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A mathematical solution is developed for the steady, quasi-static, plane strain advance of a shear fault
in a Auid-infiltrated elastic porous material. As revealed through analysis of some elementary fracture
mechanics models, the coupled deformation-diffusion effects in such a material lead to a required ‘force’
to drive the fault that increases continuously with fault velocity up to a maximum value. The nominal
fault tip energy release rate required for spreading at this maximum is greater than that for very slow
speeds by a factor approaching {1 — »)?/{1 — »,)*, where v and v, are the elastic Poisson’s ratios under

‘drained’ and ‘undrained’ conditions, respectively. The effect is numerically significant and provides a

mechanism by which a spreading shear fault can, within limits, be stabilized against catastrophic (seismic)
propagation. Predictions of the model are compared to data representative of creep events on the San
Andreas system. It is concluded that the speeds and slipping lengths of the observed events are consistent
with their being stabilized by the effect discussed, and hence the model would seem to provide a viable
mechanism for fault creep. Similar effects may be operative also in setting the time scale of progressive
landslide failures in overconsolidated clay soils, in which rupture occurs by propagation of a narrow slip

surface.

INTRODUCTION

A fluid-infiltrated, porous elastic material responds to time-
varying loadings in a manner that is more or less stiff depend-
ing on the time scale of the loading. If load variations are rapid
enough to preclude diffusive transport of pore fluid over the
time span of interest, the material will behave as though *un-
drained’ and will appear to be relatively stiff in comparison
with the case where the time scale is long enough to allow
‘drained’ response, with diffusive dissipation of any induced
pore pressures. This means that the concentration of stresses
near the tip of a spreading shear fault in such a medium will
depend on the rate of spreading and consequently, in fracture
mechanics terminology, that more energy can be released to
breakdown processes at the edge of the fault during slow
(drained) than during fast (undrained) spreading (see Rice and
Cleary [1976], henceforth abbreviated RC).

By solving mathematically the steady state, plane strain
problem of a quasi-statically advancing shear fault in a porous
elastic solid, we shall demonstrate directly that the coupled

deformation-diffusion effects alluded to in the foregoing do in.

fact lead to a speed-dependent stress concentration at the fault
tip. Further, upon introduction of a simple rupture model,
involving a zone of degrading shear strength near the fault tip,
we are able to calculate the applied stress necessary to drive the
fault at any given speed. The required driving stress is found to
increase with speed to a maximum value, at which the nominal
crack extension force required for fault spreading has in-
creased by a factor between 3 and 82 times its value for low-
speed (drained) conditions, where 8 = (1 — »)/(1 — »,) > |,
and v, », are the elastic Poisson’s ratios of the fluid-infiltrated
rock under drained and undrained conditions, respectively.

This effect seems to be numerically significant and may well
contribute to the stabilization of earth fault slippage events
against rapid propagation. As such, the model provides a
description of a possible mechanism for fault creep.

Indeed, observations of creep events [e.g., Scholz et al.,
1969; King et al., 1973] suggest that these consist of the stable,
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essentially quasi-static, episodic propagation of slip offsets
along existing faults. The apparent fault spreading speeds are
many orders of magnitude less than those under seismic condi-
tions and cover a range typically from 1 to 10 km/d, although
one apparent speed reported by the latter workers was as high
as 80 km/d. Any proposed mechanism for this sort of behavior
should entail a driving stress for fault propagation which
increases monotonically with spreading speed over the above
range. Otherwise, small perturbations in the spreading speed
would lead to very rapid (seismic) propagation, rather than the
observed quasi-static motion. As suggested by the preliminary
analysis in RC and confirmed by our detailed analysis here, the
model under discussion, based on porous media effects, does
seem to be consistent with this requirement. Further, there is
some evidence [Johnson et al., 1974], based on water level
changes in deep wells, for transient pore pressure alterations of
the type anticipated here in association with creep events.

This does not, of course, eliminate other mechanisms as
possible contributors to the stabilization of fault creep. Nor
does it eliminate the ancillary requirement for stable fractional
sliding, as opposed to stick slip, to be possible over the corre-
sponding range of slippage velocities in order for creep events
to occur as such [Scholz et al., 1969].

Palmer and Rice [1973] (henceforth abbreviated PR) and
Rice [1973] have discussed some other possible mechanisms
for stabilization in connection with the spreading of narrow
shear rupture zones (or ‘slip surfaces’) in landslides and other
failures of overconsolidated clay soils [e.g., Skempton, 1964;
Bjerrum, 1967], but these may be equally applicable to fault
creep. They include (i) viscoelastic material behavior, which
may be due to a secondary-consolidationlike creep in clay or
to an apparent creep in stressed rock owing to the corrosive
growth of microcracks [Scholz, 1968); (ii) the ‘effective stress’
based increase in fracture energy due to pore-fluid suctions,
induced transiently, by prefailure dilatant deformation in the
breakdown zone at the spreading edge of a fault (see also RC
for a discussion relating to faults in rock); and (iii) any rheolog-
ical factors which could serve to give an increasing frictional
resistance, with slippage speed, to the adjoining fault surfaces
or possibly to the deforming fault gouge between them. {In this

5322



RICE AND S1MONs: SHEAR FAULTS IN FLUID-INFILTRATED MATERIALS

connection, Nason and Weertman [1973] suggest the necessity
of an upper yield point behavior in the fault gouge.)

The organization of the paper is as follows: In the next
section we discuss some concepts from the fracture mechanics
of shear cracks in ‘elastic’ bodies (i.e., bodies obeying the
equations of classical elasticity, as contrasted with fluid-infil-
trated, porous, elastic bodies, which we refer to subsequently
as ‘porous elastic’ for brevity). These fracture mechanics con-
cepts are directly applicable to porous elastic media in the
long- and short-time (drained and undrained) limits because in
these limits a porous elastic material behaves as an elastic
material of the same shear modulus G and Poisson’s ratio »,
equal, respectively, to the drained or undrained ratio, » or v,.
Moreover, the topics presented provide the framework for
much of the analysis and discussion to follow.

Next, the coupled deformation-diffusion equations govern-
ing quasi-static plane strain of a fluid-infiltrated porous elastic
medium are given. Then, in order to illustrate most simply the
effects under consideration, these equations are solved for the
simple case of a semi-infinite shear crack (or fault) advancing
quasi-statically at a uniform speed ¥ such that the deformation
field is fixed relative to an observer advancing with the fault.
This is followed by analysis in detail of a model analogous to
that of PR, incorporating an elementary account of the break-
down process at the tip of a spreading fault. The relevance of
the results to fault creep and some related porous media effects
are then discussed.

FRACTURE MECHANICS OF SHEAR FAULTS IN ELASTIC SOLIDS

In this section we cite some results on the fracture mechanics
of shear cracks in isotropic elastic solids under plane strain.
Principal references to this topic are frwin [1960), Paris and Sih
[1965], Rice [1968], and PR, the last dealing specifically with
shear cracks in the way that we shall model them here.

With reference to Figure la, the stress field near the tip of a
freely slipping shear crack loaded so as to induce in-plane
deformation of the ‘mode II’ type has the characteristic sin-
gular form '

Ty ~ K(z'lrf)_infu(g) (i)

where i, j = x, y, z. The set of functions f;; are independent of
loading, and K is a constant referred to as the mode 11 stress
intensity factor. For example,

Gay ~ K(Q2mr)~V2 cos (8/2) [1 — sin (6/2) sin (36/2)]

as r — 0

2)

For a freely slipping crack the intensity factor is directly pro-
portional to the applied loading. Of greater interest here is the
crack with slippage retarded by a {rictional stress 7 acting on
the crack faces. In this case the same functional forms as above
apply for the near-tip stress singularity, but X is now propor-
tional to the excess of the remotely applied stress over 7.

