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SUMMARY

By usING a simplified constitutive model of a pointed vertex on subsequent yield loci, namely, such
that the equations of deformation-theory of rigid-plastic solids apply for fully-active stress increments,
the onset of localized necking under biaxial stretching has been predicted. The predictions agree
reasonably well with reported experimental observations. Since localized necking under biaxial
stretching of a uniform and homogeneous sheet is impossible when flow theories of plasticity with
smooth yield-loci are used, this result supports the hypothesis of vertex-formation on the yield
locus under continued plastic flow. The implications of this conclusion with respect to the study
of the inception of ductile fracture in solids, viewed as a material instability, may be far-reaching.
Still, explanations based on a smooth yield-locus but small initial inhomogeneities cannot be ruled
out, and both initial imperfections and yield-vertex effects may contribute in general to localization
instabilities.

1. INTRODUCTION

WHEN A DUCTILE sheet is deformed by biaxial tension so that both principal strain
increments in the plane of the sheet are positive (i.e. de,/de; = p > 0), there is no
line of zero extension in the plane, and the description of localized necking given
by HiLL (1952) does not predict the onset of localized necking.

Practical experience and experimental observations (KEELER and BACKOFEN, 1963),
on the other hand, clearly show that the sheet fails by a process of strain localization
in a narrow neck, much in the same manner as for p < 0, where lines of zero extension
exist.

Marciniak and Kuczynskl (1967) made an attempt to resolve this ‘paradox’
by assuming pre-existing inhomogeneities in the sheet. They were then able to
calculate the development of a localized neck from such an inhomogeneity (imper-
fection). As explained more fully by SowerBy and DuNcaN (1971), the local
deformation increments within an initially-thinned portion of the sheet, assumed
to lie perpendicular to the major principal stress (¢,) direction, approach those of
plane strain (de,/de; — 0) while the remainder of the sheet deforms at constant p.
Since &, is continuous across the thinned region, this means that the ratio of
local to overall increments de, approaches infinity, corresponding to terminal
rupture.

+ Permanent address: Department of Metallurgy and Metals Forming (Mek. tek.), University
of Trondheim — Norwegian Institute of Technology, Trondheim, Norway.
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Carefully performed experiments were carried out by AzriN and BACKOFEN
(1970) in order to test the Marciniak-Kuczynski, (M-K), model. The experiments
indeed showed this gradual development of a neck, but the agreement with the
predictions of the model was not satisfactory, in that the magnitude of the imper-
fections which one had to assume in order to fit the predictions to the experimental
results was unrealistic.

The generally accepted flow-theory of plasticity with a smooth yield-surface and
normality of the plastic strain increments was assumed as a constitutive model in
the studies referred to. Certainly, the explanation of local necking for p > 0 on
the basis of such a constitutive model and initial imperfections is not yet fully
explored. For example, preliminary work by Professor A. Needleman (unpublished)
for the case p = 1 suggests that sensitivity to small imperfections may be substan-
tially greater when analyzed as a three-dimensional problem rather than the
generalized plane stress problem of the M~K model. Our purpose here, however,
is to examine a different possibility for the explanation of localized necks when
p > 0.

Recently, Rice (1973) and Rupnickr and RICE (1975) have studied the problem
of localization of flow into a planar band in rock- and soil-masses. Within the
framework of the general theory of uniqueness and stability of elastic-plastic flow
(HiLL, 1958) and HiLr’s (1962) study of so-called ‘stationary discontinuities’, they
derive conditions for localization (bifurcation) of deformation into a shear band
by considering the phenomena as an instability in the constitutive description of
homogeneous deformation. BErRG (1970) proposed this type of instability as
responsible for the initiation of ductile fracture in materials with growing micro-
voids.

As pointed out by Ricg (1973) the predicted results are very much affected by
the constitutive description of the material, as for instance the development of a
pointed vertex on the yield locus.

HivLL (1967) has shown that vertex formation is a general feature of polycrystalline
aggregates when localized slip in each grain is governed by the Schmid law. For a
particular model of a polycrystal, HurcHinsON (1970) demonstrates that a vertex
does indeed develop on subsequent yield surfaces. He also observes that the plastic
moduli predicted by the model, in the case of increments of shear stress in a
predominantly-tensile loading program, are much closer to the predictions of
deformation theory of plasticity than to those of a flow theory with a smooth yield-
surface.

In the field of elastic-plastic buckling of structures in compression, it has for
a long time been observed that the generally abandoned deformation theory predicts
the buckling loads better than the flow theory with a smooth yield-surface. BATDORF
(1949) showed that the existence of a vertex at the applied stress point may explain
this behavior. So-called ‘slip-theories” which predicted the development of vertices
on subsequent yield surfaces were put forward by S. B. Batdorf and B. Budiansky
in 1949 (Batporr and BUDIANSKY, 1954) and by J. L. Sanders in 1952 (SANDERS,
1954) but these theories do not seem to have been given much attention in the last
two decades. Quite recently, however, SEWELL (1972, 1974) has taken up the subject
and he shows (SEWELL, 1974) that the plastic moduli which govern fully-active loading
at a vertex point can be fitted to those of the deformation theory.
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The object of this paper is described as follows:

(i) To derive the conditions for strain localization into a neck as the result of
an instability in the constitutive description of uniform deformation of
sheets in plane stress (Section 2).

