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Abstract-The problem of a spherical cavity which is embedded in a linear, fluid-infiltrated, elastic porous 
medium and which is subjected to the sudden quasi-static application of a stress at the cavity boundary is 
solved. It is demonstrated that the deformation of the cavity is homogeneous regardless of the boundary 
condition imposed on the pore fluid at the cavity wall. For the case in which the pore pressure vanishes at 
the cavity wall, the time dependence of the cavity strain is evaluated explicitly and is shown to vary 
between the limits of the ordinary linear elastic response based on the short-time (undrained) and on the 
long-time (drained) properties of the fluid-saturated solid. The results are then used to obtain a relation 
between the uniform stress or strain applied at infinity and the stress and strain in a highly permeable, 
possibly non-linear spherical inclusion. The application of this relationship to a study of earthquake 
premonitory processes based on the deformation of a rock mass with a spherical weakened zone is 
outlined. It is argued that the fluid coupling effects serve to stabilize the weakened rock against rapid 
fracture. and give rise instead to a precursory period of accelerating but initially quasi-static straining which 
ultimately leads to dynamic instability. 

INTRODUCTION 

fund-i~~ltratio~ of an otherwise elastic porous solid introduces a time dependence into the 
response to applied loads. For deformation which is much slower than the characteristic time 
for the diffusion of pore fluid, the local pore &id pressure in each material element remains 
constant and the response is said to be drained. Conversely, when load alterations are rapid by 
comparison to the diffusion time, the local fluid mass content in each material element remains 
constant, and the response is undrained and elastically stiffer than the drained response. This 
time dependence has been proposed as a possible factor in accounting for several features of 
earth-faulting processes: migration of aftershocks[l,2], stabilization of incipient faulting[3], 
fault creep[4], and premonitory events for earthquakes [5-71. It is also relevant to a wide range 
of geotechnical problems including hydraulic fracture [e.g. 3, 81 and soil consolidation [9, lo]. 

An exceptional instance in which the response is time-independent even in the presence of 
~uid-infiltration is the quasi-static shear of a homogeneous body. If, however, the body contains 
a cavity or other inhomogeneity, the response is time-dependent. In this paper, we will examine 
this feature in detail by deriving the solution for the time-dependent strain of a spherical cavity 
in a fluid-infiltrated elastic porous solid subjected to a suddenly applied shear stress at the 
cavity boundary. In the course of obtaining the full solution, we will demonstrate that the cavity 
deforms homogeneously, a result which is analogous to that of Eshelbyll I] for the ellipsoidal 
inclusion embedded in an elastic matrix. The particular relevance of this solution is that it 
enables us to write an expression which, again analogously with the results of Eshelby[ll], 
relates in a simple way the stress and strain in a spherical inhomogeneity to the applied far-field 
stress and strain. 

By using the results of Eshelby, Rudnicki[l2,133 has investigated models for the inception 
of earth faulting in which the inhomogeneity is considered to be a zone of material weakened 
by fissuring and past faulting. The present results make it possible to include in these 
considerations the time-dependent response of the elastic material surrounding the weakened 
zone. Our analysis suggests that this time-dependent response may be an important factor in 
leading to an earthquake precursory period of accelerating but initially stable and quasi-static 
straining prior to instability. 

We begin by reviewing the governing constitutive relations and field equations. Then, after 
deducing the form of the solution from considerations of symmetry and linearity, we establish 
directly its spatial dependence. Although the solution for the full time dependence involves 
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much numerical computation, the time dependence of the strain of the cavity boundary, which 
is the feature of the solution of greatest interest for applications, will be evaluated explicitly. 

GOVERNING EQUATIONS 

The constitutive relations for a linear fluid-infiltrated solid were established by Biot[lO]. In 
order to effect a formulation in terms of easily interpretable parameters, Rice and Cleary[3] 
exploited the observation that the response of the fluid-saturated solid has the form of the usual 
linear elastic response in the limits of drained and undrained behavior. For an isotropic linear 

elastic material the expression for the stress u,j depends on the displacement gradient u,,,( = 
au;/Jxj) and the alteration of pore fluid pressure p as follows: 

where A and p are the Lam6 moduii appropriate for drained deformation and 6, is the 
Kronecher delta; C = I- K/K;, where K( = A + 2~/3) is the drained bulk modulus and K: may, 
in certain circumstances, be identified with the bulk modulus of solid constituents, but, more 
generally, must be regarded as an empirical constant[3]. A second constitutive relations is 

needed for the alteration of fluid mass (per unit volume) m from its reference value mo, and this 
may be put in the form 

m - m0 = ii~~[uk.k + 5ph - A )I (2) 

where pa is the reference value of the density of the homogeneous pore fluid and A, is the value 
of the Lam6 constant for undrained deformation. The latter satisfies m > A,, > A, where the 
upper limit is attained for separately incompressible constituents. For undrained deformation 

111 = III,) and inserting 

LP = - 0, - A b‘k.k 

into (1) verifies that A, is the appropriate Lam6 modulus in that case. As suggested in the 
Introduction, shear of a homogeneous linear isotropic body induces no pore pressure; hence, 
the shear modulus p has the same value for drained and undrained deformation. 