For example, if a freely slipping fault of length / is subject to
a remotely applied stress 7, (see Figure 15), the intensity factor
is [Paris and Sih, 1965]

K = vo(wi/2)V? = 1.257,12

when there is no net entrapped dislocation within the fault
(i.e., when the displacement field outside the fault is single-
vatued, with no net closure failure of the displacement on a
surrounding Burgers circuit). When there is a net entrapped
dislocation of magnitude just sufficient to annul the stress
singularity at one end of the fault, the intensity factor for
stresses at the other end is [Rice, 1968, equation (318)]

3

5323

L

X
\SHEAR FAULT
{a)
. L
\ [‘T"
J — £ —- |
(b)

{c)

Fig. 1. (a) Coordinate systems near tip of a shear fault. () Finite
shear fault. (c) Semi-infinite fault, loaded over finite region to simu-
late finite fault,

K = 12Q2nl)72 = 2517, @)

To simplify the subsequent mathematics for the case of a
porous elastic solid, we will want to consider a semi-infinite
fault. This can be employed to simulate a finite fault as fol-
lows. We assume that for the purpose of analyzing fault creep,
the actual tectonic loading is equivalent to one which, if no
slippage were present, would result in a shear stress on the
fault plane of magnitude 7, for a distance / extending back
from the tip and of vanishing magnitude over the remainder of
the fault (see Figure 1¢). Such a loading leads to [Rice, 1968,
equation {98)] -

K = mo(81/m)1/2 = 1.607,/"2 )

The numerical factor falls into the range of that for a finite
fault with some amount of entrapped dislocation, and we will
use the model of Figure 1¢ with the understanding that / can be
adjusted so that the crack tip stress intensity corresponds to
that of a finite fault, .

In all cases for which a retarding frictional stress 7, acts, the
stress intensity factors are as given in these last three equa-
tions, but with r, replaced by 7, — 7. For the fault of Figure
l¢, this means that we consider the stress 77 to retard motion
only over the length /, as is consistent with our interpretation
of this model as simulating a finite length fault. Thus with
friction; (5) becomes
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K = (1o = 7p)8I/7)/* = 1.60(1q — 76} )

The energy which flows to the crack tip singularity (or, in
physical terms, to breakdown processes at the fault tip), per
unit of new fault area, is

G = (1 = r)K/(2G) (1)

where G is the shear modulus and v, is Poisson’s ratio. The
simplest model of crack advance is the Griffith model, in which
no explicit account is taken of processes within the breakdown
zone, and 4 critical value of the driving ‘force’ G is assumed to
be necessary for fault spreading, where this value is considered
characteristic of the material.

On the other hand, an elementary medel intended to take
some account of breakdown processes at the fault tip has been
introduced in PR, as an extension of earlier work dssociated
with the names Barenblatt, Dugdale, and Bilby-Cottrell-Swin-
den, on cohesive stress models for tensile cracks. The PR
model entails the assumption that relative sliding can be in-
itiated when some breakdown stress level 7 is reached at a
point along the prospective fault plane. Once slip is initiated,
the resistive shear strength 7 is a decreasing function of the
amount of a slip & of one surface of the fault relative to the
other:i.e., 7 = 7(8), as illustrated in Figure 2. The function 7(§)
approaches the frictional stress 7 at large 8. Nason and Weert-
man [1973] have suggested that the observed distribution of
slip offset would, in fact, require a 7-§ relation of the general
shape illustrated.

The PR model is self-contained as regards the prediction of
conditions for fault spreading. But in the case of rather brittle
behavior, for which the size of the fault tip breakdown zone
(defined as the region where § > 0 and 7(8) > 7) is small by
comparison to overall length of the slipping region, fault
spreading conditions based on the PR model coincide with
those based on a critical value of G. Indeed, the connection is
that the critical value of G (or K) is given by

AT
TB-M[T(S)-TF] 48 = "801’“
T LZr= '
-3
{a}
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Tg 7 /‘(TB"‘TF} S = &Cr”
N7/
|
|
-3

o}

(b)

Fig. 2. 7 (shear strength) versus & (slip offset) relation, as used to
model processes in breakdown zone at spreading edge of a fault. (@)
The general case and (b) & simplified model. The cross-hatched area
can be equated lo the {racture energy term, Gep, of fault models that
contain no explicit account of the breakdown process.
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Fig. 3. (a) Applied lcadings would result in 7, if no slippage
occurred. (b} Stress distribution after slippage, in accord with Figure
2b. (c) Equivalent loadings on [reely slipping crack, to compute slip-
page distribution. ’

gnn't = (l - V:)knrilz/(ze) = L {7(6) e T}P} (16 (8)

The integral represents the cross-hatched area in Figure 2.
Also, the K which enters the formula is understood to be that
for the corresponding fault geometry when solved without
explicit account of the breakdown zone, setting r = 7, along
the entire fault surface. These are the same K’s as estimated
previously, and, for example, by using (6) the critical driving
stress corresponding to the fault geometry of Figure 1c is then
given by

TG ° 1

Since the main parameters of the PR model are 75, 7, and
the cross-hatched area in Figure 2a4, we may simplify the 7-8
relation as in Figure 2b without significant loss of accuracy,
where 3 is chosen to give the proper cross-hatched area. Then
the'model can be implemented in a straightforward manner,
and we now outline the procedure for the semi-infinite fault

model of Figure l¢, since this same model is employed sub- -

sequently for the porous medium case.

Figure 3a shows the stress distribution which, according to
the foregoing assumption, applied loads would transmit across
the fault plane, were no slippage present. When slip does occur
and resistive stresses develop in accord with the 7-8 relation
of Figure 25, the stress along the slipped fault varies as shown
in Figure 3b: 715 acts in the near-tip region where § < 3,
whereas 7 acts at greater distances. The slippage that must
result in relaxing the stresses from those of Figure 3a to those
of 35 is computed by applying the stress differences shown in
Figure 3¢ to a freely slipping crack. Now, neither the magni-
tude of the applied stress required just to drive the fault, nor
the size w of the breakdown zone is known a priori. These are
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determined from the two conditions that (i) there be no net
singularity at the fault tip and (ii) the slip & at distance w
behind the tip be equal to & of Figure 2b.

By successively applying (5) to the positive and negative
loadings of Figure 3¢, we find that the condition of no net
singularity is

Kiew = (1 — 76)8I/7)? — (15 = 7.)Bw/7)"? = 0 (1)

Also, by standard methods of crack elasticity analysis [e.g.,
Rice, 1968, equations (22), {70), (87); and (98), implemented
as in equations (220)-(223)] the slippage 6 is given by

1

§ = —i— [(r. — 75)lg(x]/D)

— (5 — tRdwg(|x|/w)]  (11)
where | x| is distance from the fault tip and where the fuhction
gis

B o+ m""l]
g\ = TR (12)

g [()\)'” — 11 — ) log

Thus tie second condition is obtained by setting § = § in (11)
when |x| = w. The solution can then be expressed parametri-
cally in teims of a variable ¢, 0 < @ < I, as

7o — 77 = Q1 — 7F) w = (13)
where @ is given by the lowest root of
"G 140
: = 0o — log ———— 14
20 vrn — eyt = QT D loe— A

or by Q = 1 if this equation has no real root.

In practice, our interest is always in the *brittle’ case, corre-
sponding to a small excess of the driving stress 7, over 7 and
hence to a small ratio w/f and to @ << 1. In this case it suffices
to retain only the first nonzero term in an expansion of the left
side of (14) about @ = 0, and we obtain

1rG§ | ¥4
Q= [4(1 (e — mz]

With this value of Q the first of (13) reduces to the prediction
of (9), and the size w of breakdown zone at critical conditions
becomes independent of

e [’I_Gﬁir_:ﬂ’)é]m
Te T TR T T4 = o)

7G§
4 — v N1y — T8)

Some insight into porous media effects on fault propagation
may be obtained simply by observing that the critical condi-
tions (16) depend on »., which will be equated either to », or »
in the respective limits of completely undrained and com-
pletely drained response. Since », > v, this observation in itself
implies a certain degree of stabilization with increasing fault
spreading speed, as noted in RC. But we rmay now surmise,
and indeed will demonstrate i what follows, that the effect is
even greater, in that the greatest resistance to spreading occurs
when the deformation is undrained o the scale of overall fault
length / but drained locally on the smaller size scale of the
breakdown zone w.