(ii) To show that the equations of deformation theory of plasticity may describe
the “destabilizing’ effect of a pointed vertex on the yield locus, at least for
‘fully active’ loading (Section 3).

(iii) To use the equations from Sections 2 and 3 to examine the hypothesis that
the development of a vertex on the yield locus is responsible for the onset
of localized necking in thin sheets under biaxial stretching (Section 4).

2. CONDITIONS FOR THE ONSET OF LOCALIZED NECKING IN PLANE STRESS

Consider a uniform quasi-static deformation of a homogeneous plane sheet
where the applied forces act in the plane of the sheet.

The current uniform thickness of the sheet is H. Conditions are sought for
which continued plastic flow may result in an incipient nonuniform flow field which
varies across a band (i.e. an incipient neck) but remains uniform outside. Following
Rupnick! and Rick (1975), suppose that such a band exists and that the unit normal
to the band in the plane of the sheet is n, and then

n; =cos iy, n, =siny,

where |/ is the angle between the x,-axis and the normal (Fig. 1).
Denote the difference between the values of field variables (. . .) inside and outside
the band by A(...).

Fi1G. 1. Coordinate system and direction of the incipient neck. The cut shows the stress components
normal and parallel to the neck.
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Since the flow field is restricted to vary across the band, the difference in velocity

is
Avcz = Ua, insidc—va, outside =faz(x1 Cos ‘// +X2 Sil’l !)b) =fa(nﬂxﬂ)= (])
where Av, (« = 1, 2) are the components in the plane of the sheet and v, 4. 1S the
linear continuation of the outside velocity field through the band.
The difference in rate of deformation is thus
A(ava/axﬁ) = O(Ava)/axl} Zfal(nyxy)n/} = gan[}a (2)

where
9y =fal(nﬂxﬂ) (O(, ﬁ: 7= 1 2)
A further restriction on the incipient non-uniform flow field is that stress equilibrium
continues to be satisfied.
The equations of equilibrium in the plane of the sheet are, for the stress resultants
Ho g,
dHa,p)/ox, =0 (a0, f=1,2) (3)

(HiLt, 1950, p. 300), and for the rate of change of the stress-resultants at a fixed
point in space

(0/0x)[0(Ho,p)/0t] = (0/5&){(5;:/:)— v,[é(Ha,p)/0x,]} = 0, (4)

where (...) denotes the instantaneous material derivative, and a,5 (¢, i = 1, 2) are
the true stress components in the plane of the sheet (6,3 = 0,i = 1, 2, 3). From the
assumptions of uniform deformations and homogeneous material, it follows that
(3) is identically satisfied everywhere and (4) reduces to

(a/axa)(A&aﬂ + aaﬂ AD3 3‘) = 05 (5)

where Ad,, is the difference in stress-rate corresponding to the incipient flow field
given by (2), and
AD,, = AH/H (6)

is the difference in thickness-strain rate inside and outside the band.
Since Aé,; and AD;; correspond to the flow field given by (1) and (2), they
only vary across the band and vanish outside. Thus, equation (5) yields

N, AGu+n,0,,AD55 = const. = 0. (7

In order to relate the Ad,; and AD,; to the g, -functions, the constitutive equations
must be specified. Assume for the time being that the following linear rate-relations
are valid:

Gap = Lagys(00,/0X5), Dj;3 = M,s(0v,/0x), (8)

where the ‘moduli’ L,;,; and M.,; are some functions of the current stress-state and
the constitutive parameters such as elastic moduli, rate of work-hardening, etc.
Equations (8) are usually derived from the general three-dimensional equations by
requiring 6,3 = 0 (i = 1, 2, 3), i.e. plane stress, and solving for Dj;; in terms of D,,.

If L,s,; and M,; remain the same inside and outside the neck at the point of
inception, then the following differences may be formed:

Ad’aﬂ = LaﬁyéA(auv/axé) = Lzﬂ-,vé négya}
AD33 = M','bA(avy/axd) = Myénégya
where (2) has been used.

(9)
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By substitution of (9) into (7), we obtain the following linear homogeneous
equations in g4, g,
(naLaﬂyénd-l_nao-aﬁ Mybnt))gy =0. (10)
The condition for the onset of necking is met if (10) is satisfied for some non-zero
g, and/or g,, that is, if
det (n,L,g,5n5+n,0,4M3n;5) = 0. (an

Discussion of the validity of (9) will be given subsequently.

3. CONSTITUTIVE RELATIONS

In this section we discuss the equations of deformation theory of plasticity as a
model for flow-theory behavior under fully-active stress-increments at a yield
vertex. We consider finite deformations of a rigid-plastic incompressible material.

