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This is a of the formulation. some basic solutions. and of the Biot lineanzed quasi-
elasticity of fluid-infiltrated porous materials. Whereas most previously solved problems are 
on idealizing fluid and solid constituents as separately incompressible. full accounl is ta.ken here 

of c~msthuen: compressibility. Previous studies are reviewed and the BiOI constitutive equations relating 
stram ~nd flUid mass content to stress and pore pressure are recast in terms of new material parameters, 
more directly open to physical interpretation as the Poisson ratio and induced pore pressure coefficient in 
un~rained defor~ation. Different formulations of the coupled deformation/diffusion field equations and 
their In coupled thermoelasticity are discussed. and a new formulation with stress and 
pressure as variables is that leads. for problems. to a convenient 
representation of solutions. problems solved those of the introduced disloca-

and concentrated line force and of the and spherical cavity. The 
dis.loc:aticm solution is employed to a ·shear fault: and a 
discussion is given, based on fracture mechanics models fault involving. 
couple~ behavior between the rupturing solid and its pore. fluid. could serve to stabilize a fault 
against rapid spreading. Also. the solution for a pressurized cylindrical cavity leads to a time-dependl!nt 
stress field near the cavity wall. and its relevance to time effects in the of fractures 
from boreholes. or from drilled holes in laboratory specimens. ·is Various cases are 
identified. and numerical values of the controlling porous media elastic parameters are given several 
rocks. . . ... 

l:-:TRODUCTJON 

Thestress;.induced flow of interstitial fluid in porous solids 
has been as for a of pn,enc)mlena 
observed in ,gelophYlilClll In 
the years since 
stress' to observations of time-dependent 
consolidation and failure in soil masses, prog-
ress has been made in reasonable constitutive and 
field equations for porous Biot, J 941, 1973: 
1969; Nikolaevskii et al., 19701 and in applying 
observed behavior in geological materials. 

Indeed, the linear formulation of Biot for stress diffusion 
analogous 1 956b ] to the W1!;;Jil-~:~l<1I,J-

of linear coupled thermoelasticity Carlson, 
1972]. so an abund~nce ofavai1able solutions be ex-

the of coupling terms that is so 
cornm.onlly and justifiably used to the in 

and Weiner, 1960; Boley, is 
not for fluid-infiltrated solids. Thus the 

majority of thermal stress solutions fail to 
porous media for· some 

cases and and some other very 
fu·ndamental splutions [e.g., NOWIlCki, 1964]. in which 

cOluolimt is retained in the equati9n the 
temperature resort must be had to one of 
a small number of formal . BiOI. J956a, b: 
McNamee and Gibson. 1960] in order .to solve the eqtlatl·ons 
cu .. "" ...... " .. 'o the response to stress of porous 

worked solutions of problems are actually. 
available, in part because the details become 
rather complicated when work is done those 

formalisms. One example is the recent paper by Booker [1974]. 
which uses the formulation of McNamee and Gibson [1960] to 
obtain some features of the stress field due to a dipole of 

edge slip in an infinite 
of porous material with 

We show here, however. are 
not significantly more when compres-
sibilitiesare assigned to the fluid and solid constituents. In 

then. the same could have been used ·to 
obtain the more general dislocation solution with such full 
compressibility. But we also and utilize here a com-

potential representation for plane which we 
have found than that of McNamee and Gibson 
effectively this is an extension the MuskhelishviJi [1953} 
formalism, in classical to stress diffusion ,.. .. , .... nll"'"", 

It allows us to easily solve the dislocation and other basic 
which have direct-u·pplication to. shear 

porous media. 
and ?ther types 

Before doing that. we sel out. 
parameters. isotropic constitutive t:l!tl'HIUlil~ 
and Willis [1957]. We also summarize 
dimensional in their simplest form in 

identifiable 

their exact structure and their thermoelastic We 
wish further to emphasize that our presentation of the equa­
tions with stress components and pore pressure as basic varia-
bles frequently prove . tothe Navier (dis-

formulation by BiOI [1956a]. 

LISEARIZH) COSSTlTCTIVE RELATiOSS FOR A 

FU;ID-SATCRATEIJ POROCS ELASTIC SOLID 

The for a theory of mixtures of inter-

I Now at Department of Mechanical 
acting continua [Truesdell and Toupin, 1960; Bowen, 1971 ]has 

M assachuselts 
02139. provided a popular approach. to recent studies or the rheology I nstitute of Technology. Cambridge. M'lsS'l!CnIUS(!US 

Copyright @ 1976 by the American Geophysical Union. 
of solids Tabaddor and Little, J 971: 197!; 
Morland. 1972]. But there is no improvement to be had on the 
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classical Biot [1941; 1955, 1956a, 1973J formulation in the 
present circumstances of quasi-static elastic deformation, eer-

. tainly _ under conditions for which local equilibrium of the 
pore fluid can be assumed. It must be emphasized that Biot's 
formalism does not prohibit the continuum viewpoint nor 
imply images of an array of grains. as frequently used to derive 
elastic properties of the solid matrix. or even of a solid skele­
ton so constructed as to give a partial fluid stress proportional 
to porosity [e~g., Biot. 1956a; Nikolaevskii el al .• 1970]. The 
appropriate decomposition into effective stresses on the solid 
matrix and pressure on the fluid e.m be allowed to occur 
naturally without postulating how they make up t.he total 
stress on a material element. 

The simplest rigorous approach is to define total stresses (JI) 

and pore pressure p as basic state vari~bles and assume that 
these are related in some appropriate fashion to .the strains of 
the solid (components tIl' derivable from a solid displacement 
vector) and the mass m of pore fluid per unit reference volume. 
(Here i. j = I. 2. 3; also, the summation convention applies 
when repeated indices are used subsequently.) The pore pres­
sure p Is most fundamentally defined as the equilibrium pres­
sure that must be exerted on a homogeneous reservoir of pore 
fluid, brought into contact with a material element, so as to 
prevent any fluid exchange between it and the element. It is 
most convenient. in fact, to represent the fluid mass content of 
an element in terms of the apparent fluid volume fraction v, 
where pv = m and p is the fluid density in the imagined fluid 
reservoir at pressure equilibrium with the element. 

The linear and isotropic expression for Ell necessarily has the 
form [BiOI. 1941] for isothermal conditions, 

v 

where G and v are the shear modulus and Poisson ratio when 
the material is deformed under 'drained' conditions (i.e., p 
constant) arid the 'drained bulk modulus' is K = 2G( I + 
v)/3(1 - 2v). The constant H is that of Biot, but. we have 
regrouped his equation in order loisolate a new material 
constant K/, given by I/K - J/H E IlKs', which can in 
appropriate circumstances be identified as the bulk modulus 
K. of the solid phase [e.g., Nur and Byerlee, 1971. and discus­
sion to follow]. The arguments used by Biot {J941. 1973]. 
involving the fact that (J,,,,f.lj'+ pdv, and thence f.1"'(JIJ + vdp. is 
an exact differential. may be applied to deduce, from (I), the 
relation for apparent volume fraction 

1 Vo 
v - Vo = 3H (uu + 3p) - K." p (2) 

where Vo is its reference value in the unstressed state. Here the 
grouping of terms is chosen to facilitate recognition' of the 
modulus K/', which can also often be identified [e.g., Cornel 
and Fairhurst. 1974] with K •. BiOI [194J] simply employed a 
consta~t R. related to our K," by l/R == J/H - vo/K."; 
physical significance was later attached to Hand R by Biot and 

, Willis [1957]. 
interpretation of K,', K/'. In the special case where all void 

space of any elemental volume is continuous and allows free 
fluid filtration, for which all points of the solid phase may be 
taken as elastically isotropic with the same local bulk modulus 
Ka. and where both fluid and solid, are chemically inert. the 
moduli Ka' and Ka" are indeed sensibly associated with K,. 

That this is so is recognized by considering an interior uniform 
pore pressure change ~p and simultaneous change ~(JIJ = 
- ~phtj of t()tal stresses on the faces of an element. The obser­
valion of Nur and Byerlee [1971] is precisely that these macro­
scopic changes in variables produce a local stress alteration of 
- ~po/j at each point of the solid phase: every linear dimension 
of the solid phase is thus reduced by a fraction ~p/3K., and 
thus the unique deformation pattern is a fractional reduction 
~p;Ks·in every volume (including the volume of fluid-filled 
interstices}. This observation maybe stated as 

~L: = -vo~p/K. 

which can be compared v.'ith (1) and (2) to yield K/ = K$" = 
K,. 

