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SIJMMARY 
BY USING a simplified constitutive model of a pointed vertex on subsequent yield loci, namely, such 
that the equations of deformation-theory of rigid-plastic solids apply for fully-active stress increments, 
the onset of localized necking under biaxial stretching has been predicted. The predictions agree 
reasonably well with reported experimental observations. Since localized necking under biaxial 
stretching of a uniform and homogeneous sheet is impossible when flow theories of plasticity with 
smooth yield-loci are used, this result supports the hypothesis of vertex-formation on the yield 
locus under continued plastic flow. The implications of this conclusion with respect to the study 
of the inception of ductile fracture in solids, viewed as a material instability, may be far-reaching. 
Still, explanations based on a smooth yield-locus but small initial inhomogeneities cannot be ruled 
out, and both initial imperfections and yield-vertex effects may contribute in general to localization 
instabilities. 

1. INTRODUCTION 

WHEN A DUCTILE sheet is deformed by biaxial tension so that both principal strain 
increments in the plane of the sheet are positive (i.e. deJd&, = p > 0), there is no 
line of zero extension in the plane, and the description of localized necking given 
by HILL (1952) does not predict the onset of localized necking. 

Practical experience and experimental observations (KEELER and BACKOFEN, 1963), 

on the other hand, clearly show that the sheet fails by a process of strain localization 
in a narrow neck, much in the same manner as for p < 0, where lines of zero extension 
exist. 

MARCINIAK and KUCZYNSKI (1967) made an attempt to resolve this ‘paradox’ 
by assuming pre-existing inhomogeneities in the sheet. They were then able to 
calculate the development of a localized neck from such an inhomogeneity (imper- 
fection). As explained more fully by SOWERBY and DUNCAN (1971), the local 
deformation increments within an initially-thinned portion of the sheet, assumed 
to lie perpendicular to the major principal stress (cl) direction, approach those of 
plane strain (d&Jde, --f 0) while the remainder of the sheet deforms at constant p. 
Since e2 is continuous across the thinned region, this means that the ratio of 
local to overall increments d.cl approaches infinity, corresponding to terminal 
rupture. 

i’ Permanent address: Department of Metallurgy and Metals Forming (Mek. tek.), University 
of Trondheim - Norwegian Institute of Technology, Trondheim, Norway. 
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Carefulty performed experiments were carried out by AZRIN and BACKOFEN 
(1970) in order to test the Marciniak-Kuczynski, (M-K), model. The experiments 
indeed showed this gradual development of a neck, but the agreement with the 
predictions of the model was not satisfactory, in that the rnagllitLIde of the imper- 
fections which one had to assume in order to Fit the predictions to the experimental 

results was unrealistic. 
The generally accepted flow-theory of plasticity with a smooth yield-surface and 

normaIity of the plastic strain increments was assumed as a collstitutive model in 
the studies referred to. Certainly, the explanation of local necking for p > 0 on 
the basis of such a constitutive model and initial imperfections is not yet fully 
explored. For example, preliminary work by Professor A. Needleman (unpublished) 
for the case p = I suggests that sensitivity to small imperfections may be substun- 
tially greater when analyzed as a three-dimensional problem rather than the 
generalized plane stress problem of the M-K model. Our purpose here, hou<vcr. 

is to examine a different possibility for the explanation of localized neck. when 
p > 0. 

Recentiy, RICE (1973) and RUDNKKI and RICE (1975) have studied the problem 
of localization of flow into a planar band in rock- and soil-masses. Within the 
framework of the general theory of uniqueness and stability of elastic-plastic flow 
(HILL, 1958) and HILL’S (1962) study of so-called ‘stationary discontinuities’, they 
derive conditions for localization (bifurcation) of deformation into a shear band 
by considering the phenomena as an instability in the constitutive descripth of 
homogeneous deformation. BERG (1970) proposed this type of instabitity as 
responsible for the initiation of ductile fracture in materials with growing micro- 

voids. 
As pointed out by RICE (1973) the predicted results are very much affected by 

the constitutive description of the material. as for instance the development of a 
pointed vertex on the yield locus. 