3.1 Egquations of deformation theory of plasticity

By assuming the Mises yield condition and material isotropy, the small-strain
deformation theory (HiLL, 1950, p. 45) is modified to the following relation between
total plastic deformation-measure ¢;; and some rotation-invariant stress-measure 7;;:

&; = Atjy = At;;— ¥t 6y)- (12)

Many definitions of ¢;; are possible. When the material deforms such that the principal
directions of ¢;; are fixed in the material, however, we require that the defined ¢;;
gives the logarithmic or ‘natural’ strain. This is the strain-measure commonly used
in the sheet-forming literature (KEeLER and BACKOFEN, 1963) and is shown on
Fig. 2. Some possible definitions which satisfy this requirement are discussed in

(%) & ta() «

2 40(3)

FiG. 2. A sheet before and after non-rotational, uniform plastic deformation.
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Appendix 1. As stress measure 7;; it is convenient to choose the symmetric stress-
tensor which is conjugate to g;;, that is
7;;€;; = rate of stress-work per unit reference volume (13)
where §; = ds;;/dt (HILL, 1968).
By squaring and adding the equations (12), we obtain

J°

72 = 44772, (14)
where

7 = 2g;;¢; (15)
and

T2 = 3171} (16)

are the equivalent strain and stress respectively. t;; is the deviatoric part of the stress
components. From (14), the scalar A is given by

A= 1/2h = /21, 17
where £, = 7/y is the secant modulus on the stress-strain curve (Fig. 3).

1

__:rl:r

Y

FiG. 3. Stress—strain diagram showing tangent modulus /# and secant modulus #;. N denotes the
work-hardening index.

The rate-form of (12) is found by taking the time-rate on both sides of it, i.e.

&; = Atj;+ Aty
where
A = (F22)(dj/dT—7[7) = (z/2)(1 [h— 1jhy) (18)
and
h = dt/dy (19)
is the tangent modulus on the stress—strain curve (Fig. 3). We thus have
2¢;; = (1/hpt;+A[h— 1/h1)(T£jT;'cz/2f2)'fm- (20)

If we choose ¢,; to be the ‘spinless’ deformation as defined in Appendix I, then (20)
yields
2D;; = (1/h)o5;+ (1 = 1/1,)(0} 010/ 280w 1)
where
g'ij = 61+ 0;+ 0ul; (22)
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is the Jaumann rate of the true stress g;;, and

D;; = ¥(0v,/0x ;4 0v;/0x,), Q;; = }(0v;/0x;— 0v;/0x;) (23)

are the instantaneous rate of deformation and the spin tensor respectively.
The Jaumann rate of the true stress is the stress-rate observed if the observer
follows a system of reference that rotates with the spin tensor Q;; of the particle.
If the material work-hardens according to the power-law, i.e.

T =1,(F/7)", (24)
then
h = dz/dj = N(z,/y)Fy)" = N(i[5) = Nh, (25)
and (21) can be written
2h,Dy; = 645+ (1 = N)NX(0%; 00285 (26)

3.2 The equations of deformation theory as a model for a vertex on the yield locus

According to the flow theory of plasticity, the plastic strain rates for an isotropic
material, with Mises smooth yield-locus, are given by

— {(l/h)<o;,-a,:,/zf2>c‘?k, if 0}, 0, > o,}
ij—

. 27
0 if aL,gk, <0, @7

which can easily be given geometrical interpretation by observing that
my = oy;[\/2F (mymy; =1, my =0)

are the components of the unit normal m to the yield locus in stress space (Fig. 4(a)).

As a consequence of normality, the stram rate vector D? is always directed
parallel to m even if the stress-rate vector ¢’ has a component normal to m.T This
restriction on the strain-rate stabilizes the flow, since sudden changes in the stress-rate
do not change the flow pattern instantaneously.

Suppose now that we relax this restriction by allowing the component of the
stress vector normal to m, where there are only small deviations from the direction m,
to contribute to the plastic strain rate by (RupNickr and Rick, 1975)

D} = (1/2h,)(¢' —m(m : 6))

where A, is the rate of work-hardening in that direction. Summing up the two
contributions (Fig. 4(b)) we obtain

D? = D?+ D2 = (1/2h)m(m : 6)+1/2h,(¢' — m(m : 5))
or

1, 1
2D} = h1 oi; + <h p ) (a”ak,/Zr )ak,

and the rate-form of the equations of deformation theory are recovered, if 4, is
identified as the secant modulus. (Compare with (21).)

Now, consider a yield locus with a pointed vertex at the current stress-state.
Guided by the model of multi-slip in a polycrystal, the vertex is imagined as the
intersection of many smooth yield-surfaces (KoITER, 1953), and the plastic strain

1 This component is given by g" — m(m : ;).
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FiG. 4. Schematic representations of yield surfaces in deviatoric-stress space, showing directions

of the outward normal m to the yield surface(s), the deviatoric stress-rate <vs, and the corresponding

plastic strain rate D” in the cases (a) flow theory of plasticity with smooth yield-lfocus, (b) deformation
theory of plasticity, and (c) flow theory with a pointed vertex at the current stress-state.

rate is given by

DP=}% A m@m® :¢), m®?:6>0, (28)
a, p ="efp
where m® is the normal to the active yield-surface o, and 4, is the rate of work-
hardening in the m®-direction due to activation of the B-surface. Equation (28)
reduces to the Mises-type equation (27) when only one yield surface is activated.

