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The localization of plastic deformation into a shear band is discussed as an instability of 
-plastic flow and a precursor to rupture. Experimental observations are reviewed, a ge~eral 
theoretical framework is presented, and specific calculations of critical conditions are 
carried out for a variety of material models. The interplay between features of inelastic 
constitutive description~ especially deviations from normality and vertex-like yielding, and 
the onset of localization is-emphasized. 

1. INTRODUCTIOl-r 

It is remarkably common among ductile solids 
that when deformed -sufficiently into the plastic 
range, an essentially smooth and continuously 
varying deformation pattern gives way-to highly 
localized deformation in the form of a tlsheal" 
bandt!. : Sometimes such _ bands, once fbrmed, per­
sist and the subsequent deformation proceeds in 
a markedly non-uniform manner~ Often~ however, 
such- intense local deformation leads directly to 
ductile fracture, so that the onset of localiz-a­
tion: is synonymous with the inception of rupture. 

While observed in ductile metals. polymers, and 
in rocks and granular aggregates under compres­
s i ve stre sses, -there is little' in the way -of a 
comprehensive understanding of the phenomenon. 
Some basic theoretical principles follow from 
Hadamard's [1] studies of elastic stability, ex­
tended to the non-elastic context by Thomas [2], 
Hill [3], and Mandel [4-]. But it is only re­
cently that conclitions- for the onset of loca-liz­
at-ion have been t-ied torealist-ic constitutive 
descriptions of- inelastic r-esporise. Indeed-, as 
will be realized from the work to be reviewed 
(section 3),-theseconditionsdepend critically 
on subtle-features of-these descriptions, specif­
ically on verte·x-like yielding 'effects and' de­
partures from plasticnnormali tyll, as well as on 
the tensorial nature of the pre-localization de­
formation field <-e.g., plane s:train vs. ax-lally 
symmetric). Further, only some very- elementary 
steps have-been taken thus far toward as assess­
ment- of- the role of deformation field non-uni­
formities- or TTimperfections tl which~ -fromexperi­
mental -studies, Seem often to be of great impor­
tapce for the initiation and spreading of local­
ized- deformation zones-. 

1.1. Some examples of localization 
In the 'plastic deformation of metals, Luders 
band formation in materials with sharp yield 
points is perhaps the best known example of lo­
calization. Indeed, the name seems to be em­
ployed generically for the entire class of loc~ 
ization phenomena in [2,3,4] although, in many 
respects, the theoretical framework of those ref­
ences seems less suited to this-case than any of 
the others to be cited. Nadai [5] has assembled 
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an impressive array of photographs of Ltiders­
yielding in steel specimens; occurrences often' 
entail_ the crack-like propagation of -bands in--' 
highly non-'unif6rtn conditions (and with pro'­
nounced sensitivity to imperfections) rather 
than a more-or-Iess spatiallysimultcimeous--- hi.:., 
furcation into a localized mode from a uniform-' 
or near'ly uniform deformation field. 

In a study of the ductile fracture of metal sin­
gle c-rystals, Beevers and Honeycombe[6] observe 
that after some plastic deformatioh, -the -smooth­
ly varying field of flow, often within a dif:'" 
fusely necked region-of their specimens, gives: 
way to a concentration of deformation in coarse 
slip bands, and localized flow wit:hin -these' 
leads, shortly, to ductile- fracture (see their 
fig.4b, also 5 and 7). Price-and Ke-lly [7] 
studied this further in AI- alloY single crystals; 
they pointed out-that such-localizations can oc~­
cur under risirig load (i.e. ~ without a flnon-' 
hardeningTl state) and also observed an-associa­
tion of the onset of these localizations with ,­
the ea-se of "cross -slip", imassociation which 
will be- studied later for it-s possible- cODIlection 
with slight deviations from Schmid~ g:lati :0£ crlt~ 

-ical resolved shear- stress, and hence -from plas­
tic normality.' On the other- hand, Jackson:-:and 
Basinski [8] study lat-ent-hardening"- for:der-orma­
tion of Cu crystals on slip systems intersecting 
an initial syst:em· on whi-cbthe' cryst:als-' -were_', pre­
strained. The firsr increrilEint-s "of- def'o~mation: , 
on the· new system- corresp0t'id· :tone-ar':':zero~ inltial 
rates of hardening, and-,the deformatl()D-,'-if;, then'­
initially concentrat-ed in: coarse'-s-l-i'p- 'band'S {see 
their figs. 6,7). Price --and Kelly (7) :sugge-st: 
also that there is no -permanent -weake-ning in - ' 
coarse slip zortes, at least in;cases-for- which~: 
fracture· does not imni~diateTy follbw- locali~a:" -
tion, for by unloading their specimens, mach'ih.:­
ing away the steps where bands tnetthe -suJ;face, , 
and reloading into the plastic range, t-hey£ound 
that localization occurred immediately-upon p~­
tic yielding, but not generally within a zone of 
previous localization. Hence the entire body bf 
material in their specimens seemed to have been 
brought to a plastically unstable state-. 

Localizations occur also within ductile. metal 
polycrystals and structural alloys. Normally, 



208 J.R. RICE 

when cleavage is precluded, such materials fail 
by the nucleation of holes from the brittle 
cracking or decohering of inclusions, with sub­
sequent plastic growth to coalescence of the 
cavities thus created. Cox and Low [9] show in 
their fig. 16a a magnified section of a plasti­
cally deformed high-strength AISI-4340 steel 
near its point of rupture. Cavities have formed 
around some brittle inclusions and have enlarged 
with the plastic deformation. One might then 
assume that rupture will entail the large plas­
tic growth of these holes until the remaining 
ligaments between them neck to zero thickness, 
for many such cases have been observed (e.g., 
McClintock [10]). But instead the hole growth 
process in the Cox and Low specimen has been 
terminated by the formation of a band of local­
ized shearing extending between the largecavi­
ties. Hithin the band. a number of very much 
smaller cavities have formed and grown toward 
coalescence. One cannot say whether these small­
er rupture cavities first began to form, and 
this led to localization, or whether t~e plastic 
flow first localized and nucleated the small 
cavities. But certainly, there is no detectable 
evidence of the nucleation of the smaller cavi­
ties at points outside the shear band. 

IndeeQ, such localizations seem to be crucial in 
setting the limits to achievable -fracture duc­
tility. For·example, in sharply pre-cracked 
ductile solids, the onset of crack growth is ex­
pected to occur when the crack has been suffi­
ciently·opened at its tip so that the zone of 
large plastic strain extends over an adequate 
size, by comparison to the spacings of void nu­
cleation sites, to grow a representative void to 
coalescence with the crack tip (Rice and Johnson 
[11]). In studies by Green and Knott [12] on 
steels and Hahn and Rosenfield [13] on aluminum 
alloys, it is shown that the predictiQns of such 
a model are often well followed experimentally, 
but that there are also cases in which the frac­
ture ductility is strikingly less than predicted; 
these cases seem to involv~ the termination of 
the hole-joining process by strong localizations 
of the type revealed by Cox and Low. 

At a more macroscopic level, Tanaka and Spretnak 
[14] subjected round bars of a high strength 
steel to large torsional strains and observed 
localizations which, they suggest. corresponded 
to the achievement ot" an "ideally plastic" state 
of stationary shear stress with ongoing deforma­
tion. Also, Berg [15J suggests the possibility 
of macroscopic localization in void-containing 
ductile materials, when the hardening of the 
solid matrix surrounding the voids, in an incre­
ment of deformation, is outweighed by the soft­
ening due to porosity increase through incremen­
tal void growth. The range of situations to 
which this model applies remains uncertain. 
Studies of ductile rupture-in-progress in the 
necks of Cu tensile specimens, nominally said to 
fail through void growth and coalescence, by 
Rogers [16] (his figs. 6,7,8,10) and Bluhm and 
Morrissey [17] (their fig. 42) reveal zones of 

highly localized deformation within which voids 
are indeed coalescing. But conditions are high­
ly nonuniform across their specimens and it is 
difficult to determine whether a Berg-like lo­
calization, due to softening through porosity 
increase, has occurred or whether localization 
of plastic flow has caused the extensive void 
growth. Certainly, the final rupture surface is 
made up of a "void sheet", but this alone is not 
indicative of the process leading to it. 

