives the outer
‘“‘normal’’ to the yield surface in stress space. When 8 and p vanish this reduces
to the Prandtl-Reuss form (4). More generally, 8 gives the ratio of plastic dilatancy
to equivalent plastic shear,

Dix = By.* (12)

whereas p measures the pressure sensitivity of yield (as sketched in Fig. 3) in
that the amount of a plastic deformation increment depends on

d7, + pd(ow /3). (13)

Note that plastic ‘‘normality’* applies only when u = B (i.e., when P = Q).

Rudnicki and Rice motivate such a constitutive model with reference to the
dilatant, frictional response of rocks. However, there are specific cases in metal
plasticity where the same representation seems applicable. First, Spitzig et al.
{10] report strength differential (SD) effects in martensitic high strength steels,
whereby the compressive yield strength is finitely different than that for tension.
Spitzig et al. present evidence that the SD arises from the effect of the mean
stress (rather than, say, the third stress invariant) on the value of 7, required for
yield, and hence the effect would seem to fit into the framework of the present
formulation. Since the SD is defined as

_ O — 0y
(0. + a;)/2

where o, and o, are the yield strengths in compression and tension, respectively,

SD (14)
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Fig. 3. Sketch of a yield surface illustrating the geometric interpretations of the pres-
sure sensitivity factor g and the dilatancy factor 8.

the parameter u is

V3
= - (SD), (15)

at least if u is assumed to be essentially independent of the level of oy, that acts.
It might, instead, increase rapidly with large values of oy and in such a case
(15) will underestimate u. Spitzig et al. find SD values in the range 0.05 to 0.07
for AISI 4310 and 4330 steels (although the SD value is approximately half for
the unaged material and of the order 0.01 to 0.02 for HY-80 [11]; the value would
seem to be much lower, near zero, for mild steels). Spitzig et al. also find that
the plastic dilatancy is much smaller than required for normality, and according
to their experiments, the dilatancy factor 8 introduced above would have a value
of the order of u/15 and can be taken as zero.

The dilatant and pressure-sensitive plastic flow model described above arises
also as a representation of the flow rule for void-containing ductile solids, at least
in the approximate development of constitutive relations for this case by Gurson
[12, 13]. Based on the approximation of a solid with volume fraction f of voids
by a homogeneous spherical body with a concentric spherical cavity, and em-
ploying certain other approximations in the rigid-plastic limit analysis of this
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body, Gurson suggests the combined stress yield condition

- KN HT O ik

o, 7, f)=3—23"+ 2fcosh (2—6) -1-f2=0 (16)
where oy is the macroscopic stress state acting on the voided material and & is
the tensile flow strength of the matrix material, taken as spatially uniform in the
analysis. Note that the yield condition resembles the Mises form (which is as-
sumed in Gurson's model to hold for the matrix material) but that whenever the
void volume fraction is non-zero, there is an effect of the mean normal stress on
plastic flow as illustrated in Fig. 4. Indeed, McClintock [14] has noted the
exponential amplification of hole growth rates over remotely applied plastic strain
rates at high values of o,/&. Now, as noted by Berg [16], an argument of Bishop
and Hill [15] is relevant in this context and, since each element of matrix material
is assumed to satisfy the normality rule based on the Mises yield condition, it
requires the macroscopic plastic deformation rates of the voided aggregate to
satisfy

ad

= A— 17
Dy, . an

where A is to be determined in a manner consistent with the strain hardening

=0

increasing f

0'“/20'

t
log(l/f)

Fig. 4. Sketch illustrating the dependence of the yield function (16) on the mean normal
stress for increasing volume fractions of voids, f.
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behavior of the material. Following Gurson, we assume that the yield function
remains effectively isotropic (e.g., deviations of the void shape from spherical
are neglected), in the sense that (16) continues to describe the yield function and
that only the matrix flow strength & and void volume fraction f vary during the
deformation. The matrix equivalent plastic tensile strain &® is assumed to vary
according to the equivalent plastic work expression

(1 - f)oée? = oD}y,
so that

s _ 7 Oy;
S=ha- s

where h = d&/dé” is the equivalent tensile hardening rate of the matrix material
(note that & as introduced earlier represented an equivalent shear hardening rate).
The void volume fraction increases because of the growth of existing voids,
which causes f to increase at the rate (1 — f)DJ, and because of the nucleation
of new voids, say by the cracking or decohesion of mclusnons or second-phase
particles. Accordingly we write

Dy, (18)

f= (f)nowth + (f)nucleadon

(19)
= (1 — f)Df. + A& + Boy/3.
Here the nucleation rate has been represented in terms of the two parameters
A and B. Note that if the nucleation of cavities can be correlated exclusively in
terms of the equivalent plastic strain (or, since they are related, in terms of ),
as suggested by Gurson’s [12, 17] analysis of data by Gurland [18] on a spher-
oidized carbon steel, then B = 0. On the other hand, if the nucleation criterion
depends only on the maximum stress transmitted across the particle-matrix in-
terface, as suggested in studies by Argon et al. [19-21], then B = A (assuming
that & + o, /3 is an approximation to this maximum stress). More elaborate
nucleation models, based on an extension of Argon et al.’s [21] considerations of
the statistics of particle spacing, are discussed by Gurson [12, 17].
Now, since it is assumed that &, &, f) = 0 throughout a program of
sustained plastic deformation, the *‘consistency’ condition & = 0 follows:

LI PO L
don M7 35 T oE

[37 @ f)s"+(a_fA +'a'c‘?) - f)&] Aon

where, in the last version, we have used (18, 19) for &, f and also used (17)
for Dy,. From this result we can solve for A and the resulting plastic flow rule
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has the form
100 /00 adB
D;’,—Em(m+ afsa"’)g (20)
where
_ e, ap ,  ad oy 19
H= [?f—(l f)au+(afA+a&)h(l_f)&]a%. @)

In fact, given the form of @ in (16), this plastic flow rule is identical to that
introduced in eqs. (10) and (11) provaded that the parameters h, 8 and u are
identified as

h= h(1+f’ 2fc + f3s)
30-H0+ 7 -2fc)

I G _ 1+ f*—2fc+ f3s
601+ 1* — 2f0) [ml fls+ 24 -7 ] - @
_ \/st ’ 23)
‘B_z\/1+f’—2fc’
(c - f)B& 4)

a=g+ VIVI+ fE-2fc’
and where we have used the shortened notations
3 = 0y /24, =sinh 3, ¢ =cosh 2.