All corisiderations here are for ‘in-plane’ (or mode 1I) fault
motion. However, formulae identical to (3)-(16) result for

(16)

o =

(15)
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antiplane (mode 11) fault motion, except that », should every-
where be replaced by zero. This implies that there is no corre-
sponding porous media effect on antiplane fault motion. Gen-
eral three-dimensional faults involve, at different locations
along their periphery, both in-plane and antiplane motions,
and thus it is the in-plane segments which should be most
stabilized through the mechanism discussed here.

PLANE STRAIN EQUATIONS FOR PoROUS ELASTIC MEDIA

We follow the presentation in RC of the liriear Biot consti-
tutive relations for isotropic, fluid-infiltrated, porous elastic
solids, with compressible constituents. These differ from the
equations given by Bior [1941] only in that the material con-
stants introduced by Biot have been replaced by different
parameters that are more readily open to physical inter-
pretation. The relations are (in indicial notation, i,j = x, y, z,
with summation convention)

= (2GYy Yoy — [o/(1 + »)]61s0mx

+ B — v)/B(1 + )1 +0,))0,p} (17a)

m = my = [B3po{v. — v)/2GB(1 + )1 + )]
“fow + (3/B)p] (178)
q: = —poxdp/ dx; (170)

Equations (17a) and (176) relate the total stress (oy;) and
pore pressure (p) to the strain (¢;;) and fiuid mass (m) per unit
volume of the medium. In these, G is the elastic shear modulus
(this modulus is the same under either drained (p = const) or
undrained {7 = const) conditions), » is the Poisson’s ratio
under drained conditions, and v, is the ratio under undrained
conditions. We note that », satisfies v < », <4, the lower limit
being approached for a highly compressible pore fluid, and the
upper limit when both the solid and the fluid constituents,
taken separately, are much less tompressible than the drained
porous medium. The constant B is defined so that p =
—Boy/3 is the pressure induced when stress is applied under
undrained conditions. Also, 0 < 8 < 1, the upper and lower
limits being approached under the same conditions as those
for »,. The fluid mass content in the unstressed state is 11, and
pe is the corresponding mass density 6f the pore fluid. Equa-
tion (17¢) is Datcy's law, where ¢, is the mass flux rate per ypit
area and « is the permeability. The latter is sometimes written «
= k/p, where k has units of length squared and u is the -
viscosity of the pore fluid. The relation-of the new parameters
B and », to those of Biot is discussed in RC, where numerical
values of B and v, are also tabulated for some porous rocks.
Of course, for fully saturated clay soils we may take B 1 and

=4

The full set of field equations is obtained by appending to
the constitutive relations {17a)-(17¢) equations based on the
relevant physical principles of (i) stress field equilibrium, (ii)
strain compatibility, and {iii) mass conservation for the diffus-
ing pore fluid. In RC these equations are expressed in terms of
stress and pore pressure as basic variables; for the case of plane
strain (say, in the x-y plane) they become as follows: (i) equi-
librium,

80,./8x + da,,/8y =0 80.,/8x + 80,,/3y = 0
(18)
(ii) strain compatibility, in combination with (i),
VHo + ayy + 29p) = 0 (19

where 1 = 3(», — #)/2B(1 + »,)(I — ») and (iii) mass con-
servation, in combination with (i) dnd (i),
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(eV? = 8/80)ox + 03y + (20/u)p] = 0
where u = (v, — »)/(1 — v) and where
¢ = [2Gx(1 — »)/(1 — 2v)]
1B+ w1 = 20)/901 — v )(ve — )]

Here ¢ is time and V2 = 9%/9x* + 8%/ dy* We note also that
the alteration in fluid mass content, m — my, is proportional to
the bracketed term appearing in (20) and hence satisfies the
diffusion equation.

(20)

FORMULATION FOR STEADILY ADVANCING SHEAR FAULT

Here, using the field equations (18)-(20), we formulate the
coupled deformation-diffusion problem of a steadily advanc-
ing shear fault in a porous elastic medium. To reduce the
mathematics to a tractable level, we consider only the semi-
infinite fault in an infinite body, as shown in Figure l¢, and
assume that points of load application move at the same speed
as that of the fault tip, so that a steady deformation field
results. Specifically, if f is any field variable, we assume that its
dependence on x, y, and ¢ has the form

f=7x-V1y) (21)

where V is the speed at which the fault advances in the direc-
tion of the x axis. Thus we may examine the field at any
particular time ¢, and we choose that for which the origin of
the x, y system coincides with the fault tip as in Figure la.
Also, the last of the field equations (18)-(20) may be rewritten
as

(V2 + V 8/0x)ox + 04y + Qu/u)p] =0 (22)

and the problem can be formulated with only x and y regarded
as independent variables.

The problem is antisymmetric about the x axis, so that the
stresses and pore pressure satisfy

0%, ¥) = —o{x, —¥)  0.,{x, ) = o(x, —¥)

(23)

0, (%, ¥) = —a,,(x, —») plx, y) = —plx, —y)

Hence the problem can be formulated in the upper half plane y
20, —2»<x <
The antisymmetry requirements give boundary conditions

2, 0) = ayy(x, 0) = p(x, 0) = 0 0<x <o (24)

Similarly, since a,, and p must be continuous across the fault
line,

Oyy(%, 0) = p(x,0) = 0 —o<x<0 25)

~The final boundary condition on the fault is given by pre-
scribing the shear loading there as some function 7(x):

axfx, 0) = —7(x)

The minus sign occurs to preserve the sort of sign convention

adopted in Figure 1¢ and Figure 3¢ for shear loading. Finally,

it is required that all the ¢’s and p vanish as|x| — @, y — o,

~ The solution to the governing differential equations (18},
(19), and (22) subject to the above boundary conditions is

developed, through Fourier transform and Wiener-Hopf tech-

niques in the appendix, for the special shear loading function

@7

—@ < x<0 (26)

(x) = ™(x) = ™

As suggested already by the notation in (27), fields corre-
sponding to this loading will be denoted generically by f*(x, »).
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Although such fields have little intrinsic interest, fields f(x, y)
corresponding to an arbitrary loading (x) may be written
in terms of f™(x, y) by Fourier superposition in a manner to
be discussed presently. ,
The constants 4™k}, B¥(«), and CM{x), givén by (A10) in
the appendix, may be employed along with (A6b) and the
inversion formula (Alb) to write ’

)
Ty

= —(1/2r) [ " {1ikC™ )/ m(x) + ixy 4™ )]

-exp [—m@)y] + 216/ BN (x)

~exp [—a()y]} exp (ixx) di (28)

The integral cannot be evaluated in closed form everywhere.
However, by replacing x, y by polar coordinates r, § (see
Figure 1a) and performing an asymptotic analysis for r — 0, a
lengthy but straightforward calculation leads to the remark-
able result

0N~ KN27ry=V? cos (6/2)[1 — sin(8/2) sin (36/2)] (29)
where ‘
K™ = Q)2 exp (—in/4)/[D-(W)m~(A)] 30)

and the functions D~(A), m~(A) are given by (A3), (Al3),
(A14), and (A16) in the appendix.