Further examples of localization instabilities 
are provided by the formation of narrow necked 
zones in ductile metal sheets deformed, at least 
prior to localization, in plane stress. Judged 
as 3-D problems, these are distinctly different 
from the other cases cited and involve "geomet­
ric" as opposed to "material" instability. How­
ever, to the extent that such ductile sheets are 
modelled as 2-D continua, the problem of local­
ization may be treated through identical mathe~ 
matical steps and is well considered within the 
same general framework. 

Geological materials are rich also in examples 
of localization. For slope stability failures 
of overconsolidated clays and clay shales, it is 
a common observation that deformations concen­
trate in a narrow shear zone, perhaps only a few 
mm across, on which large downslope mass move­
ments take place. Laboratory deformation of 
such clays reveal a corresponding concentration 
of deformation (e.g., Hvorslev [18]. fig. 28), 
which seems to fit the concept of bifurcation 
into a localized mode. Field occurrences may, 
however, involve strongly non-uniform conditions 
with a crack-like mechanism for propagation of 
the shear band (Palmer and Rice [19]) after its 
initiation at a site of local strain concentra­
tion. Rowe [20] shows localizations within sand 
sp~cimens (his figs. l5b,c), deformed in the 
tftriaxial" apparatus under axially' symmetric 
compression. The effect of end conditions is 
evident in that an arrangement intended to. pro­
vide shear-free ends of the specimen leads to a 
significantly larger strain at localization than 
for an, effectively, fixed end-piece specimen. 
Also, it is evident' that there is no necessary 
association of localization with the "ideally 
plastic ll state, for the localizations occur when 
the material is well beyond that state and in 
the strain-softening range (significantly nega­
tive slope of the load~deformation diagram). In~ 
deed the tensile fracture tests on metal speci­
mens by Bluhm and Morrissey [17] were done in a 
stiff testing apparatus so that a strongly nega­
tive load-deformation slope could be accommodated 
without instability, and these suggest too that 
a strain-softening state (in terms of true 
stress) may well have prevailed, at the onset of 
macroscopic rupture through hole coalescence at 
the center of.the necked region. 

Finally, natural rock specimens tested under 
compressive principal stresses also show exam­
ples of localization, usually referred to as 
"faulting lt

• Wawersik and Brace [21] study the 
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post-"failureTl behavior of specimens through a 
stiff testing apparatus, with provision for rap1d 
unloading, and show (e.g., their plates 4a,b for 
a Frederick diabase) examples of localization. 
Here the inelastic deformation arises from fric-:­
tional sliding on closed microcracks' and pro~­
sive enlargement of the microcrack network 
through local fissuring; the final macroscopic 
fault links a large number of such microcracks, 
~lthough their individual directions of growth 
do not coincid~ with that of the final fault. 
This case, like that of granular materials, is 
interesting because the Coulomb frictional na­
ture of the yieiding means that plastic normality 
will not apply (Mandel[4]) and this has interest­
ing consequences ·for localization instabilities. 

1.2. Mechanisms of localization 
_ The work to follow explores a particular ap­
proach to explanation of the localization of de­
formation, viewing the process as an instability 
that can be predicted in terms of the pre-local­
ization constitutive relations of the material. 
The material is modelled as rate-independent and 
critical conditions are sought at which its con­
stitutive relations allow a bifurcation from ho­
mogeneous or smoothly varying deformation into a 
highly concentrated shear band mode, or, perhaps 
in'stead, at which the accelerated growth, with 
ongoing deformation, of some initially small 
non-uniformity of material properties can occur 
in such a manner that the same sort of shear 
band is the end result. 

Of course, not all localization phenomena can be 
expected to fit this concept. An alternative 
hypothesis would be that some essentially new 
physical deformation mechanism comes into play, 
abruptly, and rapidly degrades the strength of 
the material. In such cases the pre-localiza­
tion constitutive relations cannot be continued 
analytically at the critical point, and they 
provide no basis for prediction of localization. 
Indeed, to .the extent that upper yield points 
arise from the sudden breaking free of disloca­
tions from pinning obstacles, with only lightly 
impeded subsequent gliding, the Luders band case 
must be considered as one which is dominated by 
onset of some new mechanism, and thus the bifur­
cation approach, explored here, does not apply to 
it. (It is, however, curious that use ofa more 
sophisticated rate-dependent plastic flow theory 
would return this case to one for which localiza­
tion could be understood in terms of con~tutive 
relations, although the details of the analysis 
would be very different from what is to follow.) 

Further, the approach to be explored here, being 
essentially a bifurcation approach, envisions a 
process of simultaneous or nearly simultaneous 
occurrence of concentrated deformation at all 
points of the (ultimate) zone of localization. 
But in contrast, there may be situations that 
are dominated by some strong local inhomogeneity, 
which concentrates deformation in its vicinity 
and causes the initiation of a localized zone 
which, subsequently, creates its own strain con-

centration and thereby traverses the material at 
nominal deformation ~onditions that are well re~ 
moved from those ·for localization. This is, of 
course, the way in which a Griffith flaw can 
cause a crack to traverse a body at average 
stresses that are well below the strength level 
for an unflawed solid (although stresses at or 
near that level would be achieved locally at the 
propagating crack tip). 

Such cra~k-like propagation processes do not in­
validate the present approach to -localization, 
but do require that it be generalized, in a way 
that is not yet fully clear, to encompass the 
highly non-uniform conditions prevailing near 
the tip of the crack-like zone. An elementary 
approach is to assume that once local deforma­
tions reach conditions for localization, the con­
stitutive relations for continuum~like deforma­
tion are suspended in favor of a relation between 
tractions and relative displacements of the sur­
faces of the zone of localization (presumed thi~. 
This approach is embodied in the Palmer and Rice 
[19] model for shear band propagation in overcon­
soli dated clay soils: for very small initial 
flaws (or faults) the strength as so predicted 
approaches that for the unflawed body, whereas 
for large flaws the response tends to become in~ 
dependent of the strength for the unflawed body, 
and is expressible instead in terms of flaw size 
and parameters of the tractionvs. separation­
displacement relation (specifically~ in terms of 
the net work of separation) for the localized 
material. 

Clearly, the mere observation that a zone of lo­
calized deformation exists within a deformed 
solid is an inadequate basis for choosing which, 
if any, of the various mechanisms discussed is 
correct for its explanation. 