We note that p differs from 8, so that normality does not apply, whenever B
# 0. That is, for a maximum-stress-dependent criterion for cavity nucleation (so
that B # 0) the plastic flow direction P and effective normal Q to the yield surface
are not coincident. The point is discussed at some length by Gurson {12, 17],
who observes that there is no unique direction Q when B # 0. The direction
given by (11) and the above u applies if the stress increments acting serve to
continue the void nucleation process. If the stress increments do not cause further
nucleation, B can be replaced by zero and then x and Q agree with 8 and P so
that *‘normality” applies.

It may be noted further that the macroscopic hardening rate k in (22) can be
negative. This is promoted, particularly, by large triaxial tension so that ¢ and s
are large. For example, assume for simplicity that the void nucleation parameter
A is zero, that f and even f coshX are small compared to unity, but that the mean
normal stress is high so that coshY = sinhX = £%/2. Then

h~!'-— f—-ex (U:) ,

and if A = & (i.e., the matrix is deformed to a strain equal to that for tensile
necking) and o = V3@ + )&, as appropriate to the Prandtl stress triaxiality

———
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ahead of a sharp crack in plane strain [22], then # will be negative whenever f
> 0.002. Of course, when A > 0 the softening is yet more pronounced.

ANALYSIS OF LOCALIZATION

The point of view taken here regards the localization of deformation as an
instability that can be predicted in terms of the pre-localization constitutive
relation of the material. The basic principles were given by Hadamard {25] for
elastic solids and extended to elastic-plastic solids by Hill {26], Thomas [44], and
Mandel {27]). Not all localization phenomena can be expected to fit within this
framework and limitations inherent to this approach have been discussed by Rice
[3].

We model the material as rate independent and seek conditions under which
the deformations concentrate into a narrow band. Within this framework locali-
zation can take place when the constitutive relation allows a bifurcation from a
homogeneous deformation field into a highly concentrated band mode. Alterna-
tively, it may be triggered by some initially small nonuniformity of material
properties, possibly well before a bifurcation would occur if the initial (small)
nonuniformity were absent. Here, particular emphasis is given to Rice’s [3]
analysis of flow localization in the presence of initial inhomogeneities, which
proceeds in the spirit of the Marciniak-Kuczynski [24] approach to localized
necking in thin sheets.

We denote the position of a material point in some reference configuration by
x and its position in the current configuration by %, where both x and X are
referred to a fixed Cartesian frame. The deformation gradient tensor, F, is given
by

9x -
. Fy== g, (25)

F= Bx,

IR

where F are the components of the deformation gradient tensor on the fixed
Cartesian axes and ( ), here, and subsequently, denotes 3( )/dx;.

Stress is measured by the nonsymmetric nominal stress tensor s, defined so
that n's is the force acting, per unit area in the reference configuration, on an
element of surface having (unit) normal n. It satisfies

Sg4 = 0 (26)

at equilibrium, with body forces neglected. The nominal stress, s, and the true
(or Cauchy) stress are related through ‘

o=J"'Fs Q7
where J, the Jacobian, is given by
J = det(F) (28)

and represents the ratio of the volume of a material element in the current
configuration to its volume in the reference configuration.
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Now consider the solid subjected quasi-statically to an increment of deforma-
tion which in a homogenous (and homogeneously deformed) solid would give rise
to the uniform field F,. Suppose, however, that within a thin planar band of
orientation n in the reference configuration (see Fig. 5) incremental field quantities
are permitted to take on values differing from their uniform values outside this
band. The band is presumed sufficiently narrow to be regarded as homogeneously
deformed.

At the considered instant, the current values of field quantities and material
properties inside the band may be the same as those of corresponding quantities
outside the band, as in a bifurcation analysis. On the other hand, if an initial
imperfection was present, the current values of field quantities and material
properties inside the band will, in general, differ from those outside the band. In
either case two conditions must be satisfied.

First, compatibility requires the displacement increments to be continuous
across the band. Thus (see, for example, [3, 25, 26)),

F,=F,+qn or AF=gn (29)

where ( '),, denotes field quantities within the band, ( ), denotes corresponding

quantities outside the band, A( ) =( ), — ( ) and ( * ) denotes the material
derivative.

The second requirement that must be met is that of incremental equilibrium.
This takes the form

ns,=ns;, or mnAdi=0 30)

To proceed further, we assume that the relation between s and F is piecewise
linear so that

$=K:F 31

Force

Vector Vector

Force Vectar = (n-s) A= (7-g) A

a) Reference Configuration b) Current Configurotion

Fig. 5. Illustration of an element of a band in (a) The reference configuration where
the area is A and the normal is n and (b) The current configuration where the area is A
and the normal is a.

Cmbem - ———
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where the tensor of moduli K is homogeneous of degree zero in F (for rate
inde_pendence) but may have a number of branches, the active branch depending
on F. Combining (29), (30) and (31) gives

(nK,n)g = n(K, - K;)F, (32)

where K, and K, represent the active branches of the tensor of moduli inside and
outside the band, respectively. Of course, both F,, which depends on ¢, and F,
must be consistent with the corresponding branches of K.