In order to complete the formulation of governing equations, we require that the usual 

equation of stress equilibrium in the absence of body forces be satisfied, i.e. 

(3) 

and further. that mass conservation be satisfied for the diffusing pore fluid. As shown in (31. 
when the diffusion process obeys Darcy’s relation, and when the equilibrium equations and 
constitutive relations like (1,2) are used to simplify the result, mass conservation implies that m 
must satisfy the diffusion equation 

v2m = ram 
c at’ 

where c is the diffusivity and V’(. . .)= a’(. .)/%@xp. In this development, Darcy’s law 

qi = - POKaP/ dX; 

relates the mass flow rate in the Xi direction, q; (per unit area), to the gradient of pore pressure 
(in the absence of body force), where K is a permeability which is often given as K = k/-y with k 
in units of area and y the fluid viscosity. The ratio C/K is expressible in terms of elastic moduli 
in the form 

C/K = l-‘(Au - A 1 [(A + 2~ )/(A, + 2~ )] 
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wfiere the term in brackets is the ratio of the mod& governing one dimensionai straining under 
drained and undrained conditions. Other equivaknt forms for this expression are 
available [3,10f. 

Instead of the fluid mass content m it is more convenient to use 

which from (2) is proportional to m - mo, the alteration of fluid mass content, and thus from (4) 
satisfies the same diffusion equation, i.e. 

We note that M has physical units of stress and that in terms of M, eqn (I) becomes 

ffij = @(ui,j + uj,i) f huUk.kSij - hfb@ (f-9 

Substituting (6) into the equilibrium eqn (3) yields 

which can be recognized as the Navier equations of elasticity with an additional term due to the 
coupling of the deformation with the pore fluid diffusion. 

We wish to solve (5) and (7) subject to a traction derived from a deviatoric stress field S, 
(Sfir; = 0) which is suddenly applied at I = 0 to the boundary of a spherical cavity of radius in. 
(This problem arises in an obvious way, by superposition, when the actual loading is instead the 
sudden imposition of a remotely uniform deviatoric stress field S, on an infinite body containing 
a spherical cavity. We note that the corresponding problem for purely isotropic remote stress 
(which is a spherically symmetric problem) has been solved by Rice and Cleary(31). The 
alteration of pore fluid pressure is required to vanish at the cavity boundary (although it will be 
seen that the case of an impermeable boundary is easify treated as well). Thus, the boundary 
conditions are 

(8) 

where the ~orn~o~e~~ of the unit normal to the cavity boundary is simply +x&a. Because the 
instantaneous response at the time of load application (t = 0) will be undrained, the initial 
condition is 

M(x,, t = 0) = 0. (9) 

SOLUTION 

Because of the sphericat shape of the cavity and the isotropy of the materiat, the 
displacement vector u can be a function only of the position vector x, the applied stress tensor 
S, and of scalar quantities such as time I and invariants formed from x and S, (e.g. r = (x.x)““. 
x-S-x, etc). Furthermore, because all the equations are linear, the dependence on the applied 
stress must be hnear as well. From these requirements, we could deduce the form of tt by using 
the canonical representation theorems of Wineman and Pipkin [ I41, but in the present case, it is 
sufficient simply to observe that the only vector quantities on which II can depend are x.S (with 
components &Sk;) and x. Therefore, the displacement must have the form 

u = x.s F,(r,t) + x(x++x)Fz(r,tf f 10) 

where the functions Ft, 4 are to be determined. Note that the quantity x5.x is a spherical 
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harmonic of degree two (i.e. a harmonic function which is homogeneous of degree two in x) and 
the ~ompiementary harmonic of negative degree is rF5(xSx). The latter is employed in the 
classical elasticity soiution for a spherical cavity in an infinite body subjected to uniform shear 
at infinity [ 151. 

A more convenient representation of u, which is equivalent to (IO), is in terms of 
displacement potentials 

u=vd,+x$J (11) 

where 4s = r~‘(xS~x)F~(r.~) and I,+ = r-S(~.S~~)F~(r,t) and (V)i s a/ax;. Because the displacement 
must decay at large distances from the cavity, the re5 has been written explicitly (though at no 
expense in generality), with the expectation that the solution will involve the same spherical 
harmonic r-S(xS~x) which appeared in the corresponding problem of classical elasticity. 
Considerations of symmetry and linearity also indicate that M be written as 