More generally. however, Ks' and K/' must be regarded as 
experimental constants additional to G and I' and analogous to 
If and R. Conceptual and realistic appropriate tests are also 
described by Biot and Willis [1957}. Typically. K,' and K," will 
have the same order of magnitude as a representative bulk 
modulus for the 'non-fluid-infiltrated' (as opposed to 'solid') 
phase [e.g .. Cornel and Fairhurst. 1974). 

Undrained elastic behavior. The mass m = pI: of pore fluid 
per unit volume of material may be expressed from (2) in a 
linearized expansion to give 

Vn 

Po Kr p m - t1lo = (p - Poko + Po(/: - t·o) 

+ ;n (~_ K~ )(uu + 3p)- Po ;,0" p (3) 

where 1110 and Po obtain in the reference state and the bulk 
modulus of the fluid is KI == ,Jop/(P .-Po). 

By 'undrained deformation' we meari the imposition of 
stress alterations ~t1/J over a .time scale that .istoo short to 
allow the loss or gain of pore fluid in an element by diffusive 
transport to or from neighboring elements. i.e .• ~m = O. Still. 
it is assumed for our present considerations that the time scale 
is long enough that local pressure equilibrium is attained 
within the various communicating pores constituting a 'point' 
in the continuum model of the material. This kind of local 

- -

equilibrium cannot always be attained. and ou'r present mean-
ing of 'undrained conditions' may be contrasted wilh that for 
an even shorter time scale. as in th.e work of O'Connell and 
Budiansky [1974]. Indeed. they determine approximately over­
all elastic moduli for saturated rock under conditions for 
which there is no fluid loss or gain to any individual pore and 
hence no degree of pressure equilibrium between neighboring 
pores. no· matter how close. The OTonnell-Budiansky short­
time undrained moduli should govern the response to truly 
instantaneous impositions of stress. but these moduli can usu­
ally be expected to relax to the undrained moduli of the Biot 
theory. as based on the assumption of local pressure equilib­
rium. over a time that is quite short by comparison with that 
needed for induced D'Arcy flows to achieve global pressure 
equilibrium over the entire deformed region. Thus while there 
is indeed the need of a theory that isbroad enough to contend 
with cases of local pressure nonequilibrium. we shall here 
understand 'undrained deformation' and 'instantaneous re­
sponse' in the context of local equilibrium only. 

Our undrained response may be written as ·~m = O. and (3) 
then gives a relation like that of Skemplon [1954] between 
initial induced pore pressure and total hydrostatic stress on an 
element 
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6p = -B 6ITu 
3 

1/ K - 1/ K,' 
B = + / / I /" co/ K f 1 K - 1 K. - vO, K. 

(4) 

As noted by Skempton. B would typically be unity for water­
saturated soils (K/'/vo > Ks' > K( » K) but can be sub­
stantially less for rocks, constituents of which are not effec­
tively incompressible. 

An expression for the 'undrained Poisson ratio' Vu may be 
obtained by substituting from (4), for .).p, into (I) and com­
paring resulting coefficients with the definition of in­
stantaneous elastic response 

(5) 

The conclusion is that 

FIELD EQL:ATIO~S 

Since our present concern is with quasi-static phenomena. it 
is adequate and convenient to express the governing equations 
in terms of ITtl and p. The former must obe)' equi1ibrium 
conditions (neglecting body forces) 

(1,} = (1}1 (IO) 

But they must also be related, through (7). to infinitesimal 
solid strains tiJ' which must, in turn, be derivable from a solid 
displacement vector. The appropriate compatibility conditions 
on EI} are well-known in elasticity [e.g .. Love, 1927. article 17] 
and. by using (7) and (to). they reduce to six mutually inde­
pendent equations in (1i) and p, most conveniently chosen as 

\7 2 [(1 + v)ITij - }lITUOi;} + a2(fU/ aXi ax; 

+ !i~u; ;}) [\7
2
po;; + a2

p/aXj aXil = 0 (11) 

where the notation used hereafter is \7 2
( ) == c 2

( )/ CX/fCXIr. 3v + B(I - 2v)(1 - K/ K,') 
v" = 3 - B(1 - 2,,)(1 - K/ K,') (6) As a special feature of these equations, we note that con­

traction on i,j gives a very useful relation between (11f1r andp, 

The practical range of Vu is obviously i 2:: Vu 2:: v; the upper 
limit is reached for separately incompressible constituents (B 
= I, K/ Ks' = 0), and the lower bound is achieved when pore 
fluid is highly compressible, Kf « voK (then B ~ 0). 

Subsequently, we shall use Band Vu instead of K,t, K,t' (or H 
and R of Biot), and VO/KI' since these are open to such simple 
physical interpretations. Indeed, we may either calculate Band 
/lu in terms of the other parameters or simply take them 
directly from the result of a single undrained test in which the 
Poisson effect and induced pore pressure are measured. In 
terms of them. (l) and (3) can be shown to take the forms 

11 3(vu - v) 
2Gf;; = ITi; - 1 +v ITUOij + B(l +v)(1 +v

u
) POij (7) 

31)0("" - v) [ 3 ] 
In - nlo = 2GB(l + v)(1 + v,.) tIu + B P . (8) 

which contain only four elastic constants: G, v, B. and lfU' This 
form is sensible in light of the complete similarity of the 
porous medium constitutive equations (7) and (8) to those for 
a linear isotropic thermoelas~ic solid [e.g., Boley and Weiner, 
1960]. The correspondence is recognized simply by identifying 
pore pressure p with a multiple of temperature fluctuation and 
fluid mass m with some multiple of specific entropy per unit 
reference volume [8iot. 1956b]. Thus, the analogue of our 
undrained response is the isentropic deformation of a 
thermoelastic solid while ongoing dissipation of pore pressures 
matches its approach to isothermal equi1ibrium conditions. 

The analogy with linear thermoelasticity is completed by the 
constitutive law governing pore fluid diffusion, namely that of 
D'Arcy. given here for the isotropic case 

q, = -Pol< Bp/ aXt (9) 

relating the fluid mass flow rate in the x, direction, q, per unit 
area, to gradient of pore pressure. Equation (9) is written for 
the absence of dynamic or other perturbations in the forin of a 
body force field (then pIt would be subtracted from 8p/Bx" 
where It is the force per unit mass of fluid). The permeability K 

is usually given as units of area k,' where K == k/J.L and J.L is fluid 
viscosity. The corresponding thermoelastic Jaw is Fourier's 
linear proportionality between the temperature gradient and 
heat flux. 

2[ 6(vu - v) ] 
V tIu + B(1 _ v)(1 + VII) P = 0 (12) 

This procedure is almost completely parallel to that fol­
lowed in arriving at the Beltrami-Michell formulation in classi­
cal elasticity (i.e .. stresses rather than displacements taken as 
basic variables) with body forces proportional to the gradient 
of p. But a distinction does arise from the entrance of p 
through the constitutive rather than equilibrium equations. 
Eq uations (11) and the conventional elasticity equations be­
come formally identical when we use {(1,}), the 'effective stress' 
of Nur and Byerlee 11971}. to rewrite (I) as 

l' 
2GEii = (IT;;) - 1+ v (UU)Oii 

(13a) 

(u ii) == (1 i i + (l - K/ K,')pou 

because p then actually enters (formally) through the equilib­
rium equations 

i1«(1I/>/O;(, - (l - K/K,') ap/aXt = 0 (J3b) 

The Beltrami-Michell equations (equations (11» thereby take 
the form 

V2(r1'i;) + (1 + V)-l a'2(UU)/aXi aXj - (1 - K/ K,') 

[ 
'2 II '2 ] . 2a P/aXi aXi + 1 _ v V POii . = 0 (13c) 

As usual, there is no overdeterminacy involved in (to) and 
(11 ). The only essential distinction from a conventional elastic­
ity body force problem, when the question of analytic or 
numerical solution techniques arises for instance, is that the 
'body force' field is now coupled to the stresses in general. 
Indeed. this coupling is accomplished through the final gov­
erning equation, that of mass conservation for the infiltrating 
pore fluid . 

cqt/ ax, + em/at = 0 ( 14) 

This is transformed to the variables (1,} and p. by (8) and (9). to 
get 

3(11" - v) a ( 3) 
2GB(1 + v)(l + v.,) at tIki< + B p 

(15) 
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We can combine this with (12) in an obvious fashion to write 

C\7
z

(O'kk + ~ p) = :t (O'H + ~ p) (16) 

where c is the 'coefficient of consolidation' or 
by 

c = 1<.[2G(l - v)J[B2
(l +V,,)2(1 - 2V)J (17) 

(l - 2v) 9(1 - vu)(v" - v) 

The classical consolidation coefficient. as used in 
soil mechanics SUklje. 1969, section 14. may be found 
by to incompressible constituents. and then the 
last bracket gives unity. The first bracket the drained 
elastic modulus for one-dimensional deformation (e.g .• in the 
oedometer test). Lastly. the various diffusion equations found 
by BioI [1941. 1955. are given here in the most 
common form. since (8) and ( show that the fluid mass 
content 111 per unit volume satisfies a homogeneous diffusion 

c\l2m = am/cl (18) 

I n the are as follows: (i) the 
equilibrium equations (10). (ii) three of the compatibility 
equations (II) and (12), and the diffusion (16). 
But if. instead. we followed the Biot procedure of taking 
distJl~lcelments and pressure as variables. the (J/'\,u"rn'M'O 

tions would be (10) and (16), with O'lj ",,,,,.,,,. .. ,,,, .. ..-1 

gradients. (;Uk/ eXt. and p. 

