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Theory of Precursory Processes in the Ineeption
of Earthquake Rupture

By J. R. Rice, Providence*)

(With 10 figures)

Summary

The paper reviews models for inelastic deformation processes preceding earthquake rupture in
brittle, natural rock masses. The discussion is organized around three types of failure models:
(i) localization bifurcations, whereby a uniform or nearly uniform pattern of deformation gives way
to highly localized deformations within a fault zone; (ii) non-homogeneous deformations due to an
inclusion-like zone of different mechanical properties than its surroundings, possibly representing
a seismic gap, which is driven ultimately to a “runaway” dynamic instability; and (iii) a slipping
region on an existing fault, which spreads on the fault plane under initially quasi-static conditions
until limiting conditions for rapid shear-crack propagation are met. It is emphasized that failure
conditions are sensitive to strain-softening behavior of nominally coherent rock or fault gouge, and
that a general precursor is provided by the acceleration of local, by comparison to remote tectonic,
deformations as instability conditions are approached. More striking precursors may arise from the
presence of an infiltrating pore fluid. This may cause time-dependent surface-chemical effects, such
as reductions of resistance to microcrack growth and post-fault strength recovery in compacted
gouge, and also mechanical effects due to dilatant strengthening and time-dependent stiffness of
elastic response at conditions intermediate between the drained and undrained limits. Some calcu-

lations of stabilization against abrupt earthquake rupture by these mechanical effects are given for
the above models.

Zusammenfassung

Die Arbeit gibt einen Uberblick @iber Modelle fiir unelastische Deformationsprozesse, welche
Erdbebenbriichen in spréden natiirlichen Gesteinsmassen vorausgehen. Die Diskussion erstreckt
sich auf drei Typen von Bruchmodellen: (1) Lokalisationsbifurkation, wobei ein gleichformiges oder
nahezu gleichférmiges Deformationsmodell zu stark lokalisierten Deformationen innerhalb der
Bruchzone fithrt; (2) inhomogene Deformationen auf Grund einer inklusionsihnlichen Zone mit
unterschiedlichen mechanischen Eigenschaften in bezug auf die Umgebung, die méglicherweise
einen seismischen Spalt darstellt, der zum SchluB zu einer ,,weglaufenden‘ dynamischen Instabili-
tat fithrt; und (3) eine Gleitregion an einem existierenden Bruch, welche sich fiber die Bruchebene
unter urspriinglich quasistatischen Bedingungen ausbreitet, bis die Grenzbedingungen fiir eine
schnelle Scherbruchausbreitung erreicht sind. Es wird deutlich gemacht, daB Bruchbedingungen
empfindlich gegeniiber Strain-softening-Verhalten von nominell einheitlichem Gestein oder Ver-
werfungsletten sind. Weiterhin zeigt sich, daB die Beschleunigung von — im Vergleich zur ent-
fernten Tektonik — lokalen Deformationen bei Erreichen der Instabilititsbedingungen ein allge-
meiner Vorldufer ist. Auffallendere Vorldufer konnen durch die Anwesenheit von durchsickernden
Porenflitssigkeiten auftreten. Dadurch kénnen zeitabhingige chemische Oberflicheneffekte ent-
stehen, wie zum Beispiel Reduktion des Widerstandes gegeniiber MikroriBwachstum und Wieder-
erlangung der Nachverwerfungsstirke in verdichteten Verwerfungsletten und auch mechanische
Effekte durch dilatante Verstirkung und zeitabhiangige Zahigkeit des elastischen Responses bei
Zwischenbedingungen zwischen trockenen und wasserreichen Grenzbedingungen. Einige Berech-
nungen der Stabilitdt gegeniiber abrupten Erdbebenbriichen durch diese mechanischen Effekte
werden fir die obigen Modelle durchgefiihrt.

*) Dr. JaMEes R. Rick, Division of Engineering, Brown University, Providence, Rhode Island,
U.S.A.
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Pesome

Patora maer 0630p 0 MOUENAX HEYIPYruX npoleccosB JepopManuy, KOTOPHE IIpex-
IIeCTBYIOT CeiCMMYECKUM PaspYIeHUAM B €CTECTBEHHBIX XPYNKUX MaccaX FOPHEIX OPOX.
OGcysinenue paclipocTpaHAeTcs HA TPpHM THINA Mopedeii paspymenus: (I) soramusupo-
BAHHEIA CKOJI, I'I€ ONHOPOKHAA WK IIOYTH OMHOPOIHAA MOJENb fHedopManun BeNeT K CUJIb-
HO¥ ROHIEHTpaunu nedopMauny BHYTDH 30HE! paspymieHus; (2) HeomHoponHbie medop-
MaIMHu Ha OCHOBE 30HHBI B BU/E BKIIYEHUA C OTINYAIIIMMHUCA OT OKPYAWILEH Cpens
MeXaHUJEeCKHMH CBOMCTBAMM, KOTOpas, BO3MOHO, NPENCTABIAET co60ii celicMIIecKYI0
TpenHY, KOTOpas B KOHIIE BelleT K ,,yberaolleil‘* xuHaMuyecKoit HeycTo4nBoCTH ; 1 (3)
30HA CKOJIKEHHS Y CYIECTBYIOILEro pasiioMa, KOTOpas paciupocTpaHAeTCs Ha IIJI0CKOCTD
pasphiBa CHAyajla B KBA3HUCTATHYECKHX YCIOBHUAX, IIOKZ HE NOCTUralOTCA rpaHUYHBIE
YCJ0BUA TJA GBICTPOro paclpOCTPAHEHHA COBHUroBoro paspymenus. Iloscugercs, 4To
YCJIOBMSA PaspyLIeHWA ABIAITCA YYBCTBUTEILHBEIMU OTHOCHTENIbHO NOBENEHHUA Redop-
MallA-CMATrYMBaHKe OMHOPOOHOR rOpHOM NOPOXLL UK NPOCHOA I'IUHE. Jajisime oKasbli-
BaeTcs, UTO YCKOPEHNUeE JOKAIBHEIX JefopMaliiii, 10 CPDAaBHEHUIO ¢ JaJIeKol TEKTOHMKOM,
TIPU TOCTHKEHNN yCJIOBUN HEYCTONYMBOCTY ABJIAETCA 0OUIMM NpenliecTBEHHUKOM. Boaee
3aMeTHEBIe IpeIIecTBEHHNKN MOryT BO3HHKATh 34 CUET IIPOCAaYNBAIOLIEl IOPOBOii BIAru.
Taxum o6pa3oM MOryT NOABIATHECA XUMHUYECKHE IIOBEPXHOCTHEIE IPPEKTH, KaK HAIpH-
Mep NOHMKeHNe COIPOTHUBIIECHNA OTHOCUTENILHO BO3PACTAHNA MUKPOTPEIINH ¥ NOBTOPHOI0
OOCTHKEHHNHA IIPOYHOCTH IOCIIe Pa3pPYIIEHUA B YINIOTHEHHHX OPOCNOAX I'NINHBI, & TaK:Ke
MeXaHnYecKHne 3HeKTH N3-32 YKPENJIEHUA 34 CYeT PA3IIMPEHNA H 3aBUCHMOM OT BpEMEHH
HECTROCTH YyIPYroro pearnpoBaHNA NOPH YCIOBHUAX, JEKaWUX MEKIY CYXHUMU M BIIAro-
HaCHIIIEHHEIMY TPAHUYHEIME yCiIoBUAME. [IpoBoRATCA HEKOTODHIE PACYeTH YCTOYHNBOCTH
OTHOCHTEIHbHO BHE3ANHBIX CECMIYIECKNX PA3PYIIEHMI 32 CYeT 3THX MeXaHNYeCKUX 3 der-
TOB JJIs BhHIIE YKA3aHHHX MOJeaei.

1. Introduction

This is a review of theoretical studies of processes in natural rock masses that are
preparatory to Earth faulting. As such the work attempts to contribute to the under-
standing of the nature and time scale of processes that may lead to discernible earth-
quake precursors, be these effects on seismic or electrical transmission properties in
pre-faulted rock, or on accelerating fault creep slippage or strain and tilt at ground
surface.

An attempt is made to organize discussion on the basis of mechanically consistent
models of the failure process, implemented with constitutive descriptions that seem
to incorporate the principal features of natural rock behavior. Of course, such models
involve enormous uncertainty, arising from imprecise knowledge of the stress levels
and distributions prevailing in earthquake regions, of the heterogeneity of rock pro-
perties, and proper boundary conditions for representation of tectonic loading. For
example, is the 10 to 100 bar stress-drop range frequently cited representative of
a major or only a very small part of ambient shear-stress levels 2 Does previous fault-
ing dominate subsequent response and cause all non-elastic deformation to be local-
ized in a fault zone, or is more diffuse deformation typical ? Further, the effects of geo-
metric size and of very long times at ambient temperatures remain poorly understood
in the generalization to field conditions of laboratory-based studies of inelastic rock
deformation and friction. A natural fault of 5 km diameter is larger by a factor of 10° or
80 in linear dimensions than faults produced in typical laboratory triaxial tests, and
a representative laboratory strain rate of 10~%/s is very fast indeed compared to tec-
tonic strain rates of 10-13/s (estimated from assumed shear-stress rate of 1 bar/yr.).
Also, laboratory studies to date have still not very fully documented some elements of
constitutive response that seem important to failure models. These include post-peak-
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strength behavior, response to general non-proportional stress increments, creep-like
processes arising, for example, from the exposure of microcrac s to a surface-reactive
environment such as groundwater or humid air, and long-term processes of strength
recovery by crack healing, cementation reactions, etc.

In the circumstances, one reaction may be to abandon theory as premature and,
indeed, I believe that there is little point in studying overly detailed models of the
failure process at this time. But there is a definite need for a broad understanding of
generic classes of failure models, under the range of conditions that can be plausibly
generalized from field and laboratory studies, as a basis for interpretation of precursory
observations and for the identification of critical ‘‘signatures’ of different models, that
might aid in discriminating among the range of plausibly assumed conditions.

2. General discussion

Subsequent chapters of the paper review the results of specific models for the failure
process and attempt to draw conclusions concerning the type of precursory behavior
that may be exhibited and physical processes that may set its time scale. In general
all models considered involve some degree of non-elastic response, typically extending
to the strain-softening regime prior to rupture, and a very general precursor is provid-
ed by the acceleration of local deformation that is predicted, even on the basis of
rate-independent constitutive models, as tectonic stresses build gradually toward
levels for the earthquake instability. But it is seen that additional and sometimes far
more dramatic precursory time effects are predicted when the presence of an infiltrat-
ing pore fluid is considered. These arise partly from mechanical interactions of pore
fluid with the rock mass in the form of dliatant strengthening and Bror-like time depend-
ence of elastic response at conditions intermediate between short-time (undrained)
and long-time (drained) elastic deformation. They arise also from surface-chemical
effects on microcrack growth in long-term stress corrosion cracking, and on processes
of time-dependent strength recovery in fault gouge.

Some general considerations, introductory to the specific analyses outlined later,
are discussed in the following sections.

2.1. Constitutive description of brittle rock deformation and
frictional response

Here the emphasis is on the macroscopically inelastic deformation of rock in the
brittle range, arising from the nucleation, frictional slippage on, and growth (and,
possibily, healing) of microcracks opened by internal stress concentrations, e.g., at the
border of a closed fissure sliding with frictional resistance or at some other internal
heterogeneity. A good review of experimental studies, mostly in the “‘triaxial” test, is
given in the recent edition of JAEGER and Cooxk [12]. Further, while seldom studied
experimentally, the stiffness of the material in stress response doy; to strain increments
deyy having a wide range of directions in strain space is important, for example, to the
determination ‘of stability against shear localization of a homogeneous, or nearly so,
pattern of straining. In addition, the post-peak response of rock masses and of fault
zones enters critically into all the failure models considered, although experimental
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studies are often terminated earlier, sometimes by the dynamic instability that arises
very near peak from inadequate stiffness of the testing apparatus. Important excep-
tions are the studies of WAWERSIK and co-workers [40], [41]. Further, models dealing
with the mechanical interaction between the rock and a pore fluid are strongly sensi-
tive to the extent of dilatancy accompanying shear (e.g., BRACE et al. [7]; BRACE
and MarTIN [6]) and deformation-induced alteration of pore fluid permeabilities.