2. GENERAL THEORY 

vle consider deformations which carry points ~ 
of some reference state to positions x, where 
both ~ and ~ are coordinate sets (;.g., Xl, 
X2'X3) referred to a fixed Cartesian frame. The 
deformation gradient tensor is r = a~/a~ and 
stress is measured by the nominal stress tensor 
s , defined so that nos is the force acting, 
per unit reference ar;a: on an element of sur..;. 
face having normal vector n in the reference 
state. It satisfies 

s ••• + f. = a (s •• k :: as . .lax. ) 
1J ,1 J 1J , 1J-1< 

at equilibrium, where f is the external force 
density based on the reference state. vfuen 
needed, the true (or Gauchy) stress is denote4 

.by a ; the measures are related by 
2 deter) = r'~ . 
While a full analysis of rate effects on local­
ization is well worth stUdy, the theory is not 
yet well developed in that context and here we 
consider rate-independent~ thermally decoupled 
(or else completely adiabatic) constitutive mod-
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els, so that the stress rate ~. is, a h()mogeneo\ls 
function of degree one in the deformation'gradi­
ent rate i , the form of the functi9nal relation 
being itself dependent on the prior history Qf 
deformation, and exhibiting proper v?ri~nce for 
rigid spin .• 

Now, consid~r a homogeneous, homoge~eously de~ 
formed solid subj-ected, quasi-statically, to in­
crements of deformation which could give rise to 
the homogeneous and.consti!utively compatible 
quasi-static rate fiel.ds EO, ~o ~ We wish to 
determine if a bifurcation within a localized 
band, of orientation n· in the reference state, 
is possible, in such. a manner that r varies 
with ~.~ (Le., with positJon across the band) 
while the equations of continuing equilibrium, 
~ij,i = 0 , (constant t) are met. There are two 
conditions to be met: First,if the velocity 
rield is to be contin~ous, there is thekinernat­
ical condition that E must have the form 

F = FO +·gn 
IV IV .fViV" 

or (1) 

where the vector g is some funct.ipn of 
X= n·X , being. non-zero withj.n the band, and 
wher; the notation 8 denotes the difference 
between some function at a general point ~nd 
w~thin the homogeneous field outside the band. 
G-i ven the kinematical condition,' ~ can vary 
only with X, and thus the equations of contin­
uing equilibrium take the form ~·a~/ax= 0 . 
This requires that 

or (2) 

The last condition can be expressed also in 
terms of Q,. Choosing the refer~nce state to 
coincide, instantaneously, with the current state, 
one may show [22] from,the relation of Q. to ~ 
that ll·8~ = n·8~ whenever (1) is satisfied, 
and hence the condition (2) .is alternatively 
stated as n·60 ,: O. This can, of course, be 
derived dir;ctly. 

2.10 Piepewise-linear constitutive rate laws 
To proceed !urther, we assume that the relation 
of ~ to [.is not only homogeneous of degree 
one. but als0.piec~wj.se-linear. This is so in 
the sense t\1at IT-space I!. can be divided into a 
family of cones emanating from the current state, 
at e~ch'instant, in a manner such that· 

s .. 
~J 

= (3) 

for some fixed set of moduli L whenever t 
points within a given cone; different 'L are 
assigned. to the differ~nt cones and the;e are 
such that ~ is continuous across cone bound­
aries. 

For certain states, the immediate neighborhood 
of ·t-space is accessible elastically. Then there 
is a single constitutive cone, i.e. the same L 
applies for all directions of t, and if an ~ 
elastic potential is to be admitted, there ap­
plies the symmetry 

. (4) 

For the simple~t model ofelastic-pl~stic re-· 
sponse; there are two copes separated by a plane 
throygh the current sta~e in [-space. This ~or­
responds.to a:locally IIsmootJ:1u yield-locus; t 
directions into one cone induce elastic response, 
to which (4) applies, whereas directions into the 
other induces an inelastic~esponse governed by 
mod~li ~ that may.or may not m~et (4), depend­
ing on the Ptysical origin of the inelasticity,. 
Specifically, if the constitutive relations sat­
isfy plastic unormalityll in conjugate deformation 
variables, then (4) applies .( see Hill [23]). 
Precise conditions that ares,ufficient for such 
n.ormality (or its generalization at a IIvertexll) 
are given in terms of structural rearra~gement 
mechanisms by Rice [24] and of macroscopic work 
inequalities of the Dr.ud<er/II 'yushin type by 
Hill and Rice [25]. In short, such·normality is 
to be expected, at least approximate~y, for.poly~ 
crystals deforming by. Schmid-like. slip under 
critical. resolved shear stresses in· each grain 
but not [4] for systems with CQulomb (i.e" nor­
mal stress dependent) frictional resistance to 
slip. 

More generally, the neighborhood of the current 
state in r-spac.e is divided into many cones, one 
of which may (but need not) correspond to elastic 
response, and (4) applies or not in ea~h cone ac.­
cording to whether the normality postulate is ap­
propriate to the material at hand, One, can admit 
the limiting case of an unbounded number of cones 
subtending infinitesimal angles. in E-space. In­
deed~. realistic microstructure-based moqels seem 
universally to predict this [26;27,22]. The case· 
corresponds·to thoroughly non-linear behavior, 
but even then relations. of the kind e ( 3 >. may be 
considered to apply for. groups of !:' s differfug 
infinitesimally in direction from one another •. 
rlhen one of the cones is elastic (and of non­
planar boundary, as expected universally) the 
yield surface is said to have a vertex at the 
current deformation state. 

Now, returning to the bifurcation ca!cuiation, 
assume that the homogeneous fields ro,~o. out­
side the band are related by moduli _~o, whereas 
within the band the corresponding cone. has mcx1uli 
~.. Then by (1) 

• 0 - LO Fe 0 • = L ( FO ) 
Sij'- ijkt k! Sij ijkt k!+gk~R, 

and by (2) the kinematical non~uniformity ~ 
must satisfy 

= (5) 

This has always the. trivial solution g = 0 ; 
the onset of localization occurs at the first 
point in the deformation history for which a non­
trivial solution exists. 

In the simplest case, the band and the region 
outside it correspond to the same constitutive 
cone, ~ = ~o • Then (5) requires 
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or det(nLn) = 0 (6) 

for the onset of localization. Here the concise 
notation nLn is~ntroduced for the matrix hav­
ing the jk component giv~n by the term in-pa­
rentheses at the left of (5)._ Later, in appli­
cations, it will be preferable to write consti­
tutive ~ate laws in the form 

°ij = Lijkia*k/axi'= CijkR.DkR. - Q"ikQkj + uikokj , 
(7) 

where Q and g are the respective symmetric 
and non-symmetric parts of a~/a~, and Q re­
lates thf co-rotation (or Jaumann) rate of £ , 
namely Q, to ~. Then, following the remark 
after (2), whenever the current and reference 
state a~e instantaneously coincident we have 
nLn = nLn, whether (6) can be satisfied non­
trivially or not, ~nd the localization condition 
(6) becomes det(nLn) = 0 • 

Note that the localization condition is not, as 
commonly assumed, that the equation b = C:D 
possess no inverse, or that some related Indica­
tion of an ideally plastic response be met. In­
stead, it is necessary that the traction rates 
acting on the band be stationary with respect to 
some superposed combination of extension and 
shear within it. This can happen when the trac­
tion rates themselves are, in particular cases, 
either positive or negative or zero. 

As Hill [3] remarks, if the localization condi­
tion det(n_Ln) = 0 is met for some orientation 
n , that same orientation defines a character­
istic segment fur the continuing equilibrium 

_ equations, (LijkR.xk £,)'i = o. Alternatively, 
the onset of locali~ation is first possible, in 
a program of deformation, when these equations 
lose- ellipticity~ 

2.2. Acceleration waves and dynamic growth of 
disturbances 

The interpretation of conditions for static lo­
calization as those for a vanishing propagation 
speed of an acceleration wave was given forelas­
tic solids by Hadamard [lJ ,who uses the term 
"stationary discontinuityll for localization and 
by Hill [3] and Mandel [4] for elastic-plas~ic 
solids (although Hill limits himself to cases 
for which the symmetry (4) applies). 

Briefly, at an acceleration wavefront (on -which 
~;g, and .§ are continuous) movin-g with speed 
cn relative to the reference configuration the 
first derivatives of any continuous functio~ f, 
scalar or tensor, have the representations [3] 

l!.(af/at) = -ell 

where now l!. denotes jumps in quantities as the 
wavefront ~weeps by. Taking f = ~ (remember­
ing that [= a~/a~) and ~ successively we 
have the wavefront representations 

l!.~ = -c~ (8) 

where ~ is some vector. When the ~ast two of 
these are applied:to-th~ equations of motion 
2·~ + ! = p~- (p is mass density of the reference' 
sta~e), there results the condition 

2 
pc ~ (9) 

where it is upderstood that A~ is constitu­
tively compatible with At , given by (81.. In.,. 
deed, comparing (1,2) with (8)1 and (9), with 
c = 0 in the latter, we see the coincidence men­
tioned between localization and acceleration 
waves of vanishing speed. Further, the -mode of 
localization coincides with the polarization vec­
tor. of the wave of vanishing speed. 