HILL (1967) has shown that vertex formation is a general feature of polycrystalline 
aggregates when localized slip in each grain is governed by the Schmid law. For a 
particular model of a polycrystal, HUT~HINSO~ (1970) demonstrates that a vertex 
does indeed develop on subsequent yield surfaces. He also observes that the plastic 
moduli predicted by the model, in the case of increments of shear stress in a 
predominantly-tensile loading program, are much closer to the predictions of 
deformation theory of plasticity than to those of a flow theory with a smooth yield- 
surface. 

In the field of elastic-plastic buckling of structures in compression, it has for 
a long time been observed that the generally abandoned deformation theory predicts 

the buckling loads better than the flow theory with a smooth yield-surface. BATDORI; 
(1949) showed that the existence of a vertex at the applied stress point may explain 
this behavior. So-called ‘slip-theories’ which predicted the development of vertices 
on subsequent yield surfaces were put forward by S. B. Batdorf and B. Budiansky 
in 1949 (BATDORF and BUDIANSKY, 1954) and by J. L. Sanders in 1952 (SANDERS, 
1954) but these theories do not seem to have been given much attention in the last 
two decades. Quite recently, however, &WELL (1972, 1974) has taken up the subject 
and he shows (SEWELL, 1974) that the pIastic mod&i which govern fully-active loading 
at a vertex point can be fitted to those of the deformation theory. 



Localized necking in thin sheets 

The object of this paper is described as follows: 
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(i) To derive the conditions for strain localization into a neck as the result of 
an instability in the constitutive description of uniform deformation of 
sheets in plane stress (Section 2). 

(ii) To show that the equations of deformation theory of plasticity may describe 
the ‘destabilizing’ effect of a pointed vertex on the yield locus, at least for 
‘fully active’ loading (Section 3). 

(iii) To use the equations from Sections 2 and 3 to examine the hypothesis that 
the development of a vertex on the yield locus is responsible for the onset 
of localized necking in thin sheets under biaxial stretching (Section 4). 

2. CONDITIONS FOR THE ONSET OF LOCALIZED NECKING IN PLANE STRESS 

Consider a uniform quasi-static deformation of a homogeneous plane sheet 
where the applied forces act in the plane of the sheet. 

The current uniform thickness of the sheet is H. Conditions are sought for 
which continued plastic flow may result in an incipient nonuniform flow field which 
varies across a band (i.e. an incipient neck) but remains uniform outside. Following 
RIJDNICKI and RICE (1975), suppose that such a band exists and that the unit normal 
to the band in the plane of the sheet is n, and then 

n, = cos I//, n2 = sin J/, 

where $ is the angle between the x,-axis and the normal (Fig. 1). 
Denote the dQ.%rence between the values of field variables (. . .) inside and outside 

the band by A(. . .). 

FIG. 1. Coordinate system and direction of the incipient neck. The cut shows the stress components 
normal and parallel to the neck. 
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Since the flow field is restricted to vary across the band, the difference in velocity 
is 

Avz = rz, insidcvL’a, outside =.fbL(xI cos $+x, sin $) =_fU(nsxa). (1) 

where AvU (U = 1, 2) are the components in the plane of the sheet and c’,, ou,side is the 
linear continuation of the outside velocity field through the band. 

The difference in rate of deformation is thus 

A(~v,/~x,) = 07(Av,)/(?x,~ =f,‘(n;,x,,)np = ganP, (2) 
where 

9, =_C(nflxp) (x, B, 1’ = 1, 2). 

A further restriction on the incipient non-uniform flow field is that stress equilibrium 
continues to be satisfied. 