Localization takes place when

det(n'K,'n) = 0 (33)

Subject to the initial conditions, which specify the imperfection (if any), (32)
constitutes a system of three equations for the three components of q which can
be solved in an incremental fashion up to the point at which the localization
condition (33) is satisfied. At any stage of the loading history the accumulated
deformation in the band is simply

F,=F,+qn (34

An alternative formulation, phrased in terms of the Eulerian velocity gradient, I'
= F-F~!, and the Cauchy (or true) stress tensor, o, is sometimes convenient.
From (29) and (34), it can be shown that

IL=F,+Qa or Ar=Qn 35)

where 0 is the unit normal defining the orientation of the band in the current
configuration as sketched in Fig. 5 and is given by

n'Fb - D‘Fo -1

n = = 36
ok nh] o

Whenever (29) holds incremental equilibrium is alternatively expressed by
nAc + iAo =0 a7

The constitutive law, as in the examples discussed in the previous Section, is
written in the form '

g =L:D (38)

where D is the symmetric part of I', and L is homogeneous of degree zero in D.
Employing (3) and (35) in conjunction with (37) and (38) yields

6L, + A,)-Q = ii(Lo — L) Do — (-0} + f)-Ac (39)
where
A, = §—hi(i-o,) + (-o,B)] + (i-0,)h ~ a,] (40)
and 1 is the unit tensor, (I); = 8. The localization condition becomes
det{i-Lo-i + A} =0 “n

The alternative formulations (32) and (39) are fully equivalent and the choice
References pp. 264-265.
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between them is solely a matter of convenience (or taste). It does appear to us,
however, that (32) is the more convenient formulation to employ when tracing a
deformation history corresponding to a given initial imperfection whereas (39) is
more suited to a bifurcation analysis. Specifically, if the material is initially
homogeneous, the condition governing the onset of bifurcation into the localized
band mode is that

[a-Loh + A]-Q=0 (42)

have a nontrivial solution, where A, is given by (40) with @, replaced by &,
since prior to localization ( )» = ( )o. This presumes that at localization the
bifurcating field is associated with the same branch of the tensor of instantaneous
moduli as the homogeneous field. For vertex-like yielding it seems possible that
in some cases the bifurcating field could take advantage of the moduli associated
with a different branch, as suggested by Rice [3).

We emphasize that neither the bifurcation analysis nor the analysis tracing the
growth of an initial inhomogeneity require that the tensor of instantaneous moduli,
K, be symmetric {3, 27]. However, if the moduli K are symmetric (the symmetry
of L implying that of K and vice versa only for an incompressible solid) a direct
connection can be made between bifurcation into the band mode and loss of
uniqueness in a specific boundary value problem, namely the problem of a solid
subject to all around displacement boundary conditions on its surface [26]. Pre-
suming symmetry of the moduli and homogeneity of the deformation field, the
band mode is the only bifurcation mode available under these restrictive boundary
conditions and is often termed a ‘*‘material’’ instability as opposed to ‘‘geometric™
necking instabilities which these boundary conditions rule out.

Subject to the above conditions and, additionally, assuming incrementally
linear material behavior (i.e., K independent of ¥), a linear stability analysis [3]
shows that the onset of bifurcation into the band mode corresponds to the
boundary between stability and instability for a displacement mode with a Fourier
component having a polarization vector parallel to n. Under less restrictive
boundary conditions, ‘‘geometric’’ instabilities (which may include arbitrarily
short wavelength modes [23, 28]) invariably precede the band type localization
considered here, but the material instability is still available, and sometimes,
depending on specific circumstances, at overall deformations not greatly in excess
of the geometric modes.

Although here a unified framework for analyzing localization instabilities in a
wide class of materials has been presented, the actual onset of localization
depends critically on the details of the constitutive description of the solid, as
will be illustrated subsequently.

RESULTS FOR PLASTIC FLOW LOCALIZATION

The above formalism for localization has been applied to the various consti-
tutive models discussed in the Section on Constitutive Relations. Consider first
the classical Prandtl-Reuss model, eqs. (2)-(7). This emerges as a special case of
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a calculation by Rudnicki and Rice [2] and for localization the hardening rate
must fall to the value

heye = —2(1 + v)GP§ + 0(7.2/G) (43)

where Py is the intermediate principal value of the plastic flow direction tensor
P, namely

Py =on/27,. (44)

Since 7. is typically a small fraction of G, the terms 0(7.2/G) are usually negligible
and thus this model requires strain softening for localization in all deformation
states except for plane strain (Py = 0), in which case A, = 0. The states most
resistant to localization are those of axisymmetric extension or compression (or,
equivalent, balanced biaxial tension) for which Py = =1 /2\/3 and

hcn‘ = —(l + V)G/G = —0.2G.

The prediction of such strongly negative hardening rates for localization may be
unrealistic for reasons that can be explored with the help of other constitutive
models. Nevertheless, the results are suggestive of significant differences in
ductility when plane strain and axisymmetric deformations are compared, e.g.,
Clausing [29]. In all cases the normal to the plane of localization is in the plane
of the greatest and least principal stresses, oy and oy respectively. For v = 0.3
the angle 6 between the normal and the oy axis is 48.7°, 45°, and 41.2° for
axisymmetric extension, plane strain (or pure shear), and axisymmetric compres-
sion respectively (Rudnicki and Rice [2]). _

Now consider the effect of a yield vertex in the form modelled by eqs. (8) and
(9). The calculation is rather complicated in general but simplifies when the
material is taken to be elastically as well as plastically incompressible, v = 1/2.
The result is most conveniently stated in terms of the moduli

=_h_ h'=—h‘—
1+ h/G’ 1+ h, /G

which reduce to # and h,, respectively, for highly ductile materials where we
expect h < h; < G. In fact, h'is just the tangent modulus based on the total
(rather than plastic) strain and, if the vertex modulus A, is identified as the plastic
secant modulus, then h,’ is the secant modulus based on the total strain.

The critical conditions are established by Rice [3] for cases in which the vertex
modulus is large enough to satisfy

h,'>2(1-3P})h'/(1—6P}), (46)

with Py given by (44). The inequality reads h,’ > 2h' for plane strain states, and
is satisfied for all deformation states if A, > 3h'. We expect the inequality to be
satisfied for materials with light strain hardening. For example, if a pure power
law stress-strain relation is satisfied, o, = (€.)¥, and if h,’ is interpreted as the
secant modulus, then the inequality is satisfied for plane strain states whenever
N < 1/2 and for all states whenever N < 1/3.