A two-dimensional representation of a vertex is shown on Fig. 4(c). The strain-
rate vector D? is free to be directed anywhere between the two normals m'"’ and
m‘®’, and thus the deformation is less restricted against changes in the flow pattern
than that of the single smooth yield-surface.

Equation (28) is highly nonlinear and it is not clear how to describe the changes
in h,; under continued plastic flow. Experimental measurements are difficult to
carry out and the results are controversial (PHILLIPS, 1960). This equation is therefore
not very useful for the present purpose.
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HutcuinsoN’s (1970) calculations for a particular strain- path and small plastic
strains have shown that for small changes in the directions of o, the polycrystalline,
multi-slip model predicts plastic moduli close to those given by (17).

Guided by this result and the need for a simple description of the destabilizing
effect of a vertex (RUDNICKI and RIcE, 1975), the following conjecture is made:
In the case of continued plastic flow with small deviations from proportional loading,
so that all the yield surfaces which intersect at the vertex are activated (‘fully-active
loading’), the rate-form of the equations of deformation theory (equation (21)) can be
used as a model of a pointed vertex. This is consistent with a limited path-independence
of € on all routes to the current t that are everywhere ‘fully active’.

4. ANALYSIS AND NUMERICAL RESULTS

In plane stress (i.e. 6,3 = 0) equation (26) reduces to

N = ’
2D,y =3 (5o +H (L= NNYoypl2)050,00} (o f=1,2), 29)
D33 =—(D;3,+Dyy),
where . . . . .
0y50,5 = 011011+02205,+207,0,;, = 6,503,
011 = (201,—03,)/3, 053 = (203,—041)/3,
and

72 =46}, — 061105, +0632)+ 01, = 305,40,
From equation (29),

h v, 1—N , _ , v , v
2 N Daﬂ aaﬂ = 0up0,p + T (gaﬂ aaﬂ/2tz)(aaﬁ Uaﬂ) = N (aaﬂ aaﬁ)’

which, when substituted into (29), yields

aﬂ = 2 {Daﬁ (1 N)(aaﬁ/zfz)(aySDyé)}
and since
611 =207, +0%, 03, = 205, + 0%,
we obtain the inverted form of (29):
0'11 = 2 {(2 (1-N)o}, /25D, +(1 —(1 —N)0 ;1 06,2/27%)D;,
-(1- N)(0'11012/2‘32)2D12},
v h - _
Gy =2 N {(1—=(1=N)o4,032/27*)D1; +(2—(1 —N)63,/27%)D,,
-1 —N)(0'220'12/2'32)2D12},

(30)

v h
Gy =2 ﬁ {"(1 —N)(611012/2‘E2)D“ -\ —N)(0'220'12/2f2)D22
+(%“(1‘N)0%2/2f2)2D12},
D33 = —(D1+D32), 3D
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where, according to (22) with a;; = 0,
g’n =gy +20,,Q;,
Gaz = G33+265,K,, (32)
v .
Giz =012+ 0118212 10250,
Q,; = 3(0v,/0x; —Cvy[0x,) = =, }
D,y = 300, /0x 54 Ovp[Ox,) (o, f = 1,2).
By substituting (33}, (32) into (30), (31), a particular form of the linear rate-relations
(8) is obtained.
By assuming that the material outside the band continues to load plastically at
the onset of necking, the differences given in (9) can be formed.

Without loss of generality we can align the reference axes x,, x, (Fig. 1} along
the directions of principal stresses, i.e.

(33)

Oy =0y, Oz = 03, oy =0.
Then, the condition for continued equilibrium (equation (7)) yields
niAGy +hyAG ;—nya(giny+gany) =0, i
”\Ad‘nz‘*’”zA&zz“‘”zO’z(me+92”z)ZG,} (54
and the difference between the fields inside and outside the incipient neck (equa-
tions (9), (30), (31) and (32)} is

v h - I
Aoy = A6y =12 N {(1=(1=N)o,0,/2D)g n, +(2—(1 = N)o32t%)g, 1}, ) (35)

v . h
AG , = Ad, — 3o, —~0)(g 0, —g 1) = N (gina+gny).

By substituting (35) into (34) we obtain the following linear homogeneous equations
in Gis g2:

{[% (341_;\:)(@1;%)2)-«0} "t (i - T>} .

] Y
+ {7\2 3- (@ ——N)O'Hfz/fz)“o'} ninyg, =0,

h (36)
{E\* (3-(1~—N)0,02/f2)~—6} nyn,4g,
h % o 5 h ) _o
+ {[]—V— B—=(1~NXo,/7) )——cr] n; + (N; + r)} g, =0,

where
o =3{o,+0,), 7= Ho;~0,)
and the relation

has been used.
Non-zero functions ¢, g, can be found if the determinant of the coefficient-matrix
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vanishes. By using this condition and after some algebraic manipulations, we obtain
h\? .
(35) [4-=N)unt +ound?+a(o,—ainind)]

~ (i) Dlosn oD+ (1 =25 — ot —atnd)]
— (o, —0,)0,n} -0, n%)/fz =0. (37)
By observing that
o ni+o,nl =0, oynitoin;=o,,
3(o—0;)(o, "%_02”2) = fz"az’ra,
3t = 62 —0,0,+06% = 62,—0,,0,+02+302,

(37) can be written

2
(35) (Canve+=Np30) = () Boi 2+ (1= E - oj01o]f3)
—(@~0,0)[7* =0, (38)
where ¢,,, 6,, ¢, are the stress components parallel and normal to the incipient
neck (Fig. 1).