EQL,TJO:-':S GO\"ER-";l-";G PLA-";E DUOR:\1ATIO:-': 

The kinematic constraint of 'plane strain: say 
X I X 2 plane, is E31 = O. Thus (7) ,.pn",,., .. ,, 

in the 

- BO + lIu) p 0'31 = 0'32 = 0 (19) 

N ow the constitutive laws «7) and (8» may be written be­
tween the lesser number of variables, Ell. C22, t12' m and GlI. 0'22. 

+ BO + v,.) pooP (20a) 

m - 1110 = -2G-'-B;;':"';'(-=1-+-v.!.-u) M (20b) 

where 

where 

TJ == 3(l'u - l' )/[2B(I + llu)( I - II)] (22b) 

(iii) \1"[ 3 
C - O'll + an + BO + v .. ) 

= :, [a" + a" + B(J ~ v.) pJ 
The compatibility eouation (22b) suggests that we introduce 

the complex variable z == Xl + iX2' i = (_})I '2, and represent 
the solution in terms of a function 4>(:. n. in z. named 

\vith the first Goursat function of the Muskhelishvili 
formalism. Thus we define 

4 Re [<I>(z. I)] == {O'll + 
1 - II" ( 
=~ (fll 

+ 

+ ) + v" - V 
(fn t=-; M 

Re means 'real part of: and. as the notation 
function will be time-dependent in 

Equation (22c) may now be recast in the form 

V 2 op + 2(v" - v) R [a4>J c p=- e -at ,,(1 - vJ at 

the 

(24) 

which shows that pore pressure is governed a hornO$zeneOlls 
diffusion equation in the special cases where <I> is time­
independent. Such cases will have central attention in this 
paper because it is obvious that the solution technique is then, 
at least formally, very straightforward: (1) 4> is deduced from 
either the initial undrained or final drained solutions. 
(2) p is determined by solving a diffusion equation 
subject to appropriate boundary and initial conditions on 
some To deduce the remaining stresses, we must find a 
second stress function. called 'It(:. t) in the variable 
formulation to be given next. Although this function may be 
hard to extract for many it emerges simply 
for the problems considered later. 

I n reference to case I above. we may identify the nature of 
«PCz, t) at 1 = 0 and 1 = roo Immediately after (I = 0+) a sudden 
(but disturbance the classical elasticity solution 
applies based on the 'u ndrained' elastic constants G and lIu. 

Since no fluid transfer can have occurred Mo+ = O. and 

Po+ = (25) 

(20b) In we will be discussing problems where pore pres­
sures dissipate to zero after long times (I = (0), so (23) has the 

Greek indices have range 1,2. The variable M has dimensions twin consequences 
of stress but is proportional to in fluid mass content 
and thus satisfies c\l2M = aM/at. Equation (0'11 + O':'!z)(J+ 4C = :J Re [4>(:, O~)] 

4 Re [4>(z, 00)] 

(20a) may be rewritten in terms of M, 

The equat;ons the four chosen varia-
bles 0'11. 0'22, 0'12, and p (or sometimes M, where convenient in 
the following) may be enumerated as before: we simply use 
(19) in (10). (I and (16) to get 

(i) aGu/ ax! + 00'12/ aX2 = 0 

=0 

(220) 

(22b) 

(26) 

Now, a minimal requirement for lime independence of 4> is 
that «P(z, 0"') = 00). This immediately excludes plane 
strain for which boundary conditions are given 

as applied tractions. since these are well-known to have 
stress solutions with no on elastic moduli. 
lions (26) show that (all + 0'22) should depend on the effective 
Poisson ratio (==v",. which is Vu at t = 0 and IJ at t = (0) and 
should be proportional to (I - Vi!' )-1, with no other 
dependence on Vet if the minimal requirement is to be met. This 
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is exactly the feature of some basic singular elasticity solutions. 
such as the classical plane strain solutions for an isolated edge 
dislocation and an isolated line force. which led us to extract 
their counterparts for a porous solid. Booker [1974] found the 
corresponding time dependence in his dislocation solution for 
the special case of incompressible constituents. but his formal­
ism does not permit tracing its source to the structure of the 
classical elasticity solutions. 

COMPLEX VARIABLE REPRESEl"TATIONS 

OF SOLUTIONS IN PLANE STRAIN 

We present a complex variable representation in this section 
for the solution of the equations governing states of plane 
strain. It is motivated by the success of the corresponding 
formalism in classical elasticity [e.g .• Muskhelishvili. 1953]. 
Stresses and displacements will be expressible in terms of two 
ana]ytic functions, cp{z, t) and w(z, t), together with p or M. 
The last two are not analytic but may be written p(z, i, t) or 
M{z. i. l) to show explicit dependence on i = Xl Ix". It will 
be convenient to regard z and its complex conjugate i as being 
formally independent so that any function h(x .. X:h 1) may be 
alternate)y expressed as h(z, i, t). This is the process familiar in 
formally assigning characteristics to el1iptic partial differential 
equations, and we may convert partial derivatives according to 

oh/ (}z = ah/ aXl - iah/ aX2 

ah/8i = ah/aXI + iahl(}X2 

Now the equilibrium equations (22a) become a single equa­
tion 

ou/az = aT/ai (27) 

where u = (Ull + (122)/2. T = (U22 - ull)/2 + (/1u. and this 
result prompts us to rewrite (23) in the forms 

a(U1 - i~)/az = -[(E22 - Eu)/2 + iE1'l) = -r12G 

Re [a(Ul - iU2)lai} = Ell + En :; (I - 2v)q12G 

+ 211(1 - ,l)pIG = (l - 2vu )u/2G + ("It - 11)MIG 

which may be combined with (28) and (29) to getu == UI + iU2: 

2Gi1 = (3 - 4v)<P(f. t) - zcJl(z. t) 

- t/ll'(z. t) + 11 l' p(z. t. t) dt (30a) 
Ih.O 

2Gu = G =: :)[(3 - 4l1v)q;(f. t) - zcJl(z, 1)1 

- t/lM(Z. t) + 2;; =: II ) [i M(z. t, t) dt (30b) 
v" I1h.O 

where 

ol/J(z. 1)/ az = «P{z. t) 

but 

and 

oy".u(z, t}/oz = i'M(Z. t) 

v; - v ) M[z, g{z, I), t] og{z, t)joz 
2( - v .. 

Finally, it will be necessary later to have formulae for the 
force vector F = Fl + iF, resulting from integration of the 
traction vector Tl + iT2 along any contour in the plane. With 
reference to Figure I. elementary equilibrium considerations 
suffice to show that 

0' = cp(z, t) + cP(z. t) - l1P(Z. Z. t) 

0' = (! == ;)[4>(Z, t) + .p(z. t)l 

(28a) -i(F1 - iF2) == -i l' (T. - iT'l ) ds 
~o 

(II .. - v) 
2(1 _ v,J M(z. f, t) (28b) 

where 4> (i. I) == cp(z. t) is simply a complex conjugate. so 
written to emphasize that ~ is analytic around i when «P is 
analytic aroundz. Equation (~7) now implies. on simple in­
tegration, that 

r = z o~(Zt t) + 'l'p(z. t) _ '1 Ii Op(z. r. t) dt (29a) 
OZ Ih.O iJz 

T = (!. == ;)z iJ~~, t) + ~M(Z. t) 

_ (Vu - v) if iJM(z, t. t) dt (29b) 
2(1 - v1J 0(.,1) iJz 

= 1· (0' dz + T dz) ... 
and the latter integral. path independent in any simply con­
nected region containing no singularities, is easily performed 
to get 

-/(F1 - iF2 ) = ~(z. t) + ztP(z, t) 