The equations of equilibrium in the plane of the sheet are, for the stress resultants 

Ho,,, 
a(Ha,p)/ax, = 0 (a, /I = 1, 2) (3) 

(HILL, 1950, p. 300), and for the rate of change of the stress-resultants at a fixed 
point in space 

L- 
(a/ax,)[a(Ha,,)jat] = @/r?X,){(HQJ - L$d(HQ)/(l?X,.]) = 0, (4) 

where (?) denotes the instantaneous material derivative, and ax0 (n, ,G = 1, 2) are 
the true stress components in the plane of the sheet (ci3 = 0, i = 1, 2, 3). From the 
assumptions of uniform deformations and homogeneous material, it follows that 
(3) is identically satisfed everywhere and (4) reduces to 

(W,)(A8-,, + o,~ AD,3 1 = 0, (5) 

where Ac?=~ is the difference in stress-rate corresponding to the incipient flow field 
given by (2), and 

AD,, = A.ljlH (6) 

is the difference in thickness-strain rate inside and outside the band. 
Since AC?,, and AD,, correspond to the flow field given by (1) and (2) they 

only vary across the band and vanish outside. Thus, equation (5) yields 

n,A6,8+n,a,,,rAD,, = const. = 0. (7) 

In order to relate the Ac?~~ and AD,, to the g,-functions, the constitutive equations 
must be specified. Assume for the time being that the following Zinear rate-relations 
are valid : 

caS = Lq?,,(~~,l~%), D,, = M,,(u’c,.dx), (8) 

where the ‘moduli’ LnPya and M.,d are some functions of the current stress-state and 
the constitutive parameters such as elastic moduli, rate of work-hardening, etc. 
Equations (8) are usually derived from the general three-dimensional equations by 
requiring oi3 = 0 (i = 1, 2, 3), i.e. plane stress, and solving for D,; in terms of D,,]. 

If L&a and MY8 remain the same inside and outside the neck at the point of 
inception, then the following differences may be formed : 

A6n, = Law WQx-,) = &.+a nag,, 
AD,, = M,,A(&,/&,) = M.,,n,g,, t 

(9) 

where (2) has been used. 
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By substitution of (9) into (7), we obtain the following linear homogeneous 
equations in g 1, gz : 

(norL.Bydnd+n.~aSMydn,)g, = 0. (10) 

The condition for the onset of necking is met if (10) is satisfied for some non-zero 
g1 and/or g2, that is, if 

det (n,Laaydnd+n.a,BM,,n,) = 0. 

Discussion of the validity of (9) will be given subsequently. 

(11) 

3. CONSTITUTIVE RELATIONS 

In this section we discuss the equations of deformation theory of plasticity as a 
model for flow-theory behavior under fully-active stress-increments at a yield 
vertex. We consider finite deformations of a rigid-plastic incompressible material. 

3.1 Equations of deformation theory of plasticity 

By assuming the Mises yield condition and material isotropy, the small-strain 
deformation theory (HILL, 1950, p. 45) is modified to the following relation between 
total plastic deformation-measure sij and some rotation-invariant stress-measure ~ij: 

Eij = n7~j = ~(Tij-47kkSij). (12) 

Many definitions of ei, are possible. When the material deforms such that the principal 
directions of Eij are fixed in the material, however, we require that the defined Eij 
gives the logarithmic or ‘natural’ strain. This is the strain-measure commonly used 
in the sheet-forming literature (KEELER and BACKOFEN, 1963) and is shown on 
Fig. 2. Some possible definitions which satisfy this requirement are discussed in 

+I”(%) G,‘d”($) q= A($) 
FIG. 2. A sheet before and after non-rotational, uniform plastic defomlation. 
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Appendix I. AS stress measure zij it is convenient to choose the symmetric stress- 
tensor which is conjugate to cij, that is 

zijgji = rate of stress-work per unit reference volume (13) 

where 8ij = d&ij/dt (HILL, 1968). 