If (37) can be satisfied for some # > 0, then the condition for incipient neck
formation in a power-law work-hardening material is met. Since % (and A, = A/N)
is a uniformly decreasing function of the equivalent plastic strain 7, the maximum
value of & which satisfies (37) gives the condition when the onset of necking is first
possible.

By solving (37) with respect to /4 and finding the angle ¥ which optimizes A, we
have solved the problem. This is not easy to do aralytically, since it has not been
possible to find simple expressions for the roots (eigenvalues) of the equation. It
seems that a numerical procedure is necessary.

Now, before doing this it may be useful to study the experimental observations
on sheet-metal ductility as reported by KeeLER and BACKOFEN (1963), AzRIN and
BACKOFEN (1970), GHosH and HECKER (1974), and HEcker (1975). In their experi-
ments, principal strains are imposed on the sheet in an approximately constant ratio

P= Emin/smax = 82/81 = d82/d615 (39)
where ¢, are the logarithmic strains defined on Fig. 2. For an isotropic material,
following the Mises yield condition, this means a stress ratio

@ = 03/01 = (1+2p)/2+p)- (40)
By carefully measuring the increments of principal strains on a grid deforming with
the sheet, they were able to locate approximately the strain &¥ at which localized
necking started. By varying the imposed strain-ratio p, a so-called ‘forming limit’
curve

&l = F(p)
could be found.
By assuming an isotropic, power-law work-hardening material, it is observed

that

hy = 7/j = 0,/[2e,(2+p)]
or

&l = (0,N/[22+p)h.. ], (41)
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where A, is the maximum rate of work-hardening at which localized necking is
possible. The limit-curve predicted by Hirr (1952) for a power-law work-hardening,
isotropic, rigid-plastic, Mises material is

N
= (—1l<p=xg0), (42
1 14p ( p ) (42)
where the angle v between the maximum principal strain direction and the normal
n is given by
Y = arctan (\ —p), )
2 1 2 -p } (43)
ny = , ny = .
D T 1=p)
This sclution does not allow localized necking for biaxial stretching, i.e. p > 0.
The angle Y = arctan (,/ —p) corresponds to the direction of zero extension along
the neck, i.e. vanishing deviatoric normal stress in that direction (equation (27)),

o, = 0.

or

In the region where p > 0 and where no direction of zero extension exists in the
plane of the sheet, it is observed that the neck forms normal to the largest principal
strain, i.e. = 0, n, = 0. This is the neck orientation which corresponds to minimum
extension along the neck and where also o}, = ¢} has a minimum.

Led by these observations and by the numerical solution of (37) in Appendix II,
we give analytical solutions for ¢* in two particular cases, as follows.

(i) o7, = 0, corresponding to zero extension along the neck
The following solution &, ;, is then found:
ef = [N/(1+p) (1 = N)[2+[(1+N)*/4~pN/(] +p)2]5“}“,}
Y =arctan (\/—p) (~1<p=<0).

(ii) o], = 0%, corresponding to minimum extension along the neck

(44)

The solution which then gives ¢, minimum is (it can also be obtained directly

from (36))
ef = [3p° + NQ+p)’J/[2C+p)(1 +p+p )]L
y=0 (-l<p<l)

The ‘forming limit’-curves for different values of the hardening-index N as
predicted by (37) (see Appendix II} are shown on Fig. 5.

For p > 0 (¢, > 0) the curves agree precisely with (45), that is, the predicted
neck forms along the direction of minimum principal strain. ‘Forming limit’- curves,
found experimentally in plane biaxial stretching by AzriN and BAckoren (1970)
and GHosH and HECkER (1974) for different materials are also shown on Fig. 5.

It should be observed that these materials (except for A-K steel) do not follow
the power-law work-hardening (24) very well, and the index »" used on the Figure
corresponds to

(45)

n’ = d(In ¢)/d(In &) = (d&/de)/(/e) = h[h, = N
at the onset of necking in pure tension. This means that the value A/h, may vary
with p and &%, so that the limit-curves found experimentally need not to be curves
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[a] Azrin & Backofen (1970) ®A-K steel (N=0.24)([c]
[b] Ghosh & Hecker (1974) x Brass 70/30 (n'=0.47) [c]
[c] Ghosh (1974) ® Aluminium /4 hard (n'=0.04) [c]
€
[} :
1.0 -

Eqn.(42)Hill
Y N\

P10 N0 N ~—
N _ :

Stainless steel (n'=0.55)[a]
Brass (n'=0.47) [b]

A=K steel (N=0.21) [b]
Aluminium (n=0.04) [b]

(TRNRNN S N N WO N S [ N B
-8-7-6-5-4-3-2-1 0 1 2 .3 4.5 6.7
€
2

Fi1G. 5. Predicted and observed ‘forming limit’-curves. The fully-drawn curves are the results from

the numerical calculations (Appendix II). For 0 < p < 1, they agree precisely with equation (45).