References pp. 264-265.
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In all cases for which the inequality (46) is met h.y, is the value of h’ satisfying
(3]

T, = 12P3(h,' — R’ + 4h'(h,' — '), 47
which includes a plane-strain result of Hill and Hutchinson [28] when we set Py
= 0. If we write M for the ratio h’/h,' (noting that M = N for pure power-law
materials when the secant modulus definition is adopted for h,’), this can be
rewritten as the critical condition
= M1,

VI2P(1 — M® + 4M(1 - M)’

[4
hcrl!

48)

which reduces to

! =2 M M
et = \/ Y] for plane strain
. M

VI +3M(1 - M)

We expect M to have a range similar to that for the hardening exponent, say
0.05 to 0.5, and thus we see from these expressions that localization occurs when
h;w is some positive, but typically small, fraction of the equivalent shear stress
7.. Table 1 gives numerical values and we see that the critical hardening rate
under plane strain conditions is always larger than for axi-symmetric conditions,
indicating the greater stability of the latter. For pure power-law materials, o, ~
e.”, and h, ' as the secant modulus (so M = N) the above results give the critical
strains to localization (expressed in terms of both €. and the greatest principal
strain ¢) of

Rl = for axisym. strain

V3
(€1)erie = T (€)ers = VN(1 = N), plane strain

49
(€1)erte = (€ et = V(1 + 3IN)(1 — N)/3, axisym. strain. (#9)

TABLE 1

Theoretical Predictions of the Critical Hardening Modulus (A, ) for Localization as a Function of
Ratio M of Tangent to Vertex Modulus. The critical strains for localization and the ductility ratio
are calculated on the assumption that there is power-law hardening, o, ~ (¢€.)". and that the vertex
modulus equals the secant modulus (i.e., for “deformation’” theory) so that M = N.

For Power-Law Hardeningand N = M

hi /e
- Sl Ductility Ratio
h,' Plane Strain  Axisym. Str. Plane Strain  Axisym. Str. Plane/Axisym.
0.05 0.1t5 0.048 0.218 0.603 0.361
0.1 0.167 0.092 0.300 0.624 0.480
0.2 0.250 0.177 0.400 0.653 0.612
0.3 0.327 0.260 0.458 0.666 0.688

0.4 0.408 — 0.490 —

p— e,
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These values are also shown in the table, as is the ductility ratio

(el )crll pl.str 3N
- = . (50
(€| )crlt.axlsym.str. 1+ 3N )

The last expression is also plotted in Fig. 6.

Clausing [29] reports a decreasing ductility ratio with increasing strength level
for a series of seven structural steels; the ratio (based on ¢,) varies from 0.72 for
a mild steel to 0.17 for a high strength (1770 MPa, or 248 ksi) steel. It is true as
a general rule that the hardening exponent decreases with increasing strength
level and thus the trend of the results in Table 1 and Fig. 6 seem consistent with
Clausing's data, which is summarized in Table 2.

Indeed, comparing Tables 1 and 2 we see that while there is no close numerical

os8r

0.6

0S5

(el)cm, pl. str. 3N

;)

crit, axisym.str.

03 F

O.l |

PLANE STRAIN DUCTILITY/AXISYMETRIC DUCTILITY
o
F'S
T

o [ 1 ] l 1 1 J
(o] 0.05 0.4 0.5 0.2 0.25 030 0.35

N

Fig. 6. Ratio of plane strain ductility to axisymmetric ductility as a function of the
strain hardening exponent N, as predicted by the vertex model with the assumption that
the vertex modujus equals the secant modulus.
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TABLE 2

Data on Strain to Fracture by Clausing [29], for Seven Structurai Steels Arranged in
Order of Decreasing Strength Level.

(&) e Ductility Ratio

Material Tyaa (MP2)  Plane Strain  Axisym. Str.  Plane/Axisym.
18 Ni(250) 1770 (248ksi) 0.15 0.89 0.17
10 Ni-Cr-Mo-Co 1300 0.36 116 0.31
18 Ni(180) 1270 0.42 1.00 0.42
Hy-13(T) 970 0.54 1.06 0.51
HY-80 610 0.86 1.22 0.70
A302-B 380 0.72 0.98 0.73
ABS-C 280 (39ksi) 0.75 1.04 0.72

agreement, there are some important qualitative similarities. For example, the
range of ductility ratios are somewhat comparable and it is the plane strain
ductility, rather than the axisymmetric ductility, which is most affected by vari-
ations in the plastic flow properties. The comparison of this simple vertex model
with Clausing's results is, in fact, encouraging enough that perhaps a great deal
more effort should be directed to the further experimental and theoretical delin-
eation of vertex effects and their role in localization.

Finally, we remark that all of Clausing’s steels were materials of high ductility
(at least in axisymmetric tension) and it is plausible that their stability against
flow localization might be limited by some inherent feature of the plastic flow
process, e.g., the vertex yield surface structure that arises from the crystalline
basis for slip. In other alloys, or perhaps in the same alloys under more triaxially
elevated stress states, it is possible that substantial ductility reductions could
occur due to the nucleation and growth of microscopic cavities. It remains an
open question in many systems as to whether ductile fracture arises from some
instability of the plastic flow process, which then concentrates local strains and
leads to cavity nucleation and growth to coalescence, or whether fracture is
traceable instead to some instability brought about by the progressive micro-
rupture process itself. To examine the matter further, we now consider the
plastically dilatant material with pressure sensitive yielding, eqs. (10) and (11).

For this constitutive relation the critical hardening rate is given by Rudnicki
and Rice [2] (we have done some algebraic rearrangement of their eq. (24) in light
of their eq. (19)):

hcm=['+” @ - uy - 1+u(A+B+n)]G

9(1 3
(1 + )~ B)
R LR TC [ 51
s IvITIR - ] 7e + 0(.%/G).