M = r-5(x.s*x)g(r,t) (12) 

where the function g(r,t) is to be determined. 
By using the representations (11,12) we can reduce eqn (7) to two simple equations whose 

solutions can be obtained by inspection. Substituting (t 1) into (7) yields 

V[(A, + 2/&)V*+ + (A. + /L) (3JI C Xi+,;) + 2jL*- Ml + Pxv24 = O' (13) 

If we form the curl of i 131, the gradient expression in the first term vanishes identically and the 
remainder is 

v x (xv*+) = - (x x 0) (V$) = 0, 

the solution of which is easily shown to satisfy 

v*q# = 0. (Ma) 

If (14a) is used in (13), integration of the remaining term yields 

(A, + 2p.)V2+ + (A, + /L) (34 + Xi$.j) + 2p8J - M = 0 (14b) 

where the integration constant may be taken as zero. 
The only solution of eqn (14a) which is compatible with the form of sl, following (1 I) and 

which decays for large r is 

q+ = Ar-‘(x4.x) (151 

where A is at most a function of time. 
Substituting (15) and the expression (12) for M into (14b) yields 

(&, + ~JL)V’I$ = [g(r,t) - 2/~A]r-~(x?+x). 

The solution of (16) is 

d = Br-'(x6*x) + 
f 

(&I -A) 
(9A + ,4cL) f(r,t) + 5 Ar-" 3 (XSX) 

0, + 2P )’ 

(16) 

(17) 

The first term is the appropriate solution to the homogeneous equation by the same reasoning as 
employed in the solution for $I, and B may be a function of time. The first and second terms of 
the particular solution correspond to the respective terms on the right hand side of eqn (16). 
The constant multiplying f(r,t) has been chosen for convenience in later calculations and. as 
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may be verified by substitution of this expression for 4 into (IQ, the function f(r,l) is related to 
g(r,t) of 112) by 

f” + 6f“f r: ,.-6 $ @“f,, zz (9A f 14P) g(/, t)r-5 

&I -A) ’ 

where f’ = aflat-. Integration of this equation yields 

Although g(r.ri is as yet undetermined, the equation which g(r.t) satisfies is obtained by 
substituting the expression (12) for it4 into the diffusion equation (5), and is 

CPg 4 ag _ 1 ITg 
-$--,ar-car7 (19) 

subject to initial conditions g(r,t = 0) = 0, r> a. We will postpone the solution of (19) and first 
consider the application of the boundary conditions to eliminate A and B, 

~PPtlCATfONOFftOUNDARYGONDITIONSANDDEFORMATIONO~TNECAVITYSURFACE 

The evaluation of the boundary conditions (8) to determine A and B in (IS, 17) and the 
boundary condition on gfr.tf is a long but straightfo~ard algebraic calculation which we wifl 
merely outline. By using (I I), we can express the boundary conditions (8) in terms of the 
displacement potentials as follows: 

Xiflij = L1IGdl.ij + 4(a*$,j + ~j-Vf+,i)l 

Jc Xi(A,V2# - M 4 @) = - XiSjj, r = a, (20a) 

5~ = M - (A, - A)V’r$ = 0, r = a. (2Ob) 

The desired conditions are then obtained by substjtuting lf2), (1% and t17) into (2Oa) and f2Ob), 
using (18), and rearran~ng. We wiil consider each boundary condition separatefy. 

The traction condition (2Oa) involves terms multiplying X&&X) and x3, and because of the 
differing orders of x in these expressions, their coefkients must vanish separately. Thus, from 
(20a) we obtain two equations which are solved for A and B in terms of f(a,t) 

where we have introduced the 
used in I$ and pi to compute 
boundary, the result is simply 

B = Aa’/5 f21) 

abbreviation b = 4gfh, - A)lf(SA f 14~) (A, + 2~)1, If these are 
from (11) the expression for the displacement of the cavity 

where 

H(tl = 3Au +8~ 3A, -I- 84 
9A, -t 14~ 9A + 14~ 9A,t 14~ 1 ’ 

Equation (22) demonstrates that independently of the boundary condition on the pore fluid, 
points along the cavity surface displace as if the cavity interior had undergone a homogeneous 
but time-dependent strain. This is an important feature of the solution, analogous to that 
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observed by Eshelby [I 1] in the case of ordinary elasticity, and we shall exploit it later. We can 
express H(t) in a more transparent form by recognizing that the expression 

3h +8~ 4-5V -=_ 
9h + 14p I-.5u’ 

(where u is Poisson’s ratio for drained response), is the factor which appears in the solution of 
Eshelby for the spherical inclusion. Evidently, f(a.t) increases from zero to unity as the 
response relaxes from the undrained conditions induced by sudden application of the stress to 
drained conditions at long times. Correspondingly, H(t) increases from (4- Sz5)/(7 - _5u,) at 
t=O+ to (4-.5v)/(7-5~) at t=m, where v, is Poisson’s ratio for undrained response and 
Y G uU s l/2. For values of Poisson’s ratio representative of porous but coherent rocks such as 
sandstones, say v = 0.2 and v, = 0.3, H(t) increases by about 10% from 0.45 to 0.50. On the 
other hand, for v = 0.2 and V, = 0.4, which may be more representative of heavily fissured and 
jointed rock, H(t) increases by 25%, from 0.40 to 0.50. 