For —1 < p < 0, the results are compared with Hill’s prediction, equation (42), and the prediction

of equation (44). Experimentally-observed limit-strains for different materials from different

sources are shown. The n’-numbers correspond to N in uniaxial tension at the point of instability
for materials which do not closely obey power-law work-hardening.

of constant N. It further should be remarked that the materials tested are not
isotropic. The normal anisotropy-index R varies between 1-54 (A-K steel) and
076 (aluminum).

For p < 0 (g, < 0), the Hill solution (42) and the present solution for neck
inception along the direction of zero extension (equation (44)) are also shown. The
numerically-found directions of neck inceptions for different N-values are shown on
Fig. 6 and compared with the direction of zero extension. When —02<p <0
or N < 1 the predicted directions are very close to the zero-extension direction.

Some data from pure tension tests (GHOsH and HECKER, 1964) are also plotted
on Fig. 5. For brass with n’ = 0-47 and R = 0°9, the present prediction seems to be
favored; but for the other materials the results are more inconclusive.

4.1 Neck perpendicular to the major principal stress

Finally, it may be remarked that, when it is assumed a priori that the neck forms
perpendicular to o, (as observed in the experiments for p > 0), simple general
expressions result for the necking condition. Using principal axes notation, the
equilibrium requirement (7) becomes Aé,+o,;AD; = 0 where, to meet the kine-
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matical condition (2), A, and AD; are to be computed with AD, = 0. This can be
re-interpreted as the condition for the nominal stress in the l-direction to be
stationary with respect to variation of the imposed planar principal stretching rates
in the 1-direction only (i.e. AD, # 0, AD, = 0).
If one assumes incompressible deformation, so that AD; = —AD,, then the local
necking condition is
o, = Aé,/AD,. (46)

This is not the same as the condition for attainment of a load maximum in the pre-
bifurcation deformation (namely, ¢, = &,/D,), unless that pre-bifurcation state

corresponds to plane strain (D, = 0).
Using the Rudnicki-Rice model of response at a yield vertex (equation (Al.4))

to compute Aé,/AD,, the local necking condition given by (46) becomes
o, = [(2o,~0,)?h, +3063h]{(0; — 0,0, +03)
= [3p%h, + 2+ )1+ p+ p2). (47)
In the latter version of the above formula, equation (40) is used, as would be appro-

priate for proportional straining up to the necking point. For power-law work-
hardening 4 is given by (All.3) and using the deformation-theory model to choose
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the vertex modulus /4, as #/N, this reduces to the result given by (45). Alternatively,
any experimentally determined work-hardening rule and choice for the vertex modulus
can be inserted into (47) to obtain a more accurate prediction of necking conditions.

Equation (47) serves also as a basis to summarize, in a simple manner, the role
of the yield vertex. For the rigid-plastic material with a smooth isotropically-expanding
yield surface, #; = o0 and no local necking bifurcation can occur, except under
plane-strain conditions (¢, = 20,, p = 0). Alternatively, the same constitutive law
will apply for an incompressible elastic-plastic material with a smooth yield-surface,
if h, is identified as the elastic shear modulus. Then, the predicted value of o, at
local necking is of the same order as the shear modulus, except at conditions near
plane strain. By contrast, vertex models lead to a substantially smaller value of A,
typically only a few times 4 (e.g. 2, = h/N for the model in the present paper). This
results in proportionally smaller values of ¢, for local necking, and the results
(reported in terms of ¢, in Fig. 5) seem to compare favorably with experimental
measurements.

5. CONCLUSIONS

Due to the simplified constitutive model used in this investigation, there is no
point in discussing details of the discrepancies between the predicted and the observed
‘forming limit’-curves presented in Fig. 5. Merely the existence and the trends of
the prediction are sufficient to draw some important conclusions, stated as follows.

(i) The onset of localized necking in a sheet seems to be explainable as a bifur-
cation from a state of uniform deformation, even when the pre-bifurcation defor-
mations contain no direction of zero extension in the plane of the sheet. No assump-
tions of abrupt changes in the stress—strain relation or of pre-existing macroscopic
inhomogeneities seem to be necessary. Still, it is clear that suitable initial imperfec-
tions will aid the development of a neck, and certainly when the problem is analyzed
on the basis of the rigid—plastic isotropic-hardening material model, with a smooth
yield-locus at the applied stress-point, no neck can be predicted for p > 0 without
the assumption of imperfections (MARCINIAK and Kuczynski, 1967). Both initial
imperfections and the kind of constitutive features discussed here, allowing bifurcation
instability, may contribute in general, although a tentative interpretation of the com-
parison with experimental results is that it may be unnecessary to invoke the former.

(ii) This kind of instability is very sensitive to details in the stress—strain relations
of the material. The destabilizing effect of a pointed vertex on the yield locus in a
rigid—plastic incompressible material is demonstrated in the present paper. Other
effects, such as anisotropy (BERT and SHAH, 1971), non-normality (RUDNICKI and
Ricg, 1975), elasticity (HUTCHINSON and MILEs, 1974), and pre-fracture plastic
dilatation (BERG, 1970), could possibly contribute and might also be considered.