This fault tip singularity in o,,'™ is of the same r, § depen-
dence as that for cracks in elastic solids (see (2)). The other
stresses o™, o,,' could likewise be shown to have the same
singular form as that in elastic solids, whereas the pore pres-
sure p*M is found to be bounded in the neighborhood of the
crack tip and to vanish at the tip itself. Thus near the crack tip
the pressure term in the stress-pressure-strain relation (17a) is
insignificant compared to the stress terms, near-tip dis-
placements computed by integration of these strains will be
indistinguishable from those of an elastic body with properties
corresponding to those of drained response, i.e., ». = », and we
say that the material always responds in a drained fashion
immediately at the crack tip. This is notwithstanding the fact
that for sufficiently rapid fault propagation, material elements
at any fixed distance away from the tip will respond in an
effectively undrained manner.

By the Fourier inversion formula (A14), any arbitrary fault
shear loading function 7(x) may be written in the form

T(x) = ;:; f_ i #\)e™* dr (31)V

where 7(A) is given by (A9a). Thus by the principle of super-
position, any field quantity f(x, y) corresponding to the load-
ing 7(x) may be expressed in terms of fM(x, y) by

fx, ») = 51; [ 1M, ¥)FQ) dA (32)

This formalism extends to the stress intensity factor X, i.e.,

o

=5 KMFQ) da

(33)
UNIFORM SHEAR LOADING ON STEADILY ADVANCING FAULT

We now consider specifically the case of uniform shear
loading over a distance / on a frictional fault, i.e.,
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T(x) = 7o — TF -1 <x<90

(x) = 0 e

x < =1
(see Figure 1c). The corresponding 7 is given by (A9a) as
HO) = (e = T = exp (NDJ/GN)  (39)
From (30), (33), and (35) we obtain a stress intensity factor

1

= IT;(—{)::@ (ro — 7p)e 7"

Tr)

. f {1 — ™YD" )m™)I} ax  (36)

By letting s = A/, this may be rewritten in the form
K = (1, — 75)B/ 7Y 2h(Vi/c) = Kpemh(Vi/c)

where the nominal stress intensity factor K, is that given by
- (6) and the dimensionless function A4 of the dimensionless
speed measure Vl/c¢ is given by

(37)

—i1/4 phe is
" = 4(::“”2 f-w sﬁ‘l(s, 'y)eﬁf(S) b0
with
D76, v) = B+ [2is(8 — 1)/¥1[1 — 47 (s, v)/ 7 (5)] (39)
(s, ) = (s — )" w)=5"
The new quantity 8 (>1) is defined by
B=1/(0—p)=01U- /1 ~ ) (40}

and we shall see later that 8 plays an important role as a
measure of the maximum possible increase that the porous
media effects under consideration can cause in forcing parame-
ters for fault spreading. Also, in accord with the similar func-
tions in the appendix, 7~ and #i~ have their branch cuts on the
positive imaginary axis of the complex s plane and are such
that both have positive real parts when s > 0.

The function h(+) is most readily evaluated after shifting the
integration contour to one which wraps around the branch cut
in the upper half s plane, yielding

1 ® - 1
Moy = gam | A Re [b,'(f«;,w} dn @D

where D,~(in, v) is the limit of D~(s, v) as s approaches a point
in on the positive imaginary s axis from the right. When Vi/c
— 0, k(Vi/c) — 1 and (37) reduces to (6) for the elastic solid.
This is as it should be, since the response is completely drained
in this limit and the material behaves as though elastic with
parameters G and ». As Vi/c increases from zero to infinity,
h(Vi/c) decreases monotonically from | to 1/8. Hence it is
seen that the stress intensity factor is reduced continuously
with spreading speed, the maximum possible reduction being
by the factor 1/8. This seems at first somewhat paradoxical,
for one would expect response as an elastic solid with parame-
ters G and », as Vi/c — o« and thus would expect (6) likewise
to be valid in this limit. The explanation is simple, however,
and will be explored more fully in subsequent sections. The
crux of the explanation is that, as was noted in the previous
section, for any finite speed V there is always an effectively
drained region immediately at the crack tip, with stress sin-
gularity governed by the K computed here. But this drained
kernel at the crack tip has a size only of the order of the
characteristic diffusion length ¢/V. At greater distances the
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behavior is effectively undrained, and as ¥ — o the size of the
drained kernel shrinks to zero, and the elastic solution for an
undrained material is recovered outside it.

‘This discussion also reveals the physical reason for the re-
duction of X with speed. Very approximately, we may think of
the material as an elastic solid of undrained properties con-
taining a softer elastic inclusion, of drained properties, in the
drained kernel regions at the fault tip and along the fault
surfaces. Since deformations are effectively imposed on the
softer near-tip region by the stiffer outer region, the near-tip
stresses are smaller than would result if the entire body were
composed of the stifl material.

Indeed, the actual factor 1/ that results for the reduction as
Vi/e — « can be rationalized in this way, since near-tip dis-
placements along the fault surface should be proportional to
{1 — »)K/G if computed from the elastic field in the drained
kernel and to (1 — »,)Kpon/ G if computed from the elastic field
outside. By equating these two expressions we obtain

K=1[1- "'n)f(l = NKpom = (E/E}Knom

as Vi/¢ — o, in accord with our detailed calculation..

(42)

FAULT-SPREADING CRITERION BASED ON
CriTiCAL ENERGY RELEASE RATE

Before further developing the solution for uniform shear
loading and applying it to a detailed model of fault spreading,
we shall first examine the simpler model of the Griffith type, in
which a critical energy release rate is postulated, but no spe-
cific account is taken of processes within the breakdown zone
at the fault tip. Since the crack tip singularity, which is the
source of the energy flux, corresponds to drained behavior, we
use the drained elastic properties in (7) for G, with (37) for X,
to obtain : ’

G = (1 = »K/(Q2G) = Guonh*(Vl/c) (43)

where the nominal energy release rate, phrased in terms of
drained properties, is

gncm = (l - V)Knomz/(?-G)
=41 — v)(za — 1)/ (xG) 44)

Thus if a critical energy release rate Gy, is required for fauit
advance (where Gy, could be related to parameters of a more
elaborate fracture model as in (8), i.e., as the cross-hatched
area in Figure 2), then the criterion for fault spreading at speed
Vis

gnam = gcru/’[}?z( fo'(,')]

This relation is plotted in Figure 4 for various values of 8 [=(1
= »}/(1 — »,)], where the function # has been computed
numerically from (41). For example, the curve corresponding
to 8 = 1.33 would result if » = 0.2 and », = 0.4, which we
consider to be reasonable values for a fissured rock mass.
Higher values of 8 result for parameters descriptive of over-
consolidated clay soils;e.g., 8= 1.7ifr = 0.15and », = 0.5.

Since A — 1/6 for large Vi/c, we see that G,,,,, increases from
Gerrr at low speeds to a maximum of

(gnom)max = ﬁzgcrit

at rapid spreading speeds. This is a numerically significant
effect, and we shall discuss it later in relation to observations
on fault creep.

Physically, however, there are two restrictions on the valid-
ity of the criterion based on a critical energy release rate. First,

(45)

(46) -
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as was discussed already in connection with the elastic case, it
is necessary that the breakdown zone be small in comparison
to overall fault length. In the present context it is also neces-
sary that the drained kernel at the fault tip be sufficiently large
to envelop fully the breakdown zone. This latter requirement
cannot be met at high spreading speeds, since the kernel size is
proportional to ¢/ V.

Indeed, if in the high-speed limit we simply assume elastic
response with undrained material properties and postulate the
same critical value of G, we would predict (see RC)

G = (I = vu)Kuom®/(2G) = Gerur
or, since we have defined G,om in terms of drained properties,
Gnom = (I = »)Knom'/(2G)

= [(1 = /(1 = v)IGern = BGern  (48)

The more elaborate fracture model considered next shows that
this is indeed a proper limit as Vi/¢ — «, However, we are
more interested instead in the maximum value of the driving
force which, according to the more elaborate model, occurs at
some intermediate value of V//c and is closer to the factor 82
of (46) than to the factor 8 of (48), at least when the break-
down zone size is small.