It has been noted that long-term surface-chemical interactions of fissured rock and
pore water allow the possibility of time-dependent crack growth at sufficiently high
stress levels and, in materials with rather flat microcrack surfaces, crack healing at low
enough stress levels. This observation encourages the view, in development of consti-
tutive relations, that the microcrack distribution not be regarded as being uniquely
determined by the stress history, but rather that it and the stress be regarded as inde-
pendent variables on which the strain depends, with there being an additional kinetic
relation, to complete the constitutive description, expressing the rate of growth of
some measure of the microcrack network in terms of the current stress and microcrack
distribution.

Also, when it is appropriate to regard the non-elastic deformations as localized in
a fault zone, it is necessary to have constitutive descriptions of the relative sliding and
opening displacements across the fault. There has, thus far, been rather little study of
appropriate relations, although the strength limits and degradation of strength for
small amounts of relative motion are important for setting conditions under which
a slipping region along a fault can be expected to propagate in the form of a macros-
copic shear crack. In this connection, a promising approach to the description of fault
strength and deformation has been developed recently by BarToN [3], who emphasizes
the important interrelations between classical friction notions and strength properties
of nominally coherent rock specimens, the latter representing properties of roughness
protrusions which must be deformed or uplifted to allow relative motion. In addition,
recent studies by DIETERICH [10] address the displacement and speed dependence of
frictional slippage in fault gouge along nominally smooth surfaces, relating friction at
low speeds to his earlier studies (cf. [9]) of time-dependent strengthening on a statio-
nary fault.

2.2. Types of failure models

With reference to Fig. 1, at least three generically different concepts of the incep-
tion of earthquake failure may be envisioned, and it seems probable that actual fault-
ing may involve elements of each.

2.2.1. Localization of previously homogeneous deformation

Fig. 1a depicts a region of material which has been deformed homogeneously, or
nearly homogeneously, into the inelastic regime to a point at which certain critical
conditions are met at which the deformation pattern bifurcates into a highly localized
“‘shear band”. Corresponding behavior has been widely observed in initially coherent
laboratory specimens, not only of geological materials but also of ductile metals and
polymers, although the relevance of the concept to large regions of the Earth is prob-
lematical, since these may have deformation fields which are strongly localized from
the start in zones weakened by previous faulting. Then, only with the intervention of
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Fig. 1. Types of failure models. a Localization of previously uniform or nearly uniform
deformation; b deformation of “inclusion” of different mechanical properties; “runaway’’
instability based on strain softening of inclusion and elastic unloading stiffness; ¢ isolated

region of slippage on pre-existing fault, spreading quasi-statically at small speed ¥ ; pro-
cess becomes unstable, slipping region spreads dynamically at large speed

some mechanism of re-healing or cementation of the ruptured surface would the loca-
lization concept of Fig. la apply to subsequent faulting. MYACHEKIN et al. [17] pro-
pose a localization mechanism of this kind, involving the gradual concentration of
initially diffuse and somewhat time-dependent growth of microcracks into a narrow
fault zone, as a viable mechanism for the onset of faulting.

The theory of deforrnation localization originated with HapamarD’s well-known
1903 study of stability of finetely deformed elastic solids, and was extended to non-
elastic materials in the early 1960’s by TaoMas, Hri, OpE, and MANDEL. A compre-
hensive review of the subject and derivation of critical conditions for a wide range of
rate-independent constitutive models is given by Rick [25]. The critical conditions for
localization are equivalent to those at which the field equations governing continuing
increments of deformation lose ellipticity and admit characteristic surfaces, along which
the incipient localization occurs. The conditions are also those for which
the least speed of deformation wave propagation in any direction has fallen to zero;
disturbances do not then spread, and in this sense the localization zone is sometimes
referred to in HADAMARD’s terminology as a ‘“‘stationary discontinuity’. RUDNICKI
and RicE [32], in work further extended by RupNick: [29], have derived localization
conditions for two inelastic constitutive models inclusive of frictional and dilatant be-
havior representative of brittle rock, and these results will be discussed subsequently.

It is well to understand that such localization conditions, in non-elastic solids, are
not necessarily indicative of dynamic instability. Indeed, it is well known experiment-
ally that specimens can sometimes deform in a quasi-stable manner (under overall
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displacement control) after one or several localized bands have emerged. Further,
according to theoretical predictions such localizations can occur with either a nega-
tive or positive rate of strain hardening, the latter favored by deformation states close
to plane-strain conditions. It has been argued (RupNIcE: [30], [31]) that their casual
association with the peak-strength state in standard triaxial tests may be an artifact
of inadequate stiffness of the testing apparatus. Indeed, tests in the stiff triaxial appa-
ratus of WAWERSIK and FATREURST [41] and WAWERSIK and BRACE [40] show evidence
for macroscopically uniform deformation well into the strain softening, post-peak
regime before localization.

2.2.2. Local instability of inhomogeneous zone

By contrast to the localization concept of Fig. 1a, it seems more generally appli-
cable that the pre-failure process will be dominated by large-scale heterogeneities of
mechanical properties that remain as a consequence of previous faulting. Then a model
such as in Fig. 1b may be more appropriate. This model postulates that a region may
have properties distinctly different from its surroundings, thus causing a non-uniform
distribution of stress. The region is idealized as an ellipsoidal “inclusion’ following
Rupxick: [31], and within it properties are taken as locally uniform and different
from the surroundings. RUDNICKI envisions the inclusion as representing a zone that
has been ‘“weakened’ by previous faulting, and which is deformed to conditions at and
beyond its peak-stress level while the surroundings remain nominally elastic.

However, the same concepts would apply, and may be somewhat more pertinent,
if the zone is taken as a region which has, on average, not faulted nearly so much as the
material to the sides of it in recent geologic history, so that the zone is “misfitting”
and must support a stress well in excess of that acting in the remote surroundings.
This large local stress drives the material of the inclusion toward and beyond peak-
strength conditions while the surroundings, as in RupNIcET's weakened-zone inter-
pretation of the model, remain nominally elastic. Thus, what is being described may be
thought of as the impending instability of a ‘“‘seismic gap’ zone.

The earthquake appears as a dynamic “runaway’ instability in this model. As the
remote stress 7, is increased by tectonic processes there are corresponding increases of
the stress 7, within the inclusion. Finally, the peak-strength condition is reached
(this does not generally mark instability), and the inclusion enters the strain-softening
range as T, continues to increase. Ultimately, a sufficiently negative rate of strain soft-
ening is reached so that the slope of the inclusion stress-strain relation just equals the
elastic unloading stiffness of the surroundings and dynamic instability follows.

It will be seen from the more detailed analysis to follow that there is a considerable
hastening of the strain rate within the inclusion over the remote tectonic strain rate as
critical conditions are approached, but whether this effect alone is sufficient to give
observable precursory effects on acceleration of nearby surface tilt and strain is not
clear. As will also be discussed, mechanical interactions between the deforming rock
mass and its pore fluid would seem to allow more dramatic effects.

2.2.3. Destabilizajion of quasi-static fault slippage

Finally, in Fig. 1¢ we see a model in which a well-developed fault plane is postu-
lated, and it is considered that tectonic motions are accommodated by relative slip-
page on this plane of a kind that is not uniform but, rather, more or less episodic. Due
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to local stress build-ups certain regions of the fault begin to slide and, due to the stress
concentration at its edges, the slipping region spreads outwards in a shear-crack-like
mode. Depending on the non-uniformities of driving stresses and resistance, and pos-
sibly on certain rate-dependent mechanisms of local strengthening by increasing slip-
page rate, it is considered that the fault can spread outwards at a very slow speed under
essentially quasi-static conditions. But there will, in general, also exist configurations
of the slipping region for which no continuing quasi-static fault spreading can exist,
without reductions in the remotely imposed deformation, and the system is then un-
stable. The slipping region spreads dynamically at a high speed V until some new
equilibrium distribution of slippage is reached.

By assuming a strain-softening relation between shear stress and relative displace-
ment across a slipping surface, in analogy to ‘“‘cohesive zone” models for tensile
cracks, PALMER and RicE [22] demonstrated that shear-crack-like configurations of
slip surfaces can be found and showed that the propagation conditions could be
phrased as the attainment of a critical “fracture mechanics’ type of energy release
rate, at least when the zone of active strain softening is of small linear extent. Similarly,
Nasox and WEERTMAN [19] observed that the slip-offset profiles of quasi-static creep
events on the San Andreas system, typically spreading with ¥ = 1 to 10 km/day, were
consistent with the postulate of a shear resistance having an upper yield strength for
the onset of slip, followed by strain softening with continuing slip.

StUuART [36] recently adopted this model and postulated a distribution of strength
with depth for a long transform fault such that the upper yield strength increases
smoothly with depth to a maximum value and then decreases. By solving numerically
the anti-plane shear boundary-value problem appropriate to imposed remote tectonic
displacements, he demonstrates that regimes of ‘“fault creep” result, with a time scale
proportional to that of tectonic loading, and with overall slippage prevented by the
stronger fault portions at depth. These quasi-static motions of the boundary of the
slip region give way finally to a dynamic instability, analogous to what is illustrated in
Fig. 1c. STuART shows that accelerating creep deformations occur at the surface, near
its intersection with the fault trace, as instability conditions are approached.

In addition to requiring strain softening with deformation, the model also must
assume that some mechanism for strength recovery exists if the process is to be re-
peated over again. In this regard, DIETERICH [9] has demonstrated that the static fric-
tional resistance of fault surfaces in stationary contact with gouge layers between
them, increased in an approximately logarithmic manner with time over a wide range
of normal stresses (20 to 850 bar), increasing by 1 to 29, for each factor of 10 increase
in contact time.

2.3. Mechanical effects of an infiltrating pore fluid

Pore fluids infiltrating a rock mass have the important possibility of lending initial
stability to the rock as critical conditions are approached. This can allow failure to take
place less abruptly, on a time scale determined by pore fluid diffusion, and there are
obvious implications for the generation of discernible short-term precursors effects.
The effects arise from two sources.
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2.3.1. Dilatant hardening

First, because rock masses and fault zones are typically dilatant when sheared into
the near-peak and strain-softening regimes, suctions are induced in the pore fluid when
the time scale of deformation is sufficiently short by comparison to diffusion times, and
the corresponding increase in “effective stress”‘, ¢ — p, transiently augments the fric-
tional resistance of the rock. This is REYNOLDS’ phenomenon of dilatant hardening;
its relevance to seismic sources has been noted by FrRaNk [11], and it has been studied
experimentally by BrRace and MarTIN [6].

There would appear to be three possible precursory effects of dilatancy. First, as
suggested above, the failure instability may be less abrupt, so that there is a period of
accelerating but still essentially quasi-static deformation that may lead to discernible
strain or creep slippage accumulation. With reference to the spreading slip region of
Fig. 1¢, RicE and CLEARY [26] estimated the fluid suctions that would be generated
by dilatancy in the rupturing region at the moving edge of the slip zone, and pointed
out that these would increase the effective energy supply rate required for fault pro-
pagation (see RICE [23] for a more detailed analysis in connection with slip surface
propagation in landslides of overconsolidated clay). Also, Rup~ickr [30] has given
a preliminary analysis of dilatancy effects in transiently stabilizing the runaway
instability of the inclusion model of Fig. 1b.

The second possible eflect of dilatancy is the generation of a regional lowering of
pore pressures as accelerating deformations accumulate in the incipient focal region.
For example, SUNDARAM et al. [37] suggest on the basis of pore pressure alterations
in laboratory stick-slip events that accurate short-time pressure measurements be
made in wells for detection of precursory signals.