By squaring and adding the equations (12) we obtain 

where 

-2 
Y = 41222 

y2 = 2s..&.. 
1J Jl 

and 
-2 7 = +r;jZ;j 

are the equivalent strain and stress respectively. rij 
components. From (14), the scalar /1 is given by 

1 = 1/2h, = q/2?, 

(14) 

(15) 

(16) 

is the deviatoric part of the stress 

(17) 

where h, = ?/v is the secant modulus on the stress-strain curve (Fig. 3). 

FIG. 3. Stress-strain diagram showing tangent modulus h and secant modulus hl. N denotes the 
work-hardening index. 

The rate-form of (12) is found by taking the time-rate on both sides of it, i.e. 

iij = XZij + Mij, 

where 
x = (z’/2T)(dv/dT-y/?) = (2’/2?)( l/h - lihl) (18) 

and 
h = dz/dr (19) 

is the tangent modulus on the stress-strain curve (Fig. 3). We thus have 

2gij = (l/h,)2ij+(l/h- l/hl)(zfj~;,/2T’)z,,. (20) 

If we choose Eij to be the ‘spinless’ deformation as defined in Appendix I, then (20) 
yields 

where 
(21) 

(22) 
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is the Jaumann rate of the true stress gij, and 

Dij = 3(aUi/dXj + avj/aXi), Szij = t(aoi/aXj-aUj/aXi) (23) 

are the instantaneous rate of deformation and the spin tensor respectively. 
The Jaumann rate of the true stress is the stress-rate observed if the observer 

follows a system of reference that rotates with the spin tensor Qij of the particle. 
If the material work-hardens according to the power-law, i.e. 

7 = ~l(r/rY, (24) 
then 

h = d?/dr = N(z,/y)(y/y,)N = N(?/y) = N/I, 

and (21) can be written 

(25) 

2hlDij = Zij+((l -N)/N)(o:ja;,/2z2)~,,. (26) 

3.2 The equations of deformation theory as a model for a vertex on the yield 10~14s 

According to the flow theory of plasticity, the plastic strain rates for an isotropic 
material, with Mises smooth yield-locus, are given by 

205 = 
(l/h)(aljo;,/222)~,, if ~J;~Z,~ > 0, 

0 if c&Z,, I 0, (27) 

which can easily be given geometrical interpretation by observing that 

Vii,. = ~~jIJ2? (mijmij = 1, mkk = 0) 

are the components of the unit normal m to the yield locus in stress space (Fig. 4(a)). 
As a consequence of normality, the strain-rate vector Dp is always directed 

parallel to m even if the stress-rate vector g’ has a component normal to m.t This 
restriction on the strain-rate stabilizes the flow, since sudden changes in the stress-rate 
do not change the flow pattern instantaneously. 

Suppose now that we relax this restriction by allowing the component of the 
stress vector normal to m, where there are only small deviations from the direction m, 
to contribute to the plastic strain rate by (RUDNICKI and RICE, 1975) 

D$ = (1/2h,)(g’- m(m : g)) 

where h, is the rate of work-hardening in that direction. Summing up the two 
contributions (Fig. 4(b)) we obtain 

DP = Dp+D$ = (1/2h)m(m : :)+1/2h,(?-m(m : g)) 

or 

and the rate-form of the equations of deformation theory are recovered, if h, is 
identified as the secant modulus. (Compare with (21).) 

Now, consider a yield locus with a pointed vertex at the current stress-state. 
Guided by the model of multi-slip in a polycrystal, the vertex is imagined as the 
intersection of many smooth yield-surfaces (KOITER, 1953), and the plastic strain 

t This component is given by 2 - m(m : z). 
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4 

YIELD LOCUS 

-YIELD LOCUS 

YIELD LOCUS #’ 

Ftc. 4. Schematic representations of yield surfaces in deviatoric-stress space, showing directions 
of the outward normal m to the yield surface(s), the deviatoric stress-rate & and the corresponding 
plastic strain rate D’ in the cases (a) flow theory of plasticity with smooth yield-locus, (b) deformation 

theory of plasticity, and (c) flow theory with a pointed vertex at the current stress-state. 

rate is given by 

DP = c l’~_ m(‘+(m(~) : ;;), 
a, IJ 2b 

mcP) : g > 0, (28) 

where rnca) is the normal to the active yield-surface x, and II,, is the rate of work- 
hardening in the m ‘“‘-direction due to activation of the p-surface. Equation (28) 
reduces to the Mises-type equation (27) when only one yield surface is activated. 