@7

FAULT-SPREADING CRITERION BASED ON 7-8
RELATION FOR BREAKDOWN ZONE

We now consider an extension of the PR model to the case
of a porous elastic medium. The 7-§ relation is taken as the
simplified one of Figure 25, so the stress redistribution along
the advancing fault is as shown in.Figure 3¢. But this is justa

" superposition of two uniform shear loadings, each of the type
analyzed in detail in the foregoing. In order to determine the
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unknowns in the problem (say, w and 7, — 77) we require,
analogously to (10), that (i) there be no net stress singularity
at the fault tip and (ii) the slip offset at the trailing edge of
the breakdown zone be equal to 3.

By (37), then, the first condition becomes

Knet = (Ta - TF)(S{/W)”%(VI/C)
— (15 — 70)(Bw/mY}*W(Vw/c) = 0

Now in order to enforce the second condition we must
develop an expression for sliding displacements along the
fault. A formula is developed in the appendix, (A22), for the
sliding displacemérﬁ 6M(x} corresponding to the shear loading
7M(x). First we superpose this for the single uniform shear
loading of (34), for which #(A) is given by (35). By the super-
position formalism of (32) the slip offset induced by this load-
ing is i

49)

5(x) = ;—W f_ T 095™ () A

= [(1 — »)(ra — 1£)/Glg(x]/1, Vife) x <0 (50)
where, upon writing s = A and using the same notation as in
(38) and (39), the function g is given by
gla, v)

_ :_1 f-{-m (1 — eia)e—isa erf {e—{:{4ﬁl—(s)a]!2]
s D76, )

ds (51)

T J_q

A simpler representation, applicable for 0 < a < | and more
amenable to numerical evaluation, can be obtained by adding
and subtracting a term proportional to 72~(s) to the numerator
of the integrand. In this way the integral can be rewritten as

gla,v) = — T AT
in J_o sD
irJ o
t 5nom/£cril
B=1667

25 -
2.0 -

L -

- g?

1.5 -

[

range, observed creep-

X / events; see fig. 6 -

1.0 1 MU 1

1072 1 102 10*
: vi/e ’
Fig. 4. A plot of the fault spreading criterion Chom =

Ger/H(Vil/c), based on a critical energy release rate, for various
values of f, where 8 = (1 — »)/(1 — »,). :

teo {(1—a) —ix/4 A= 172 -1/2 ~ix/48 A—
If e el [T o) — 20 e e

—1/2 —4 -~ — —ix/4 A~ 1/2
1 f+w 271_ /e ':;4m al/z — e isa erf [e ix/ P af']

ds

£ s (52)

s D

The second integrand is analytic everywhere in the lower half
of the s plane. Since the integral can be closed without contri-
bution by a contour at «, the integral itself must vanish by the
Cauchy integral formula. Only the first integral remains, and
by distorting its path to lie along the branch cut on the positive
imaginary s axis and setting 5 = iy, we obtain

g(a, 7) — ?Zr f {2(‘1‘0/7'_)1/2 _ e—(l—-a)'! )
0

| . 1 ]
erf [(@n)'’"1} Re [_——_ngﬁf(fmv) dq  (53)

We now return to the fracture model and compute the total
slip offset by superposing the response to the two uniform
shear loadings shown in Figure 3¢. Thus using (50) analo-
gously to (11) for the elastic case, we have '

_ -
§ = G - [(’ra — ’r:e)ig(lk’:—i, V%)

— o= e EL Y| s

3
[

By setting = 3 when |x| = w in this equation, we obtain an
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equation which, together with (49), may be solved (in prin-
ciple) for the unknowns w and 1, — 7.

In this manner the required driving stress for any given fault
speed V is expressed parametrically, in terms of the unknown
w, by

7o — 7 = {15 — 1)/ (Va/c)/ HVi/c) (55)
where w is determined from

Gé _ V2
(l —_ V)(TB — T'p)[ - (OJ/I) h( VW/C)

-gw/1, VIfe)/h(Vi/c) — (w/De(l, Vw/c} (56}

In Figure 5 we have plotted the left-hand side of (56) as a
function of ¥!/c for some values of w/{. The results shown are
for 8 = 1.33. We conclude that for a given 3, the corresponding
size w of the breakdown zone varies only slightly as the fault
velocity ¥ varies over several orders of magnitude. Thus since
the numerical calculations involved in solving (56) are very
costly, we plot in Figure 6 the dimensionless driving stress
Crom/Sernt as a function of Vi/c for fixed w/l, rather than for
fixed G8/[(1 — »)(r5 — 7#){], as would appear to be more
natural. Indeed, defining Geppe as (75 — 77)8, we obtain, by
taking the ratio of the square of (55) to (56},

Snom/gcr it =
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derived from (41) and (53), and thus to write

Snom/gcri t
W Ve /c)

= ! (59)
T RA(Vw/c) — (x/8)g(1, Ve/c)] K (Vi/c)
We note further that
(x/4)g(1,0) =1  (n/4)g(l, ») = 1/B (60)

so that (w/4)g(1, v) has the same limiting values as A{y). It is
now easy to check the following special cases:

In case 1, where Vw/c — 0, Vi/e — 0 (with o/l fixed), there is
completely drained behavior, in which case

gnom = gcrit (61)

In case 2, where Vw/c — 0 and Vi/c is fixed, there is drained
behavior over the size scale of the breakdown zone but not
necessarily overall, in which case

gnom = []/hi’( VI/C)}gcm

This agrees with the criterion of a critical energy release rate,
based on the singularity within the drained fault-tip kernel; the
Crom versus ¥ curve is monotonically rising.

(62)

41 — v)(ra — 1)U/ 7G5 — 7£)8]

4R (Vw/c)

T wh(VIO0) P Ve o)gw/ 1, Vife) — h(Vi/)g(,

The curves in Figure 6 show this equation for w/f = 104,
10-%, 10-2, and 10-!, Also shown is a curve marked w// = 0
which is the same curve as plotted in Figured for § = 1.33. We
see that the expected undrained limit 8 is now approached as ¥
— o, when the finite size w of the breakdown zone, by com-
parison to ¢/V, is taken into account. It must be assumed,
however, that at speeds greater than that at which the max-
imum occurs, the fault will become unstable, since G0 versus
V is then decreasing. '

Specifically, the viewpoint toward seismic instability that
arises from this model is that a fault is stable at slow speeds
and at speeds up to the peak in the curve, since in this range an
increasing value of driving force is necessary to obtain increas-
ing speed. But at a critical driving force, corresponding to the
peak, no quasi-static solution for fault spreading exists in

-response to a further increment in driving force, and unstable
dynamic fault motion ensues.

Since our interest is primarily in cases for which w/f << 1, it
is possible to make use of the result ’

gla, v)/ o — (8/mh(y)  as (58)

a—0

36

s (1-v) (7~ TFLE

10 —\wi’i =0.1

05
w/€=0.01
o 3 1 1 1 i 1 Il 3
1072 1 102 104

Ve/¢

Fig 5 Variation of § with fault-spreading speed for constant values
of w. Calculations are for 8 = 1.33,

Vs /)] 67

In case 3, where Vw/c is fixed and Vi/c — o, there is
undrained behavior on the overall size scale but not necessarily
over that of the breakdown zone, in which case

Grom = {fﬁ(wac)/[zfz(wac) — (x/4)g(1, Vw/o)} gm
o (63)

and the Gpom versus ¥ curve is unstably falling.
In case 4, where Vw/c — « and Vi/c — o (with w/! fixed),
there is completely undrained behavior, in which case

Grom = BSGerte (64)

the expected result, since we have defined G,om 0n the basis of
the drained Poisson’s ratio.