Finally, a third possible effect of dilatancy, and the one which has received most
recent attention, relates to NUR’s [21] suggestion that dilatancy may involve the open-
ing of a network of cracks under conditions for which a large portion of the crack
space is either dry or filled with water vapor rather than liquid water. NUR proposes
that this crack opening and subsequent refilling of crack space, as fluid flows in from
afar to alleviate the local suction, is consistent with a precursory reduction followed
by an increase of the seismic V,/V,-ratio (see also ScHOLZ et al. [34]; WHITCOMB et al.
[42]). This proposal has attracted a great deal of attention and, just as dilatancy has
been proposed as a source of V,/V,;-anomalies, so also does it seem to be rather com-
monly assumed that the absence of a V,/V -anomaly before an earthquake implies
the absence of pre-failure dilatancy. This is plainly invalid reasoning. The NUR mecha-
nism assumes not only that there is dilatancy but that the suction field induced by
this dilatancy is strong enough to open appreciable numbers of cracks in which water,
if present, is not present in a fully liquid state. This implies very strong dilatant effects,
and it must be realized that far weaker dilatant suctions, leaving all pore fluid in
liquid form, could have very significant precursory effects along the lines of the first
and second mechanisms mentioned above.

It is to be realized also that V,/V,-anomalies, when they are observed, need have
no connection with the presence of pore fluids. Indeed, MYACERIN et al. [17], [18]
seem to view the processes preceding instability in terms rather similar to what is
implied by the localization picture in Fig. 1a, applied to a dry rock mass. They en-
vision that large-scale non-elastic deformations take place, without any initially strong
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concentration of deformation into a shear zone, opening up a network of cracks and
lowering V,/V,. It is then further assumed that a range of strain-softening behavior
occurs and that in this range the deformations gradually localize into a narrow shear
zone under decreasing stress, so that cracks close in regions away from the fault plane
and V,/V, increases again. A similar proposal was made by STvarT [35]. This mecha-
nism would not seem to be in conflict with theoretical predictions (RUDNICEI and
RicE [32]) or with experiments (WAWERSIK et al. [40], [41]), which suggest that in
deformation states similar to axi-symmetric compression, appreciable strain softening
can occur before localization. But it should be realized also that at least according to
the theoretical models, localization will occur quite early in the post-peak regime or,
in favorable circumstances, even with positive strain hardening, when the pre-failure
deformation field approximates more closely to “plane strain’ conditions (RUDNICKI
and Ri1cE [32]; Rick [28]). Indeed, this observation would seem pertinent to the eval-
uation of all models, whether dry or wet, that envision some large-scale region of the
Earth that deforms well into the post-peak regime. Such may not be possible without
localization in overall deformation fields of plane-strain type.

2.3.2. Biot-like time-dependent elasticity

The dilatant hardening effects just discussed involve an essentially non-linear inter-
action between shear deformation and pore pressure alterations. But there are also
significant possibilities for fluid-induced stabilization of rupture processes that derive
from the purely linear behavior of a fluid-infiltrated elastic solid as described by the
Bror [4] theory. To understand these effects it is important to realize, as emphasized
in recent studies by the author and co-workers (RiceE and CLEARY [26]; RICE and
Smvoxs [28]; RiIcE et al. [27]), that for short-time stress alterations the material,
responds in an ‘“‘undrained’’ manner (i.e., no alteration of local fluid mass content)
and is elastically stiffer, for all deformations except pure shear, than when the material
responds to long-time stress alterations, in which case ““drained’ conditions (i.e., no
alteration of local pore pressure) result.

Indeed, the critical strain-softening slope for instability of an inclusion asin Fig. 1b
is sensitive to the elastic unloading stiffness of the surroundings (RupN1CcK1[31]); 2 more
negative softening slope can be sustained for stiff than for less stiff surroundings. Thus,
as remarked by RicE et al. [27], abrupt instability will not occur when the critical
condition based on the long-term drained elastic properties of the surroundings are
met, because the hastening deformations that follow this condition elicit a shorter-
time response with stiffness which can approach that for the fully undrained state.
Similar effects were noted by BookKER [5]. The implication is that failure will not gener-
ally occur abruptly when critical conditions based on drained elastic properties are
met, although failure is then inevitable and proceeds on a time scale controlled by
fluid diffusion.

Similarly, the critical condition for unstable shear-crack-like extension of an iso-
lated slipping region as in Fig. 1 cis also sensitive to the elastic stiffness of the surround-
ings. For example, the simplest fracture mechanics model for the instability (Rice
and CLEARY [26]) would require that the stress intensity factor k, which characteri-
zes the strength of the local elastic shear-stress concentration at the fault tip and is
proportional to the excess of the remote shear stress 7, over the frictional resistance ¢
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within the slipping region, reach the critical value

2 = 2 - 1)

koris =

Here ®,;; is the critical fracture mechanics energy absorption rate at the tip for fault
extension, @ is the elastic shear modulus, the same under drained or undrained con-
ditions, and ¥, is the effective elastic Porssox ratio, called » for drained and », for un-
drained conditions. Of course v, = », since the undrained response is stiffer, and this
means that %, is larger for undrained than for drained conditions. Thus when criti-
cal conditions based on drained properties are reached, the fault does not immediately
become unstable but, similarly to the case with the inclusion model, a period of acceler-
ating but initially quasi-static creep extension of the fault begins and leads ulti-
mately to dynamic instability.

In fact, a more precise analysis of the problem by RicE and Simoxs, based [28] on
a solution of the fully coupled BroT elastic deformation-diffusion equations for steady
shear-crack advance in a fluid-infiltrated solid, suggests that even larger stabilizing
effects occur than suggested by the simple argument above. These effects arise because
an effectively drained region near the fault tip, present even when the overall response
is nominally ‘““undrained”, is shielded somewhat from the full stress concentration by
the contrast of its elastic response stiffness with that of its surroundings.

. A good index of the size of these effects is the difference between », and v by com-
parison to unity. RicE and CLEARY [26] gave a table of values based on experimental
data. A further perspective is provided by the calculations of BuDpIANsKY and
O’ConNELL [8] of the elastic properties of rock containing an array of flat crack-like
penny-shaped pores of radius @ and of number NV per unit volume. For simplicity their
* results appropriate to a small crack density are used, ignoring interactions, in which
case the drained (“‘dry” in their terminology) bulk modulus K and shear modulus @
are given by

e

16(1 — +2) g

K|K, =1 "m‘—)' av, (2)
G, =121 =% E =)y 3)
45 — )

Here the quantities with subscripts s refer to properties of the solid phase. Further,
when the crack-like pore spaces are fully infiltrated with a substance having bulk stiff-
ness similar to liquid water, Buniansky and O’CoNNELL observe that the cracked solid
responds to purely hydrostatic stress with a bulk modulus essentially identical to that
of the solid, so the undrained bulk modulus is K, = K, in the circumstances. Since the
ratios K/G and K,/G suffice to determine » and v,, respectively, one may calculate
these from the above formulae, and the results for »; = 0.25 are shown in Table 1.

The last line corresponding to a crack density parameter 0.20 may be outside the
range of validity of the non-interacting crack model; the full BupianskyY and O’CoN-
NELL plots of K/K, (K/K in their notation) against Na3(= &) seem to exhibit some non-
linearity in the range of larger ¢ in the table. The last three columns indicate the cor-
responding ratios of elastic unloading stiffness of the surroundings for undrained and
drained conditions, as discussed above in connection with fault stabilization by pore
fluids.
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Table 1. Drained (») and undrained (»,) PoIsson ratios for cracked rock as function of
the crack density parameter Na®. The last three columns give the ratio of the effective
elastic stiffness of the surroundings for undrained conditions to that for drained condi-
tions, for: (i) a narrow elliptical inclusion or crack sheared under plane-strain conditions,
(ii) a narrow axi-symmetrical ellipsoidal inclusion or penny-shaped crack under shear,
and (iii) a spherical inclusion under shear loading

Nad » - @) 11— (i) (1 —)(2 —vy) (i) (4 — 5v) (7T — 5vy)
1—w, (1 —2)(2 — ) (4 — 5, ) (7T — 5v)

0 0.25 0.25 1.00 1.00 1.00

0.10 0.19 0.28 1.12 1.07 1.08

0.15 0.14 0.30 1.22 1.12 1.15

0.20 0.05 0.31 1.38 1.20 1.24

For example, as RUDNICKI [31] remarked based on the EsEELBY solution for ellip-
soidal inclusions, a uniform shear stress 7;,, and shear strain y;;, (i.e., angle change
between initially perpendicular line elements) are induced within a locally homogene-
ous inclusion as in Fig. 1b, whether of linear or non-linear material, embedded in an
isotropic elastic solid subjected to a remotely uniform shear stress z,,. The relation
between the mismatch of the stress and strain fields, between the inclusion and the
remote surroundings, is independent of inclusion properties and has the form

Too — Tine = (G/ge) (Yine — Tl @) 5 (4)
where &, is the following function_ of the effective elastic Porsson ratio », and the semi-
major axis ¢ and semi-minor axis b of the ellipsoid:

£, = (——-ble)i (narrow elliptical inclusion in plane strain) , (5)
4(1 —
& = _(_v,_)_a (narrow axi-symmetrical ellipsoidal inclusion) , (6)
& = ————2(: —55‘"‘) (spherical inclusion) . (7
— 57,

(The second result corrects a formula given by RubpwNickr [31].)

The elastic unloading stiffness may be calculated as the derivative d7yc/0¥in. in the
above expression, holding 7, fixed, and hence is equal to — G/£,. Accordingly, the ratio
(1/&,)](1/€) is the ratio of undrained to drained stiffness, and it is this parameter
which appears in the last three columns of Table 1. Obviously, the strength of the sta-
bilizing effect is strongly sensitive to the effective crack density in rock surrounding
the region which is about to rupture.

2.4. Surface-chemical effects of pore fluids

There are significant surface-chemical effects of water on the strength of quartz-
based rocks (e.g., MARTIN [15]; ScrOLZ [33]; SwoLFs [38]; MARTIN und DurHAM [16]).
The effect arises from the time-dependent growth of microcracks, and corresponding
growth of macrocracks in technological ceramics and glasses in moist environments has
been widely studied in recent years (e.g., WIEDERHORN [43]; WacHTMAN [39] for
a review). Indeed, SwoL¥s [38] cites the chemical similarity between silica glass and
quartz-based rock, and notes that both show similar strength degradation when results
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in vacuum or dry air are compared to those in water, to argue that the phenomenology
of crack growth in glass may have a close resemblance to that in quartz rocks. This is
verified, e.g., by studies of Scaorz [33] and MARTIN and DurEAM [16], but the studies
in quartz have not yet been carried out with as much attention to the mechanical
characterization of the crack-tip state.

In contrast, for several glasses the process of moisture-assisted crack growth has
now been studied as a function of the tensile stress intensity k;, at speeds V ranging
from 10-? mm/s up to 10-! mm/s and larger (e.g., WacETMAN [39]). Over this range
the stress intensity factor doubles, approximately, from 0.3 to 0.4 MN m~-%/?2 at the
low speed to 0.6 to 0.7 MN m-%/?2 at the higher. Also, V for a given k; increases with
temperature (below the glass transition), and with moisture content of the surround-
ing air, being higher yet for liquid water than for air of maximum humidity. Fig. 2a
is redrawn from results on glass in liquid water at room temperature, although details
of the plateau are estimated from results in fully humid air.