Of course, the real significance of acceleration 
wave speeds is that, if the constitutive relation 
for small displacements u from a -given static 
state (say, state A) can be written in the form 

s .. - = 
~J 

A A 
s .. + L. 'k ll U. II 
lJ ~J N K,N 

(10) 

then th~ nature of the response to small distur­
bances is deter~ined by the character of the 
eigen-solutions c 2 to (9) for state A. Spe­
cifically, displacements satisfying: 

A 
s ••• + f. = L. 'k ll uk ,111· :: pu. , (ll) 
lJ ,1 J ~J N- N K 

and corresponding to a periodic initial distur­
bance of wave number kn ,wit~ (for cQnven ie nee) 
polarity identical to that for an eigenvalue g 
of (81 ,9),. corresponding to -wavespeed c ,- have 
the form -

u Rei~ exp[ik(:::·z - ctn} • 

Here Re means Ureal part" and i .lsthe .unit 
imaginary number. The c r S _ are ,of course, to 
be chosen so that pc 2 is an eigenvalue of nLn 
in state A. 

T.?~re are considerable difficulties, to be:- dis­
cussed, with adopting (10) ~or elastic..,.plastic_ 
solids. But proceed,ing with it ,we see that if 
c2 is real and positive there -is stability to-­
small-disturbance. If c 2 is real but negative 
there is "divergen<?e" growth, and if c 2 _ is -
complex, there is H flutter" growth of distur-­
bances. Thus -when (41 applif?s (elastic, or 
e~astic-plastic-with normality), nLn is symmet­
rlC and all roots c2 are real, and thus there­
is stability or not according to whether .the 
smallest root is positive or negative, equiva~ 
lently ~ to whether nLn _ is positive definite or 
indefinite, and the static locallzation criteri­
on marks the transition fr0fil stable to unstable. 
W?en normality does !!£! apply, nLn is unsymmet­
rlC and there see~s at- least the possibility, 
for suitably chosen constitutive parameters that 

2 ' two of the roots_ c are complex conjugates (one 
root must always be real) so that 1IflutterH oc­
curs. 

To the writers knowledge, no specifi~ case ex­
hibiting this kind of divergence has been dis-
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c-ussed. Its occurrence would~ in any- event, in­
validate (10) which assumes that-response remains 
in a given constitutive cone. Indeed, in the 
general case, it i~ the presence of some imposed 
deformation like [0 which validates a particu­
lar response cone for small perturbations from 
it, and then the stress at any instant is, in 
general, not only a function of dU/aX at the 
current instant, but also a functi~nai of prior 
a!!/a~ value$. 

2.3. Response with initial imperfections 
The .last topic opens the subject of analysis of 
localizations in presence of initial imperfec­
tions and, as suggested, the response is neces­
sarily of an hereditary character in prior non­
uniformities of aj!/d~. Most of the analysis 
done for localization with imperfections has 
been directed to sheet materials, where the in­
stability corresponds to localized necking. 

It is well known that when such problems are an­
alyzed with a smooth-yield~surface rigid-plastic 
model, localization is predicted never to occur 
ina sheet deformed under conditions for which 
both principal stretch rates are positive. Ex­
periments suggest otherwise, and Marciniak and 
Kuczynski [28] showed that localization could be 
explained by assuming that a long rectangular 
slice of the sheet had properties slightly dif­
ferent from the material outside. Other explana-

- tions, based on vertex-like yield behavior [29] 
seem to be at least as suitable in explaining 
quantitatively the experimental results. but the 
point- is that in this case imperfections lead to 
localization at a finite strain whereas the per­
fect sheet could never localize. Needleman [30] 
has recently completed a comparative study of 
various imperfection approaches and of vertex 
effects for localized (and other) necking modes 
in a Ifsheet" in the form of a pressurized spher­
ical membrane. 

The MK approach [28J can be recast in our gener­
al framework. Suppost that a thin slice of ma­
terial ,of parallel surfaces having normal n 
in the reference state, has initial properties 
differing, perhaps only slightly, from the mate­
ial outside it. If F,s refer to the material 
within the slice and NFO,so to that outside, 
then the kinem~tic~l r~lation (l~l applies~ 
where now g 1S s1mply to be Wl'1tten as - q and 
q is the deformation non-uniformity accumulated 
up t~ the present ~nstant, ~::. to .,. :in. Eq. (2) 1 
app11es also,_ and 1£ ~ and ~o repr_esent the 
(finitely different.) incremental moduli inside 
and outside the slice, then an equation identical 
to (5) applies for growth of q: 

In this LO 
outer field 
q as well. 
det(nLn) :: 0 
tion is that 
unlformities, 

:: (12) 

is a functional only of the imposed 
FO ,whereas L is a functional of 
The localizati~n condition is that 
t and the relevance of the calcula­
for small but finite initial non-
the field within the slice can be 

driven to the localization condition well before 
the moduli of the outer field would allow local­
ization.This approach merits wider study fora 
variety of-constitutive-relations. The critical 
conditions, phrased in terms of ~ , are the same 
as for-the bifurcation problem as worked out in 
section 3, but one must additionally determine, 
through solving (12) for the program of imposed 
deformation, the relation of the field in the 
non-uniform zone to the nominal (or outer) de­
formation field. 

2.4. Limiting nature of the localization insta-
bility 

Experimentally, other types of bifurcation or 
deformation non-uniformities (e.g., necking, 
bulging, buckling) can precede localization, but 
the latter seems to be the limiting mode. This 
is suggested by specific calculations [30,31] 
and some understanding is obtained by following 
Hadamardls [lJ example, extended by Hill (3], of 
a solid deformed homogeneously by imposition of 
displacement boundary conditions at all points 
of its surfaee (so as to rule out Ugeornetricll 
modes). Let S be the surface and V the vol­
ume of the body (both in the reference configur­
ation), and let i:: to. ~ on S s_o that one 
solution of the quasi-static field.-equatiQns 
(without body force) is that ~:: [o.~ in V. 

Fqr any other solution x meeting the same con­
ditions on S, let Ax; x - FOoX and observe 
that this vanishes on ~S .- Ac~ordingly, 

o :: f n.As •. Ax.dS :: J As •• AF •• dV 
S 1 1J J V 1J J1 

since "Asi' i :: 0 , and thus if it is assumed 
that both ffie uniform and non-uniform field cor­
respond to the same constitutive cone, a suffi­
cient condition for uniqueness (I.e., the absence 
~non-uniform solution) is, as in Hill [3], 
that the functional 

I[A~J - ·fAX .. L. 'kllAX. odV (13) V J,1 1J IV f<,.ov 

be positive definite for all fields A~ vanish­
ing on S. 