We note further thatif w// is sufficiently small, there must be
a value of ¥ for which the limits Vw/c — 0, Vi/c — « are
effectively attained, in which case there results the maximum
possible value,

Grom = B%Gernt (65)

However, we see from the plots in Figure 6 that w// must be
very small indeed for the actual max;mum to commde closely
with the factor 82

NUMERICAL DaTA Basep oN CREEP EVENTS -
ON THE SAN ANDREAS FAULT SYSTEM
N CENTRAL CALIFORNIA

As shown in Figures 4 and 6, our mathematical solution
predicts the requirement of an increasing driving force to
increase the speed at which a shear fault spreads quasi-stat-
ically. The effect is numerically significant, and it is due to the
coupling of deformation and fluid diffusion in the surrounding
rock.

Provided that the speeds and lengths of observed creep
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Fig. 6. The nominal energy release required for fault spreading,
as a function of fault velocity, based on the 7-4 relation of Figure 25.
The curves are drawn for (1 — »)/(1 — »,) = 1.333, and results for
different ratios, w//, of breakdown zone size to fault length are shown.
The range of Vi/¢ corresponding to observed fault creep events [King
et al., 1973; Nason and Weertman, 1973) on the San Andreas system in
central California is also shown, when a value of ¢ suggested by Ander-
son and Whitcomb [1975] is used.

events correspond to those portions of the Vi/c axis over
which Guom is steeply rising, it can be assumed that the ob-
served faults are being stabilized against rapid spreading by
the effect that we have described and hence that this effect
could be the physical mechanism which makes fault creep
(versus unstable, seismic slippage) possible. Using data on
creep events on the San Andreas fault system in central Cali-
fornia, as reported by King et al. [1973] and by Nason and
Weertman [1973], we find that observations do indeed lend
credence to the above statement.

Representative speeds of creep events are reported by these
sources to lie in the range of 1-10 km/d, with some occasion-
ally faster, and slip lengths / lie in the range of 0.1-10 km. The
diffusivity ¢ in the San Andreas region is not accurately
known, but Anderson and Whitcomb [1975] suggest that a field
value of approximately 1 m%/s is consistent with a number of
indirect observations. The value is much higher than what one
would normally associate with diffusion phenomena and is
certainly higher than that for water motion in, say, clay soils or
competent rocks (excepting porous sandstones, which can
have ¢ values in this range; see RC). However, the value is
consistent with a permeability x which does not seem at all
high for fissured or jointed rock masses in or near to a fault
zone. This we compute from the last of (20), setting ¢ = 1 m?%/s
and choosing G = 2 X 10* MN/m? (=2 X 10® bars),» = 0.2, »,
=0.4, and B = 0.6. Theresultisx ~ 5 X 10~ m*/MN s, which
corresponds to about 50 millidarcys but is perhaps better
appreciated when reported as the flow rate of pore water that
would be induced by a pressure gradient of 1072 MN/m?® (or 1
bar/10 m, a magnitude for which the drop in pore pressure
over some length Ax is equal to the pressure at the base of a
vertical column of the same length at the earth’s surface). This
flow rate is 5 X 10~* kg/m? s, and the corresponding average
velocity of the water flowing in fissures or joints would range
from about 0.5 to 0.05 mm/s if these occupied a volume
fraction ranging from 0.1% to 1%. These numbers do not seem
unreasonable for fissured rock near a fault zone, and thus we
accept the indirectly inferred value of Anderson and Whit-
comb, ¢ = 1 m%s. Certainly, for actual faults the spatial
nonuniformity of elastic and fluid transport properties will
affect the conditions of drainage near the fault tip; high per-
meability near the tip could allow drained conditions at speeds
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beyond what is predicted based on a ‘representative’ value of ¢,
as above.

Using this value of ¢ and the range of speeds and slip lengths
reported above, we can find the corresponding range of values
of the dimensionless speed parameter Vi/c¢ for the observed
creep events. This range is marked on Figure 6 and also on
Figure 4. The results are highly encouraging, in that this range
corresponds nicely to that part of the ¥{/c axis over which the
required fault driving force, Guom, is steeply increasing. Thus
while there may be several other effects that contribute to fault
creep {(as outlined in the introduction), it does indeed seem
highly probable, on the basis of this observation alone, that
the fluid interaction effect described here was active in provid-
ing significant stabilization to those faults on which the creep
measurements have been taken.

A more detailed comparison of creep data with the predic-
tions of our model requires choice of the breakdown zone size
w. This is unknown, but we shall suggest subsequently, based
in part on a constraint provided by some observations of King
et al. [1973], that a reasonable value for w is of the orderof I m
or smaller. Hence, given the range of slip lengths cited above,
namely, 0.1-10 km, w/! should always be very small, lying in
the range from 10-? to 10~* or smaller values. '

Consider, then, a fault with slip length / = 1 km, so that w//
= 1072 or less, and assume that the § value on which Figure 6
is based (consistent with v = 0.2, », = 0.4) adequately de-
scribes rock near the fault. Estimating ¢ as before, we find that
propagation speeds of ¥ = | and 10 km/d correspond to
values of 11.6 and- 116, respectively, for ¥{/c. The associated
values of the required fault driving force, in the form
Grom/Gerie, are 1.41 and 1.63, respectively. For comparison, the
minimum value of G, ,om/Gerse to move a fault is 1, and the value
corresponding to the peak in the curve, beyond which it is
assumed that seismic propagation must ensue, is 1.69 for w/l =
1072 or 1.74 for w/l = 1074 v

Now consider the maximum possible speeds of fault creep,
corresponding to the maxima in the curves of Figure 6. If we
take w = I m, then we find Vyax = 154 km/d for/ = 0.1 km, 54
km/d for { = 1 km, and 22 km/d for / = 10 km. The values
would be larger for a smaller value of w. For comparison, the
largest values reported by King, Nason, and Tocher are 80
km/d for an event in which the rupture length was-not re-
corded and 24 km/d initially for an event which spread, at
decreasing speed, over approximately 6 km.

Our estimate of G,y and thus, approximately, of w is based
on this latter event, which occurred on July 17, 1971. The
offset displacements were measured at four stations by King et
al. [1973, Figure 4] and were found to coincide closely to an
elliptical curve. This is the shape of curve that would be
predicted for the fault of Figure 1b with no net entrapped
dislocation. In that case, when the origin of coordinates is
placed at the center of the fault and when perturbations due to
the breakdown zone are neglected, the elasticity solution for
the offset displacement is (see, e.g., equations (22) and (96) of
Rice [1968])

8= 6n‘mx[l - xzj([f2)2]l/2
Omax = (I — »)(7a — 12)/G

(66)

The reported value of §pe¢ is 9 mm and / = 6 km. This
corresponds to a very low driving stress; taking» = 0.2and G
= 2 X 10* MN/m? (=2 X 10° bars) as representative, we
compute (r, — 7r) = 0.38 bars. If we reexpress the stress
intensity factor from (3) in terms of 8,,.x and use {8), we obtain
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v Gy (r )'”
Kurit - 1 — (21

__7_rG 6max?

T a1 = wi

67)
1 —
chiz = —Z_G_V Kcrit2

and with the numerical values quoted above we compute Gt
= 2.6 X 10* N/m (=2.6 bars mm). It is interesting to note that
this value corresponds to the lower range of fracture energies
reported by Husseini et al. [1975], corresponding to the arrest
of seismic slips on previously active faults.

The breakdown zone size w is given by (16) in terms of the
offset §, at which breakdown is complete in Figure 2b, and of
the stréss drop (75 — 7r) from the inception of breakdown to
residual sliding friction. Unfortunately, we have no direct
experimental evidence to aid in the choice of either of these
parameters, although since the cross-hatched area in Figure 35
is equal to G, the values to be chosen are constrained by

(68)

We now consider some estimates of 8, which will allow us to
estimate (rz — 75} from this equation and hence to estimate w
from (16).