LIMITS TO DUCTILITY 255

Here A (used in place of the symbol N of [2] to avoid confusion with the
hardening exponent) is

A=ay/7. (52)

and A = —1/\/3 for axisymmetric extension, 0 for a pure shear state of devia-
toric stress, and 1/\/3 for axisymmetric compression. The solution of (51) applies
subject to certain restrictions on the size of 4 and 8 noted in [2); when these are
met the normal to the plane of localization lies in the 1-111 plane.

We observe first that when normality applies (i.e., when 8 = u) h.q is non-
positive for all stress states (neglecting the O(7.2/G) terms); it vanishes when A
= —(p + B)/3. But when g # B, h.y, can be positive for some deformation
states.

An important special case is that of a plane strain state. From (11) for the
plastic flow direction tensor P,

Py = oy /27, + B/3=A/2 + B/3, (53)
so that A = —28/3 for the case of plane strain. In this instance (51) reduces to
2
e = a2 [(n = BPG+ (= ANT=F D (T VI-F B 69
(1—-v) 1+»
-u +1—3:v—y B) 7e:| + 0(7.%/G).

This last expression may be applied to an analysis of the strength differential
effect as discussed in the Section on Constitutive Relations. Using (15) for u,
assuming SD < 1, and setting 8 = 0, one finds

_ Q=+
it 241 — v)

- As an example, setting SD = 0.06, v = 0.3, using G = 82 400 MPa as appropriate
to steel, and assuming that o.(= V/37,) = 1400 MPa (= 200 ksi), one obtains

hoey = $(d0, [de,Phny = 42.6 MPa(= 6 ksi) + O(7.2/G)

or, for comparison with entries in Table I based on the vertex model, A /7. =
0.05. But for axisymmetric extension or compression values of #.n computed
from (51), for values of the parameters as above, differ little from that of eq. (43)
for the classical Prandtl-Reuss model. It is not yet clear as to what the effects of
small non-normality, as in the SD effect, and vertex yield would be if present
concurrently.

The positive critical hardening rate that may result for states like plane strain,
eq. (52), when u # B seems to be typical of other cases with non-normality. For
example, Asaro and Rice [30] discuss the localization of plastic flow in ductile
single crystals and observe that when there is non-normality, in the sense that
stresses other than the Schmid resolved stress enter the criterion for continuing
slip, localization can occur with a positive slip system hardening rate. The im-
plications of such ideas for polycrystals have not yet been fully explored.

References pp. 264-265.
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As final examples, we consider the constitutive relation based on the Gurson
model for porous solids. This has the same form as in (10) and (11) and the
localization condition is given as in (51), provided that the parameters 4, B, and
u are defined as in egs. (22)-(24). In these last equations it is to be recalled that
h and & are the equivalent tensile rate of hardening and flow strength of the
matrix material, f is the void volume fraction, and A and B are parameters
‘entering the expression (19) for the part of the increase of volume fraction f
arising from the nucleation of new voids. As remarked earlier, the macroscopic
hardening rate # can be negative and, when there is stress-dependent void nu-
cleation (B # 0), u can differ from B so that deviations from normality occur.

We limit the analysis to plane strain conditions, so that h.. is given by (54).
-Further, in practical cases we expect 8 and u to be small compared to unity
(exceptions may occur at high mean normal stress levels, e.g., in front of a sharp
notch or crack) and also we assume that f is small. In these cases we can simplify
(22)-(24) to read

h~th - 4fese —4coAk, and w—f =~ % cBé. (56)

Further, we can write 7. = @, /\/3 = 3/\/3 in the same circumstances, and thus
(54) becomes

sh — bfcso —YcaAh =

1+ . -
m E(CBO’)‘E + 2CBO’2] (&1))

at critical conditions, where E is the elastic tensile modulus.
First we consider the case in which void nucleation is strain controlled,

(.-f)nucleauun = Fe¢P = (F/il)& (58)

Evidently, A = F/h and B = 0 for this case, and F can be interpreted as the
volume fraction of particles converted (effectively) to voids per unit of plastic
strain. On the basis of Gurland's [18] data on spheroidized carbides in steel,
Gurson {12, 17] suggests that F = 0.3f,,, where f,, is the volume fraction of
unbroken carbide particles. In terms of F, the critical condition becomes

(A/&)erse =3 fcoshZ sinhE + Fcoshl (59)

(recall that T denotes o4/23). According to this model, and in view of the
preceding remarks concerning F, the critical 4/ value is predicted to be of the
order of the void volume fraction f or of the order of the volume fraction of
uncracked particles, at least for states of only modest stress triaxiality.

In the case of stress dependent nucleation we may write

(f)nucleallon = K(& + o /3)/ G (60)

so that X is the volume fraction of particles converted to voids per unit fractional
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increase in stress. Thus A = B = K/& and the critical condition is

s 1 )
(h/&)exis = 1= Kcoshs {choshz sinhX
1+ EKcoshs ©n
v cos
+€(—1'-_"';‘)'KCOS]’IE [l + -—6&—-—]} .

We note that in cases for which void nucleation takes place over a comparatively
narrow range of stress, K can be several times the volume fraction of void
nucleating particles and then the above expression can predict that rather large
values of h/& are required for stability against localization. For example,
choosing £ = \/3/2 as appropriate to the plane strain tension test (without neck-
ing effects) and v = 0.3,

1
1 -1.40K

and when we consider the current void volume fraction f to be negligible com-
pared to K and set E/& = 300 (e.g., & = 100 ksi = 700 MPa in steel), we get

(h/&)er = 0.007, 0.10, and 0.40

h/Deps = {2.06f + 0.43K + 0.10K2E/&)

for
K = 0.01, 0.05, and 0.10

respectively.

All the results cited thus far pertain to the onset of bifurcation. However, there
may be significant sensitivity to small initial non-uniformities of material prop-
erties and this respect of the problem is not yet well explored in general. How-
ever, Yamamoto has adopted an approach similar to that outlined in the Section
on Analysis of Localization for a material described by the Gurson constitutive
model ((10)-(11) and (22)-(24)) but in which the initial void volume fraction, f,,
is slightly larger in a planar slice of material than elsewhere. Yamamoto neglects
the nucleation terms (A = B = 0) so that instability results only from the porosity
increase due to the progressive growth of existing voids.