In the restricted case for which the symmetry {4} 
applies (i.e., for elastic-plastic materials 
with normality), the equations of continuing 
equilibrium validate Hillis variational statemax 
oI[AiJ = 0 , and hence the first point in a pro­
gram of deformation at which I[6x] becomes 
semi-definite is also the point at which, at 
least formally, conditions ape met for existence 
of a non-uniform solution field. In this sense 
the Hill criterion is necessary as well, but 
there is no reason for coincidence of the fail­
ure of his sufficient condition and the exis­
tence of a non-uniform solution when L corres-
ponds to non-normality. . '" 

The connection with the condition for localiza­
tion can be developed through the procedure of 
Van Hove [32]. By extending any field A~ to 
the exterior of V as 0, the Fourier represen-
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tation 

_00 

can be employed and thu~ 

I[6*J oc f-aoA:(K.L.'k~Kn)Akd3K 
"" J ~~) k k . ,.. 

where the * denotes complex conjugate. Hence, 
if L has the symmetry (4), I[6~] will be pos~ 
tive"'definite so long as the 3)(3 matrix KLK 
is positiv'e definite. Thus, if the localization 
condition det(nLn) = 0 has not been met ·for 
any orientation. B in .th.e progr~m. of <iefoJ'mp.~ 
tion up to the current instant, the displacement 
b.v.p. has only the homogeneous solution. Con­
versely, if the localization condition has been 
met and exceeded by any finite amount, in the 
sense that nLn is indefinite for some range of 
orientations, then it is elementary to construct 
a field such that I[6~] is negative [1,3], im· 
plying that a bifurcation point has been passed. 
Such fields 6~ are constructed through multi­
plying a smooth function vanishing on S by an­
other function which generates gradients of the 
form (1'2 within a narrow transition zone {of 
orientation n for which nLn is indefinite}. 
By suitable choice of g it is then possible to 
generate a negative contribution.to (13) from 
the integral over the transition zone, and by 
choosing a sufficiently small thickness of that 
zone it is always possible to make the negative 
contribution outweigh the possibly positive con­
tribution to the integral from other parts of V. 

The development of a corresponding theoretical 
framework for materials not exhibiting normality 
would, in view of the physical exampl~s cited, 
be a worthwhile undertaking. Also, in situa­
tions with vertex-like yielding, it seems possi­
bl~ that in some cases the bifurcating field 
could take advantage of the response moduli of a 
different constitutive cone than that of the 
homogeneous fielq; this too merits study. 

3. RESULTS· FOR VARIOUS MATERIAL MODELS 

3.1. Rigid- lasticmaterial ield locus 
and plast-ic potential 

For this case it is assumed that during plastic 
deformation 

h D •• 
~J 

= (14) 

Here e and Q are dimensionless symmetric 
tensors, normalized in any convenient way, so 
that f gives the Itdirection" of plastic defor­
mation and 9 the outer normal to the uyield 
locus", assumed smooth. Also, h is the rate 
of hardening, and it may be positive or negative 
(i.e., strain softening allowed). When h > 0 , 
plastic flow. occurs only when Q: b > 0 , and 
otherwise D = o. But when h"'<"'O flow occurs 
under conditions for which Q:~ < 0 (there is 
also a rigid branch of respo~s; compatible with 
this) a~e case g:§ > 0 is then prohibited. 

In general, P , Q t and h depend on the his-· 
tory'of defo~ation'-

Equation (14) corresponds to the rigid-plastic 
model as classically understood, with a smooth 
yield surface and plastic potential (i.e., ~ and 
9 independent of the direction of 2).. As will 
be seen, it is too simple a model for our presax 
purposes, but localization conditions can be gi~ 
en for it in general terms and the results are 
suggestive of the response of more realistic mod­
els. 

When !: = 9 in (14) we say that plastic normal­
ityapplie~ •. , In fact (14) .. isform, invarIant. un,.. 
der changes to other objective stress rate mea­
sures based on a reference state that is coinci­
den~ instantaneously with the ourrent state. Any 
such measure, say g*, relates to Q by an ex-
pression of the form (Hill [33]) , 

* v 
r1 •• = C1 •• + Lijk1Dkf. , 
~J ~J 

where the components of 1: are linear in compo-
nents of 2 . Thus one m;y show that (14) trans-
forms to 

= 

P and Q remain the same, but the hardening 
;ate is ~easure dependent. 

The present constitutive.relation connot be put 
in the form (3), so the localization conditions 
(1) and (2) must be applied directly. Thus one 
seeks a non-trivial solution for g and Ab 
which satisfies ,.. '" 

1 
-2 h(n.g .+n ·gi) 

~ ) ) 

1 
+ 2C1kr(grnt-nrgR,)] (15) 

and n.Aa •• = 0 
~ 1.) 

From the first of these it is 'evident that the 
localization can occur on a plane of normal !l. 
only if ~ has the representation 

P •• 
~J 

I = -2 (n.~. + ~.n.) 
~ J ~ J 

(16) 

where ~ is some vector, and the bifurcation 
vector ~~ must be of the form A~. 

The restriction on ~ is equivalent to stating 
that it correspond to shear and extension rela­
tive to the plane n but not to deformation 
within the plane. Hence, a first requirement R">I' 
localization is that a non-deforming surface'ex­
ist in the deformation field; the intermediate 
principal value of P must vanish. Thiscondi­
tion is very restrictive. When one of either 
the major, or minor values vanish as well, there 
is one possible plane of localization. When 
neither vanishes, there are two possible planes 
(interchange n and ~ in (16», both having 
normals in the~plane of the greatest'and least 
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-principal directions and being symmetricalrela­
tive to these directions. Let a;Bindex compo­
nents of tensors relative to two cartesian axes 
lying in the plane of the band. Then, e.g., (16) 
requires P a6 = o· ,. and· because of the restric­
tion (15)2' Qij80i"j= Qa~8aOla. Thus writing g=All, 
we have . ,.. '" 1 . ' 

. A{h.T 2 Qk!(llknr - nkl!r)or~ 

.~ 0kr{llrn 9,. - nrll~)]J = Qaa80aB (17) 

If normali~y holds, Qa 8 = P~a = 0 and a non­
zer~ s~lut10n for A (or g) can exist only when 
the bracketed term vanishes. This gives the ' 
critical hardening rate· h for localization. 
Wri:ting g =!: and 'using-(16) for the latter, 
the result may be rearranged to the compact form 

. h • 
cr1t 

I 2 . = - l}.ll (0 - ° ) 2 ~ ll}.l nn (18) 

where the stresses are the respective normal 
stresses in the directions of II and n. When 
the principal axes of deformati~n(i.e.: of P) 
coincide with those of £. we have, since }.I~ 
and· B lie along lines making equal angles~with 
the principal axes, 0}.ll! = 0nn and thus 

hcrit = 0 (19) 

On the other hand, when normality does not apply, 
it is possible (but not required) that some of 
the components QaB are non-zero. In that case, 
since the components /10 B are unrestricted, 

. (17): permits a non-zero (\ and hence localiza­
:ion·f~rany value of ~ t As will be seen, the 
1nclus1on of elastic effects will mitigate this 
strong tendency for localization in the absence 
of normality, but the tendency remains. Also, 
the. strong kinematical restriction, embodied in 
the need-for a non-deforming plane, is relaxed 
when more elaborate constitutive models are con­
sidered, but still localization conditions are 
more readily met when pre-localization deforma­
tion fields meet approximately such a restric­
tion.than when they co not. 

·3.2. Elastic-plastic materials 
Consider the constitutive rate, relation 

v 
o •. 
1) 

(20) = 

. By reference to (14-), it is clear that the brack­
eted term is the difference between the total 
rate of deformation and a plastic part given as 
in (14). Thus § is the tensor of elastic mod­
uli, and this is sym~etric under the inter­
changes ij-+j i and k9.-+9.k • , vIe can rearrange 
the equation so that the right side is expressed 
solely in terms of Q, and then put it in the 
form (7) so that, in a compact notation, 

a = E:D - 1 E'P (Q'E'D) - Q-g T g.~ • 
~ ~ ~ hTg:f:E ~.~ ~.~.~ -, ,- --,-

This form covers a very general class of materi­
als, but it is important to realize that vertex­
l~ke·yielding effects are not yet included. Ex-

amp~es incorporating these will be taken up 
later. 