+ t/lp(z. t) - 11 Ii p(z, t. t) dt (3Ia) 
",.0 

-/(F1 - iF2 ) = G == ;)[.p(f. t) + Z~(z. 1)1 

+ t/lM(Z. t) - 2;i == II ) Ii M(z, tt t) dt (31b) 
11" 11(6, r) 

Here the analytic functions fez, I) and g(z, I) arise as arbitrary FUNDAMENTAL SINGULAR SOLUTIONS FOR. STRAIGHT 
integration limits and will be chosen to suit the region, bound- DISLOCATIONS AND LINE FORCES 
ary conditions, etc. The second Goursat function w(z. t) is also As an application of the foregoing formulation. we consider 
an arbitrary function of integration on which the subscripts p the sudden (but quasi-static) introduction, at 1= 0, of an edge 
and M imply its dependence on the representation chosen. dislocation with Burgers components b1 and bi (denoted by b 
Obviously. arbitrariness in the choice of the lower integration == bl + fbi), together with a point force P == PI + iP'l, acting on 
limits f or g is interchangeable with that in the choice of the W. the solid phase. ai the origin of an infinite porous medium. The 

Formulae for the displacements U1 and U2 may be obtained singularity is to be maintained for ali time I > O. The appropri-
by observing that ______ a_te_cl_assic~elasticit~Goursa~u~tions~ cp(z) !"~ w~~re 
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Fig. 1. Tractions on any arbitrary contour in the plane. 

defined by (28) and (29) when we set p == Vu == Vo!'; their form i~ 
well-known to be 

tfl(z) = 2Gb - iP !. 55 _D_ ! 
81f'i(1 - vt ) Z 1 - v. Z 

(32) 

Since hydrostatic stress in these limiting elasticity solutions is 
simply a multiple of Re [<I> 1. 

4ctD / = -2- [1 - exp (-zz/4ct)] + D In i 
z 

[

i D + 0 [exp (-zr!4ct) - IJ rat (36) 

and comment that u diverges like In z near the origin, as in 
classical elasticity. Thus the jump generated by I is constant in 
time. We now propose that 

.p(:, 1) = A(t) In z 4-,0,£(:, l) = B(t) In z (37) 

so that the jump conditions, deduced by using (36) and (37) in 
(30b) and (3Ib), take the form 

(
1 - v) _ 

2Gb = I _ Vu (3 - 4v • .)( - 2ri) A(t) - 21f'i B(t) 

p - v 
- (:I -:)(1 - v~) (2riD) 

(38) 

iP = (~ = :)<-2iTi}A(t) + liTiB(t) 

+ I'u - 1/ (' 'D) 
(l - v)(l .!- v,J _rl 

The solution of (38) is a time-independent Aft) and B(t), 
namely. 

A(t) == A = 2Gb - iP == ~ 
Bri{l - p) 1 - v 

A 
q,(z. t) = -

: 
(39) 

(u" + u,,)o> = (1 ~ v.) Re [~ ] 
(33) B(t) == B = -2Gb - (3 - 4v)iP 

8'11"i(1 - v) 

B 
v{z. t) = - (40) 

z 

We observe that these satisfy the minimal requirement for time 
independence. and we now proceed to find a solution that 
indeed verifies that <I>(z, t) is time-independent. 

The fluid content parameter M (equations (20b» always 
satisfies c'\J'lM = aMI all presently in the infinite medium, 
subject to M(t = 0+) = O. By settingp(t = co) = 0 in (20c). we 
get M(t = co) = (lTll + 0'22)"" The solution giving appropriate 
decay at infinity is 

M = (1 ~ v) [~ + ~J exp (-Z2/4<:I) 

In order to use (30b) and (3Ib). we require the integral 

/ 55 1: (~ + ~) exp (-zr/4ct) dt 

4ctD = -2- [exp (-zzo/4ct) - exp (-zz/4ct)] 
z 

f i [j [ r 1 ( r )2 ] + - 1 - .!... + - ~ -. . . dt 
6" r 4ct 2 4ct 

(34) 

(35) 

Here we have set g(z, t) = Zoo a real constant. We shall find that 
:0 must be 0 in order to comply with the classical elasticity 
stress solution at t = co. This value seems to generate a 
divergence in evaluating displacement. but such anomalies are 
familiar. and we consider only the contribution. from the 
integral. which generates a function with a branch-cut, since 
only the jump in u or F will be specified. It is thus adequate to 
write 

The time-dependent stress field may now be obtained from 
(28) and (29). For this purpose, we need one last integral: 

f i fJM(z. !" t) at 
%. iiz 

(4CI) = 4A 7" [exp(-zi/4ct) - exp(-zzo!4ct)] 

2A + -2 [i exp (-zz/4ct) - Zo exp (-zzo/4ct)1 
z 

2A + - Iexp (-zi/4ct) - exp (-zzo/4ct)] 
z 

(41) 

By imposing the known elasticity solution at 1 = co in (29), we 
deduce Zo = 0, as already mentioned. 

Stress field of an edge dislocation. As an example imple­
menting the expressions just derived. we obtain the stress field 
for the isolated edge dislocation shown in Figure 2: for this, A 
= -8, and thus 

A Gb e- ill 

<f>(z} = -'P{z) = ;- = 4'11"1(1 ~ v) r (42) 

whereas (34) takes the form 

M -Gbl sin (J (2/4c ) = -- exp -r t 
11'(1 - v) r 

Now (28b) may be used to find 

~(lTrr + O'ee) = HO'n + lT22) 

(43) 

Gb, [0 - v) - (v" - v) exp (_r
2 14C/)] • (J 

= -- sm (44) 
2'11"T (l - v)(1 - v,,) 
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The polar coordinate version of the deviator stress is 

!(0'98 - iTrr) + iO'r8 = exp (2iO)B(un - 0'11) + iO'12) (45) 

and, when (41) and (42) are inserted in (29b), we find 

1 . iGb , { cos e 
2(0'86 - O"rr) + lO'rl = 27rr (1 - v

u
) 

(v" - v) [.. (J (2/4c ) 
- (I _ vu){l _ v) I sm exp -r t 

4cf 2/ ...]} + 7 (l - exp (-r 4ct»(cos 8 - I sm (J) (46) 

The pore pressure is obtained by substituting (43) and (44) 
into (20b), and the complete set of field variables is then given 
by 

(48) 

The single dislocation solution just presented corresponds to a 
slip function {; = b1 [1 - U{xdlU(t). where U is the unit step 
function. For a continuous slip function, the infinitesimal dis­
location accumulated in time dz within an element of length 
dx , can be identified as 

b, = (49) 

which induces stresses and pressure given by (47) with origin at 
Xl and time measured from the instant t of accumulation. By 
summing (i.e .. integrating) all such infinitesimal contributions 
along the fault line over all preceding duration of slip we get 
the stress field at any time due to whatever slip {;(Xl. 1) has 
occurred. 

For example. the shear stress T (=0'12) induced along the XI 

• { 2 1 - v 4ct sm 8 2 exp (-r /4ct) - -- - ~ [1 -
v .. - v r 

eKp (-r'/4cll l} 
{

I - v 4ct 2} 
COS 8 -- - -2 [1 - exp (-r /4ct)J 

II" - V r (47) 

. {4ct 2 I - V} sm (J 2" [1 - exp (-r /4ct)] - --
r v .. - v 

sin 8 11-
1 [1 - exp (-/ /4ct)] 

In particular. the solution for pand Ute may be specialized to 
the case of incompressible constituents (pu = i. B = 1). and 
then the solution obtained by Booker [1974]. by using integral 
transforms on the McNamee and Gibson [1960] equations, for 
a fault or slip represented by a dipole pair of edge dislocations 
can be written down directly. This is an elementary application 
of (47); in the next section we take (47) as the starting point for 
a discussion of shear faults in fluid-infiltrated materials and of 
the manner in which interactions between the rupturing solid 
phase and its pore fluid may affect the rate or time dependence 
of fault spreading. 

ApPLICATION TO SHEAR FAULT MOTION 

IN FLUID-SATURATED MATERIALS 

The use of dislocations, either discretely or continuously 
distributed, to simulate the introduction or propagation of slip 
in masses of rock or soil is well-exemplified in the literature 
[e.g .• as summarized by Cleary, 1976] for the situations where 
the material can be approximated as linear elastic. These ex­
amples ari'd applications. such as mining settlements. ind uction 
of large single and network fractures, slip-surface propagation 
in progressive land sliding, and aseismic earth faulting, often 
have time dependence associated with them. A partial account 
of this dependence may possibly be taken simply by replacing 
elastic innuence functions for the dislocations by the time­
dependent stress field just derived. Indeed. since porous media 
effects have been cited recently as possible contributors to 
aftershock activity [Nur and Booker, 1972; Booker, 1974] and 
to the stabilization of shear rupture zones against rapid propa­
gation [Palmer and Rice, 1973; Rice, 1973J, we here consider 
the representation of a time-dependent shear faulting process 
by a continuous array of dislocations. 