A two-dimensional representation of a vertex is shown on Fig. 4(c). The strain- 
rate vector DP is free to be directed anywhere between the two normals m” ’ and 
m(‘), and thus the deformation is less restricted against changes in the how pattern 
than that of the single smooth yield-surface. 

Equation (28) is highly nonlinear and it is not clear how to describe the changes 
in h,, under continued plastic flow. Experimental measurements are difficult to 
carry out and the results are controversial (PHILLIPS, 1960). This equation is therefore 
not very useful for the present purpose. 
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HUTCHINSON’S (1970) calculations for a particular strain-path and small plastic 
strains have shown that for small changes in the directions of & the polycrystalline, 
multi-slip model predicts plastic moduli close to those given by (17). 

Guided by this result and the need for a simple description of the destabilizing 
effect of a vertex (RUDNICKI and RICE, 1973, the following conjecture is made: 
Irl the case of continued plastic JEow with small deviations from proportional loading, 
so that all the yield surfaces which intersect at the vertex are activated (‘fully-active 
loading’), the rate-form of the equations of deformation theory (equation (21)) can be 
used as a model of a pointed vertex. This is consistent with a limited path-independence 
of E on all routes to the current z that are everywhere ‘fully active’. 

4. ANALYSIS AND NUMERICAL RESULTS 

In plane stress (i.e. ~i3 = 0) equation (26) reduces to 

2D,, = ; {&r + ((1 - N)/N)(&/~%;s :,a)> (a, B = 1, 3, (29) 

033 =-(D,,+D,A 
where 

and 
? = 3(a:1-~11a,,+o:,>+o:, = &J&$q. 

From equation (29), 

which, when substituted into (29), yields 

:Ls = 2 ; {D,@ -(I - N)(o~~/~~~)(o,,D,,)}, 

and since 
Cl1 = 2a;,+o;,, o22 = 2o;2+o;l, 

we obtain the inverted form of (29): 

P 
cl1 =2~{(2-(1-N)&/2?2)D,,+(1-(1-N)~,,a22/2~2)D22 

-(I-N)(o,, ~12/27~)2&2), 

h 
gz2 = 2 - ((1 -(l-N) 

N 
a11az2/252)D11+(2-(1-N)o~,/212)D2, 

-(I -N)(a220,2/212)2D,2), 

S 12 = 2; {-(1--N)(~,,~,2/2~2)D,,-(1-~)(~22~,2/2~Z)D22 

+(-r-(1 --N)62P2P&2}, 

D33 =-(D,,+D22>, 

(30) 

(31) 
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where, according to (22) with ci3 = 0, 

:rl = ir,, +2cr,,R,,, 

$2 = fi22+2~2tQI*, (32) 

012 = &12+-a, 1%2+~22%1, i 
aI2 = ~(~u,/ax,--i?u2/ax,) = -a,,, 

D,, = _:(av,jax, $ &@x,) (x, /I = 1,2). 
(33) 

By substituting (33), (32) into (30), (31), a particuiar form of the linear rate-relations 
(8) is obtained. 

By assuming that the material outside the band continues to load plastically at 
the onset of necking, the differences given in (9) can be formed. 

Without loss of generality we can align the reference axes x1, s1 (Fig. 1) along 
the directions of principal stresses, i.e. 