Typically, the function V(k;) divides into three regimes. There is a high k;-regime
(Regime 3) in which environmental effects do not seem significant and V is rapid,
a lower k;-regime (Regime 2) in which environmental effects are present but V is
limited by the time required for transport of the embrittling species to the crack tip,
and finally a Regime 1, which corresponds to low values of k;. In Regime 1, V increas-
es exponentially with %;, although sometimes there is evidence for a threshold level

V crack speed Lmm/s]
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Fig. 2. a Crack growth in glass in liquid water, redrawn from plots of WIEDERHORN [43]
and WacHTMAN [39]; b tensile microcracks initiated from the tip of a closed fissure slip-
ping under frictional resistance s; 7 is resolved shear stress and k; is approximately pro-
portional tot — s for a very short tensile microerack; ¢ stress-strain curves; solid curve
for rapid deformation corresponds to ky at its short-time “critical” value; dashed curve
for much slower deformation corresponds to long-time *‘critical” value; d rapid defor-
mation, followed by deformation at constant stress, followed by rapid deformation;
based on WawErsik and BRACE [40]
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around k; ~ 0.3 MN m~%/? in moist air below which no growth seems to occur. In
other cases, e.g., liquid water environments, the ‘“threshold” levels are defined opera-
tionally as, say, speeds smaller than 10-7 mm/s, in view of the time required for ex-
periment, but it should be noted that this rate corresponds to approximately 3 mm/yr.
and, for long-term earthquake precursory effects, extending over 10 years or so, this
is a very rapid speed.

Thus it is of some importance as to whether a true threshold k;-level exists and,
if so, at what level. Thermodynamics requires that for non-negative entropy produc-
tion in elastic-brittle crack growth, the ‘“thermodynamic force’ associated with crack
growth must not be of a different sign than the crack speed V. This force is the differ-
ence between IRWIN’s elastic energy release rate and 2y, where 7 is the “surface energy”
of a newly exposed crack face as altered by surface adsorption from the environmental
species. Thus,

2G

For example, the value k; =~ 0.3 MN m~%? for glass, if interpreted as a true thermo-
dynamic threshold, would imply a y-value (i.e., that which makes the ‘“force’ vanish)
of approximately 0.4 J/m2. If long-term surface alterations can reduce y below this
value, then the %;-level is not a thermodynamic threshold, although obviously the
kinetics of any such growth would be extremely slow on a laboratory time scale.

We may note further that thermodynamics does not prohibit a negative value of y
in a sufficiently reactive environment. In this case thereis no thermodynamic thresh-
old to growth and growth is necessarily irreversible against subsequent healing, in the
sense that the entropy production inequality above prohibits a negative V. But posi-
tive y-values allow the thermodynamic possibility of crack healing, and this may be
an important mechanism of long-term strength recovery after faulting in lightly shear-
stressed rock.

The significance of the moisture effect on crack growth is suggested by Fig. 2b. In
compressed rock undergoing a process of local tensile microcracking from the tips of fis-
sures sliding under frictional resistance, the stress intensity k; at the microcrack tip can
be expected to be approximately proportional tor — s when the tensile crack is very
short compared to the sliding portion, where 7 is the nominal resolved shear stress in
the direction of sliding and s is the average frictional stress that resists sliding. Thus,
for very long-time stress alterations in moisture-containing rocks, the required v — s
for the onset of microcracking will be proportional to some near-threshold %;-value,
whereas short-time laboratory tests will show the onset of microcrack growth at the
larger 7 — s-value appropriate to an effective critical k;-value for more rapid crack
speeds. For the same reason, it may be expected that the entire stress-strain curve in
the regime of microcrack growth will be reduced in comparison to short-time labo-
ratory tests, as suggested by Fig. 2¢c. Note that the stress-strain curves in the non-
linear regime, reflecting the initiation and growth of microcracks, are determined by
the speeds V of crack growth at the prevailing crack-tip k;-levels. If we simplify the
V vs. kr relation to say that a short-time critical k;-value applies for rapid crack
growth and a smaller long-time critical value for slow crack growth, then the solid and
dashed lines in Fig. 2¢ correspond to continuously meeting conditions for k; to be at
its short- or long-time “‘critical”” values, respectively.

(1_”1@—2;)7;0. (8)
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More generally, such considerations suggest a framework for rock-constitutive rela-
tions in which the microcrack network and imposed stresses are regarded as independ-
ent variables on which the strain depends, albeit in a manner that suitably incor-
porates the ‘“‘path dependence” in stress space that arises from frictional contact.
Further, because local stress intensity factors are determined in a similar way by im-
posed stresses and the existing microcrack network, the rate of enlargement of the
network should be expressible in terms of the same two quantities, as a generali-
zation of V vs. k; data as in Fig. 2a. Obviously, to carry out the implied constitutive
development it is necessary that suitable ‘““internal variables’ be identified to charac-
terize the crack network, and this has not yet been done.

Nevertheless, the concepts are useful for discussing the stress-strain relation of
Fig. 2d, based on WAWERSIK and BracE [40], and involving rapid deformation to 4
under rapid stress increase, followed by deformation at constant stresses from 4 to B,
followed by rapid deformation beyond B. Evidently, the deformation from 4 to B
results from time-dependent microcrack extension under local k;-levels that are, at
least at B, reduced from those appropriate to rapid loading. But the rapid stress in-
crease in the range B to C may be assumed to involve little crack growth. Instead, the
local stress intensities k; are building in size, and when these attain a level consistent
with rapid crack growth, e.g., near point C, the original stress-strain curve appro-
priate to rapid deformation is rejoined. Thus BC in Fig. 2d may be interpreted appro-
ximately as an iso-crack-network line, corresponding to stress increase with local
frictional sliding on fissures but with negligible crack growth. This suggests that hold-
time tests of the type described might enable an experimental characterization of the
microcrack network in terms of the strain (such as that at C), which would correspond
to the same (or an approximately equivalent) network in a rapid deformation test.

Such concepts, based on time-dependent crack growth, have not yet been devel-
oped into a full enough constitutive description of rock to use in conjunction with the
rupture models of Fig. 1 and the subsequent sections. Neither is a full enough experi-
mental background on moisture-assisted crack growth available to examine their
relevance for long-time precursory behavior, e.g., on a 10 yr. time scale. Thus there
can be little incorporation of the effects in the following analyses, although such con-
siderations, together with the assessment of long-term re-strengthening processes as in
the DieTERICH [9] study of fault gouge, would appear to be important themes for
future work.

3. Iﬁstabi]ity based on inclusion model
Now, with reference to Fig. 1b and the discussion of Section 2.2.2, consider an
inhomogeneous zone which, for simplicity of analysis, is assumed to take the form of
an ellipsoidal inclusion in nominally elastic and homogeneous surroundings. As re-
marked earlier, the stress field within the inclusion is uniform if it is of homogeneous
material and the shear-stress mismatch between the inclusion and the far-field is relat-
ed to the shear-strain mismatch by the ESHELBY relation

Yine — Yoo = (&/G) (Too _Tinc) . (9)
Here the subscript “ine’’ refers to the inclusion, and the properties which enter (G and
&, given by equations (5) to (7)) are those of the elastic surroundings. Further, y,, =
= 7/@. This relation for shear is one component of the general ESHELBY relation

(et9)ine — (€)oo = Qumi[(O1)oo — (Ok2)ine] » (10)
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where the tensor @;;;; is given in specific cases through the work of RupNIcKI [31] and,
of course, the (¢;4), are related to the (ox:)e by the elastic stress-strain relations of the
surroundings.

For simplicity we shall work with equation (9) rather than (10) and assume that
Tinc 1 given as a function of y;,. for the inclusion material. First, following RupN1ck:
[30], [31], assume that the inclusion represents some ‘““weakened zone’’ and that its
stress-strain relation has the form marked “inclusion” in Fig. 3a. Two comments are
in order: First, the inclusion may dilate as it shears and, due to the constraint of the
surroundings, additional compressive stresses are induced (we ignore pore fluid effects
for the present). These will strengthen-the inclusion material and elevate its shear
stress-strain curve by comparison to that at constant mean stress. For a given multi-
axial stress-strain relation of the inclusion material these effects can be fully estimated
(see RupwNiIck: [31]); for simplicity here we shall assume that the 7y, vs. ;. relation
shown for the inclusion in Fig. 3a represents the in-situ relation, already incorporating
any effects of compressive stresses induced by dilation against the constraints of the
surroundings. Second, RUDNICKI’s [31] comparison of runaway instability conditions
for inclusions with the localization bifurcation conditions of RupNICKI and RicE [32]
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Fig. 3. Deformation and instability of inhomogeneous zones. a Weakened zone; b ap-
proach to instability; ¢ seismic gap zone; d fault zone; ¢ is relative slip, Ty is stress
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suggests that localization conditions may often be met before runaway. Hence the
presumed stress-strain relation for the inclusion may not reflect uniform deformation,
but rather deformation that is locally non-uniform and broken-up into incipient small
faults. Indeed, later in connection with the discussion of Fig. 3d, the case of an inhomo-
geneous zone having, from the start, the form of a shear fault is considered.

Returning to Fig. 3a, the determination of the state of stress and strain induced
within the inclusion by a given remote tectonic stressz,, can be reduced to a simple
graphical construction as explained by RicE et al. [27]: In addition to the non-linear
Tine VS. Yinc relation for the inclusion, we draw-a straight line representing the linear
stress-strain relation, T, = Gy, of the remote surroundings. Now let 7., and y., be
chosen to correspond to point 4. The stress and strain differences satisfy the EsgELBY
relation, equation (9), so that the state 7;;., ¥inc must be a point on the “EsHELBY
line’’ shown, of negative slope G/£, through 4. The state must also lie on the inclusion
stress-strain curve, and this defines the point A" shown, corresponding to 7;;, and ;.

If 7, is increased by tectonic processes as in Fig. 3b, the succession of inclusion
states is determined by intersection with the succession of EsEELBY lines (all of the
same slope). Finally, when 7, reaches point B, the inclusion is at point B’ and no
further tectonic stress increase can be sustained. Thisis an instability point (‘“‘run-
away’’), and the inclusion strains dynamically to some final state. As remarked in the
earlier discussion, at this instability point the strain-softening slope of the inclusion

has fallen to the ‘“‘elastic unloading’ slope (i.e., slope of ESEELBY line) of the surround-
ings.

Fig. 3b has been drawn so that the 7,-values shown are equally spaced. Hence, if
the tectonic stress rate is constant the time interval between successive 7,-values is
also constant. It is seen, however, that the successive increments of inclusion strain
Yinc 2re not constant. Rather, y;,, increases at an ever accelerating, although quasi-
static, rate until the instability point is reached and dynamic faulting ensues. As men-
tioned earlier, this acceleration of local deformation rates over remote tectonic rates is
a common precursor of fault models and would, presumably, correspond to a relatively
long-term effect by comparison to those effects arising from mechanical interactions
with pore fluids.

The seismic gap interpretation of the inclusion model is shown in Fig. 3¢. The
strain y;,. which enters formulae like (9) is, of course, measured relative to the un-
stressed state of the remote surroundings. Hence, for the seismic gap zone, y;,. is
Initially negative since the zone misfits by having lagged behind its surroundings in
adjustment to long-term tectonic motions. Accordingly, the 7j,, Vs. y,. relation is
shown rising to a peak at the left of the linea: stress-strain relation fo1 the remote
surroundings in Fig. 3c. However, the analysis proceeds as before. The ESEELBY line
through point 4 determines the corresponding state A’ of the inclusion, and we note
that in contrast to the ‘“weakened zone’’ model, now the inclusion carries greater
stress than the remote surroundings. Instability occurs when the remote surroundings
are at B and the inclusion at B’ as shown. Further, if dynamic perturbations of the
presumed uniform strain state and static stress-strain relation within the inclusion are
ignored, it may be assumed that the inclusion reaches a final state after faulting given
by B" in Fig. 3c.
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If the inhomogeneous zone in the model of Fig. 1b is very flat and fault-like, it
may be more appropriate to model it as a mathematically planar fault zone. Then the
appropriate constitutive relation is a stress vs. relative slip displacement, rather that
stress vs. strain, relation. Such relations could be developed by suitable extension of
the studies of BarToN [3] and DreTERICHE [10]. Now the ESHELBY relation of (9) is
replaced by the relation between the relative slip displacement d (i.e., of one side of the
fault relative to the other) and the difference between the remote shear stress 7, and
the shear stress 7y, actually carried by the fault. Presuming the latter to be uniform,
we have

_ — 2 12
_ 41 v)L-rw Tm[l r ] 1)

T a2 —) G T (Z)2p

for the relative displacement at distance r from the center of a penny-shaped shear
fault of diameter L. For the corresponding plane-strain geometry of a fault of length L
loaded in shear, the above formula applies with

replaced by (1 — ).