In the next section, we will determine the time-dependence of f(a,t) and, thus, the 
time-dependence of the cavity strain by solving eqn (19) for g(r,t). The condition on g(u,t). 
corresponding to zero pressure alteration at the cavity boundary, is obtained from (20b) after 
using the expressions (21) for A and B; 

g(U) = - 1M (9* + 14w) 3 (AU - *I {1+ bf(u,t)}, (23) 

where n = (A, + 2~)(9h + 14w)/(h + 2~)(9A, + 14~). We note from eqn (18) that f(u,t) is itself 
defined by a double integral involving the function g(r,t), so the “boundary” condition of eqn 
(23) is not of a simple kind. It is. nevertheless, typical of those encountered in other coupled 
problems is porous media (see. e.g. the solutions of Rice and Cleary[3] for radially symmetric 
problems of cylindrical and spherical cavities). 

TIME-DEPENDENCE OFTHE CAVITY STRAIN 
We wish to solve eqn (19) subject to the boundary condition (23) and the initial condition 

g(r,t = 0) = 0 

which follows from (9) the condition that the response is undrained at the instant of load 
application. For this purpose we introduce the Laplace transform on time 

with inversion by the Bromwich integral [ 161 

where i = (- I)“* and Cs is chosen to be larger than the real part of any singularities in the 
complex s-plane. Applying the Laplace transform to eqn (19) and the boundary condition (23) 
yields 

( $-;g-; &r:3)=0, 
> (24a) 

Wb) 

where 6 and n have been defined following (21) and (23), respectively. By making the change of 
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variables r = +v’(cfs) R and writing d(r; s) = R’%(R; s), we can reduce (24~1) to a canonical 
form of Bessel’s equation [I?] 

G”+ G’R-’ - G[(5/2)‘R-‘+ I] = 0 

where the prime denotes differentiation with respect to R. Tttus, the sotution for d;(u; S) which 
decays for large r is 

d(r; s) = C(s)RS’*&,dR) cBl 

where f&(R) is the modified Bessel function of order 512 and C(s) is to be determined by the 
boundary condition. The Bessel functions of half-integer order can be expressed in terms of 
elementary fnnctions[l71 by noting that 

K,,z(z) = K-1I2(2) = (E)“‘e-’ 

and using the recurrence reIation 

K,-,(z) - K,+,(r) = - $ K,(z). (26) 

In order to apply the boundary condition (24b), we express f(@; s) in terms of the solution for 
&a; s) by using (Is), (26), and the folIowing derivative recurrence relat~ons~l7]: 

; Iz’K,(z)l = - z’K,_,(z), 

$ fz-"IC,~z)l= - f-‘&+*(Z). 

The result is 

& ~ $) = _ C(s) (9A + f4P) 3/Z 
9 -gp (A, __A) 41 K3&) 

where y = afslc)‘“. Substitution of (27) and (25) into (24b) and the 

(27) 

use of (26) yield 

The full time dependence of the solution everywhere outside the cavity could be determined 
by using (28) in (25) and inverting the transform as a function of position. Our main interest, 
however, is in the time-dependence of the cavity strain, and it is evident from (22) that for this 
we need only to perform the single inversion for f(a,t). ~ubstjtution of (28) into (27) gives 

,. 
f(a,sf = 

37t(aVc)fr + 4) 
q2W+ 3”11U + q)l‘ 

By factoring the quadratic expression in the denominator, we can rearrange this into terms 
whose inversions can be found in standard tables of Lapface transform pairs (e.g. [I7]). The 
result is 

f(a,r) = 1+ 2[3n(4 - 3~)]-“‘fm[p exp (p”B) erfc (pt/6)] (29) 
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where B = &/a*, Im{. . .) denotes the imaginary part of (. . .}. 28 = 3n - i(371(4 - 377)]“‘, and 
erfc(r) is the complementary error function 

e-‘: dx. 

A plot of f(a,r) for two values of n is given in Fig, 1. By the expression for H(t) following (22). 
this same plot represents the time-dependent part of the cavity deformation. (For numerical 
evaluation, it is more convenient to use the form of f(a,t) which results from direct inversion of 
the transform by contour integration; this calculation is outlined in the Appendix). If A = 0 and 
the constituents are separately incompressible (A, = ~1, then q = 719; if k = A,, then n = I. 
Thus, the cases plotted in Fig. 1 span the practical range of q and they indicate that f(a,t) is 
relatively insensitive to values of the elastic moduli. Fig. I also demonstrates that f(u.t) 
approaches unity, its v&e for drained response, very rapidly: for 8 = 0.6, f = 0.90. 