6 II = @I, cJ.22 = fi2, (it2 - - 0. 

Then, the condition for continued equilibrium (equation (7)) yields 

nlA\ci,,+n2A&,, --)?I 0,(81 n, +92nz).= 0, 
n,A&,,+n,Ad-,2 -‘12LT&1n, +gzn;) = 0, 1 

(34) 

and the difference between the fields inside and outside the incipient neck (equa- 
tions (9), (30), (31) and (32)) is 

A; , , = A&I1 = 2:: {(2-(1 -N)a:/2?2)g, ?I1 +(I -( 1 -N)a,o,/2i.2)g2/~2j, 

A&, = ASZ2 = 2,;; {[l-(1 -N)cr,cizi2f)gIn,t(2-(1--)oI/2zZ)g,n,~, (35) 

A: 1:! = A~,,-$(a,-a,)(g,tl,-(j,,i,) =;(gInZ+gZnJ. 

By substituting (35) into (34) we obtain the following linear homogeneous equations 

where 

(r = $(a, +cr,), Z = +(cTi -fJ2) 

and the relation 

?I:$-12: = i 

has been used. 
Non-zero functions g , , g2 can be found if the determinant of the coefficient-matrix 
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vanishes. By using this condition and after some algebraic manipulations, we obtain 

’ [4-((1 -N)/12){(aln:+a,n2)2+4(a,-a,)2n:nl}] 

- CJ; n: + a; nz”)/? + ((1 - N)/213)(q - cr,)(of n’: - c: ?$)I 

- 9(u1- a2)(a1 n: - u2 n;yz2 = 0. ( 

By observing that 

Cl n: +02 nf = a,,, a; n: + a; n; = CT;,, 

-3(01 -o&al n: - 02 n;) = f2 - a;, CT, 

3Y2 = o:-fs 1 c’z + 0; = 0;” - on” oft + 0; + 3a;t, 

(37) can be written 

($)2 {[4W+(l -N)3&]/?} - ({&) ([3f#+(l -N)(+-o;,o)a,“]/z) 

37) 

-(2”-f+)/? = 0, (38) 

where c”,,, ant, (T,, are the stress components parallel and normal to the incipient 
neck (Fig. 1). 

If (37) can be satisfied for some h > 0, then the condition for incipient neck 
formation in a power-law work-hardening material is met. Since h (and h, = h/N) 
is a uniformly decreasing function of the equivalent plastic strain 7, the maximum 
value of h which satisfies (37) gives the condition when the onset of necking is first 
possible. 

By solving (37) with respect to h and finding the angle $ which optimizes h, we 
have solved the problem. This is not easy to do analytically, since it has not been 
possible to find simple expressions for the roots (eigenvalues) of the equation. It 
seems that a numerical procedure is necessary. 

Now, before doing this it may be useful to study the experimental observations 
on sheet-metal ductility as reported by KEELER and BACKOFEN (1963), AZRIN and 
BACKOFEN (1970), GHOSH and HECKER (1974), and HECKER (1975). In their experi- 
ments, principal strains are imposed on the sheet in an approximately constant ratio 

p=& ./e m,n max = El/E, = de2/del, (39) 
where &a are the logarithmic strains defined on Fig. 2. For an isotropic material, 
following the Mises yield condition, this means a stress ratio 

a = aJa1 = (1+2p)/(2+p). (40) 
By carefully measuring the increments of principal strains on a grid deforming with 
the sheet, they were able to locate approximately the strain ET at which localized 
necking started. By varying the imposed strain-ratio p, a so-called ‘forming limit’ 
curve 

ET = F(P) 
could be found. 

By assuming an isotropic, power-law work-hardening material, it is observed 
that 

or 
h, = ?/jj = aJ[2&,(2+p)] 

ET = (a,NIC2(2 + ~Pcrl, (41) 
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where h,, is the maximum rate of work-hardening at 
possible. The limit-curve predicted by HILL (1952) for a 
isotropic, rigid-plastic, Mises material is 

8; = 
N 

I +p 
(- 1 < p I O), 

which localized necking is 
power-law work-hardening, 

(42) 

where the angle $ between the maximuni principal strain direction and the normal 

n is given by 

$ = arctan (,I -p), \ 
or 

11: = 
I Z -P ~~~ 1 

(43) 

I -p’ 1’2 = 1 -@I 

This solution does not allow localized necking for biaxial stretching. i.e. p > 0. 
The angle $ = arctan (j-p) corresponds to the direction of zero extension along 
the neck, i.e. vanishing deviatoric normal stress in that direction (equation (27)), 

fl;, = 0. 