Recognizing that the displacement on the fault is non-uniformly distributed, for
simplicity we shall deal with the area-average fault displacement which is

8(1 — ) LToo — Tt

6= 12
3n(2 — v) G (12)

for the penny-shaped geometry, and
S — n(l - 1’) LTOO — Tfit (13)

4 G

for plane strain. _

The solid line in Fig. 3d represents the 7y, vs. 6 relation and is drawn to conform in
general to BARTON’s [3] stress vs. slip observations on “model” faults. The curve is
located in the negative d-range as appropriate to a seismic gap interpretation. Assum-
ing a penny-shaped geometry, equation (12) gives the line analogous to the ESHELBY
line of earlier figures, and it is seen on Fig. 3d how this allows computation of the fault
state at 4’ given the remotely applied stress at 4. Instability occurs at points B, B’.

We note that the unloading stiffness of the surroundings is inversely proportional
to the length L of the fault zone in this interpretation. Also, the fault is being modelled
as if it displaces in a more or less uniform way. If instead the mode of motion is the
crack-like spread of the slipping region as in Fig. 1¢, then a different analysis is re-
quired as in Chapter 4.

Following RupnickI [30] and RiIcE et al. [27], we now examine the means dis-
cussed in Section 2.3 by which mechanical interactions between the host rock and pore
fluids might lend initial stability to the inhomogeneous zones considered, in the sense
that abrupt failure does not occur at points B’ in Fig. 3. Rather, an initially quasi-
static period of accelerating strain then begins, on a time scale controlled by fluid trans-
port, and this leads finally to the dynamic instability.

8.
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3.1. Dilatant hardening of inhomogeneous zone

Consider an element of material that is stressed by a combination of pure shearz,
hydrostatic compression ¢, and pore pressure p. First we consider drained deforma-
tions (i.e., for p constant). When the stresses are altered so as to cause elastic response,
without frictional slip or microcracking, it is supposed that the incremental shear and
dilatant strains are

dy = d7|G@, de = —do/K , (14)

where G and K are elastic shear and (drained) bulk moduli; with reference to the in-
clusion model, these are not necessarily to be identified with corresponding moduli in
the surroundings. For more general stress increments we append ‘‘plastic’’ portions
d®y, d?e to the above expressions in the manner of RicE [24] and RuDNI1CKI and RicE
[32], assuming like them that a dilatancy factor f relates the non-elastic dilation to the
non-elastic shear,

d%e = pdry (15)

since both have their origin in frictional slipping and opening of microcracks. Further,
they assume that for stress increments causing non-elastic response

dPy = (dr — udo)/h , (16)

where & is the inelastic hardening (or softening, if negative) modulus and u a frictional
coefficient. RUpNICKI and RICE [32] suggest that for rocks studied by BrACE et al. [7]
and others, representative ranges of § and u are 0.2 to 0.6 and 0.5 to 1.0, respectively.

If alterations in the pressure of the infiltrating pore fluid are now considered in the
manner of RICE [24], for the elastic part of the deformation we replace

do with [do — (1 — K/K,) dp],
where K, is the bulk modulus of the solid phase (e.g., see Rict and CLEARY [26]), and
for the “plastic” part of the deformation we replace

do with (do — dp).

Then the complete incremental constitutive relations, assuming inelastic response, are

dv drv — u(do — dp)
dy = — 17
y=aT 7 , 17)
do —dp dp dv — u(de — dp)
de = ———— = — = . 18
€ z K‘-i-ﬁ 7 (18)

To these we must add a relation for the increment dm of fluid mass m per unit
volume. This is given in terms of the void-(or pore-)space volume fraction v by m = gv,
where ¢ = o(p) is the mass density of the fluid. Using the reciprocity relations discussed
by RicE [24] and RicE and CLEARY [26] for the elastic portion of dv and assuming
that the non-elastic portion is equal to d?¢ (RicE [24]), one may write

1 vdp 1 1 v
m [K KJ(do ) — 3-dp + B

where K| is the bulk modulus of the fluid.

dr — u(do — dp)

> »  (19)
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We may now compare the stiffness of response in shear for drained and undrained
conditions. In particular, considering deformation at constant hydrostatic stress,
do = 0, one computes a strain-hardening slope in shear under drained conditions by
setting dp = 0 in (17), giving

dr h
i - (20)
<dy)drained 1 + h/ G

so that the total shear stiffness is essentially equal to the “plastic’’ modulus % of (16)
when this is small compared to G. By contrast, for undrained conditions one sets
dm = 0 in (19) so that pore fluid alterations

dp = — h_g;w_r & (21)
occur as shear commences and, by (17), the corresponding strain-hardening slope is
(ﬁ) AN ke . o O (22)
@Y Junarainea 1 + (b -+ pBK’)[G
where the modulus K’ is given by
1 1 v 1+
¥ k%K K (23)

In comparing (20) and (22), it is seen that for undrained conditions the material de-
forms as if its plastic hardening modulus were 2 + ufK’ rather than k. Given the re-
presentative sizes of # and u and since, by (23), K’ will be of the same order as the
smallest of the drained bulk modulus K and the quantity K,/v, this is an important
effect. Indeed, it is possible that » would be negative while b 4 ySK’ is positive, so
that the material softens if drained and hardens if undrained. For heavily fissured rock,
the last term in (23) can be ignored and
- .Kj + vK ’

For liquid water at temperatures well below the critical point, K,(~ 33 kbar) is on the
order of K,/10 (> K/10) and, for most rocks, v is much less than 1/10, so that the term
vK in (14) is negligible and K’ ~ K. On the other hand, if K, is reduced to values much
smaller than vK by high temperature, low pore pressure, or the incomplete saturation
of pore space (e.g., if the “pore fluid” is liquid with entrapped gas bubbles), then
K’ ~ K;/v and, of course, K’ vanishes with K,, the dilatant hardening effect dis-
appearing in that limit.

The application of these results to the inclusion model is not simple for two rea-
sons. First, the constraints of the surroundings must be taken into account. As remark-
ed earlier, the 7, VS. 9, curves of Fig. 3 are intended to be in-situ relations, in-
cluding the effects of dilatantly induced compressive stresses. Thus the in-situ values of
(dz/dy) will not be as given by (20) and (22), although the undrained in-situ slope is
steeper than the drained and can, e.g., likewise be positive when the drained slope is
negative. Second, the response of the inhomogeneous zone is, of course, not fully un-
drained. Instead, a diffusion process is established by which the induced suctions are
gradually alleviated. This requires for its full analysis that ESEELBY relations such as

):¢ (24)
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(9), (10) be replaced by a more general set of time-dependent relations between the
values of oy, D, &;, and m within and outside the inclusion. Such relations have been
derived by RicE et al. [27] for the special case of a spherical inclusion that is assumed
to be highly permeable, by comparison to its surroundings, so that the pore pressure
can be taken as essentially uniform (although time-dependent) within it.

The reader is referred to Rupnickr [30] for the beginning of an analysis of the coup-
led dilatant hardening processes that take place beyond the “instability’ point B’ (as
predicted on the assumption of fully drained response)in Fig. 3. In fact, RUDNICKI neg-
lects the time dependence of elastic stiffness of the inclusion surroundings in his ana-
lysis, and concentrates instead just on the stabilization that arises from dilatant har-
dening. The same is done here in the discussion of the following two paragraphs, and
the complementary stabilization, arising from time-dependent elastic stiffness, is
taken up in the next section.

Indeed, with reference to Fig. 4, if there is only a small change in 7, from its value
at the instability point, according to the drained analysis, the dilatant hardening effects
will cause the inclusion state to move parallel to the EsBEELBY line through B’, devi-
ating from the dashed line continuation of the inclusion stress-strain curve for fully
drained conditions. The system is not dynamically unstable at B’ because, for rapid
deformations, the slope (dv/dy) has its undrained value, corresponding to the direction
of the arrow marked » emanating from B’. Of course, the corresponding arrow d for
drained conditions has the direction of the ESHELBY line at B’. As the system deforms,
on a time scale controlled by fluid diffusion, continued softening causes both the
u- and d-values of (dv/dy) to diminish, e.g., point C’ in the figure. Finally, a point D’
is reached at which the undrained (dv/dy) has fallen in value to that of the elastic
unloading slope, and dynamic instability occurs.

T
Eshelby line

(slope = unloading stiffness)

dynamic
instability

(.dl
a@Y/drained

Fd

Fig. 4. Stabilization of inhomogeneous zone by dilatant hé,rdening; dynamic instability
delayed to D’

While the full details of the process have not yet been worked out, e.g., for the
prediction of the rapid-creep-strain precursory time interval between B’ and D', it
seems evident that the process as described would involve a continuous regional lower-
ing of pore pressure up to the dynamic instability, without a period of pressure recov-
ery as imagined in some interpretations of ¥,/V-anomalies. On the other hand, the
model envisions more or less homogeneous strain within the inclusion up to the dynam-
ic instability, and it is possible that some gradual localization process could alter the
above conclusion.
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3.2. Time-dependent stiffness of surroundings

As remarked previously and, more extensively, in Section 2.3.2, a second source of
stabilization arises because the surroundings, when fluid-infiltrated, respond in an
elastically stiffer fashion to short-time stress alterations than to long-time. This effect
will always occur in combination with the dilatant hardening effect and, at least for the
inclusion model, it might be expected that both would have approximately comparable
time scales.

However, for simplicity of discussion we now assume that no dilatancy occurs
within the inclusion, its response being considered to be the same as if fully drained,
and we consider the inclusion when it has reached the point B’ in Fig. 5. The solid
EsHELBY line represents the elastic unloading stiffness of the surroundings, assuming
drained elastic properties, but dynamic instability does not occur at B’ because the
undrained elastic unloading stiffness, indicated by the dashed line, governs short-time
stress alterations. Representative stiffness differences that are expected for different
crack densities are shown in the last three columns of Table 1. For clarity of illus-
tration, the figure has been drawn with a much greater stiffness difference than any
listed in the table.

Because of these effects, the system continues to deform along the inclusion stress-
strain curve, again on a time scale controlled by fluid diffusion and the inelastic stress-
strain relation that is being followed. Finally the system reaches the point D’ at which
the softening slope equals the undrained elastic unloading stiffness and dynamic in-
stability occurs.

drained
undrained
(

}Eshelby line

dynamic
instability

inclusion

4

Fig. 5. Stabilization due to time-dependent elastic stiffness. The solid straight line repre-
sents the unloading stiffness for drained (d) conditions, the dashed line for undrained ()
conditions. Actual stiffness changes, d to %, will be smaller than shown

For a fuller analysis of the process one must employ the time-dependent generali-
zation of the EsEELBY relations for fluid-infiltrated solids as discussed earlier. Indeed,
for a highly permeable spherical inclusion deforming under pure shear loading, RIcE
et al. [27] found that the time-dependent strain state within the inclusion continues
to be spatially uniform (it is not known at present if this result applies to any wider
class of inclusions). Further, equation (9) then generalizes to

. i
Yinet) — Veoolt) = LG [ &, + (¢ — &) fle(t— 1)[a?]} [Too(t') — Tinc(t)] dF
e (25)
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where ¢ is time, the superposed dots denote time rates, £ and &, are given by (7) with
v, equal to » (drained) and #, (undrained) respectively, a is radius of the inclusion, ¢ is
the diffusivity of the pore fluid as it appears in the BroT consolidation equations, and
fl. . .]is a certain dimensionless function.