Asymptotic expressions of (29) for very long and short times can be obtained easily by using 
the standard expressions [ 171: 

1 __:t 
erfc(r) = ____e 

rd/n. 1 
l-~+~-O(z-‘)}as/21~m. 

and 

Thus, for short times 8 < 1, 

f(a,t) = (8/?r)“26qe -“3r1062-IM{ 1 _ O(fp2)], 

and for long times B B 1, 

In Fig. 2 these expansions are compared with the exact values. Unfortunately, they are good 
approximations only in a limited range. 

Although we have considered the case in which the pore pressure vanishes at the cavity 
boundary because of its greater potential for applications, we note that the problem in which 
the cavity wall is impermeable may also be treated. In this case, the boundary condition (20b) is 

i 
3X+8+ 3X,+Sp 
--- 
9x+14/A 9X” +14p 

on ccviiy boundary r=o 

i 

G%,+2&c119X+14pt 

‘?= IX+2p)(9Xu+14pl 
I 

0.8 

Fig. 1, ~~rne~epe~~ent factor E(a, r) in the expression for disp~cement of the boundary of a spherical cavity, 
m~ntain~ at zero pore pressure and subjected to suddenty imposed surface tractions derivable from a 
deviator& stress tensor S;+ The Lam6 rn~u~i for drained conditions are d and p ; for undrained condjtioas they 

are A. and p ; c is the pore fluid diffusivity. 
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Fig. 2. Comparison of small- and large-time asymptotic expansions with exact calculation (see caption of 
previous figure). 

replaced by the requirement of no fluid mass flow across the cavity boundary, 

ap 
X;qi = j?oKXi a~_ = 0, r= a, 

I 

where we recall that xi is the component of the normal to the cavity boundary. The resulting 
solution for f(a; s) is 

A 

f(a;s)= %(a’lc) (1 + 9) 
q2[q3 + 4q2 + %(I + 411’ 

While we have not worked out the details of the time-dependence implied by this expression, we 

note from its limiting values that it too corresponds to a transition from the short-time, 
undrained to the long-time, drained elastic response of the cavity wall as a function of the time 

parameter 8 = ct/a2. 

DEFORMATION OF A SPHERICAL INCLUSION 

We now consider the problem of a possibly nonlinear spherical inclusion which is embedded 
in a linear, porous, fluid-infiltrated material of the type just considered, and which is deformed 
by uniform stresses and strains at infinity. Equation (22) and related expressions from [3] will 
be used to develop a relationship between the stress and strain in the inclusion and the far-field 
stress and strain. In the next section we will outline the application of this relationship to the 
study of mechanisms by which pore fluid effects could lend initial stability to earth faulting. 

We begin by repeating that eqn (22) demonstrates that the cavity boundary deforms as if the 
interior had undergone the homogeneous deviatoric strain l ii, where 

/Mij = H( t)Sih 

Further, if some general time-dependent stress field Sii(t) loads the cavity surface then, by 
superposition, 

I 
I 

PCj(f) = H(t - t’)Sij(t’)dt’ (30) -m 

where the superposed dot denotes a time derivative and t is time. 
The corresponding relation for volumetric strain may be taken from the radially symmetric 

solution of Rice and Cleary[3] for a spherical cavity on the surface of which a total radial 
compressive stress u is suddenly applied while, simultaneously, a pore pressure p. is applied at 
the cavity wall. Their results show that for a given total stress u the radial displacement u at 
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the cavity wall is independent of pa, and has the same form as in the classical elasticity solution. 
namely 

lf = 30-a/4+ 

(This result is not cited explicitly in 131. It may be proved by evaluating the “hoop strain” U/U. 
by using eqns (8~,87) of [3] for the stresses and pore pressure at the cavity wall, and by using 
these in the porous medium relation for strain, namely eqn (7) of [3]). Hence the cavity wall 
deforms as if the interior had undergone a homogeneous volumetric strain c (i.e. one-third of 
fractional increase in volume), and for a general time varying compressive stress u(t) at the 
cavity wall we have 

(31) 

as the volumetric expression analogous to eqn (30). 
Finally, the pressure PO imposed at the wall creates a pore-pressure distribution as given by Rice 

and Cleary (131, eqn 86). From that distribution we may calculate by Darcy’s law the rate of fluid 
mass outflow through the cavity wall as 

for t > 0, where p. is applied at t = 0, 4 is the radial mass flux per unit area, and K is the 
permeability coefficient introduced earlier. We define ti by 

4~ff2~(~,~) f (4~U3/3)~(~) = 0, 

so that ni is the rate, per unit volume, at which the cavity acquires fluid mass. By combining the 
last two equations we may solve for the function ti corresponding to the suddenly applied 
pressure po. Then, by superposition, when an arbitrary pressure history p(t) is applied at the 
cavity wall the mass accumulation rate per unit volume of cavity is 

fil(f)=-y p(t)+ I I 
I 

_m [nc(t ” t’)l”ld(f’)df}. (32) 