Some of Yamamoto’s results are shown in Fig. 7, for which an initial porosity
of f, = 0.01 is assumed outside the imperfect zone, and the strain ¢, to failure
is shown as a function of the initial porosity, fimp.., inside the imperfection. The
calculations were done for axisymmetric and plane strain tension cases with oy,
= 0 in all cases. The latter means that the induction of triaxial tension stresses,
which occurs as part of the necking process in experiments, was neglected in the
calculation. This is a serious defect since, as has been seen, the Gurson dilational
plasticity equations are strongly sensitive to the mean normal stress.

Yamamoto's calculations employed the power hardening relation

& _[& , 3E
oy [0',, 2(1 + v)a',]

N
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Fig. 7. Curves of the critical strain for localization as a function of the initial void

concentration in the band for plane strain tension and axisymmetric tension, from Ya-
mamoto [31).

fimp,n

for the matrix material, with » = 0.3 and o,/E = 0.003. Results are shown in
Fig. 7 for two hardening exponents, N = 0.1 and 0.2, and in each case these
correspond to a numerical search over orientation angles of the slice to give the
least ductility. Although not shown on the figure, Yamamoto also calculates the
results for f, = 0 outside the imperfection and we find that these, when plotted
against fimpo, give results which are very similar to those shown. The results
indicate that the localization condition for a void-containing material is strongly
sensitive to non-uniformities in the porosity distribution. We will see similar
effects for sheet metals in the following section. Yamamoto also observes that
for a given size imperfection the ductility ratio {(plane strain to axisymmetric)
increases with decreasing hardening exponent. For example, in calculations for
which the size of fimpe — fo varies from 0.01 to 0.05, and for f, = 0 to 0.01,
Yamamoto finds a ductility ratio of from 0.13 to 0.20 for N = 0.1 and from 0.26
t0 0.30 for N = 0.2. These seem somewhat low compared to experimental results,
but the inclusion of necking effects in the analysis would, presumably, lower the
(€ )ern for axisymmetric extension more than for plane strain (since far more of
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the strain to failure shown in Fig. 7 occurs after necking for axisymmetric
conditions), and this could have the effect of raising the predicted ductility ratios
somewhat. This remains a topic in need of further examination.

LOCALIZED NECKING IN BIAXIALLY STRETCHED SHEETS

The mathematical theory of localized necking in thin sheets is a precise two
dimensional analog of the three dimensional theory of flow localization outlined
in the Section on Analysis of Localization. In that development one needs only
replace s and o by the nominal and true membrane forces, respectively. Indeed,
many of the basic principles of the theory were first elucidated within this two
dimensional plane stress context [24, 32].

Hill [32] analyzed bifurcations corresponding to localized necking using class-
ical (smooth yield surface, normality) rigid plastic theory. As is well known, this
analysis predicts that local necking will not occur in a uniform sheet subject to
positive biaxial stretching. Since both practical experience [33-35] and experi-
mental tests [36-39] demonstrate that thin sheets subject to positive biaxial
tension can fail by a process of localized necking, there has been considerable
interest in attempting to resolve this ‘‘paradox’. One approach, initiated by
Marciniak and Kuczynski [24] (hereafter referred to as M-K), postulates an initial
inhomogeneity in the sheet in the form of a localized thickness reduction. This
instigates necking by precipitating a drift of the strain state in the neck toward
plane strain, while the remainder of the sheet undergoes proportional loading.

Azrin and Backofen [36] carried out experiments aimed at testing the M-K
model of localized necking and found that the magnitude of the assumed thickness
reductions required to give theoretical predictions of the limit strain, that is the
imposed strain at the onset of localized necking, in line with those observed
experimentally were much larger than actually measured in the test specimens.
Furthermore, although the experiments did show a drift of the strain state in the
neck toward plane strain, the dependence of the limit strain on the imposed strain
ratio was qualitatively different from that predicted by the M-K model for most
of the materials tested. Specifically, for an isotropic material (and most of the
materials tested in [36] appear not to have been significantly anisotropic), the M-
K analysis predicts that the limit strain should increase with increasing biaxiality,
whereas experimentally, for a number of materials, the limit strain was found to
be nearly independent of the imposed strain ratio or actually to decrease some-
what with increasing biaxiality.

A different line of attack was initiated by Storen and Rice [7] who showed that
a simple model of a material with a vertex on its yield surface, namely a finite
strain version of the simplest deformation theory of plasticity, does predict a
bifurcation corresponding to localized necking in biaxial tension. The limit strains
obtained by means of this analysis are qualitatively more in accord with experi-
ment than those given by the M-K analysis. In particular, for a material exhibiting
a pure power law uniaxial hardening curve of the form

o= Ke" (62)
References pp. 264-265.
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where o is the true stress and e the logarithmic strain in uniaxial tension, Stéren
and Rice’s (7] analysis gives limit strains that monotonically decrease with in-
creasing biaxiality for high hardening materials, N > §.

Although, in [24] as well as in a number of subsequent investigations, an initial
thickness inhomogeneity was employed, this imperfection was assumed equiva-
lent to a local variation in material properties and was not necessarily intended
to be regarded as a literal thickness reduction. In some recent work [40, 41} an
actual difference in material properties in the incipient neck has been accounted
for within the M-K framework. In particular, in {40] Needleman and Triantafyl-
lidis have employed the M-K model in conjunction with Gurson's {12, 13] con-
stitutive relation for porous plastic materials. In [40], as in [31], void nucleation
is neglected (A = B = 0in (19)).