Let the fault lie along the XI axis and let the relative sliding 
~rslip on the fault be defined from the displacement field u,(xit 

X2. t) as 

axis, owing to a slip dislocation b1 introduced at position x/ 
and time (' is. by (47). 

,(Xl. r) = 2 (1 _) I 

7r v" XI - XI 

t > I' (50) 

where 

Note the decrease of £ from unity at short times (or great 
distances) to the value (I - I'u )/( J - I') at long times (or short 
distances). Thus if the slippage {; is prescribed over some 
region L = L(t) of the Xl axis, starting at t = 10 • and if the 
applied stress distribution (i.e .. thal which would be present at 
any point and time if slip had not taken place) is Tappt(Xt. I). 
then the stress T(X" t}. as altered by the slip. is 

Fig. 2. An edge dislocation at the origin orcoordinates in the plane. 
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__________ - J8
(SHPPQ

geJ 

__ ....:.;fo::.:u::..:l~t _____ !""-~ee=-_ breakdown zone 
...... w~ 

(0 ) 

T 

(b) 

for TS 
for a fixed 8 

for TF 

stress It (=o--p) 

Fig. 3. (a) Schematic of a shear fault. showing relative slip /; and 
shear stresses T on the line of the fault. (b) A simple failure criterion 
for material on the fault. Endurable shear stress is related to effective 
normal compressive stress and amount of sliding. Note that reductions 
in p. induced transiently by prerupture dilatancy. increase the resist· 
ance to fault spreading. 

, t) 

f t r a2 o(x/, t' ) 
- -21l"-(-1---Pu-) t,,' Lit') ax/ aT 

. .c[(XI - X<)2] dX 1 f f dt' (51) 
4c(t - t) XI - XI 

where the integral on x/ is taken in the Cauchy principal value 
sense. 

It is, of course, seldom the case that 0 is given and T is merely 
to be calculated by integration. Rather. the integral relation is 
to be understood as a first step toward an integral equation 
governing the slippage when certain information is given con­
cerning its left·hand side; this formulation is analogous to the 
representation of cracks as dislocation arrays in classical elas­
ticity. the exact density in the array being chosen as that 
satisfying an integral equation that expresses, for example. the 
condition that the crack surfaces be stress free Ie.g., Bilby and 
Eshelby. 1968; Cleary, 19761. 

The simplest condition on T is that analogous to the 
slipping shear crack, namely. that T has some reduced value, 
say a frictional sliding stress 'IF, everywhere along the region 
L(t) of slippage, where L(t) is given a priori, and the friction 
stress T F « T apph at least in some average sense) is that residual 
resistance remaining after completion of the 'breakdown' 
process at the ends of the spreading fault zone. In that case, 
stress singularities will result at the spreading ends of the fault. 
and the condition for fault propagation can be phrased in 
fracture mechanics terminology [e,g .• Rice. 1968] as the re­
quirement that a critical energy release rate. expressible in 
terms of the strength of the singularity. be achieved for propa­
gation. Indeed. this kind of characterization has been pro· 
posed for shear faults in overconsoHdated soils by Palme, and 
Rice [1973] and for earthquake faults by Hussein; et al. [1976]. 

Models can also be formulated that include a more detailed 
account of the breakdown process: foHowing Palmer and Rice 
[1973} and with reference to Figure 3, the shear stress T can be 

considered to be some function of the slippage 0 
near the tip of the from a breakdown stress 
levelr B, sufficient to initiate slippage. to the residual friction 
level TF after large amounts of sliding: TB, TF. and the values of 
T at intermediate values of lJ increase with the local 'effective' 
compressive stress u - P. where u is the total co:mplre!isi\re 
stress) acting on the fault. as illustrated. This formulation 
removes the point stress singularity at the tip in favor of a 
direct (if oversimplified) model of the breakdown process. 
With it. t) on the left side of (51) is expressible as a 
function of O(Xh l) at aU points that have previously been 
brought to the breakdown stress level. and hence (52) becomes 
a nonlinear equation for 0, 

Solutions for similar models in the classical elasticity con­
text have been given by Palmer and Rice [19731. and a general 
numerical scheme has been presented by Clear), (1976}. (n 
cases for which the size w of the end region (Figure 3). over 
which strength degradation takes place. is small in ("r.''nn'!.iru~('\n 
with overall fault length. the criterion from this 
model accords with the fracture mechanics point sln:gularilty 
approach, and the effective fracture energy is equal to the 
shaded area in the T versus 6 plot of Figure J.lt is thus 
to give simple estimates of how the aforementioned features 
affect progress of a fault. 

Pore fluid effects in the stabilization 0/ fault spreading. Two 
distinct mechanisms have been proposed by which the cou~ 
piing between pore fluids and deformation can stabilize a shear 
fault against rapid growth [Palmer and Rict. 1973: Rice, 1973J, 
and these may be important for explaining observed fault 
creep events King et 01 .. 1973]. The first is that. for a 

set of stresses exerted on a fault. the amount of energy 
that can flow to its tip in a unit advance will be different 
according to whether the surrounding material responds in an 
undrained or drained fashion (or, in general. in a way inter­
mediate between these short and long time extremes). More 
energy is released under drained than undrained conditions 
(see below). and hence the magnitude of the applied stresses 
necessary to deliver some fixed energy to the breakdown proc­
ess must increase with the of fault spreading. the impli-
cation thus being that a stable rupturing process 
exists. at least over some range of stress. 

J 

r Tappl 

1 
4. Simulation of relative sliding and dilation, on the line of the 

shear fault. by a continuous density of dislocations. 



RICE AND CLEARY: ELASTICITY SOLUTIONS fOR POROUS MEDIA 235 

response for the two limiting cases may be ascertained 
directly from (51 ). for which £ may be its short and long 
time values, 1.0 and (I - vLl )/(1 - v), respectively_ Then the 
time is trivial, and the equation reduces to the 
COlrre!ipo,ndmg crack of classical 

Bilby and Eshelby, J 968J, with the elastic en-
in the form I - fJu ) for the short time (rapid fault 

creep) response and G/( I - v) for the long time (slow creep) 
response. Of course, these are the same forms in which elastic 
..... ,~ ..... , .. t,'~" enter the for energy flow to the crack 
for the simplest case of a strain fault of I with 
uniform stress and constant resistance TF p\u'rv'wi1prp 

except near a small end lone. the energy flow to the break­
down process per unit of newly created fault surface 
Rice. 1968; Palmer and Rice, 1973] is 

S' = (52) 

Hence if the fracture energy can be taken as 
mQ,ep€:naent of the of fault creep, the ratio of the 
stress for slow (s), as to fast (j) ..... n ........... I .. t .. hJ 

undrained, but still fault spreading is 

(TaPJlI -

[(1 - v)/{l - fJ u »)112 == {31!2 (53) 

This is 1.13 for data of sandstone (II = 0.12, VLl 

= 0.31) and may be somewhat higher for heavily fissured rock 
or for soils, in which cases lIa = 0.5; for (3112 is 

then 1.30 if v = 0.15. Hence no fault can occur on this 
basis if the stress is less than (rapPI - 'TF)S. and it must 
exceed (r appi - TF), for seismic to ensue. 

preparation of the original version of this manuscript. 
(111,aIV:)I~ of a shear fault at steady speed in a 

fluid-infiltrated porous material has been by Rice and 
Simons [1976]. they find an effect even greater 
than that indicated the above comparison of the completely 
drained and completely undrained cases. Indeed, the greatest 
resistance to fault is found to occur at an inter-
mediate and at this the ratio to the 
left side of (53) has a value between (31/2 and /3. The 

value is approached when the size of the end is 
an small fraction of fault length. the lower value 
when the end region is large. By using a field diffusivity c ~ I ()' 
cm2/s [Anderson and Whitcomb. 1975]. Rice and Simons report 
that the range of fault lengths and speeds given by 

et 01. [1973] as representative of San Andreas creep events 
are, when they are with the theoretical predictions, 
supportive of the notion that the fluid interaction effects under 
discussion could indeed be active in fault stabilization.) 