Equations (30~(32) have been derived here for a spherical cavity. However, because the 
cavity wali deforms as if the interior had undergone homogeneous deformation, we may foliow 
the procedure of Eshelby[l I] and replace the cavity by an inclusion of any homogeneous 
material, whether linear or non-linear, with the understanding that the inclusion will deform 
homogeneously. Now, however, the stipulation that the inclusion be homogeneous also applies 
to the pore-pressure in the inclusion. Although the pore-pressure cannot, in general, be 
considered spatially uniform in the inclusion, this will be a good approximation if the inclusion 
is very much more permeable than the surrounding material. Further, this approximation seems 
appropriate for our intended applications. in which the inclusion is to represent a zone of 
heavily fissured, previously faulted material. (Alternatively, although we have no application in 
mind for it, the case of a non-fluid-infiltrated, impermeable inclusion could also be treated, 
based on the solution discussed at the end of the previous section). 

Suppose then that the material surrounding the inclusion is subjected to the remotely 
uniform deviatoric stresses Si, mean normal stress eDi, and pore-pressure p=, whereas the 
corresponding quantities within the inclusion are Sy, PC and p’“‘. Let E: be the deviatoric 
strains and em the volumetric strain in the remote surroundings, and let E\Y and einc be the 
corresponding quantities in the inclusion. Then the field in the elastic porous material outside 
the inclusion can, by superposition, be represented as the sum of the following: (i) a uniform 
stress/pressure field Sg, a*, pm with associated strains ET, e”, and (ii) fields which are identical 
to those created by loading the wall of a spherical cavity with deviatoric stress S+ compressive 
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normal stress u, and pore pressure p given by 

s, = s; _ sjy, (+ = um_ p, p = pinc _ pm, (33) 

with associated displacements of the cavity boundary that are consistent with deviatoric strains 
8 and volumetric strain e of the cavity interior, which are 

1°C m 
E;j = E ij - E ij, 

e = einc _ e-. (34) 

Of course, the responses of (34) must be related to the loadings of (33) by the expressions 
(30,31) given earlier. This gives the following two “Eshelby relations” connecting the state 
within the inclusion to that applied remotely: 

$(t’) - S:;‘(f) dt’, 
I 

(35) 

p[e’“‘(t) - e”(t)] = (3/4) [a”(t) - flint(t)]. (36) 

Also, we may now identify m in (32) as the fluid mass content of the inclusion and write 

d”=(t) = - @${[pi”c(I) - p”(t)] 

(37) 

Here we assume tacitly that when urn and pr vary with time they do so in such a way that m" is 

constant; this is necessary because we have considered the surroundings of the inclusion to be 
unbounded and to have a remotely uniform state. 

Equations (35)-(37) suffice, in principle, as a formulation of the inclusion problem, for if 
constitutive equations (not necessarily isotropic, linear, or elastic) are given for the inclusion 

material. relating S:;‘, flint. p’“‘t0 6:;‘. einc, ml”< then eqns (35)-(37) become a system of integral and 

albegraic equations enabling the calculation of the time dependent state within the inclusion when 
the remote stresses Sz. u%. p”are specified. (Note that the quantities E; and e” appearing in eqns 
(35. 36) are related by the usual elastic porous medium stress-strain relations to SG. ITI. p?. 

DISCUSSION: PORE-FLUID EFFECTS IN THE STABILIZATION OF FAULTING 

As a focus for discussion of possible pore-fluid effects in the inception of faulting, we adopt 
a model introduced by Rudnicki[l2] and analyzed by him for a solid without fluid effects. In 
this model the zone which ultimately faults was represented as a weakened inclusion which 
exhibited, because of previous faulting and fissuring, non-linear inelastic behavior while the 
surrounding rock, which was stronger, responded in an essentially linear elastic fashion. The 
weakened zone stress-strain relations were assumed to exhibit peak strengths followed by 
strain softening and conditions were sought at which the steadily increasing remote shearing 
stress caused a dynamic “runaway” instability of the inclusion material. Indeed, such strain 
softening is representative of the failure of brittle rocks (see Jaeger and Cook[l9]), although it 
has been obscured in much of conventional testing by the instability that occurs very near peak 
strength due to the high elastic compliance of standard testing equipment (see Section 6.13 of 

[191). 
Consider, for example, the spherical inclusion shown in Fig. 3(a), and suppose that the 

remote shearing stress 7m induces a pure shear stress T’“~ in the inclusion. Plots of shear stress 
versus engineering shear strain y are shown for the surrounding material (linear, with T- = pym) 
and for the inclusion (non-linear) in the figure. We note further that an Eshelby relation 
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Fig. 3(a). Shear of a non-linear spherical inclusion (representing a zone weakened by previous faulting) in an 
unbounded linear material. The greater effective stiffness of the surroundings for rapid, undrained (vs slow, 
drained) stress alterations means that the system is stabilized against instantaneous failure at point I. But the 
system is “self driving” beyond point I and an initially quasi-static process of strain accumulation, accelerating 
toward dynamic instability, occurs on time scale controlled by fluid diffusion. (b) ‘Seismic gap” zone 

interpretation of inclusion model. 