The conditions (1) and (2), implemented with the 
current state taken as reference state, require 
that for localization on a plane of normal n, 
a non-trivial solution ~ exists to ~ 

o = (~·e·~)·~ - hTg~~:E (~e~:E)(9:~*~)·g T ~-~ , 
(21) 

where I 
~ = 2 [-~{E·£) T (~·£-E)! T (B-g)B - £J 

and (1) •. = 6·· • 
N 1.) 1) 

Nbw, unless the elastic moduli ~ themselves 
allow localization n*E*n (considered as a 3x3 
matrix) has an inver;e: ;hich will be denoted by 
(ll*li'en,,-l. Indeed, if the incremental elastic 
response is isotropic, § 'is such that 

where 

Thus 

g 
'" 
a .... 

A 

EijktEkt 

A and G 

A 6 •. Ekk T 2G E •• 
1J 1) 

= 

are the Lame moduli, and 

(ATG):,:~ T GI 

(21) can be rewritten as 

= 
1 (beg) T Beg where --a (22) 
" 'V 

-v ~ ", ", 

-1 
= (n-E·n) -(n*E:P) b = g:!:e!: 

....., ,..., <'Y /J rV '" fV 

= h T g:~:~ and ~ = - (n-E-n)-leA 
/V N '" 

Now, to find the value of h (or A) which allows 
a non-trivial solution, let us first observe 
that ~ contains terms which are all of the or­
der of stress divided by an elastic modulus. 
Such terms are very much smaller than the other 
terms mUltiplying g in (22), which are all of­
order unity at least when h is of the same or­
der or smaller than elastic moduli. Thus we 
first consider the solution when we set B = 0 . 
this is equivalent to neglecting rotation;l ef-' 
fects on t~e stress rate, I.e. to writing a-in 
place_of g in (20). In that case (22)1 has, 
by inspection, a non-trivial solution with 
g ~ a when A = b-a. Thus the critical value 
of h for locali~ation on a plane of normal n 
is, from (22)4- ' 

, -1 
h = -g: !;=J: T <2: ~-!:) - (~* ~.n) e (~. ~ :1:), (23) 

and the corresponding mode of localization ~ 
has a form such that 

This last result has a simple interpretation. 
The term on the left is the incremental traction 
vector that would be created on the surface of 
normal E if the material responded elastically 
to an incremental deformation in the form of the 
bifurcation, namely. 2~ = 9g T g~. That on the 

-v h 
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right-is the vector created in the same way by a 
"deformation increment in the form of the plastic 
field! namely E« g . - The two vectors must be 
co-axl.al.-

-For an elastically isotropic material, the above 
results take the form 

h/G = 4 n-P-Q-n - 2(n-P·n)(n-Q-n) - 2 P:Q 
("loT IItJ ....... '-J ~V ,..., "~,J _ ~ rv- .-'\,0 ~,.. 

-[2A/(A+2G)][(n-P-n)-tr(P)][(n-Q-n)-tr(Q)] 
,...,.-- ....., ~_fV ..... , 

These formulae are useful for the models devel­
oped in the next two sections. That for h has 
a simple form when written with a,8 denoting 
components on cartesian axes in the plane of lo­
calization: 

h/G = 2 Pa8Qa8 - 2APaaQ8S/(A+2G} • 

From this it is clear that when normality holds 
(Le"., P = Q), the value of h at localization 
can never be positive, at "least when the rota­
tional effects in the stress rate are neglected. 

To incorporate these effects, i.e. to use g 
rathe~ than £ in (20), we must r~turn to the 
general case, represented concisely by (20), and 
solve the problem for ~ 1 o. Remembering that 
~ has components that are small compared to 
unity in practical cases (order stress divided 
by elastic modulus), we may assume the inverse 
<!_]}-l exists and, if so desired, represent it 
to any desired order in the series 

_ (!_~)-l 

In terms of it the solution for A {and thus, 
from (22)4' for h) is 

-1 
A = !z. (l.-!P -~ [~ a: 

-1 (I-B) °a] '" ".. ..... 

3.3. Plasticaliydi1atant material with pressure-
sensitive yielding 

Rudnicki and Rice [22] derived conditions for 
localization in a material which was assumed to 
exhibit an _ i~o_tropic elastic" response and to 
have, in the present notation for plastic re­
sponse, 

P •. = (i: . /21 + (8/3) 6 •. 
1J 1J 1J 

Qij 
I 

(p/3) ::: O • ./21: + o •. 
1.J " 1) 

(26) 

where 2T2 = £I:~I and 2' is the deviatoric 
part of 2. If ~ = B = 0 , this coincides 
with the classical Prandtl-Reuss material. If 
~ # 0 , the model can also represent a material 
for which there is a "frictionallt effect in 
yielding: ~ is the rate of increase with pres­
:sure of the "equivalent shear stress" 1" re­
quired for yield. This kind of effect is pres­
in fissured rock masses and in granular materi­
als under compression. It seems also to account 

for the "stress-differential effect" [34], by 
which the yield stress levels of certain high­
strength steels are higher in compression than 
in tension. The parameter -8 gives the ratio 
of plastic dilation to plastic shear. If 8 :: ~ , 
normality applies. But representative val~es 
for geological materials [22] suggest that 8 
is usually less than p (representative values 
for fissured rocks are 8::.1 to .5, 
p = .3 to 1.0). Also, measurement of plastic 
volume change in the strength-differential ex­
periments [34] suggests, as expected, that 8 
is negligible by comparison to p and can be 
taken as zero. Hence, in neither of the cases 
cited does normality apply precil?ely. The param­
eter h is the rate of-plastic hardening ob­
served in a pure shear test, e.g. 2h nP - = i 
~or an element subjected to a state of n9drostat-
1C stress plus a pure shear stress a = 012 = T • 

• h'" 12' W1.t 0kk = 0 • 

The present model has an interpretation also for 
void-containing plastic materials undergoing duc­
tile rupture. The porosity increase through void 
growth requires B > 0 and, as Berg [15] re­
marks, if the material of the solid matrix is 
modelled locally by continuum plasticity of a 
kind for ~hich the normality rule holds, then the 
rule app11es to the aggregate also and thus ~=8. 
Gurson [35] gives specific forms ,for 8 and u 
based on a rigid-plastic model of a voided mate­
rial, ana re~rks that the inclusion-in the con­
stitutive relations of a hydrostatic stress de­
pendent criterion for void nucleation (say, by 
the brittle-cracking or decohering of inclusions) 
leads to deviations from normality with u > 8 • 

Let us first analyze the material described by 
(26) according to the rigid-plastic model. In 
that case localization is possible only if the 
intermediate principal value of f -vanishes, 
i.e. if 

ail = - (28/3) T , 

and then localiz~tion is possible no matter how 
large or small the value of h if 8 1 u , 
whereas localization is possible only when h= 0 
if B:: p. Rudnicki and Rice [22] obtained di­
rectly the result corresponding to (25) for the 
elastic-plastic model and, searching out the 
plane which first allows localization (that cor­
responding to the maximum h over all orienta­
tions n), they showed that provided u and B 
~re not too large (see p. 384 of [22]), the crit­
l.cal value is 

h . /G cr1.t 

Here v 

Of 
:: l+v 2l+v II ~+8 2 1: 

9(l_v){U-B) - 2(-1- + -3-) + O(G') 

is the elastic Poisson ratio. (27) 

The result i~ interesting in several respects. 
First note that to neglect of terms of O(T/G) , 
arising from the distinction between ~ and a 
localization can never occur with positive h ' 
if normality applies (i.e., if U = 8). On the 
other hand, if normality does not apply, it is 
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possible for localization to occur with positive 
h ~ depending on the value of GrI/T •. Indeed t 

replacing this quantity in favor of FIr (recall 
that according to the rigid-plastic model, lo­
calization can occur only when Plr = 0) , the 
critical condition is 

Hence, when PIr = 0 , localization can occur 
.with the positive hardening rate 

(1+v)2 2 
hcrit/G = 18(I-v) (~-e) 

but in contrast to the rigid-plastic case, lo­
calization can also occur for other values of 
PrI (the most critical case is PIr = -(~-e)/6). 
If the intermediate plastic strain rate departs 
too much from zero, the.critical h value turns 
negative. This is consistent with what appears 
to be a greater tendency for localization in 
plane strain than under axially symmetric condi­
tions, tensile ductility being less in the for­
mer case (Clausing [36]). 