In fact, f(6) with 6 = ct/a? arises in the solution for the “strain” y of the interior
of a spherical cavity, with wall maintained at zero pore pressure, when the remote sur-
roundings of the cavity are subjected to a step-function increase in shear stress 7, at
t = 0. The function is plotted in Fig. 6, taken from RIcE et al. [27] with their param-
eter 7 (on which f(f) depends in only a very weak fashion over its admissable range)
set equal to 0.8. The figure also shows the relation of f(6) to the cavity ‘‘strain’ y, which
varies from its instantaneous undrained value y,, at § = 04, to its fully drained value
va as 6 — co. The other curve in Fig. 6 will be explained shortly.

F@) - _;Z :;“‘ for step loading
10+
08+
—_— T
f (8)
Q6 f—2a—
a2
8 - ct/a?
] 1 1 | L

a Q2 03 o4 a5

Fig. 6. Function f(6) arising in response of spherical cavity to step-shear loading, from
RicE et al. [27] with = 0.8; approximation based on standard linear model also shown

It is to be realized that (25) is, in effect, an integral equation for the strain within
the inclusion. The given quantity is the tectonic stress () (note that y,, = 7/G), and
the stress 7;,, within the inclusion is considered to be a function of y;,. as in Fig. 5, for
example. Thus (25) enables one, in principle, to solve for y;,., at least up to the dy-
namic instability point D’ in Fig. 5. The details of doing so have not yet been carried
out. The following section outlines a very approximate estimate of the precursory time
interval involved in the diffusion-controlled creep instability process from B’ to D’ in
Fig. 5. It is to be understood as being suggestive only, and not definitely indicative of
the results of a more precise analysis.

3.2.1. Approzimate estimate of precursor time

First, as suggested by the second curve in Fig. 6 we approximate the response of
the &pherical zone to step loading by that of a “standard linear model”. The fit is far
from perfect, the best match being made with a “relaxation time’’ of 1/8 in dimension-
less time 6, or in terms of real time

t, ~a*/8c ~0.1a%, (26)
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as shown. The equation analogous to the integral relation of (25) can then be written in
differential form as

d 1 d
(trd—t + 1) (yinc — ?’oo) = "G‘ (Eutrgi + E) (Too — Tine) - (27)

Here the parameters of the standard linear model are chosen to give correct short- and
long-term limits. Next, with reference to Fig. 7, the inclusion stress-strain curve in the
vicinity of peak strength and beyond is represented in the form

G
Tine = Tp — é}' (?’inc - yp)z . (28)

Here, 7y, yp are the peak stress and strain and, as shown, the curve is a parabola which
joins with continuous slope onto a straight line portion at a strain 4 prior to peak.

Az
-7 (kD) —————=
|
- (075 kb)—— l
; } parabola )
. 7p - (P-7p)
T =T Y-7e
A 2A
r(?.ooz?)'l'
G | I
(200k) |
| l L
, (Q00625)

Fig. 7. Inclusion stress-strain relation for analysis of time-dependent elastic stiffness
effects on stabilization of rupture

Inserting this into (27) and assuming that the tectonic stress rate 7., is constant,
(27) becomes the differential equation

dz (£ +atft,) Q@ —z(1 —az/2)

“a = 1= 9
where t = 0 when y;,, = ¥p, and where
2= Eu(?’inc - )’p)/ﬂ » &= E/Eu , @= E(l + &) tr%co/(G;“xz)
and
pa b (dra &0
1+E tie

with (4v.), being the difference between the actual value of 7., and that which would
correspond to equilibrium under fully drained conditions at y;,, = 9.

Note that z = 0 initially and that the dynamic instability point D’ of Fig. 5 cor-
responds to z = 1. Also, « is the undrained to drained stiffness ratio for which values
are shown in Table 1. The parameter Q expressing the tectonic loading rate will, in
general, be very small by comparison to unity.

Equation (29) has been solved numerically by writing this as an equation for
d(t/t,)/dz, and a precursory time interval ¢, is defined as the time for z to go from 0 to
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Table 2. Dimensionless precursor time for transition from drained to undrained insta-
bility point (B’ to D’ in Fig. 5), in terms of dimensionless tectonic stress rate @ of equation
(30), for stiffness ratio of 1.25

Q 1.3 x 10— 32 x 104 1.3 x10-2% 32 x10° 13 x 10— 32X 10
Uprec/ts 6.0 3.9 1.9 11 0.5 0.3

1, corresponding to the self-driven creep process from B’ to D’ in Fig. 5. Calculations
become expensive for small @, because the step size must be decreased proportionally.
Table 2 shows results based on« = 1.25 (which, judging from Table 1, probably over-
estimates the effect somewhat) and £ = 1.125. The latter would correspond to (47), =
= 0 and £ = 1, which is reasonable for a spherical zone.

The results of the table can be better appreciated in a dimensional form. To do this
we choose @ and A as in Fig. 7 (none of the other parameters of the figures are relevant
to the prediction of ¢,.,), we choose T a8 1 bar/yr., we consider two values of @, namely
1 km and 5 km, and we examine results for§ = 1 and 10. The first of these is reason-
able for a sphere; the second approximates to a flattened axi-symmetric ellipsoid
with aspect ratio of a little less than 20, equation (6), and we regard a as its semi-major
axis and refer to it as a ‘“‘slit”’. Further, we examine two values of the diffusivity c,
namely 1 m?/s, which is a value suggested by ANpDERSON and WHITCOMB [1] a5 being
reasonable for shallow earthquake regions, and a smaller value 0.1 m?/s, which is more
nearly in accord with well-head measurements near the San Andreas fault (Kovacr
et al. [14]). The results are shown in Table 3, where, for each value of @ and ¢, the pre-
cursory time f,.. is given for a “sphere” (£ = 1) and “slit” (§ = 10). The diffusive
relaxation time ¢, of (26) is shown as well. Note that the results for spheres of the 1 km
radius require smaller values of @ than those of Table 2, and the results shown were
estimated by extrapolation on a semi-log plot of @ against t,r./t,.

Table 3. Predicted precursory periodsin days [d] for the accelerated creep process taking
place after achievement of instability conditions based on drained elastic properties of
surroundings; based on ratio of undrained to drained elastic unloading stiffness of 1.25;
last column: based on a best-fit line of ScHOLZ et al. [34] through precursory data from
V5V s-anomalies, radon emissions, and crustal movements, with 2a identified as the
length of the aftershock zone

c=1m?s ¢ = 0.1 m¥s ScEOLZ et al. {34]
a=1km t, = l1l2d &y = 11.6d
¢ — 4 d, slit ¢ = 12 d, slit tprec = 8d
Pre¢ ™ 123 d, sphere Pre¢ ™ 1120 d, sphere

t, = 29d t, = 290d

a=35km _ 174, slit __[38 4, slit tprec =~ 200 d
prec = {145 d, sphere prec = {435 d, sphere

The last column of the table is based on a “best-fit”” correlation by ScroLz et al. [34]
of precursory time intervals (based on ¥,/V,-anomalies, radon emission, and crustal
movement) with length of the aftershock zone, identified here as 2a. Of course, the
actual events on which the line is based deviate by factors of the order of 2 or so from
this line. The predicted results correspond well enough with the range of the data that
it would seem advisable to give a fuller examination to the role of pore fluids in stabi-
lizing earthquake ruptures.
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4. Spread of slipping region on fault

In this chapter we consider models for the inception of rupture of the type in Fig.
lc, in which a slipping region spreads in a shear-crack mode under initially quasi-static
conditions until instability conditions, marked by dynamic, inertia-limited fault pro-
pagation, are met. Some aspects of this type of model have been discussed in Section
2.2.3 and, as emphasized there, predictions of whether the slipping region spreads in
a stable quasi-static, or in an unstable dynamic, manner are sensitive to heterogeneities
of strength and driving stress and also, of course, to details of the constitutive depend-
ence of the local shear stress, 7, along the fault on the relative slip, 6. As remarked
earlier, work such as that of BarTox [2], [3], DreTERICE [9], [10] and others reveal
dependences of 7 on ¢ at the onset of slip, on ¢ during steady slip, on the time of
stationary contact, on the relative roughness of the sliding surfaces and strength of
the adjacent rock, possibly as influenced by surface-chemical effects of pore fluids, and,
of course, on the intensity of the effective normal stress, o — ».

A constitutive description inclusive of rate effects due, e.g., to chemical factors and
bonding at micro-contacts seems out of reach at present, but some principal features of
constitutive response at the onset of relative slippage on a well-bonded, previously
quiescent fault can be included with reference to Fig. 8. This is based on the slip-sur-
face model of PaALMER and RiIcE [22]; see also Rick [23] and Rick and CLEARY [26].
The upper portion of the figure shows the edge of a slipping region which is spreading
along a fault, and the distribution of shear stress 7 is considered to be such that a criti-
cal level 7 is needed to initiate the “breakdown’ process at the fault tip, and that v
falls gradually to a limiting friction level 7 within a ‘‘breakdown zone’ of size w. In
fact, as shown on the lower left, the stress 7 is taken as some softening function of the
relative slip, and (lower right) the levels 75 and 7, as well as the entire t vs. § function,
are elevated by increases in the effective normal stress, o — p.

Parmer and Rice [22] showed that the cross-hatched area may be identified as the
critical fracture mechanics energy release rate, ®y;, for fault spreading. This arises
in the sense that the spreading criterion predicted by their model may be cast in the

!5

5§ _1.7
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'—\
o5 . breakdown zone
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o for 7
K /'— - . for a fixed &
9 for %

areg = Ferit

5 o°p
5 slip d/sp(acem?nt effective normal stress

Fig. 8. Processes near the edge of a’slipping region which is spreading along a fault. The
strength z depends on relative slip 6 and effective stress ¢ — p, and although not shown,
on slip rate § and time of stationary contact. After RiceE and CLEARY [26]



116 J. R. RicE, Theory of Precursory Processes ete.

elastic fracture mechanics form of equation (1) whenever the breakdown zone size w
is small compared to overall dimensions of the slipping region, where &, for which the
critical value is given by (1), is the shear-mode elastic stress intensity factor that would
be calculated if the breakdown zone were ignored and the stress on the fault assumed to
equal 7 everywhere. This % is proportional to the excess of 7, over 77. For example, if
the slipping region in Fig. 1¢ has a penny-shaped form of diameter L, then

b=t (1o —72) (L2 1)
(2 —»)m
at the edges which advance by in-plane shear (anti-plane shear conditions prevail at
the edges 90° removed from these, and mixed shear at all other locations; these necessi-
tate appropriate but well-known generalizations of (1)). Also, for the corresponding
plane-strain shear-fault model,

k= (v —Tr) (=L/2)Y2 . (32)

The parameter  indicated on Fig. 8 is a measure of a representative slip displace-
ment for the breakdown process, and it is defined by

8 = (Area)/(vs — 7¢) = Bemi/(zs —77) - (33)
DierErIcE’s [10] study of slippage on flat-ground surfaces of Westerly granite suggests

a d-value of 2 to 3 pm, but it would perhaps be expected that larger-scale roughness
protrusions on natural faults would lead to larger -values corresponding, in Bar-
TON’s [3] analysis of shear strength, to the slip required to deform or rupture the pro-
trusions. Indeed, results of CoursoN, quoted by BartoN ([2], Fig. 6), on shear of a “na-
tural joint in coarse grained granite’ suggest -values a thousand times larger, in the
range of 2 to 3 mm. The size w of the breakdown zone (Fig. 8) will be much greater
than ¢ due to the elastic constraint of the surroundings. Using the calculation of
ParvEr and RicE, based on an assumed linear variation of stress from 7 to Tr over
the distance w in the upper diagram of Fig. 8,

9 Q@ =
w = d.
16(1 — ) t3 —7F

For example, taking @ = 200 kb and 73 — 7 = 100 b as representative, ® ~ 12 m
when § is 2.5 mm, representative of CouLsoN’s natural joints, and w =~ 12 mm when
0 is 2.5 pm, representative of DIETERICH’s flat-ground surfaces. Such estimates are
important to attempts at laboratory study of confined slipping zones on faults as in
Fig. 1c (e.g., DrETERICE [10]); @ must be very small by comparison to specimen dimen-
sions for such a region to exist of reasonable similarity to what is, presumably, pos-
sible in-situ.