analogous to eqn (35) connects r’“‘, y’“’ to T=, ym, and this has the form 

y’“’ - y= = - (gCL)($“= _ 7=) (38) 

where it is evident that when fluid effects are negligible and the surroundings respond as if they 
were drained, we have 

5=2H(m)=2(3A+8~) 34-5~) =--_ 
9A + 14/L 7-SV 

Equation (38) also applies for ellipsoidal inclusions and 5 becomes larger for increasing aspect 
ratio[ 11,121. In fact, a mode1 based on a flattened inclusion may be a much better represen- 
tation of a natural fault, although the details of time-dependent response can thus far be 
addressed with some precision only for spherical inclusions. 

Specifying rm and the stress-strain relations for the inclusion and its surroundings enables 
one to determine the state (T~“~, yin’) within the inclusion by use of the Eshelby relation of eqn 
(38) as demonstrated in Fig. 3(a). As rm is increased the point of contact of the Eshelby line 
with the inclusion stress-strain curve reaches point I at which the slope is -p/I, and the 
Eshelby line is tangent to the curve. This is an instability point. Beyond it no quasi-static 
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solution exists, and hence point 1 marks the onset of a dynamic runaway instability. The 
Eshefby fine is, of course, analogous to the unloading characteristic of a testing apparatus; low 
6 values correspond to a stiff apparatus, high values to a ffexible apparatus. 

The failure of laboratory rock systems is often discussed in these terms (e.g. Jaeger and 
Cook [ 191). Stuart[21] represents an existing fault zone by a one-dimensional weakened 
non-linear strain softening tayer situated between two thicker linear elastic layers subjected to 
shear displacements at their outer boundaries. While not showing a graphical construction in 
the form of Fig. 3, he arrives at an equivalent characterization of the instability point in terms 
of the unloading stiffness of the surroundings. Further, as Rice[20] noted, the same represen- 
tation of instability is valid when the inclusion does not represent a weakened zone, but rather a 
zone that has lagged the surrounding material in adjustment to tectonic loading so that it 
presently sustains a higher stress than the remote surroundings. This could, for example, 
represent a “seismic gap” zone, and the Eshelby line may be used just as before in determining 
the state within the inclusion (see Fig. 3bf. Note that the incfusion stress-strain curve can lie on 
the negative side of the y axis since the inclusion is misfitting and the zero of y’“’ corresponds 
to the strain into which the inclusion would have to be deformed to just fit into the undistorted 
surroundings. 

The presence of an infiltrating pore fluid modifies the description of failure in Fig. 3 in two 
ways. The first of these is associated with the time dependent response in the material 
surrounding the weakened zone and the second with difatant, pressure-sensitive response of the 
weakened zone material. For stress alterations which are rapid by comparison to diffusion 
times, the surroundings respond in an undruined rather than drained fashion. Consequently the 
response is elastically stiffer as is evident by replacing the parameter 5 in eqn (38, which should 
now be regarded as relating increments of r’s and y’s, by its undrained value which is 

5 z2H(o)_2(3A,+8r)=2(4-5v,) tf 9x, + 14/.L 7-5v, 

for a spherical inclusion. This is always lower than the drained value and leads to a steeper 
‘~unfoading” slope as illustrated by the dashed line through 1 in Fig. 3(a). (For example, if 
v = 0.2 and v, = 0.4, we find 5 = 1 and &, = 0.8 so that there is a 25% increase in slope). The 
stiffness ratio 51& is tabulated for various inclusion shapes by Rice]201 as a function of crack 
density in the surrounding rock, on the basis of dilute concentration estimates for the effect of 
microcracks on drained and undrained elastic properties. 

Because of this increase in stiffness of the surroundings, for rapid as compared with slow 
stress alterations, instantaneous failure will not occur at point I. The system is instead stabifized 
transiently by the pore tfuid, although it becomes “self-driving” in the sense that, even if y= is 
held constant, y’“’ continues to increase on a time scale controlled by fluid diffusion. Ultimate 
dynamic instabiIity results when (and, indeed, if) y’“’ has increased enough for the softening 
slope to fall to - CL/&,. This failure process is goverened by the following non-linear integral 
equation based on eqn (35): 

H(f - f')[i"(f')- ii”c(f’)}dt’. 

where ym = r"/p and where rinc may be expressed as a function of yioc as, e.g. in the plot of Fig. 
3(a). Of course, the same discussion applies for the seismic gap model of Fig. 3(b). 