Several numerical tabulations of these results 
are given in [22J, in which it is also pointed 
out that vertex-like yield effects have a strong 
influence on the predicted conditions for local­
ization (see section 3.5 to follow). 

3.1.j.. Localization in a single crystal 
Consider.a ductile single crystal undergoing 
pla!;>tic flow by slip on a single system of planes 
having normal in the x2 direction and slip di­
rection in the Xl direction. For brevity, we 
analyze the problem by neglecting the distinction 
between 2 and Q and otherwise neglecting 
terms of order stress divided by elastic modulus; 

. a full analysis is to be presented in the near 
future by the author in collaboration with R. J. 
Asaro. If the Schmid law of resolved shear 
stress governing slip is followed, the plastic 
response is given by 

= 
where h is the hardening rate. This law cor­
responds to r = 2. , hence ··normality ~ with 
P12 = P21 = 1/2 and all other P •. = O. A 
non-deforming surface always exist~ in this case 
(namely the x1 ,x3 plane) so that when studied as 
a rigid-plast~c problem, the critical condition· 
is h = o. Sometimes this fits the experimentll 
facts at onset of coarsened slip (Jackson and 
Basinski [8]). However, it is interesting for 
other cases to study sources of deviations from 
Schmid's law, because the corresponding non-nor­
mality can be destabilizing. 

One of the most promising candidates is cross 
slip. When screw segments of dislocations sur­
mount local obstacles by this mode of slip the 
incremental plastic deformation shquld depend 
not only on the increment of 012 , but also of 
the stress resolved onto the cross~slip plane 
and of that which serves to coalesce dislocation 

stacking faults, so as to make the local change 
of slip plane possible. For effects of numeric~ 
1y comparable size, that due to the resolved 
stress on the cross-slip plane is by far the mo~ 
important for localization (it corresponds to 
nOD-zero OaB in (17», and hence for simplicity 
we rewrite the plastic constitutive relation to 
include only this effect: 

= (29) 

For this relation, t is as given above, hut 
Q12 = Q2l = 1/2 , Ql3 = Q31 = p/2 and other 
Q •• = 0 • 
~J 

Following the general solution (25) for h at 
localization on a plane of normal E , these 
values of £ and 9 lead to 

2 2 2 
+ ~ n3) h/G = I + nl + n

2 
+ p n2n3 - X nl

n
2

(n2 
• 2 .2 

~ sin, cos, sinO = Sl.n 4> s~n 0 + 

- X 
. 2 28 

s~n 4> cos cos, (cos, + ~ sin, sina) 

where X = 4(A+G)/(A+2G) and where, in the last 
form" is the angle between n and the x2 
axis and 8 is the angle made with the Xl axis 
by the projection of n .onto the x1 ,x3 plane; 
e increases hy n/2 in a rotation From the Xl 
to x3 direction. rf ~ is small as expected, 
s6 also will be the deviation of 4> for the most 
critical plane from zero. Thus, expanding the 
result to quadratic order in , 

h/G ~ ,~sine - ,2(sin
2

e + X cos2e) • 

This is easily shown to take on its maximum val­
ue when a = n/2 and 4> = ~/2 , corresponding 
to 

2 
hcrit ~ ~ G/4 (30) 

This shows again the destabilizing influence of 
deviations from normality. A value of ~ on 
the order of 1/10 would give localization ac­
cording to (30) at what would have to be judged 
as a significantly strain-hardening state~ 

As remarked earlier, it remains an open question 
for many dUct·ile metals as to whether the pre­
sent ucoarse.slipH type of localization serves. 
to concentrate strain and lead to the nucleation 
and growth to coalescence of voids in fracture, 
or whether it is instead the incipient nuclea­
tion and growth of voids which leads to a local­
ization, as described in the previous section. 

3.5. Yield v~rtex effects 
When the plastic portion of the pre-localized 
deformation rate field contains no non-deforming 
plane, the criterion for localization is con­
trolled by those constitutive parameters which 
mark the stiffness of response to abrupt, though 
perhaps small, changes in the HdirectionH of the 
deformation rate. These changes correspond to 
the superposition of the localized shear band 
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mode on the given homogeneous field. Forttsmooth 
yield surface and plastic potential" models, the 
relevant response moduli a~e of the same order 
as elastic moduli, since superposed deformation 
increments that are ~thogonal·to the plastic 
flow direction f induce only an elastic re­
sponse. This feature is at root of the strongly 
negative values predicted for h in (28) when 
f departs greatly from conditions for existence 
of a non-deforming plane. 

However, physical models of rate-insensitive 
plastic flow based on microstructural slip, 
either of a Schmid (metal plasticity) or fric­
tional (geOlogic materials) type, lead universal­
ly to the prediction of vertex development at the 
current stress point on ftzero-offset" yield and 
plastic potential surfaces [22,24,26,27]. Such 
models entail a considerably softer elastic-pl~ 
tic response to small superposed deformation in­
crements, orthogonal to the prevailing plastic 
flow direction (see, e.g., fig. 2 of Hutchinson 
[27] for crystalline slip), and this has a 
strong, generally destabilizing effect on pre­
dicted conditions for localization. 

The matter has been studied at length by Rudnicki 
and Rice [22], who add vertex effects to the con­
s~itutive model of section 3.3 and demonstrate 
both separate and combined destabilizing effects 
that arise from vertex yielding and nqn-normal­
ity. Also, St¢ren and Rice (29] show that a 
vertex yield model leads to predictions of 10-
calized'necking in thin sheets, under positive 
in:"'plane principal extensions, at conditions 
that compare favorably with experimental results 
whereas, in the same circumstances, the smooth­
yield-surface rigid plastic model (without im­
perfections [28]) predicts unlimited ductility. 

For brevity we consider here only the non-dila­
tant, pressure-insensitive version of the vertex 
constitutive relation studied in [22], first 
speciali~ing it as in [29] to a rigid-plastic 
model. The relation is 

2 H - 1 t 1 v t 
- a' - + - (a' - 0'-) h ~ T h ~ N T (3l) 

where 2T2 = ~I:~t and or is the deviatoric 
stresS. The' relation is 'intended to model re­
sponse on deformation paths that differ only 
modestly from fixed-principal-axis deformation 
with £' « ~'. When deformations comply pre­
cisely with this, the last term of (31) vanishes 
and we are left only with the first, correspond­
ing to classical Mises rigid-plastic response at 
a hardening modulus h (in shear), with 
£ = 9 = £1/2T. The second term of (31) repre­
sents the vertex yield effect, and hI is the 
modulus of vertex response (defined analogously 
to an elastic shear modulus) for small super­
posed rates d' that are not coaxial with a' . 
To the extent-that approximately path-indepe~d6tt 
relations between suitably defined stress and de­
formation measures [29'1 result for such only 
moderately non-proportional deformation paths, 
the "deformation theory" of plasticity applies 

and hI can be identified as the secant modulus 
to the stress-strain relation in shear (see [27] 
for a comparison\with response moduli of "incre­
mental" models). In any event, one may assume 
that hI > h • 

By applying the theory of section 3.1 to the re­
lation (31), we see that in the absence of a 
vertex effect (hI =~) localization can occur 
only if Oil = 0 and then, since (31) as written 
invol'ves plastic normality, -only when the tangent 
modulus h = O. To see how the vertex effect 
modifies these results, first invert (31) to 

2 = 01 + g -£ - g-g + 2hl ~ - (hl-h)g' (2t :!2) /T
2 

(32) 

where a = tr(o)/3. Now, since the material is 
incompressible~the bifurcation vector g of (1) 
must take the form gm l-lhere m is a unit vec­
tor perpendicular to-~n , i.e. lying in the plane 
of localization. We take the reference state as 
coincident instantaneously with the current stat~ 
operate with n in (32), and dot with ~ to 
obtain 

= nno+g{- .!m.o-!{n-o.m)n+!(n.o-n)m 
- . 2'" '" 2 '" ~ "" ~ 2,-v,., '" ", 

+ h m - (h -h)(n~ot)(n.o'.m)/T2} 
1- 1 ~ - - N ~ 

By dotting this equation successively with unit 
vectors m and ~ , the latter being perpendic­
ular to' nand m and hence also in the plane 
of locali~ation, we obtain two simultaneous con­
ditions for the existence of a non-zero bifurca­
tion amplitude g. These are 

2 2 
(onn-omm)/2 + hI - (hl-h)omn/T 

a /2 + (hl-h)o ° /T2 = mz nz mn 

o (33) 

o (34) 

where there is no summation implied and indices 
denote components of ~ on the axes n,~,~. 