In the region where p > 0 and where no direction of zero extension exists in the 
plane of the sheet, it is observed that the neck forms normal to the largest principal 
strain, i.e. $ = 0, n, = 0. This is the neck orientation which corresponds to minimum 

extension along the neck and where also a;, = a; has a minimum. 
Led by these observations and by the numerical solution of (37) in Appendix II, 

we give analytical solutions for ET in two particular cases, as follows. 

(i) a;, = 0, corresponding to :ero extension along the neck 

The following solution .si, min is then found : 

ET = [N/(1 +p)]{(l -N)/2+[(1 +N>2/4-pN/(l +p)2])}-1, 

$=arctan(J-p) (-1 <p(O). 1 
(44) 

(ii) o;, = a;, corresponding to minimum extension along the neck 

The solution which then gives C, minimum is (it can also be obtained directly 

from (36)) 

F: = [3p’+N(2+p)‘]/[2(2+p)(l +p+-$)I,\ 

lj=o (-1 Ipl I). J 
(45) 

The ‘forming limit’-curves for different values of the hardening-index N as 
predicted by (37) (see Appendix 11) are shown on Fig. 5. 

For p 2 0 (Q 2 0) the curves agree precisely with (45), that is, the predicted 
neck forms along the direction of minimum principal strain. ‘Forming limit’- curves, 
found experimentally in plane biaxial stretching by AZRIN and BACK~FEN (1970) 
and GHOW and HECKER (1974) for different materials are also shown on Fig. 5. 

It should be observed that these materials (except for A-K steel) do not follow 
the power-law work-hardening (24) very well, and the index n’ used on the Figure 
corresponds to 

11’ = d(ln a)/cl(ln E) = (dc?jclF)/(a/c) = lljlr , = N 

at the onset of tech-ing in pure tension. This means that the value /l/11, may vary 
with p and E’;, so that the limit-curves found experimentally need not to be curves 
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[u] Arrin S Backofen (1970) 

[b] Ghosh 8 Hecker (1974) 

[c] Ghosh (19741 

o A-K steel (N=0.24) [c] 

x Brass 70/30 (n’=0.47) [c] 

‘Aluminium l/4 hard (n’=O.04) [c] 

Ean\\ 

less steel (n’=0.55)[al 

Brass (n’=0.47) [b] 
A=K steel (N=0.21) [b] 

Aluminium (n = 0.04 1 [ b] 

1 1 I I I I I I I I I I I I 
- -.8 -.7 -.6 -5 -.4 -.3 -.2 -.I 0 .I .2 .3 .4 .5 .6 .+ 

‘2 

FIG. 5. Predicted and observed ‘forming limit’curves. The fully-drawn curves are the results from 
the numerical calculations (Appendix II). For 0 < p I 1, they agree precisely with equation (45). 
For -1 I p I 0, the results are compared with Hill’s prediction, equation (42), and the prediction 
of equation (44). Experimentally-observed limit-strains for different materials from different 
sources are shown. The n’-numbers correspond to N in uniaxial tension at the point of instability 

for materials which do not closely obey power-law work-hardening. 

of constant N. It further should be remarked that the materials tested are not 
isotropic. The normal anisotropy-index R varies between 1.54 (A-K steel) and 

0.76 (aluminum). 
For p < 0 (Q < 0), the Hill solution (42) and the present solution for neck 

inception along the direction of zero extension (equation (44)) are also shown. The 
numerically-found directions of neck inceptions for different N-values are shown on 
Fig. 6 and compared with the direction of zero extension. When -0.2 < p 2 0 
or N 4 1 the predicted directions are very close to the zero-extension direction. 