If we view the fault plane as rock surfaces in intimate
mineral-to-mineral contact at asperities, where some degree of
true adhesion occurs, we might then choose & as comparable in
size to a true contact length. This we estimate as 10-100 ym
(10° um = 1 mm). With § = 10 um, (75 — 7#) = 260 bars from
(68), and (16) then leads to w = 8 mm. The figure based on
the larger asperity size, namely, 3 = 100 um, leads to (75 — 7)
= 26 bars and w = 0.8 m. The latter ¢stimate is the basis of the
value. 1 m for w chosen in our earlier calculations. In any case,
w/! should be very small, and if the smaller figure of w = 8
mm is more nearly correct, all observed creep events should
correspond essentially to the curve labeled w// = 0 in Figure 6,
and the upper limit, beyond which seismic faulting ensues,
would be given by Guom/Gerit = 62 (=1.77 for the value of 8 in
Figure 6).

Alternatively, we might view the fault plane as consisting of
a finely granulated rubble of particles ranging in size from
claylike soil particles to sand and gravel. If § is identified as a
representative particle size, the previous estimates of 10-100
pum and consequent estimates of w might still be valid. On the
other hand, we might proceed by viewing the gouge as a clay
layer and by estimating § by comparison with the known
values for virgin faulting of heavily overconsolidated clay soils
presently at the earth’s surface in the form of slopes or em-
bankments. Indeed, PR noted that 7-8 curves for virgin
failures of London clay specimens are consistent with § values
in the range of 3-8 mm. But specimens which contain a pre-
viously slipped shear band show very little recovery of
strength, and it would seem difficult to justify a 3 value for
initiation of further slip as large as, say, 0.5 mm. If we take a §
of 0.5 mm to correspond to an upper bound on the recovery
of strength by some unspecified mechanism between slip
events on a claylike fault gouge, this would lead to an upper

(5 — 77)0 = 2.6 bars mm

bound to end zone size of @ = 19 m and to (75 — 77) = 5.2 bars.

This breakdown zone size is also much larger than the ones
estimated in PR for virgin slip surface propagation in landslide
failures of clay slopes, in which cases w was found to lie in the
range of one to a few meters.

It is clear from the foregoing that a definitive choice for w
cannot presently be made, and further experimental informa-
tion is obviously needed. Fortunately, our comparison of rep-

5331

1

resentative creep event lengths and speeds with predictions in
Figure 6 is not sensitively dependent on this choice, While the
prediction of the instability velocity and the corresponding
Gnom value does depend strongly on w, our more general con-
clusion, that observed fault creep events are stabilized against
rapid spreading by the fluid interaction effects discussed here,
is little affected.

SLiP SURFACE PROPAGATION IN THE PROGRESSIVE
LANDSLIDE FAILURE OF OVERCONSOLIDATED
CLAY SLOPES

We have alluded to the strong analogy between factors
which could lead to the stabilization of earth faults against
rapid spreading and those which could be responsible for the
progressive failure of overconsolidated clay slopes. The phe-
nomenology of the latter has been set forth by Skempion
[1964] and Bjerrum [1967]: Owing to the unstably falling na-
ture of the stress-deformation relation beyond peak strength,
failure once initiated, say, by the notchlike stress concentra-
tion at the base of a slope, tends to localize as a narrow slip
surface which propagates up the slope in a cracklike manner,
and a final continuous rupture path forms which allows the
downhill mass motion.

Because of the falling 7-6 relation, the shear resistance
mobilized at any instant along the ultimate surface of rupture
is highly nonuniform, and conventional ‘limiting equilibrium’
methods of slope stability analysis, based on a uniformly
mobilized peak strength, tend often to overestimate slope sta-
bility {Skempton, 1964]. The PR model of slope failure as the
propagation of a shear fault, subject to a 7-8 relation as in .
Figure 3a, seems to provide a suitable general framework for
such failures, but no convincing explanation has been put
forward for the time dependence of the failure process. Small
progressive downslope mass motions are sometimes observed
for periods ranging up to several years before a landslide.
Also, even when failure takes place on a short time scale, say,
immediately following an excavation cut, the failure propaga-
tion seems to be essentially quasi-static [Bishop, 1973].

As a possible factor leading to this time dependence it is
noted that except in arid regions, such clay slopes will be fully
saturated and hence, due to the high drained compressibility of
the. soil skeleton as compared to the individual compres-
sibilities of its solid and liquid constituents, undrained re-
sponse is essentially incompressible and », = 0.5. As was.
remarked in connection with Figure 4, this means that 8 is
large, say, 1.7, and as was shown by the uppermost curve in
Figure 4, the increasing resistance to rupture propagation with
spreading speed is quite substantial. The maximum ratio of
Grnom/Gere Tor this curve is §2 = 2.78, although the ratio w//
cannot be expected to be very small and the more detailed
analysis in Figure 6 suggests that for w// =~ 0.01 to 0.1, which
might be taken as representative, the actual increase of
Gnom/Serie above unity may be only § or so of this value, Still,
the predicted effect is large, and it could provide the mecha-
nism of stabilization against rapid slip surface propagation.

The range of spreading speeds over which the effect is im-
portant is very different now, owing to the great difference in
properties of clay as opposed to rock. We take a valueof ¢ =
107% cm?/s as representative for elastic behavior of clay; this
corresponds to a permeability & = 10-"cm/s and uniaxial
drained compressibility m, = 107%/bar, where we use the usual
soil mechanics symbols [e.g., Terzaghi, 1943, chap. 13]. Also,
we consider a slip surface length / = 10 m. From Figures 4 and
6 the plots of Guom/Gerne are steeply rising over the range of
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Vl/¢ extending from, say, | to 100, and it may be assumed
that over the corresponding range of spreading speeds, the
coupled deformation-diffusion effect under consideration is
active in stabilizing the growing slip surface against unstable
propagation. With the assumed values of ¢ and / we find this
range of V to extend from approximately .3 m/yr to | m/d.
These speeds do seem to be in a range consistent with the
longer-term progressive slope failures, although not for failure
times of the order of a day or so, and this mechanism of slope
stabilization would seem to merit further study in the mod-
eling of landslide phenomena.

CONCLUSION

We have demonstrated that the coupled deformation-diffu-
sion processes in fluid-infiltrated porous solids lead to a mech-
anism which can account for the stabilization of lault spread-
ing. The principal results are embodied in Figures 4 and 6 and
the accompanying discussions. The comparison with observed
creep events on the San Andreas fault system suggests that this
may provide a viable mechanism for fault creep. Also, a pos-
sible relevance to long-term progressive failure of clay slopes
has been indicated.

Here, for purposes of simply illustrating the phenomenon,
atlention has been limited to a simple plane strain fault geome-
try with steady state fault propagation. For further study of
the mechanism it would seem appropriate to seek mgthemati-
cal solutions for more general time histories of fault spreading
(e.g., for a finite fault spreading from zero initial size at arbi-
trary speed) and for three-dimensional fault madels, since the
antiplane strain components of fault motion should be much
less sensitive to these effects. In addition, as was remarked in
the introduction, there are other factors which might contrib-
ute to the stabiliza[i’on‘o'f fault spreading, and these would
likewise merit further analysis.