The second means by which porous media effects can stabi­
lize fault propagation is to the first and in­
volves the fact that the rupture process "in the breakdown zone 
may entail nonlinear dilatant deformation of the rock. owing 
to local propping at asperities and to the of new or 

fissures. Hence pore fluid suctions are induced when 
the time scale is insufficient for their diffusive alleviation. and 
by the effective stress principle. the material in the breakdown 
zone is 'dilatantly strengthened' over the resistance to defor­
mation that it would show under less drained condi­
tions. The extent of the increase for un­
drained deformation of a material element can be estimated 
from a formulation of its inelastic stress-strain relations in 
accord with the effective stress 

Within our present linear elastic context, in which the break-

down zone is represented as a of the fault 
3). the dilatancy during rupture can be simulated as a 

continuous array of opening dislocations within the end re­
gion. as on the in 4: these are on the 
main array of slip dislocations. The effect of the pore fluid 
suction distribution thus induced along the fault is to 
increase the effective stress U. and as illustrated on 
the right in Figure 3b, this will raise the level of the T versus 0 
curve and hence result in an increase in the shaded area, which • 
as has been remarked, is a measure of the fracture energy 
required for fault propagation. Thus the effect serves to 
stabilize the fault rapid for the induced 
suctions will be greater the greater the of fault creep. 

Rice [1973] an estimate of these in-
duced suctions through a treatment that the solid and 
fluid phases as separately incompressible (soil mechanics case); 
assumes that the dilation is equivalent to the induction of a 
flow of fluid into the end zone u: at a uniform rate. so that a net 
height h of fluid is indrawn per unit area of newly created fault 
plane: and treats the diffusive flow as that corresponding lo­
cally to one-dimensional consolidation in the X2 direction un­
der a constant total compressive stress p is assumed to 
satisfy the ci3 2p/ ox.} == cp/ 01. where the net vol-
umetric flow rate. 2ti.(8p/ 8X2). is on X2 = 0 as Vh/u: when 
a material point is within the end This results in a 
suction distribution that is at a maximum at the trailing end of 
the breakdown zone and has there the value 

-(J.p )max ~ (olD- )mall ~ ( 

= [4(1 - £·)/11'(1 - 21·)](Gh/w)(1Tu:V/4c)I'2 (54) 

where, in the last rearrangement. (17) for c has been 
used in the form to constituents 
(8 = I, VU = ~). and Venters in the dimensionless com­
bination wV/c. There seems, unfortunately, to be maldeauate 
data from which to deduce numerical values of the 
parameters, estimates have been made Rice 
[1973] for shear faults in soils as part of a discussion of 
time effects in progressive failure of 

contrast, the porous media effects discussed by Nur and 
Booker [1972] and Booker [1974] entail a destabiliza­
tion of a recently slipped fault. As is clear from (51). the stress 
alterations in will have their greatest values immedi­
ately after a sudden slip (..c = 1.0). whereas will relax by 
the factor (I - vu )/( I - v) after a long time. Hence the shear 
stress builds up gradually on the part of the fault where the 
stress was relaxed the sudden slip. while it decays in the 
more highly stressed bordering the zone of 
This sequence has been proposed as consistent with limited 
subsequent faulling, in the form of aftershocks, the 
region that in the sudden faulting. 

STRESSES N EAR A PRESSl:RIZED 

CYLINDRICAL CAVITY 

As another of a fundamental strain solution. 
derivable within the complex variable formalism now available 
to us, we consider a circular cylindrical hole of radius a in a 
body of porous saturated material with concentric circular 
outer at radius b 5). The body is to be 
stressed so that the resultant field depends only on the radial 
coordinate r: for instance. by pressurizing the test fluid 
the interior of the hole. Despite its simplicity. the problem has 
direct relevance for initiation of hydraulic fractures in 
boreholes [e.g .• Haimson and Fairhurst, 1970J. and interior 
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Fig. 5. Typical annular specimen emPloyea 
strength of rock specimens by 

fluid pressure is increasingly being used for laboratory tests te 
determine the tensile strength of cylindrical rock sp~::CllneIIlS 

with drilled central holes Johnson el al., 
= p(r. t) and r = zi, we may use pCp, I) and p2 szs in 

the integrals of (29a), (30a), and (JIa). By noting that 

dt :::; 2(plz)dp ap(z, S. 1)1 az = G)U'lz)1I2 8pCp, 1)/ op 

we can convert the 
only: 

to simpler radial ael)en.oelnce 

2 IV p(z, t. t) dt = - pp(p, t) dp 
z " (55) 

We have chosen f(z, t) == a2/z so that the integral entails only 
real values of p. 

I\;"'i:llllll~ (44) and (45) and recognizing ilill = z2/12, we 
can transform (28a) and (29a) to coordinates: 

+ (11)8) = ~(z. t) + cf>(2. t) - '11P(r, t) 

1 )+' 1[2 '2«(166 - (ITT lUre = I iz -iJ:.......z~ 
(56) 

+ z'v(z, .) - V [' p' ilP~~ .) dPJ 

where we nave dropped the p on 'IT p(z, t). since we 
will not use the M Also. we recall that the 
material property 11 is defined in it will prove an impor-

. tant parameter in discussions of hydraulic fracture, and nu­
merical values are given subsequently. 

... ", .......... "' •. ,,, demands that the above stresses be independent 
of (J and thatu,.g = 0; only one possible solution has these 
features. namely, 

«I>(z. t) = N(t) In z + C(l) W(z. l) = S(t)jz2 (57) 

where, iii the most general case, N, S, and C are unknown 
functions of time. But if N In z and Nz In z - Nz are entered 
for «I> and ¢. respectively, in (30). we find ajump of the type Nr 
in the value of Ue (the circumferential displacement) as we 
traverse a closed circular contour of radius r >12. namely, we 

find a wedgelike dislocation. By specifying that such disloca­
tions are not present. we deduce N = O. Then the stresses 

after integration by parts once, to 

4C(t) - 2'11P(r, t) - (1 .. r (5Sa) 

1 [ 2 -? Set) + '11a pea, t) 

/) dP] (58b) 

where p is to be obtained from the polar coordinate version of 
(24). namely. 

(5Q) 

We note that Geerlsma {l957J has given the more usual body 
force approach to the same general problem of radial symme­
try in a porous medium. But he erroneously disposes of the 
derivative dCldt in (59) and so concludes that p satisfies a 
homogeneous diffusion this step will be seen justified 
only when bla -- co, and then only because C(I) -0 O. 

A of conditions may be for 
instance, either the total radial stress or the radial displace­
ment and the pore pressure. or the rate of fluid mass exchange 
with surroundings may be specified as functions of time at 
either boundary. A problem of to be 
studied here. is that of a fluid-fined cavity in which the fluid is 
suddenly (at I = 0) subjected to a pressure Po. equal total stress 
and pore pressure at the thereby induced. 

O"rr(a, t) == -Po I > 0 (60a) 

p(a. t) = PfJ 1 > 0 (60b) 

We suppose, for the moment, that the outer boundary is free 
of stress and fluid pressure 

O"rr(b. 1) = p(b. t) :::: 0 t > 0 

By using (60). we may solve for S(t) in (58b) 

SU) = a2 [2C(t) + (1 - 1])PoJ 

and then O"rr is given by 

O"rr = a'1.jl)C(t) 

-;2 [a2po 

(61) 

(62) 

(63) 

making (Jrr vanish (equation (61») at r = b we find an 
equation for C(t). 

(64) 

which is, in fact. a linear integral equation to be solved after p 
has first been determined. as a functional of C(t), from (59) 
with (60b) and ) as boundary conditions. The process is not 

to carry through, so here we just study the cases 
of short and very times, 

Short-rime solutions. Immediately after the has 
been applied. the classical elasticity solution (with lit 

applies in all of the region a < r < b. and (58) 
may be used in (24) to find a relation between per, 0+) and 

) attained immediately after Alternately, (59) 
may be integrated from I = 0- to I = 0+; in any case, the result 
is 
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a<r<b (65) 

and. when this is substituted into (64). we may solve to get 

(66b) 

The instantaneous stresses (t = 0"-) are now obtained from 
(63) and (58) as 

(67a) 

(67b) 

We emphasize that (66) and (67) are valid for a < r < b 
and are of boundary conditions on pore pressure: 

do not apply right at the boundary, r = (1, 

where P :::: Po definition. The is that the 
short-time (l = EO in 5) pore pressure distribution has a 
steep gradient from Po at the wall to the negative PE in (66b). 

Even after a very short time E, there are points (at r = R) 
close to the wall that the pore pressure P = 

po has (e.g .• choose (R - a) «(4N)!/2 «a); U,.r 

retains its value, -Po' as does ) in (66a). All ofthese, using 
(58), 

As is familiar in thermoelastic problems of heat to 
a surface. there is also a steep in the total circum­
ferential stress near the wall. from the value in (68) to that in 
(67b). In all these cases we have omitted 1133: if this is needed. 
for instance in a generalized Coulomb hypothesis 
for failure at the wall, it is trivially computed from (l9). 