Now, there is ample evidence that the creep-like spread of slipping regions can oc-
cur along faults (e.g., Kmve et al. [13]; NasoN and WEERTMAN [19]) and accelerating
creep is widely regarded as a typical short-term precursor to earthquakes. Hence it is
important to establish the mechanism of creep motions and the conditions under
which these destabilize to seismic rupture. As remarked earlier in discussion of STU-
ART’s [36] model, some degree of accelerating precursory fault creep seems to be an
inevitable prediction, even for a completely rate-independent material model, when
spatial heterogeneity of strength along fault surfaces and the gradual build-up of re-

(34)
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mote tectonic loadings are considered. The reasons are similar to those illustrated for
the inclusion model in Fig. 3b. But the creep observations suggest that the process
may have a far more rapid time scale and that some essentially rate-dependent aspect
of material behavior serves to stabilize the slipping region, in the sense that an in-
creasing stress intensity % is required for an increasing, but still quasi-static, fault
spreading speed V. This stabilizing mechanism is, presumably, what allows fully stable
creep-like slip events as reported by Kine et al. [13] to occur. Further, the exhaustion
of the stabilizing mechanism corresponds to the transition from precursory fault creep
to an earthquake.

Two promising mechanisms for thistype of fault stabilization arise from themechan-
ical interactions with pore fluids in a fluid-infiltrated rock mass, and are described in
the next sections. Equally or more important mechanisms might arise from time effects
of a surface-chemical type, e.g., from the environmentally assisted growth of micro-
cracks in regions of asperity protrusions or from time dependence of gouge cementation
at microscopic contacts. Indeed, studies of the friction process like that of DIETERICH
[10] may lead to a mechanism based on such considerations, although, to the writer’s
knowledge, no viable model has yet been proposed.

4.1. Dilatancyin the breakdown region

BarToN [2], [3] emphasizes that natural rock joints brought into stationary contact
dilate slightly as they are sheared toward peak strength. Indeed, BArToN further sug-
gests that this dilation can be suppressed only by normal stresses (or, for fully closed
joints, combinations of triaxial stresses) that reach levels appropriate to rupture of the
rock bordering the joint, and that the transition between sliding with a strength drop,
e.g., as in Fig. 8, and fully stable sliding without strength decrease can be explained in
terms of attaining stress levels that suppress dilation.

With this in mind we consider in Fig. 9a a model similar to that of Rice [23] for
slip surfaces in soils. Here a dilatant opening of total amount H is assumed to occur
within the breakdown zone as the slipping region spreads at a steady speed V along the
fault surface. This dilation induces a suction distribution in the pore fluid, and the
particular distribution shown was calculated by RicE [23] in a manner discussed also
for the present context by RI1cE and CLEARY [26], based on the following assumptions:
The dilation is assumed to be equivalent to the induction of a flow of liquid into the
zone o at a uniform rate, such that a net volume H per unit area is indrawn in the
time «/V that it takes the breakdown zone to pass by. Hence the volumetric flow rate
into the fault from each side is VH /2w per unit area (transport along the fault is neg-
lected). The pore pressure field is assumed to satisfy the one-dimensional consolidation
equation

cd®p|dy® = dp/ot, (35)

where c is the diffusivity and y the direction normal to the crack. Further, the volu-
metric flow rate per unit area is x dp/dy, where x is a permeability coefficient, and the
diffusion equation is solved subject to the boundary condition that the flow rate at the
fault surface be VH/2w while a point is within the breakdown zone, and zero otherwise.
The resulting suction (—A4p) rises in proportion to /2, where, r is the distance from
the tip of the slipping region, and reaches a maximum of (RicE [23]; also RIcE and
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CLEARY [26], eq. (54))

/2 1/2
(—Ap)max=H_c—( 14 )l =H.M(__V_.) (36)

»® \7Tcw JTCW

at the trailing edge of the breakdown zone. Here the ratio ¢/, which is independent
of fluid transport properties, is written as M ; this is a kind of elastic modulus (e.g.,
RicE and CBLEARY [26], eq. (17)) and, in the special case for which the fluid and solid
constituents are regarded as separately incompressible, M is the elastic modulus for
fully drained one-dimensional straining.

dilatant
fe— o —{ opening

(-2 P)max

Y (-ap) - suction

7—<\‘ —— % b
e (-4p) % + % (15 -%)

F

T
Mg (-4p) !

Fig. 9. Dilatancy in fault-tip breakdown zone. a Suctions induced by dilatant opening
H as slipping region spreads quasi-statically at speed V; b shear-stress distribution as-
sumed for analysis of fault stabilization by dilatancy, following RicE [23]; the friction
coefficient is 4 p in the breakdown zone and up along regions of the fault subjected to
larger amounts of sliding

The effect of the pressure distribution on the resistance to slip is illustrated in
Fig. 9b. Following Rice [23], the basic frictional resistance, without pore-pressure
effects, is simplified to piece-wise constant stress distribution shown, with the drop from
one level to the other at 6 = 39/2. The 2/3-factor on stress and 3/2 on displacement are
chosen so that the area under the 7 vs. § curve and formula for w given earlier remain
the same, at least to the neglect of the suction effect, despite the simplification. The
suction is assumed to translate directly into a corresponding increase in the effective
normal stress, and assuming friction coefficients uy within the breakdown zone and up
outside it, this causes the augmentation of shear resistance as shown in Fig. 9b.

Assuming that the augmented shear strength differs significantly from 7 only
within a zone that is small compared to overall fault length, Rice [23] analysed the
problem as if the shear distribution shown acted on a semi-infinite shear crack in plane
strain and found that the breakdown zone size was (RicE [23], eq. (21))

o = wf(L + B —fF,

where

_ (37)
p=3 (a0 )1 _10g2) — pelog 2],
8 T — TF
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and where w, is the value of w given by (34) and (— 4p)ax, o corresponds to the quan-
tity of (36) with w replaced by w,. Further, the stress intensity factor %, based on excess
of 7, over 7 as before, required to drive the shppmg region against this augmented
resistance, is (RICE [23], eq. (22))

1/2
B (2—‘“) {3 (ts —2) + (—AD)mes [yg + 5 pelog (il)]} (38)
ew

4

where e ist the natural logarithm base, where the logarithm actually arises as the
asymptotic form of a term which it closely approximates when I/w is greater than 2 or
so, and where ! is an outer cut-off dimension for the suction distribution. The latter
arises because the slipping region has beenmaodelled as being of semi-infinite extent and
having spread at a steady speed for all prior time. This makes the expression for k un-
bounded, and the cut-off 7 can be regarded as the radius of the slipping region or, per-
haps better, the distance over which the slipped region has spread at speeds which are
of magnitude comparable to the current V. Fortunately, there is only a weak depend-
ence on [ (Table 4).

Table 4. Dependence of 4 on cut-off length 7

lw, 10 10? 103
A, forup =0.5up 1.26 1.69 2.11
A, forpp=pup 1.88 2.74 3.59

Substituting (37) into (38) and neglecting higher powers of (—4p) sy 0/(tz — TF)
than the first, one obtains

k = kmb [1 +AP’B( Ap)max, ] (39)
(ta —7r)
or, using (36) and (34),
M H[(l —v) GOV
= — 4
bk f1 4 [ C0ET (0)

as the stress intensity factor required to drive the spreading region at speed V. Here
4=2 [log (2e) + EZ1og (81/ew,) ] (41)
8 127

and ke, to which the above formula for k reduces when ¥ = 0+, is the same as in (1),
namely the critical value that would be calculated by neglecting any pore-fluid effects:

1/2 _ ST/2
Bouei = [ 2¢ @cm] — [M] ) (42)
1 —v 1—v

Table 4 shows that the factor A which enters (39), (40) is not strongly dependent
on the cut-off length I. For example, recalling that w, may be of the order 10 m for
natural faults, the table covers a range from approximately 100 m to 10 km for I. For
Table 5, which gives some results based on equation (40) for k, 4 has been taken as
2 and the following choice of parameters has been made: 6 = 2.5 mm, which seems
consistent with the CouLsox results on natural granite joints reported by BarTon [2];
¢ = 0.1 m?[s, toward the larger end of the range suggested by well-head measurements
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made near the location of recorded creep events on the San Andreas (KovacH et al.
[14]), but smaller than the ANDERSON and WHITCOMB [1] value of 1 m?/s; up = 0.7;
M|G = 3; @ = 200 kb; 73 — 7 = 100 b, chosen toward the upper end of the seismic
stress-drop range; v = 1/4; and H/6 = 1/5, which represents an average dilation angle
of about 8° within the breakdown zone, and is rather toward the lower end of the ex-
tent of dilatancy reported in various cases by BarTox [2], [3]. These choices, all-of
which have some degree of arbitrariness, lead to

Vv \v2 v o\u2
k= kg [1 + 0.23 (m) ], (—AP)max = 17 (m) bars ; (43)
numerical results based on these expressions are given in Table 5.

Table 5. Increase with speed V of the maximum induced

suction and the stress intensity factor k required to spread-
the slipping region; parameters chosen as in text

V [km/d] o+ 1 10 100
(_Ap)max [bal‘s] 0 17 54 170
o/ Ferit, 1.0 1.23 173 3.30

The increases with ¥V of the required k for fault spreading as shown in the table sug-
gest that dilatant opening at the onset of slippage can be an important factor in
stabilizing faults, causing slip to occur by creep rather than seismic motions. The speeds
in the table cover the entire range of creep events reported by Kine et al. [13] and
most of these events fall in the 1 to 10 km/d range. The stress intensity required to
drive the fault is seen to increase substantially in these ranges.

Presumably, the increase of k saturates at sufficiently high speed for two reasons.
First, the induced suction may become sufficiently great that the liquid vaporizes or,
perhaps more likely, that gases come out of solution, effectively cutting-off any
further development of suctions. Second, since the suction amounts to an increase in
effective normal stress, the effect may ultimately be self-arresting because, as BARTON
[3] shows, the amount of fault dilation decreases with increasing effective normal stress.

There is at present no reliable means of estimating this maximum possible k-value,
but its significance for the earthquake mechanism is obvious. If the excess of 7, over tp
or the size of the slipping region becomes so large that k, e.g. as calculated from (31) or
(32), exceeds this maximum value, then further quasi-static slippage is impossible and,
instead, dynamic faulting must occur.

An upper estimate, although probably quite severely so, to this maximum k can be
obtained by setting the maximum induced suction equal to the hydrostatic, or
equilibrium, value of the pore pressure. The latter is 500 bars at a depth of 5 km, and
equations (43) predicts a suction of this size when V = 865 km/d (which is outside the
range of the approximation that led to (39), (40)); the corresponding estimate of the
upper bound to the maximum possible k-value is 7.8 k.

4.2. Effects of Biot time-dependent elasticity on shear fault
motion

As remarked in the general discussion of Section 2.3, and seen already for the in-

clusion model in Chapter 3, there are two means by which fluids can stabilize the rup-

ture process and both apply to the spreading slip-region model of this portion of the
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paper. Dilatant strengthening has just been discussed and the complementary effects
of time-dependent Bior elasticity, remarked upon in different ways for shear faults by
Nur and BookEr [21], BookEr [5], RicE [23], and Rick and CLEARY [26], have been
studied with the aid of a solution to the BioT-coupled deformation-diffusion equations
for a spreading shear fault by Rick and Smoxs [28].