(iii) More generally, it can be argued that the Prandtl-Reuss model of isotropic
expansion of a smooth yield-surface is clearly too simple a description of the change
in properties during plastic flow. In many circumstances this is inconsequential,
but for problems of the type considered here, involving bifurcations, further efforts
should be directed towards a more detailed description of work-hardening in solids,
particularly with regard to clarifying the nature of the relation between stress incre-

ments and strain increments over a wide range of directions for the latter.
29
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APPENDIX 1

Alternative formulations of deformation-theory models for yield surfaces with
vertex at the current stress-point

Assume that the equations of deformation theory of plasticity in its simplest
isotropic form,
€= (1/2h)7, (AL1)
and in their rate-form,

&= (112h )t +((12h)—A[2h )Yz : i/t : )T, (AL2)
govern finite rigid-plastic deformation for a limited range of loading regimes that
includes, but is not restricted to, proportional stress increase and fixed principal
axes of € (BUDIANSKY, 1959).

We now look for rotation-invariant definitions of £ and < that have the following
properties:

(i) £ equals the logarithmic strain measure when the material deforms with
principal axes that are fixed relative to the material (KEELER and BACKOFEN, 1963).

(ii) © is congugate to ¢ (HiLL, 1968). For incompressible materials this means
that the following equation has to be satisfied (equation (13)):

t:¢=0:D, (AL3)
where ¢ is the true stress and D the instantaneous deformation-rate (equation (23,)).

This requires that T = ¢ when the principal axes of stretching are fixed relative to
the material and to space.

The alternative formulations thus obtained are compared with the rate-equation
proposed by Rubpnicki and Rick (1975):

D = (1/2h)& +((1/2h)—(1)2h D)6 : 6 /¢ :6)6’, o6=05+QT6+06Q, (AL4)
where Q is the spin tensor (equation (23,)) and ¢ the Jaumann rate of the true stress.

For the sake of reference, some equations from the general analysis of defor-
mation are now written down. Let the Lagrangian description of the deformation
process be represented by

dx(f) = F(f) dX,  det (F(f)) > 0, (AL5)
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where X and x(¢) denote the initial and current coordinates of material points.
F(¢) is the deformation gradient. According to the polar decomposition theorem,
F(t) = R()U(t) = RMAMY, (AL6)

where U(t) = M(t)A()MT(¢) = UT(¢) is the pure deformation, A is the diagonal
matrix of U, and M is the orthogonal matrix with the unit eigenvectors of U as
columns, M~! = M7, and R(s) is the rigid rotation, R™' = RT, detR =1,
det F = det U. If the material is incompressible, then

det U= 1. (AL.7)
The logarithmic strain g, is defined by
g =MmhAM =InU. (ALS)
The Eulerian description of the process is given by
dv =dx = FOF (1) dx = (D+Q) dx,  dx(0) = dX, (AL9)

where the instantaneous deformation-rate D is the symmetric part of FF~' and the
spin tensor Q is its antisymmetric part. By using (ALS5), D and Q may be written as

D =R(UU '+ U 'UR”
= RM[AA"' + {AM'MA ™' + A" 'M"MA)]M'R, (AL10)
Q =RRT+IRUU'-U'URT
=RRT"+RM[M™M + }(AM'™MA ™' —A"'M"MA)]M'R. (AL11)
In view of these general equations and the imposed restrictions (i) and (ii) above,
the following definitions (a), (b), (c) of € are proposed.

(a) The ‘rotationless’ deformation €y
The most natural choice of € is perhaps

gr =1 (U +U ') dt, (AL12)
(8]
where the integrand
¢, =3UU'+U'U)=R'DR (AL13)

is the ‘rotationless’ part of the instantaneous deformation-rate D (equation (AI.10)).
(i) When M = 0, i.e. fixed directions of principal axes of g, then

ér=MAA"MT, =M [f AAT! dt] MT =MIn A M,
0
that is, it gives the logarithmic strain, equation (AL8).
(ii) From (AIL3),
tr i ég=1z: (R"TDR) = (Rt1RT): D=0:D,
and we obtain the conjugate stress
7z = RToR. (Al.14)
(iii) The time-rate of t4 is
iz = R"(6+RR76 + cRRT)R. (AI.15)
Substitution of (Al.13)—(AI.15) into (Al.2) then gives
R7DR = (1/2h )R7(6 + RRT6 +6RRT)R +((1/2h) —(1/2h ))(t} : tx / Tk : TwRT6'R
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or
D= (1/2h1)¢°r+((1/2h)—(1/2h1))(o" : 00'/0" 1 06)o’, (AL16)
where
¢ = 6+RR76+oRRT. (AL17)
Equation (AI.16) is the rate equation proposed by RuDNICKI and RicE (1975) but
with the Jaumann stress-rate (equation (Al.4)) replaced by the rate given in (AL.17).
It is observed from (AL11l) that these two rates coincide when A = I or when
M = 0.
It should be noted that the integrand (AI.13) is rot a total differential. This means
that the g€ is path-dependent and therefore does not possess the property of a strain-

measure required by HiLL (1968). & may thus be called a deformation-measure and
not a strain-measure.