Sleady flow. very time. The situation here is 
that p and C(t) become time independent in (59). of which the 
solution to (60b) and (61) then is 

per, ce) = Po[log (b/r)]/log (b/a) a S; r S; b ( 69 ) 

The value of 
tegration, as 

is now obtained from (64). after in-

C( co} = 

. [(I Vla'/2 + ~ {b' -:- a'l/Iog {b/al] 

The complete stress fieJd may be obtained from (63) and 
but we have interest in the near the inner 

where 

D' ... = -Po (71) 

Another possibility is that the outside (r = b) is jacketed, and 
th us no flow is allowed. I f zero total radial stress is still applied 
there a constant pressure in the 
triaxial apparatus, so that for superposition of the effects of 

loading, the alteration in total radial stress is zero). then the 
final state must bep = po and (64) 

C(ce) = (72) 

from which, again at the wall. 

cr,.,. = -Po P ::::: Po (73) 

Complete solution Jor infinile outer radius. The special case 
b/a -... co allows us, formally at least. to write the whole time 
and space variation of the variables uu , (1'111, and p because C(t) 
= 0 from conditions at infinity. and so (59). subject to bound-
ary condition (60b). has the solution and 
1960. section 127] 

P = Po + 1r 1<» exp (-cu'lt) 

Jo(ur) Yo(ua) - Jo(ua) Yo(ur) du 

Jo
2(ua) + Y/(ua) -;; 

(74) 

In the region f' > a such that (r - a) «a. the solution has the 
asymptotic expansion 

P :::." po(a/r)1/2 erfc [(r - a)/(4cr)I/2] (75) 

where 

erfe =1- dp 

This solution allows us to quantify and trace in time the 
progress of the zone of diffusing pore pressures as it penetrates 
inward from the boundary, replacing the pressure in (66b) by 
the value Po. As a first estimate, from (75). we may 
expect that after time t = T. the pore pre~sure will be or 
greater up to a depth (R - a) ==O.2(cT)I!2. the 
complete stress field is obtained from inserting (74) into (63) 
and (58). with C(I) == o. 

MATERIAL PARMIETERS A:-:D [~C'EPTION 

OF H YDRAl:LlC' FRAC'TURI:-:G 

Laboratory tests on specimens of various rock types show 
that the elastic moduli G and /' vary strongly at high values of 
the hydrostatic effective stress Nur and 1971] 
and, naturally, with increasing dev;atoric stress [e.g .• Rummel. 
1974); the porosity Vo and the permeability k also vary with 
substantial in effective stress [e.g., Zoback and 
Byerlee. 1975]. However, it is for present purposes 
to list (Table J) some typical rock properties at low to moder­
ate effective stresses: these have been culled mainly from the 
work Rummel f1974]. Nur and Byerlee [1971]. Zoback and 
Byeriee [1975], and Haimson and Fairhurst [1970]. Modifica­
tions from other sources were made when available, so that the 
numbers given may be considered average rather than appli-
cable to a Table 1 merits some comments: 

1. The bulk modulus K, of the pore fluid is representative 
of liquid. water or oil. The modulus of the solid K. 
is that of quartz for the sandstones; it has been measured [NUT 
and Byer/ee, 1971] for the but is simply for 
Tennessee marble. These rocks have been chosen 
either for their occurrence in earthquake test regions or for 
their use in fracturing "'V.\P1'I' ....... .,·.,t~ 

2. The second sectIOn of the table contains the derived 
parameters, B, /114' TI, and c (from equations (6). and 

respectively), and it also contains an Kill. of 
the permeability measure commonly used in soil mechanics, 
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TABLE 1. Typical Rock Properties. Measured and Computed 

Rock 

Ruhr Tennessee Charcoal Berea Weber 
Property Sandstone Marble Granite Sandstone Granite Sandstone 

Section I 

G. k.bar 133 240 187 60 150 122 
l' 0.12 0.25 0.27 0.20 0.25 0.15 
L'o 0.02 0.02 0.02 0.19 0.0] 0.06 
k. md (10- 11 em7) 0.2 (lO-') (10-·) 190 4 X 10- 4 1.0 
K •• khar 360 (500) (454) 360 454 360 
K,. khar 33 33 33 33 33 33 

Section 2 

B 0.88 O.S} 0.55 0.62 0.85 0.73 
i'u 0.31 0.27 0.30 0.33 0.34 0.29 
lJ 0.28 0.08 0.08 0.30 0.16 0.26 
Io: .... cm/s 2 X 10-7 10- 11) IO- I !} 2 X 10-4 4 X 10- 10 10-6 

(p/Pu.)C. cm2js 53 0.13 0.07 1.6 X 10· 0.22 201 

The viscosity of water is taken as #14' 0.01 P and 1.0 bar"'" lOS dyn/cm2
• 

namely. the velocity of flow of water under a pressure 2nlQl~ent 
of unit head drop of water per unit linear distance. For com­
parison. we note that clays of low permeability have KlJl < 10-' 
cm/s. so that the term 'impermeable' may seem appropriate to 
the granites and marble. However, what important. 
certainly for the fracturing and slip phenomena considered in 
this paper, is the rapidity with which pore pressure per­
turbations in some regions are damped out or transmitted to 
adjacent regions. It is dear from (47) and (75). or from any 
elelmelrlta:ry diffusion solution, that this relation between dis­
tance (X. measured from source or perturbation) and the time 
elapsed (T) is by X = O.2(cT)1f2. where the factor (0.2) 
arbitrarily arises from the requirement that the intensity of the 
change at X be 90% or more of the initial perturbation. If we. 
then, inspect the values for c in Table I. we observe that even 
the marble gives values of X 0:: 0.9 mm for the passage of 1 s of 
time. when p. = /J.w' In a hydraulic fracturing experiment 
lasting at least 10 s, and even after allowing for an oily fractur­
ing fluid penetrating dry rock, we shall suggest that sufficient 
penetration occurs to affect the pressures required for fracture. 

3. A variety of earthquake-associated phenomena display 
a common value of c 0:: 1()4 cm2/s [e.g., Anderson and Whit­
comb. 1975J; the Weber sandstone, typical of the Rangely test 
region. shows only 2% of this value, and so or fissure 
networks (and some degree of dilatancy) must account for 
much of the diffusivity. Previously. computations have typi­
cally been based on diffusion through a rigid rock matrix: it is 
interesting to note that the limiting form of(l7}. in that event. 
is c - KK,Ivo (Zoback and Byerlee [191S] seem inadvertently to 
have used KK,) and that this yields a value c ~ 550 cm2/s fOJ 
Weber sandstone (with water as pore fluid). 

4. The values of G and v.listed in Table 1. are mainly those 
for dry rock. Ideally. they should be obtained from completely 
drained quasi-static tests on a sample saturated with the ap­
propriate pore fluid. but experimentalists regard these as slow 
tests. In light of the values of c and the discussion in 2. it is 
hard to understand why induced pore pressures, due to load­
ing a sample of maximum dimension 5 em (say), do not 
effectively damp out in a matter of minutes. 

Inception of hydraulic fracture from boreholes. It is fre­
quently observed, when fracturing cylindrical rock specimens 
by hydraulically pressurizing a drilled central hole [e.g .• Bairn­

pelrsonal communica-

tion. 1975], that very rapid pressurization (or a jaclket(~d 
wall) leads to a higher fracture pressure than that needed when 
pressurized fluid is allowed sufficient time to penetrate the 
wans of the We limit ourselves here to a preliminary 
simple explanation of this effect by proposing that fracture 
occurs when the maximum effective tensile stress. in the vicin­
ity of the wall, reaches a so-called tensile strength (10' However, 
the expression ror effective stresses is not necessarily the same 
for such an uhimate criterion as it is for deformation 
computations (equation (13» but seems to be most accurately 
described [e.g., Cornet and Fairhurst, ·1974] by the classical 
effective stress law. 

= (1f.j + (760) 

(76b) 

The stresses are (ftl', of which the principal values are 
is the chosen tensile stress fracture criterion. 

pm nlrlrC:A I criterion is appropriate only if all flaws in 
the material are small in comparison with distances 
over which the predicted stresses change appreciably, although 
the critical value (To will itself have a statistical distribution 
according to the statistics of flaw sites. sizes. and the 
up process. 