In the context of earth faulting rm increases very slowly with time through large scafe 
tectonic processes. Thus it is normally to be expected that, except for inclusion states in the 
near vicinity of point j, the response of the system should be very nearly drained. This is so 
even if pore pressures considerably above hydrostatic should persist over a large region 
including the inhomogeneity, for these may continuously equilibrate within the region, with the 
effect only of raising the reference pressure with respect to which the alterations, denoted 
herein by p, take place. Then as point f is passed subsequent deformation of the system is 
self-driving. The ensuing rupture process is a potential source of detectable earthquake 
precursors. In particular, our considerations suggest a precursory period, comparable in 
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duration to diffusive relaxation times (say, -0.1 a’/c from Fig. I), over which accelerating 
deformation takes place within the soon to be faulted zone. Because deformation during this 
period is much more rapid than large scale tectonic processes, it may be accompanied by 
observable precursory effects, such as tilting and creeping of the ground surface at anomalously 
high rates, changes in travel times of seismic waves as suggested in “dilatancy-diffusion” 
models[5-71, and perhaps other effects. Rice[20] has given some approximate extimates of the 
time scale involved in precursory processes of the kind described, based on a specific T vs y 
relation for the inclusion and on the replacement of the actual H(t) in the above integral 
equation by that for a standard linear model with relaxation time of 0.1 a’/c. Although the 
choice of material and geometric parameters is very uncertain, it does seem plausible from the 
results that precursory periods arising from the mechanism described could have time scales 
comparable to those of observed precursors (Scholz et al. [6]) to smaller earthquakes. 

The second possible mode of pore fluid stabilization of a fault zone is complementary to that 
just discussed and arises because of the tendency for rock, at least in initially coherent 
laboratory specimens, to exhibit dilatant deformation as it is sheared. When the rock is 
fluid-infiltrated and when the time scale of stress alterations does not allow full drainage by 
diffusion, pinC is decreased relative to pa. This serves to increase the Terzaghi effective 
compressive stresses within the weakened zone, and hence strengthens the zone in its 
resistance to shear. The phenomenon is referred to as “dilatant hardening.” A preliminary 
analysis has been given by Rudnicki[l31 based on expressions such as eqns (36)~(38) im- 
plemented with a coupling between deformation-induced pore-pressure alterations and pres- 
sure-sensitive dilatant constitutive descriptions in the manner of Rice[l8]. Like the first effect 

discussed, dilatant strengthening is also expected to become important only in the vicinity of 
point I in Fig. 3, and to have similar effects in stabilizing the rock against instantaneous failure. 
giving rise to a precursory period of accelerating but initially quasi-static deformation. 

Both of these possible stabilizing effects of the pore fluid need to be more fully studied. We 
have given a basic formulation for doing SO here, through the Eshelby relations given as eqns 
(35)-(37). It is clear, however, that the evolution of the rupture process will depend strongly on 
features of the inelastic constitutive response of the weakened zone which are themselves 
not well understood, and that predictions may be very much affected by the shape of such 
zones, which are likely to be more flattened than spherical. 
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APPENDIX 

We write h(t) for the function f(o,t) and outline here the direct inversion of 

h’(s) = 3n(a%)(l+ 4) 

4%?+ 3n(l + Y)l’ 

where q = a(s/c)‘“, by the Bromwich integral 

where the integration is along AB in 

h(t) = & 
I 

h’(s)e”ds. 
Br 

Fig. 4. It is convenient to let z = so’lc ( = q2) 

h(e)=% 
I 

(I + z”2)e’Bdz 

27rr B, z[z t 3n(lf z”‘)]’ 

t 

e = cda’ so that 

Fig. 4. Contour for inversion of transform 

The branch cut for z”’ is taken along the negative real axis. The bracketed term in the denominator of the integrand 
vanishes when z”* = - 3n/2? i(l2n - 9n*)“*/2. but because these roots have negative real parts. the corresponding values 
of z do not fall in the z-plane with the branch cut as just described. Thus the integrand is analytic within the closed contour 
ABCDEFA, and by Cauchy’s integral theorem[l6] it may be written 

& (...}dz=h(B)+&j 
f 

h^(z)e”dz = 0, 
BCDEFI\ 

where hItI, i\ fhe contribution from AB. Setting : = Re’* on BC and AF and lettmp R 4 x demonstrate\ that there I\ al\o 
no contribution from these segments. If we let z = eel4 on DE and take the limit c + 0. this integral contributes - I. On CD 
we set z = ueln and on EF, z = ue-‘- so that the branch line integrals become 

I + iu”’ 

U[U -3n(l + iu”*)I 
e’“‘du. 

Thus. the formula for h(B) becomes 

h(e)= l-3 I 
1 e-x%X2&y 

x ,i X4+ 3n(3n - 2)X’+9$ 

where we have set u = X’ in the integral. The curves in Figs. I and 2 have been calculated by numerical evaluation of this 
integral. 