(b) The “spinless’ deformation €
Another ‘candidate’ is the ‘spinless’ deformation

t
&s =} [R¥(UU + U TORY(F) dt (AL18)
0
with the integrand
& = JR*(O(UU + U TU)R*T(r) = R*R"DRR*T, (AL19)

where R*(¢) is a rotation chosen so that the deformation gradient F* = R*U is
spinless, that is, from (AI.11),

Q* = RYR*R*+3(UU ' -U'U)|R*T = 0
or
R*R* = —(UU'-U"'0U) = RTRRT-Q)R. (AIL.20)
(i) When M = 0, then R* = I and g5 = In U.
(ii) From (AIL3) and (AL19),
15:és = (RR*"tzR*RT): D=¢:D,
and the conjugate stress is obtained,
15 = R*RTeRR*T. (AL.21)
(iif) By taking the time-rate of t5 and making use of (A1.20), we have
d v
ig = pr [R*RT6RR*T] = R*RToRR*", (AL.22)
where ¢ is the Jaumann rate (equation (Al.4)).
Substitution of (AL.19), (AL21), (AL.22) into the rate equation (AlL.2) yields
R*R7DRR*” = (1/2h,)R*RT¢'RR*T +((1/2h)—(1/2h))(¢" : ¢'/¢’ : 6)R*RT’'RR*T
or
D = (1/2h,)e’ +((1/2h) = (1/2h D)6’ : &'/’ : &')o", (AL23)

which is precisely the equation proposed by RUDNICKI and RICE (1975) as the rate
equation of deformation theory.

gg is also a deformation measure, and not a true strain-measure, since &g is not a
total differential.
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Alternatively stated, both €; and g¢ may be equated to an integral of the kind
{ Ddr computed for a deformation history that preserves the actual history of U,
but that has appropriate spins superimposed upon it so that (i} for g, R = 0 and
(ii) for &g, Q = 0 throughout the deformation. This is the origin of the names
‘rotationless’ and ‘spinless’, and the two rates & coincide exactly for infinitesimal
strains (but arbitrarily large rotations) or for increments from special deformation-
paths, such as those involving fixed principal directions relative to the material;
these are cases for which R* = 1.

(c) The logarithmic strain g
The logarithmic strain as defined by (Al.8),
g, =InU=MIn AM, (AL.24)

may also serve our purpose. It has the advantage of being a true strain-measure
(HiLt, 1968). The time-rate of g, is
g =MAAT'M"+MInAM +MIn AM". (A1.25)

By comparing (Al.25) with (AI.10), however, it is observed that the general
relation between &, and D is very complicated. In view of (Al.3), this implies that the
expressions for the conjugate stress and its time-rate also become very complicated,
and thus makes the strain-measure g, essentially intractable as a general measure
in deformation-theory formulations.

From the above considerations we may conclude that both the ‘rotationless’ and
the ‘spinless” deformation measures may be used in formulating a theory that is at
least tractable, but that the ‘spinless’ deformation gz is to be preferred on these
grounds since it gives a simple relation between the conjugate stress-rate and the
Jaumann rate of the true stress. Of course, our tacit assumption is that there are no
compelling physical grounds for preferring one of the above three measures as
constituting the more fundamental measure for use in a constitutive law of the
form (AL1). In view of their common features as enumerated at the outset of this
appendix, all are expected to give rather similar predictions, and our choice of g
is made on the basis of tractability and simplicity.

ArpenNDIx I

Numerical solution of equation (37)

Assume that the principal plastic strains ¢, and ¢, in the plane of the sheet uniquely
characterize the state of the sheet metal at the onset of necking. Denote the ratio
between them by {equation (39))

p =&/t

If the material is isotropic and the sheet is in a plane-stress condition, then,

from (20) or (27),
1+2p

6,/0, = 21”/) o, 65 =0,
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and the equivalent strain and stress may be written

7= 246,643 = 2¢,(1+p+pH), (AIL1)
7= (4ol —0,0,+0)} = i—p (1+p+p)" (AIL2)

Thus, the rate of work-hardening 4 for a power-law work-hardening material is
given by

h = Nij7 = No,/2¢,(2+ p). (AIL3)
With substitution of (AI1.2) and (AIL3) into (37) and use of the relation
n?=1-n2, (AIL4)
we obtain
Fl(pa ’l%, N)(1/51)2"F2(P, n%a N)(l/sl)—F3(pa n%a N) = 09 (AIIS)
where

Fy = 4N(L+p+p*)+3(1=N)p+(1—p)n3)?,

Fy =6(L+p+p>)p+(1—pn3)+(1 = N)2+p—(1—p)n3)2+p—3(1+p)n3)(1—p),

Fy=2(1—p)(1+p+p*)2+p—3(1+p)n3).
Within the actual range of the parameters, namely

—-1<p<1, 0<ni<l, O0O<N<I,
it can be shown that the roots of (AIL.5) are real (F3+4F,F, > 0) and at least one
of the roots is positive (F3/F; > 0 or F4/F, < 0, F,/F; > 0).
For each incremental step of p, the algebraically largest value of 1/e,, within the

range of nZ and with N constant, is determined numerically. The inverse of this

value, ¢¥, is then the ‘limit-strain’. The result of this computation is plotted in Figs.
5 and 6 for different values of N.