APPENDIX

The solution to (18), {19), and (22) subject to boundary
conditions (24)-(26) is developed here by Fourier transforms,
defined so that any field variable f and its transform [ are
related by
(Ala)

Joo = [ i e ax

fx, y) = %’_ ]:w Fx, 2™ dx (Alb)

Application of (Ala) to (19) and (22) and elimination in the
usual way of solutions which grow exponentially in y lead to

2(1 — p) A®) exp [— m()y]
—[2(1 — w)/plBk)

-exp [—n(x)y]

where the functions 4(x), B(x) are yet to be determined and
where

&.r/ + &I)!I + 27}1‘} =

Ger + Gy + Qu/u)p = (A2)

Re [m{x)] > 0

&) =« — ikV/e Re [u(k)] > O
Here Re means ‘real part of.’ It is convenient to rewrite (A2),
in abbreviated form, as

m&) = &

(A3)

(3ax + Gyy)/2 = Ae™™Y + Be™n™

np = —pde™™¥ — Be™n*  (Ad)
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After transformation the remaining field equations (18) can
be rearranged in the form

7n)/2 + aé,u/é‘y

= —ix(d,. + ¢,,)/2
G.:)/21/dy

= —9[(G,. + ¢,,)/2)/0y

- iK(a.!III -

(A5)
ixd,, + 9l(d,, —

The terms on the right side of these equations are expressible
in terms of the first of {A4), and hence (A5) may be viewed as a
coupled pair of first-order differential equations for the varia-
bles (§yy — 712)/2 and .5 The homogeneous solution which
does not grow exponentially with y is given by the pair

Clx) exp [—m(x)y] [—ix/m(x)]C(x) exp [—m(x}y]

where the function C(«) is also yet to be determined. To these
we add particular solutions giving the proper right-hand SEdC
and the results, in abbreviated notation, are

G — 6,,)/2 = (CF myd)e™
+ [ + 2)/6" — 1DIBe™  (Aba)
Gy = —(ikC/m + ikyAye ™
— [Rikn/(* — n*)]Be ™ (A6b)

These, together with {A4), determine transforms of all the
field variables in terms of the three unknown functions 4, B,
C. which must, in turn, be chosen to satisfy the boundary
conditions, (24)-(26). The first two sets of boupdary condi-
tions require that p and o, vanish on the entxrex axis. So also
must their transforms, and thus

nAwK + Bk) =
Ak + (2¢/1¢ — 1"} Bl) + Cl) =

(A7)

The remaining boundary conditions give o,, for x > 0 and o,,
for x < 0. Thus the transforms &,, and &,, are incompletely
specified, and these boundary conditions reduce to

Aw) — {227 &)/ K — n* (@]} B() — CG) = G'(x)  (A8a)
and '
—{2ikn)/ K — @]} Bk) — lix/ mEICK)
= F () — #x)  (A8D)
where
k) = f T(x)g_“’ dx > A9a)
G'(x) = f o, (x, 0)e ™ dx
e (A9b)

F{x) = f T (x, 0)e '

Viewed as equations for 4, B, and C, (AT)-(A8) are over-
determined and may be solved only if a certain consistency
relation is satisfied by the further unknown functions G* and
F~. This consistency relation, together with the fact that G* and
£~ are analytic in the upper and lower portions, respectively,
of the complex « plane, as suggested by the superscripts,
suffices (in principle) to determine them and hence 4, B8, C,
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and the transforms of all the ¢'s and p, by the Wiener-Hopf
method [see Noble, 1958).

The details of the solution are now carried out for the shear
loading function 7M(x) of (27). When reported in the main
part of the text, functions 4, B, C, gy, etc., corresponding to
this loading will be given the superscript (A). From (A7) and
the first of- (A8),

A6 = G (/120 — W]
Bk) = —uG"(®)/[2(1 — w)]
Cl) = — (1 + 2ieux/V)G* ()/[2(1 — p)]

(A10)

When these are substituted into the second of (A8) there
results the consistency condition

{ix/m(x) + Que/V)n(x) — m()}}
GHR)/ (1 — w)] = F (k) — #x)

Now we write 7(x} = ¢’ in (A9a), where it is understood that
A has a small negative imaginary part whenever required for
convergence or the elimination of ambiguity, and obtain

#Hx) = 1/[i(x — «)] (A12)

As derived, (A11) holds only on the real « axis. Our aim,
however, in the Wiener-Hopf technique is to rewrite it in a
form for which every function which appears is analytic in
some upper or lower half plane and for which every function
which appears shares some common domain of analyticity.

We note that n(x) and m(x) can be written in the form

(A11)

mik) = m*(xym (k) n(k)y = m*(x) n=(x) (Al3)
where
mt(k) = & m(x) = (k — {e)*?
n(x) = (xk — iV/c)'? (Ald)

and where ¢ is a small positive constant which ultimately will
be allowed to vanish. The branch cut for m* is the entire
negative imaginary « axis, whereas the ornes for m~ and n- lie
on the positive imaginary axis from the points ie and iV/¢,
respectively, to ie. Thus the superscripts plus or minus again
denote the region of the « plane where a function is analytic.
We note also the identity x = [m*]? = [m~]%

Substituting (A12) into (A11) and rearranging in accord
with our goals yield

_G'® 1 _
2im*() ik — Nm QD)

F (k)
m (&) D (x)

1 1 1
+m—n[wmvm_mvwvj Al3)
where

(1 — WD (x) = 1 + Qipxc/V) [1 — 0~ (x)/m(x)] (A16)
As suggested by the notation, the function D~(x)is analytic
and free of zeros in the lower half « plane and in fact for Im (k)
< ¢, and it tends to a finite value as x — . Thus whereas the
left side of (A15) is analytic in the upper half plane Im (x) > 0,
the right side is analytic in the lower half plane Im (x) < e.
Thus since the two sides of (A15) share a common domain
of analyticity, they must be analytic continuations of one
another, so that both the right side and the left side can be
equdted to another function, say, H(x), which is analytic in the
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entire « plane. In order to determine this function, the proper-
ties of both sides of (A15) must be investigated for x — o, By
observation of the definition of G*(x) and F~(x) in (A9%5),
we can assert that both sidés of (A15) approach zero as k —» «©
in their respective domains of analyticity. Thus by Liouville's
theorem, H(«x} must vanish identically.

This meuns that both sides of (A15) must vanish. We can
then write the solution

G*(k) = =2m*(k)/l(x — Nm~(M)D~-(N)]  (A17)
and by msertmg this into (A10), obtain the solutjon for the
functions A(x), B(x), and C(x).

The above solution is used to write (28) in the ma;n ;ext and,
through the superposition procedure of (31)-(33), fg sqlve the
problem of uniform shear loading (equations (34)—(41))

Later in the text a solution is needed for the displacement
field corresponding to 7*(x). To obtain this, note that by the
stress-strain relations {174) with condition of plane strain and
the boundary condition (25), we have

Exx(xs 0) = (1 - V)'?xx(xs 0)/(261

If u, is the displacement of the upper fault surface in the x
direction, we may write e;, = Ju,/dx and note also from the
antisymmetry that the total slip offset can be writtén as § =
2u,. Thus

(A18)

x <0 (A19)

am=m—wm£%mma

Using the solution above and noting {A95), we have for the
shear loading 7™(x)

5::‘)1}(‘(: 0) = G-HM(K) .
= =2m*(&)/[(x — Nm-(A\D-(\)]

where now the superscript (A} is attached as in the main text.
Thus by Fourier inversion,

) 1 —» )1 re
6 = L2 | {v [
(x} G o 21T PLNEPSY

o

(A20)

G* [+ (K}é“ kx dﬂ} dx

_ 1—» 1 —e™ d
T wGm D (W) e m& — N

(A21)

To evaluate this, it is simplest to multiply both sides by e~™%,
differentiate with respect to x, then shift the path to one which
wraps around the branch cut for m*(«x) along the negative
imaginary axis, and finally integrate both sides from x = O to
some general point x < 0. The final result is

201 = »)e™ erf [ mm Q) |x|%]
GAD (V)

M (x) = (A22)

where erf (§) = (Z/zr“z)_f e~ dy. This solution is used with the
superposition formahsm to obtain (50)-(54) of the riain text.
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