-
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Fig. 10. The nominal stress intensity factor, knom, required to achieve kit at the tip of
a plane-strain shear fault, uniformly loaded over distance I, that moves at steady speed
V in a fluid-infiltrated elastic material (R1CE and Smvoxs [28]). Portion of axis marked
corresponds to stable creep events (KinG et al. [13], Nason and WEERTMAN [19]),
assuming ¢ as shown

Their solution pertains to a semi-infinite fault which is loaded in plane-strain con-
ditions and which advances in a steady state with speed ¥V, so that the deformation
field seems fixed relative to an observer moving with the fault tip. The fault surfaces
are shear-loaded by uniform tractions extending a fixed distance ! behind the fault tip
as indicated in Fig. 10, and these loadings are intended to simulate approximately the
effect of an excess of 7., over 7y along a natural fault of length /, moving at instanta-
neous speed V.

We let k,,, be the “nominal’ stress intensity factor in an ordinary elastic solid,
without pore pressure effects, loaded identically to what is shown in Fig. 10. What
RicE and Smoxns [28] find is that the solution to the coupled BroT equations for the
shear fault contains the same kind of characteristic inverse square-root stress singu-
larity at the fault tip as in ordinary elasticity. Further, the pore pressure is found to
vanish at the fault tip. Hence the near-tip singular field is of the same kind as could
exist in a faulted solid under fully drained conditions, but it is found that the stress
intensity factor k of this singular field is not the same as that, namely k., for an
identically loaded ordinary elastic solid, but is instead related to it by

k = kyoh(Vic) . (44)
The function A(...) which enters here is found to decrease from unity to (1 — #,)/
(1 — ) as its argument increases from 0 to co.
RicE and SmoNs [28] observe that since a region sufficiently near the fault tip al-
ways undergoes drained deformation, the simplest criterion for fault spreading, valid
9 Gerl. Beitr. Geophys. 88/2
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when that region is large compared to the breakdown zone size, is to demand that %
equal the critical value which would pertain under fully drained, ordinary elastic con-
ditions, namely k;; as given by (42). Thus, the criterion of fault motion is

erit = knomb(V1/c) or Fnom = Kerit/R(V/c) . (45)

Hence kyom ket increases steadily with the spreading speed, from unity when ¥V = 0
to (1 — #)/(1 — »,) when V becomes large. The term involving the Porsson ratios is
the same as listed in column (i) of Table 1. The curves in Fig. 10, replotted from Rice
and SmMoNs [28], demonstrate the stabilizing effect. Of course, when the tectonic load-
ing or extent of the slipped area is such that the nominal fault-tip %-value exceeds
the maximum shown in the figure, quasi-static slippage is no longer possible according
to the model, and the dynamic rupture must ensue.

Fig. 10 also shows the portion of the Vl/c-axis that corresponds to typical creep
events reported by Kine et al. [13] and by Nasox and WEERTMAN [19], assuming a
c-value within the range of the Kovaca et al.[14]well-head measurements. The ANDER-
soN and WHiTcoMB [1] c-value, 10 times larger, would shift the data range one power
of ten to the left. In either case it seems plausible that the observed creep slippage
events are being stabilized, and hence made possible as quasi-static rather than dy-
namic events, at least in part, by the effects under discussion.

As remarked, the criterion (45) is sensible only if the effectively drained region at
the fault tip is large compared to the breakdown zone size w. This will be so only if w
is much less than ¢/V; a more complete analysis, based on a simplification of the 7 vs.
0 relation of Fig. 8 to a simple form. as in Fig. 9, was also carried out by RicE and
Smons [28]. They find that for finite e/l the curves of Fig. 10 do not rise monotonically,
but rather pass through a peak and decrease to an asymptotic value, at large Vi/c,
which is the square root of the asymptote shown. Considering, for example, the upper-
most curve in Fig. 10, rather than rising monotonically to 1.78, the curve peaks at
approximately 1.58, 1.69, and 1.74 when o/l has the respective values of 10-2, 10-3, and
10-%. The values Vl/c at these peaks are, respectively, 180, 625, and 2550. It may be
presumed that the peaks mark instability points, since the ky,, vs. ¥ relation de-
creases beyond them. That is, if no other stabilizing mechanism is operating simultane-
ously, the peak marks the largest possible %,,,-values and the largest possible speeds
of fault creep. The interpretation of these results is discussed further by Rick and
SiMoxns [28].

It should be noted that there is no stabilizing effect of the kind considered in this
section for a two-dimensional anti-plane strain fault model. In that case every element
of the material deforms in pure shear, and no Bror-like excess pore pressures are gener-
ated. Of course, the dilatant strengthening effect of the last section remains for anti-
plane shear faults, and the appearance of the PoIssoN ratio in expressions for slip on
three-dimensional faults (e.g., equations (11), (12)) suggests that these will show Bior
effects all around the fault border, including locations where the local deformation is
of an anti-plane shear type.

5. Localization into a shear zone

Chapter 3, based on the inclusion model, envisioned a more or less homogeneously
deforming zone up to the moment of dynamic instability, whereas the limiting version
of that model depicted in Fig. 3d and the considerations of Chapter 4 envision defor-
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mations that are localized from the start in a fault zone. It remains an open question
as to whether natural, versus laboratory, faulting ever or often involves significant
inelastic deformation which occurs in a diffusely distributed mode that gradually
concentrates into a localized shear band. Further, neither a constitutive formulation
nor the theory as so far developed is suitable to examine localizations in materials
undergoing rate-dependent inelastic deformation due, e.g., to the long-term surface-
chemical effects discussed earlier.

Indeed, as explained briefly in Section 2.2.1 and in the recent review of the subject
by the author (RicE [25]), the theory as studied thus far deals with materials having
rate-insensitive incremental constitutive relations of the type

0y = Lydudz (46)

where ¢’s are stresses, u’s displacements, z’s cartesian co-ordinates fixed in space,
where the superposed dots denote rates following material points, and where the in-
cremental moduli Z;;, vary with the history of deformation to the current deformed
state and, generally, have a dependence on the ‘“‘direction’ of the velocity gradients as
would distinguish elastic unloading from inelastic loading, or would make more com-
plicated distinctions among inelastic loading directions, e.g. at a ‘‘yield vertex’’.

The localization bifurcation is addressed by considering a homogeneously deformed
state and asking when the next increments of deformation need not be unique but,
rather, can either continue the homogeneous deformation mode or bifurcate in a band-
like mode, with stress rates and velocity gradients varying with position in the direc-
tion of some unit vector = as in Fig. 1a. When such an # exists, the plane to which it is
normal is said to be a plane of incipient localization (or ‘“‘shear band’’). The conditions
which must be met for incipient localization are that velocity gradients anywhere
within the band satisfy the kinematical condition

Oty [0, = (0ur/02,)° + gam (47)

where the g, can be arbitrary functions of position in the direction of n and where the
superscript 0 denotes the corresponding homogeneous field outside the band, and that
for continuing equilibrium

ni&ij = ni&% ’ . (48)
where again the 0 refers to the uniform outer field. Further, when the same constitutive
moduli L;y, apply inside and outside the band at incipient localization, which can be

shown to be the gravest case for a wide class of models of inelastic solids (RUDNICKI
[30]), the condition reduces to the requirement that

(n:Lygmy) g = 0 (49)
has a non-trivial solution for the g’s. That is,
det(n:Lym) = 0 - (50)

when the quantity in parentheses is considered as a 3 X 3-matrix with indices j and %,
and where ‘“‘det’” means ‘“‘determinant of”.

The theory was applied by RupNickr and RicE [32] to the simplest tensorial gener-
alization, based on the first and second stress invariants, of the drained version of the
pessure-sensitive, dilatant constitutive relation discussed in Section 3.1. This relation

9.
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is .
1 . . . 1 (o, o
E(au,-/ax, + duy/dx,) = 2G 0 + ;jo'u- +— ( 4 + ﬂ )( 42 51:1)011:
(51)

Here, G, K, h, u, and § have the same interpretations as in 3.1, 272 = o;;0;;, 0;; denotes
deviatoric stress, and J;; is the KRONECKER (or unit) tensor. The stress rates are to be
interpreted as ‘‘corotational’’ rather than ordinary material rates here, although the
distinction is not essential for the results to be presented.

We note that when the dilational and frictional factors are related by 8 = u, the
stress-strain relations are said to exhibit “plastic normality”. Such cannot be expect-
ed to be a good approximation for rock deforming by frictional mechanisms and, in-
deed, experimental results when fitted to the above constitutive relation suggest that
p and p differ, the former being the smaller.

Under fairly general conditions on the range of the constitutive parameters, Rup-
NIckI and RicE [32] find that localization can first occur in a program of deformation
when the inelastic hardening modulus % has decreased to the critical value

149
9(1 —

where terms of order 7/G are neglected compared to unity, where » is the elastic Pois-
SON ratio based on K and (, and where a version of the result given by RicE [26] is
reported, in which P is the intermediate principal value of the tensor in parentheses
immediately following 1/A in (51). As such, P is some normalized measure of the inter-
mediate principal value of the inelastic portion of the strain rate.

hcrit =

—ﬂ)za—l‘;”(zP+”—;’3)2G, (52)

It is seen from (52) that whenever u differs from g, i.e., when “normality’’ does not
apply, localization is possible under a positive hardening modulus % for some range of
deformation states. This range includes always those states for which the inelastic de-
formation rates correspond to ‘“‘plane strain”, in the sense that the intermediate prin-
cipal inelastic strain rate vanishes so that P = 0. Then

(14 »)?
bt = ——— (0 — B)2G. 53
crit 18(1 _ 'V) (:u' ﬁ) ( )
This is not, however, the gravest state, which occurs for P = —(u — B)/6.
On the other hand, the Ay, predicted by (52) is almost always large and negative
(—0.3 to —0.4 G for representative u and ) in axi-symmetric compression.

This review of results may be suificient to emphasize that large-scale post-peak
strain-softening behavior, as envisioned in some precursory concepts, can be expected
to exist without some degree of localization only in very special deformation states, and
for the most common plane-strain-like tectonic deformations, localization could occur
before peak conditions are attained. Some additional topics which need more study in
this connection include localization behavior based on “vertex-like” yield models,
which Rupnickr and RicE [32] and Rupnickr [29] argue to be rather generally im-
plied by concepts of frictional slip on microcracks, the role of small initial non-uni-
formities of material properties in concentrating deformation (e.g., RICE [25]), and,
of course, the generalization of the theory to a wide class of rate-sensitive constitutive
relations. :
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6. Conclusion

A wide variety of models for processes precursory to earthquake rupture have been
reviewed. The study is organized around failure modes involving localization, defor-
mation to‘‘runaway’’instability of an inhomogeneouszone, representing either a ‘““weak-
ened” or a seismic gap zone, and the spread of slipping regions along pre-existing
faults. One of the least satisfactory elements of current theory is the lack of suitable
inclusion in constitutive relations, for rock masses or for fault slip, of long-term time-
dependent effects, presumably of a surface-chemical origin,and involving time-depend-
ent crack weakening as well as cementation at contacts.

It is emphasized that a general precursor for all types of rupture models, and partic-
ularly inclusive of those based on time-independent material models, is the accelera-
tion of local deformations relative to remote tectonic deformations as eritical conditions
for instability are approached. Some constraints suggested by the models on the nature
and spatial extent of large-scale precursory dilatancy are discussed.

Further, it is argued on the basis of some mechanically consistent, quantitative
models of rupture processes that the mechanical interactions between a rock mass and
infiltrating pore fluids can give rise to distinctive short-time precursors. These effects
arise from the complementary processes of dilatant hardening in non-elastic defor-
mation, and of time dependence of effective elastic stiffness due to BroT coupling of
deformation and diffusion. Both serve to stabilize rock masses and fault zones against
abrupt failure, giving rise instead to periods of creep that may, sometimes, be accel-
erating precursors to dynamic rupture, and that may sometimes allowthe completely
quasi-static, rather than dynamie, relief of tectonic loading.

This paper was prepared under support of the NSF Geophysics Program and the USGS Earth-
quake Hazards Reduction Program. I am grateful to V. I. MyacERIN for encouraging its prepa-
ration and to M. P. CLEARY, J. W. RUDNICEI, and D. A. SmmoNs for various discussions relating to
its theme.
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