We may view (33) as an equation giving the crit­
ical value of h for a given hI' ~,and n , 
and view (34) as a constraint on the correspond­
ing direction m. The most critical plane n, 
for a given hl~ and ~,is that which maxim~s 
the correspond1ng h value since, for applica­
tions, h is generally a non-increasing function 
of the amount of deformation imposed on the mate­
rial. 

By setting the variation oh = 0 for 0E infue 
direction of z, one finds that (34) as well as 
the equation 

2 
a /2 - (hl-h}o 0 /T nz . mz mn = o 

must be satisfied simultaneously. This can be 
do~eonly if the ~ direction is principal, 
0nz = 0mz = O. That is, Band ID must lie in 
a plane formed by two of the principal direc­
tions. Next, setting oh = 0 when on is in 
the direction of m, and recognizing that the 
associated om ha; direction -B, one obtains 

2 
20mn + 2(hl-h)omn(onn-omm)/T = 0 (35) 
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Assuming that the criticaL plane does not corres­
pond to one of vanishing shear stress the criti~ 
cal orientation is that for which 

(0 -0 )/T 
mm nn = (36) 

and it can be shown that a plane exists meeting 
this condition if 

T ~ 2(hl_h)(1_3012/4~2)lf2 
zz 

Thus, observing that 

(37) 

T2 = £~gY2 = (Omm-Onn)2/4 + O~n + 30~;/4 , 

and using (36), one may substitute into (33) to 
obtain the critical condition 

o • (38) 

H~ncet to summarize, the critical condition is 
given by (38) where ~ is one of the principal 
directions, provided that the associated critical 
condition allows the inequality (37) to be satis­
fied. It is easy to show that ~ must be chosen 
as the intermediate principal direction (denoted 
by II) to give the maximum of possible solutions 
for h. " ·and it is convenient at this point to 
introduce the dimensionless stress state para­
meter 

u = (39) 

noting that u = 0 for pure shear and that u 
takes on its maximum value, 1/4 , for axi-symme­
tric extension or compression. 

The condition (38) can then be written 

2 
T = (40) 

and this is the critical condition provided the 
inequality (37) is met. That inequality can now 
be r~arranged to the requirement that the rate 
of hardening satisfies 

(4l) 

which does not seem restrictive in terms of the 
.physical interpretation of h • Equation (40) 
reduces to that given by Hililand Hutchinson [3D 
for states of plane strain, u = 0 , and this 
state allows localization at a smaller equivalent 
stress T than does any other. 

If Tfhl is regarded as a small parameter, (38) 
may be solved for the critical hardening modulus 
at localization and to the order of the terms re­
tained the result is 

(42) 

Thus for small T/hl unless u is close to 
zero (states approaching plane strain conditions) 
the localization condition requires strain soft­
ening behavior, .h < 0 • 

For the corresponding elastic-plastic material 
with a yield verte~but treated as elastically 
impressible as well, one need only add a term 
giG to the right side of (3l), where G is the 
shear modulus, and then the same analysis as giv­
en here applies provided that the replacements 

h -+ hG/{G+h) , 

are made in all formulae. In particular, when 
the critical condition analogous to (38) is 
solved for h, and the result expanded to the 
order of terms as in (42), one obtains 

= hlG { u + (l-u+u2)hl +(I-u)G 
hcrit hl+{I-u)G - hI + (l-u)G 

(hl +G)2 T2 + ••. } 

4 h2 G2 
1 

Retention of only the first term in the brackets 
namely -u, corresponds to writing a for g , 
in the constitutive relation and thenNthe res~lt 
may be compared with (27), setting ~ = a = 0 
and v = 1/2 in the latter. Evidently, when the 
vertex modulus hI is ~uch less than the elastic 
shear modulus, the critical lfhardeningU modulus 
for localization at states other than pline 
strain is considerably less negative than would 
be th; case in absence of a vertex (hI = ~) . 
Numerl.cal results and comparisons are given by 
ryhdnicki and Rice [22]. 

For example, in axi-symmetric extension or com­
pression, u = 1/4 and the result is 

.hlG 
= 4hl +3G 

when both T/G and Tlhl are small compared to 
un~ty •• With hllG in the range .1 to .01 
whl.ch ml.ght be regarded as representative for 
heavily deformed metals based on a secant modulUs 
interpretation, this formula gives critical hlG 
values of -.03 to -.003 (compared to -.25 
when vertex effects are neglected). Strain soft­
ening effects of this magnitUde might well result 
in the necked regions of some ductile metal ten­
sile specimens prior to fracture [l6,17], with 
the ~oftening resulting from progressive cavita­
tion at inclusions. Of course, imperfection ef­
fects could also be very important in such cases, 
as could the sources of non-normality discussed 
earlier. 

4. CONCLUSION 

The localization of plastic flow is a fascinating 
and widely observed phenomenon, which seemsim­
portant in setting a limit to the achievable duc­
tility of a solid. Yet the topic has remained 
outside the mainstream of work on the mechanics 
of inelastic solids, save for the elucidation of 
general principles in the spirit of Hadamard by 
Thomas, Hill, and Mandel. The present study 
shows that conditions for localization relate 
closely to subtle and not well understood fea-
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tures of the constitutive description of plastic 
flow. Localization is favored by a low plastic 
hard-ening modulus.; but the matters of how low arrl 
whether strain softening is required are deter­
mined by the nature of the pre-localized deforma­
tion, those states with non-deforming planes be­
ing highly susceptible, and by deviations from 
plastic normality. The latter may, for example, 
arise from Coulomb frictional effects in yielding 
or from non-Schmid effects in crystals as by 
cross-slip or other triggeTed processes, where 
stresses other than the resolved shear stress 
contribute to flow on a given slip system". Ver­
tex yielding effects are predicted on physical 
grounds and these too have a strong influence on 
localization conditions, for example, in mitigat­
ing predictions of strongly negative hardenin~ 
for localization in axisymmetrically deformed 
solids and like cases. 

While the constitutive modelling of these fea­
tures needs "to be improved in relation to the 
detailed mechanisms of deformation, so also is 
there need for a fuller assessment of the role 
of imperfections or initial non-uniformities in 
material properties in promoting localization. 
Indeed, the latter approach seems mandatory for 
rate-dependent plastic flow models and these, as 
well as the range of thermornechanically coupled 
localization phenomena would seem to merit fur­
ther study. 

The basic theory of uniqueness in relation to 
localizations and stationary waves is also not 
yet adequately developed for materials deviating 
from normality, and neither can the case of ver­
tex yielding be handled in full generality with­
in the existing framework. Yet both are features 
which seem inherent to much of plastic constitu­
tive behavior and the examples and analysis of 
the present study suggest that both are impor­
tant destabilizing features for the process of 
localization. 
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