The test configuration in 5 is adopted as reference, 
and we note that the effects of any exterior confining pressure 
(frr (r = b) can be superposed in an obvious so we 
consider zero confining pressure. We now compute the frac­
ture pressures for each of three different time scales of interior 
pressure application: 

I. The pressure is brought up so rapidly to the fracture 
value p,.' that the fluid does not penetrate into the cavity wall 
(equivalently, the waH r = a may be jacketed). Then the elastic 
stress field in (07) and the pore pressure in (66b) may be used 
in (76) to obtain the maximum effective tensile stress, in the 
circumferential direction. near the wall; when fracture condi· 
lions are reached, this is 

uu' == (fu + P 

[(b: + a:) _ (II" - 11) ---=-_.,.... 
b - a 11(1 - 11) 

uo (77) 

or 
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P/ ~ 0 

The last approximation is made for b2 » a2 (e.g .• the speci­
men used by Raleigh had b = 1.5 em, a = 0.1 em). but there is 
naturally a on bla in the exact This 
variation of p/ with the size of hole used (for b) seems to 
render unnecessary the of Haimson and Fairhurst 
[1970]. whose data agree well with the predictions of (77). that 
the variation is related to in tensile strength. 

2. The fluid has time to penetrate the rock near r = 

a to a depth sufficiently great that a fracture of that 
results in a stress concentration adequate to continue propa­
gating. Then the fracture pressure (pf'5) may be ob­
tained by adopting PF5 as the pore pressure in the 

and using (68) to get 

+ (78) 

or 

2(1 - 1/)PFS ~ Ull 

this last approximation is for b2 » a2
, and 

the maximum effective tensile stress equal to the uo. 
we obtain a smaller fracture pressure. pi ~ uo/(2 - 271) ~ 
p/I(2 - 211). 

Actually, there will be a time in the pressure 
required for fracture (as shown by the data of Haimson and 
Fairhurst [J 970]). but the estimate just obtained constitutes a 
lower limit for PFs: the data ore. B. (personal commu­
nication, 1975) support this assertion. Table 1 may be used 10 

assess the factor (2 - , but (22b) gives T/ = (I - ')( I -
2.1')/(2 -2v) when (4) and (6) are employed. This last expres-
sIOn shows that the very stiff rock matrices marble and 

will show a effect of fluid than the 
more loosely structured sandstones. This expression for Tj is 

that used by Haimson and Fairhurst [1970J, but they 
assert that Tennessee marble and charcoal granite are too 

to show any effect of fluid Never-
theless. their data for fracturing pressures show an 
effect that is in a manner consistent with a 
dependence on of fluid penetration at the wall r =' a. 

3. Haimson and Fairhurst [1970] show tests on Berea sand­
stone where the time to fracture was so long and the rock so 
permeable that the fluid pressure had penetrated the whole 
way to the outer Even where the sample has been 
initially dry, it is sensible to our time' solu-
tions to these tests. as is probably most <II .... ,"' .. ", ...... ,,, ... 

that p(r = b} does not during the test: then (71) may be 
used to find the maximum effective stress, induced by the 
fracture pressure p/. which is also the pore pressure, at the 
inner wall r = a. We set this maximum tensile stress to 
the tensile strength Uo to find p/: 

Uee == Uee + P "" [ 11 
log (b/a) 

2(1 - == Uo (79) 

a p/ slightly lower than 
arises in the (perhaps situation where 

prevents escape of pore fluid: then with a 
a maximum effective stress 

In summary, the pressures required to initiate fracture from 
central boreholes in of a variety of 
rocks have been shown to on the of 
time during which the hydraulic pressure in the fluid-filled 

is raised to the fracture pressure. A more careful 
sis of the exact nature of is but 
the limits of two separate time scales have been studied: it is 
clear that the 'tensile U o may be modified to include 
initial compressive stresses on the prospective line of fracture 
and that initial pore pressures may be taken as reference so 
that our results extend directly to fracturing endeav-
ors (and we take b2 » a2

, as to these). For 
instantaneous fracturing the pressure is Pr l 

::::: Uo, but this 
decreases to ~ - 211) if the fluid can penetrate a 
sufficient distance that a fracture of that length will continue 
to propagate (see Table I for"fJ == (I - KIK:)(l - 2")/(2 -
21'»). Over a longer time scale, the fluid may penetrate very 

into the specimen and (if bla is not infinite) almost 
reach a steady state at which the fracture is slightly 
less than p/' (equation (79»: it seems, however. that the frac­
tion (2 - 2'1)-1, which is (I - v) if KIK/ « I, a 
reasonable lower limit for the in pressures to 
be with time to fracture. The data of both 
Haimson and Fairhurst [1970) and C. B. 
communication, support our conclusions, although we 
do not with mechanisms like stress corrosion as fur­
ther factors influencing time dependence of fracture pressures. 

SPHERICAL CAVITY I~ A POROL:S SOLID 

arises in <I:",I""r"I'"oIh, 

izations of perturbations [e.g .• Anderson and 
Whitcomb. 1975: Johnson el al .. 1973}. Consider a ~ntlf"rll(,!ll 

cavity of radius a subjected to a total radial stress Ur,. ::::: -(TR 

and fluid pressure P ::::: Po on its boundary r = a. If is 
due to fluid that fills the cavity. then (TR = Po. 

(in obvious notation) 

fu r,I8r + - (hm)/r = 0 (81 ) 

while the only compatibility equation re-
duces to 

a + + Nr- 2 

ar = (82) 

If we insist that strains are derivable from a purely radial 
u,., thereby excluding conical dislocations from 

which N derives, we can write Err ::::: bul br and fOB::::: ulr and 
deduce with N ::: O. Hence 

(83) 

using this result in (16), that diffusion process for p sim­
plifies to 

+~ 
r 

= + -at 11(1 - 11 .. )(1 + v) dl 

In a manner now we insert (83) into (81) and in-
tegrate. subject to (T,.,. (r = a) = -(TR. to get 

U,,' = in - a
3//)CI (t) - uRa

3
// 

t) dp (85) 

== Uo b'l» a'l (80) To finish, as for the cylindrical subject to 
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bounldalrv conditions must be solved 
the condition on (1 rr at the outer boumlar'y nr£\.I1H'~P'40: 

eQuatl<>n for 
"~,,,."ICl"''''''''l5 to bla -tCO, we find 0, since the inner 

nr,,·c:.c:.llri,r~tll("\n will lead to val1lslhmlg p. (I,.,.. and (188 at r = co, 

.tqluatlon (84) then has the solution Carslawand 

p= 

derived with initial condition P (r > a, t ::::: 0+) = O. since m = 
mo in and = 0 in (85) and now 

the stresses 

perCe 

2t1po(a/r) erre 

I n the near the wall of the cavity where the 
pressure has pelleu'atc:d (r - « et, air ~ 1 
pressure is Po. 
we can use 

the radial total stress is still that QI..IIJII' .. U, so 
to write t"he whole field: 

p po (1rr 

and. for the purposes of fracture "U';U'-""'" for this 

On the other hand, outside the zone affected 
still at short times can 

be close to the wall. the stresses are (p = 0) 

(1,.,. (1 rr' 

For the case erR Po, the internal pressure ... p,,,,,,r .. ,, to cause 
fracture will fall 45% t1 to 63% (7] 0.08) when 
sufficient infiltration of fluid occurs to a sufficient that a 
fracture of that can propagate. 

CONCLUDING DISCUSSION 

There were at the outset of this few elastic-
solutions available for the deformation of fluid·infiltrated 

porous solids, in the case of fluid 
and solid constituents. The present work some such 
solutions and may also prove useful, the formalisms 
Oe1(eIIDDC:O. in the of further basic solutions. Indeed, 

media e.g., 
1973; Rice, local pore 

and 1974]. ani-
etc., but the linear Icc('O'I,.ron,£' 

no means exhausted either as to identification, 
even of primary aspects, of porous media effects Of as to 
av,ulalbll,lly of convenient formulations. 

When etc. are consid-
ered then a numerical may be 
For instance. a finite element scheme based on a variational 
PrlT1CIPfie al1alc)gOlJS to that of Biot [l956b} may solve 
awkward and does not Bmit one to consti· 
tutive have been made to Imple~mc~nt 
such a method with constituents (e.g., Val-

et aL, But when discontinuities and infinite 
are present and one is concerned with dom-

inant characteristics it is to have 

solutions. Thus our dislocation and shear fault solutions 
reveal at least three ways in which pore fluid flow can control 
shear fault motion and the to trace the time­
aelJenlOelnl progress of frictional faults. The 
solutions in plane strain new evidence on hv,rirllililirr 

processes and suggest some 
to conventional annular specimens 
tests. Ail solutions can be ..... ''''~., ........ 

a standard su[)en)OSitlCln 

Our study was <:III'l,nnlrtp'.1 

of National Science fOl.anclatJon, 
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