Fig. 8 displays limit strains as a function of imposed strain ratio, p, where

p=¢s/€ (63)

and ¢, and e, are, respectively, the major and minor principal in-plane logarithmic
strains. The solid curves are the deformation theory results of [7], while the

o ) o o o
N (%] »H w (2]

LIMIT STRAIN NORMAL TO NECK, (€1)¢/it

o

0 g B | — S | el | 1
0 (o} 0.2 03 0.4 0.5 0.6

LIMIT STRAIN PARALLEL TO NECK, (€g) /iy

Fig. 8. A comparison of the forming limit curves predicted by the vertex model (solid
curves) and the void growth model (dashed curves). Here, A f; is the increased initial
porosity in the neck. Based on [7] and {40].
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dashed curves are for the void growth model of [40], in which an increased initial
void concentration, A fg, plays the role of the initial imperfection. Curves are
displayed for various values of the strain hardening exponent in (62). It is im-
portant to note that in the porous plastic material model this strain hardening
exponent pertains to the matrix material and nor to the void matrix aggregate.

Both theories agree in predicting that for high hardening materials the limit
strain will decrease or remain nearly constant with increasing biaxiality whereas
for lightly hardening materials the limit strain will increase with increasing biax-
iality. By suitably adjusting parameter values, the difference between the predic-
tions of the two theories can be made negligible. This is, of course, a somewhat
arbitrary exercise.

The significant point is that the analyses in [7] and [40] suggest that both vertex
effects and the weakening induced by incipient ductile rupture provide plausible
mechanisms to account for the observed shapes of forming limit diagrams. In
essence, the deformation theory model attributes the onset of localized necking
to the discrete crystallographic nature of slip whereas the void growth model ties
localized necking to the (not well understood) factors responsible for the initiation
of ductile rupture.

Of course, vertex effects and incipient ductile fracture are not the only possible
physical mechanisms that could be responsible for triggering localizing necking.
In Fig. 9 (adopted from [40]) the forming limit curves resulting from various types
of inhomogeneities are compared. The curves marked (o,%0,4) = 0.99 corre-
spond to a one percent yield stress reduction in the neck with all other initial
values being identical inside (region B in Fig. 9) and outside (region A in Fig. 9)
the neck. Similarly, the curves marked (#2/14), = 0.99 correspond to a one
percent initial thickness reduction in the neck with all other initial values being
identical inside and outside, and so on. With the exception of the curve marked
A f, = 0.01, the initial void concentration both inside and outside the neck was
taken to be identically zero. With an initial void concentration of zero the Gurson
constitutive equation reduces to the Prandtl-Reuss equations and, therefore, the
void concentration remains zero. The inhomogeneity corresponding to (N3/N4)
= 0.99 gives qualitatively the same behavior as the model incorporating void
growth. This is not entirely unexpected since the principal effect of void growth
is to increasingly decrease the stiffness of the void matrix aggregate. In contrast,
the forming limit curves for (o,%o,4) = 0.99 and (¢2/14), = 0.99 monotonically
increase with p. On the other hand with N4 = 0.25, all the forming limit curves
have the same general shape [40].

These results have some bearing on the idea of an ‘‘equivalent thickness
imperfection.” In previous calculations of forming limit diagrams a thickness
imperfection was employed as the inhomogeneity and it was hypothesized that
this was representative of microstructural inhomogeneities. The results in [40]
show that this hypothesis is not necessarily appropriate for high hardening ma-
terials. These results also indicate that any microstructural inhomogeneity that
has the effect of continually decreasing the effective strain hardening exponent
would be expected to give qualitatively similar forming limit diagrams to the void

References pp. 264-265.
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Fig. 9. A comparison of the predicted forming limit curves resulting from various
types of initial inhomogeneities with strain hardening exponent N4 = 0.67. Here. ( )*
refers to quantities outside the neck and ( )® refers to quantities inside the neck. Adopted
from [40).

growth model. For example, in precipatation hardened solids there could be some
local region of the sheet which is hardened less than the surrounding material.
This (somewhat obliquely) introduces the important question of the length
scale over which it is reasonable to assume inhomogeneities act. Of course, the
deformation theory results of [7], being based on a bifurcation analysis, do not
require the assumption of an initial inhomogeneity. However, for an M-K type
model, this question is a crucial one. Recent work [42] has indicated that the
assumption of plane stress is an appropriate one for deformation wavelengths
long with respect to the sheet thickness. Thus in the M-K model, the inhomo-
geneity must be assumed to be one acting over a length scale of at least several
sheet thicknesses. If the inhomogeneity is truly local, of the order of the sheet
thickness or less, then a plane stress analysis, such as that in [40], may signifi-
cantly overestimate the rate of growth of the inhomogeneity [42, 43].
Experimental studies directed toward characterizing the type, magnitude and
spatial distribution of the inhomogeneities to be expected in sheet materials would
be most valuable. As illustrated in Fig. 8, by arbitrarily choosing values of the
characterizing parameters for sheet materials, theories based on very different
physical mechanisms can yield virtually identical forming limit diagrams. Exper-
imental guidance is required to determine what values of parameters are reason-
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able. Hopefully, coupled with theoretical analyses of relevant constitutive
models, such studies would enable the dominant physical mechanisms responsible
for triggering localized necking (which may very well be material dependent) to
be identified.

Additionally, direct examination of the material in the neck, at various stages
of necking, for evidence of incipient ductile rupture would indicate whether or
not this mechanism plays a significant role. Here, it would be particularly im-
portant to include specimens with well developed necks, since in [40] it was
found that most void growth takes place in the latter stages of necking.

The discussion so far has presumed that the plane stress local necking mode
is the one that limits ductility. Although consideration here is focussed on thin
sheets, it is by no means certain that a three dimensional band mode, of the type
discussed in the previous Section, is ruled out. Somewhat curiously, within the
context of the three dimensional theory, the localized necking mode corresponds
to a ‘‘geometric’’ instability and not a ‘‘material™” instability. Whatever the
underlying physical mechanism, there is the possibility of the deformation in the
necked down region becoming significantly large to precipitate three dimensional
flow localization (or to activate a *“‘geometric’’ instability mode not accounted
for in the plane stress theory {23, 28]). The three dimensional localized necking
mode, representing an actual material instability, provides an inherent limit,
regardless of sheet thickness or other geometric effects, to ductility. Indeed, in
the plane strain tension test, e.g. [29], ductility is often found to be limited by
highly intense band type localizations, sometimes preceeded by only a small
amount of growth of the diffuse ‘‘geometric’’ necking mode.

CONCLUDING REMARKS

The description of localization as a material instability appears to provide a

useful framework for analyzing both three dimensional ‘‘shear band" localiza-
tions and localized necking in ductile metal sheets (when these can be appropri-
ately treated as two dimensional continua). In both contexts, the predicted onset
of localization depends critically on the assumed constitutive description. The
effects on localization of several deviations from the classical Prandtl-Reuss
model have been illustrated. Significant constitutive features not explicitly dealt
with here that can be accommodated within the theory include anisotropy, which
is particularly important in the sheet metal context, and material rate dependence
(which necessitates an analysis with an initia! imperfection).
" Encouraging results have been obtained from a simple model of a solid with a
vertex on its yield surface, both regarding the ratio of plane strain and axisym-
metric ductilities and forming limit diagrams. More or less similar results can also
- be obtained from a simple model of a solid weakened by micro-cavities. Both
these constitutive features merit improved modelling in relation to the detailed
mechanisms of deformation. A more thorough theoretical and experimental illu-
mination of these aspects of material behavior could shed considerable light on
the circumstances under which an inherent instability of the plastic flow process
or progressive micro-rupturing is responsible for limiting ductility.
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DISCUSSION

S. Nemat-Nasser (Northwestern University)

There are two comments 1 would like to make. The voids develop at much
later stages of deformation, and it seems to me that their effect should be
combined with the derivation of the diffuse type of necking from an experimental
point of view. In that sense, if you do the calculations using the usual plasticity
laws, but including the effects of the voids, you will find that (we have done this
calculation) you will develop internal shear bands or large bands of high strain
between the voids, and if there are precipitates (as there usually are in these
types of materials), then secondary voids (smaller voids) will develop and you
will immediately observe that without having to introduce unrealistic numbers of
voids that you do get localization effects. Now, I make this comment together
with the comment that the conditions of localization that are being used are
necessary rather then sufficient. That does not mean that satisfying these con-
ditions necessarily will lead to localization.

Rice
It does once an imperfection is there; that’s what comes out in the Marciniak-
type analysis.

Nemat-Nasser

You do that for the imperfection, if you do the calculation as we have done
with the imperfection, then a diffuse neck forms. Then if you consider the void
growth inside, then the shear bands would automatically develop at much lower
strain states. Secondly, I would question how you apply this to a round bar
because Hadamard's conditions are really applicable to the displacement bound-
ary value problem. Whereas I cannot imagine how it would be applied to a round
bar in an axisymmetric displacement state.

Rice

When we look at these shear band conditions, they are for limiting instabilities.
The relevance of the displacement boundary conditions is that they are such
limiting instabilities that they still take place even if you have complete displace-
ment boundary conditions all around the outer surface of the material.

But I wanted 1o get to the earlier comment. Your calculation, I would like to
remind you again, was a plane-strain calculation. Your void was, in fact, an
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infinitely long tunnel and in a plane-strain calculation it seems to me hardly
surprising that deformation should concentrate along 45° planes. So, I'm not sure
that I'd be ready to accept what you say about strain concentrations near existing
holes just on the basis of that work.

I think your model probably overestimates the effect. On the other hand, 1
agree it is important, in fact, to the local strain concentrations near holes and
could have a lot to do with the final localizations. You still, however, do not
explain why these final localizations occur and that also is an important problem.
The cases we're discussing, incidentally, are like those which have been observed
by Low and co-workers, especially Low and Cox in 4300 steels I think it was,
where you have a hole starting at the large inclusions and then the joining process
occurred not as in some materials by these large voids growing together and
coalescing, but rather by some shear band forming between these large holes
(Nemat-Nasser—Void sheets). That's right, the shear band containing void sheets
which probably nucleated from very small carbide particles.

J. W. Justusson (General Motors Research Laboratories)

You referred to the work of Gurson concerning constitutive equations which
incorporate the effect of voids. I have the impression that the void shape that he
considers is more or less spherical.

Rice

It is more, rather than less. It is spherical. In fact what we've done, in the
spirit of isotropic hardening, is to neglect the fact that voids don't remain spher-
ical. The calculation is for a spherical void.

Justusson

The calculations then would not pertain to penny shaped voids or other extreme
geometries?

Rice

Of course what happens in low triaxiality stress states is that these things tend
to get very much strung out and become much more cylindrical.

R. N. Dubey (University of Waterloo, Canada)

At the beginning of your talk you talked about a vertex modulus. We have two
moduli: one you called the plasticity modulus which you can calculate from the
tension curve. . . .

Rice
The tangent modulus, I think I called that.
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Dubey

Then you had the vertex modulus which you could get with the secant modulus.

Rice
The results I gave in that unreadable table were in terms of the ratio of the
vertex modulus to tangent modulus on the left side. On the right side of the table

some results were given when you identified the vertex modulus as the secant
modulus.

Dubey

My question is: How can you calculate it supposing you don't want to prede-
termine that?

Rice

The way to calculate it is to do the kind of thing that Sanders and co-workers
started years ago and that John Hutchinson has continued; actually trying to
calculate the properties of plastic polycrystals. What emerges from those calcu-
lations, though not in any simple way, are descriptions of all moduli for all
possible directions of deformation from the current state. Some of this sort of
thing is in Hutchinson’s 1970 Royal Society paper where you can see calculations
of the effect of shear moduli for different directions of shearing on the basis of
the so-called Self-Consistent Polycrystal Model.

Dubey

I have seen that paper. Can you determine it by a simple test like a tensile
test?

Rice

The kind of tests that I guess ought to be done—there’s a whole literature on
looking for vertices on yield surfaces and it’s all terribly inconclusive. Probably
the more telling thing would be to deform the material in tension. Then, while
you continue to increase the tension, superpose a very small amount of shear.
It’s got to be small because you want to make sure that the loading is still what's
called *‘fully active'’, that it continues to activate all currently active slip systems.
Then, if you measure the shear strain response to that small superimposed shear
stress that would tell you what the vertex modulus is, if indeed it exists at all.