Some data from pure tension tests (GHOSH and HECKER, 1964) are also plotted 
on Fig. 5. For brass with IZ’ = 0.47 and R = 0.9, the present prediction seems to be 
favored; but for the other materials the results are more inconclusive. 

4.1 Neck perpendicular to the major principal stress 

Finally, it may be remarked that, when it is assumed apriori that the neck forms 
perpendicular to u1 (as observed in the experiments for p > 0), simple general 
expressions result for the necking condition. Using principal axes notation, the 
equilibrium requirement (7) becomes A61 +a, AD3 = 0 where, to meet the kine- 
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FIG. 6. The angle v between the direction for maximum principal strain and the normal to the 
direction of the incipient neck. The numerical rest&s for different values of N are compared with 
the direction of zero extension along the neck when p < 0. When p > 0, the predicted neck forms 

at v = 0 for all values of N. 

matical condition (2), AC?, and AD, are to be computed with AD, = 0. This can be 
re-interpreted as the condition for the nominal stress in the l-direction to be 
stationary with respect to variation of the imposed planar principal stretching rates 
in the l-direction only (i.e. AD, # 0, AD, = 0). 

If one assumes incompressible deformation, so that AD, = -AD,, then the local 
necking condition is 

crl = A&-,/AD,. (46) 

This is not the same as the condition for attainment of a load maximum in the pre- 
bifurcation deformation (namely, g1 = Cl/D,), unless that pre-bifurcation state 

corresponds to plane strain (D, = 0). 
Using the Rudnicki-Rice model of response at a yield vertex (equation (AI.4)) 

to compute A&,/AD,, the local necking condition given by (46) becomes 

UI = [(2~2-~,)2111+3LT:h]i(OI-alaz+a:) 

= [3p’h, +(2+p)2h]/(l +p+p2). (47) 

In the latter version of the above formula, equation (40) is used, as would be appro- 
priate for proportional straining up to the necking point. For power-law work- 
hardening h is given by (AII.3) and using the deformation-theory model to choose 
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the vertex modulus h, as h/N, this reduces to the result given by (45). Alternatively, 
any experimentally determined work-hardening rule and choice for the vertex modulus 
can be inserted into (47) to obtain a more accurate prediction of necking conditions. 

Equation (47) serves also as a basis to summarize, in a simple manner, the role 
of the yield vertex. For the rigid-plastic material with a smooth isotropically-expanding 
yield surface, h, = co and no local necking bifurcation can occur, except under 
plane-strain conditions (a, = 2a,, p = 0). Alternatively, the same constitutive law 
will apply for an incompressible elastic-plastic material with a smooth yield-surface, 
if h, is identified as the elastic shear modulus. Then, the predicted value of c1 at 
local necking is of the same order as the shear modulus, except at conditions near 
plane strain. By contrast, vertex models lead to a substantially smaller value of h,, 
typically only a few times h (e.g. h, = h/N for the model in the present paper). This 
results in proportionally smaller values of g, for local necking, and the results 
(reported in terms of &I in Fig. 5) seem to compare favorably with experimental 
measurements. 

5. CONCLUSIONS 

Due to the simplified constitutive model used in this investigation, there is no 
point in discussing details of the discrepancies between the predicted and the observed 
‘forming limit’-curves presented in Fig. 5. Merely the existence and the trends of 
the prediction are sujkient to draw some important conclusions, stated as follows. 

(i) The onset of localized necking in a sheet seems to be explainable as a bifur- 
cation from a state of uniform deformation, even when the pre-bifurcation defor- 
mations contain no direction of zero extension in the plane of the sheet. No assump- 
tions of abrupt changes in the stress-strain relation or of pre-existing macroscopic 
inhomogeneities seem to be necessary. Still, it is clear that suitable initial imperfec- 
tions will aid the development of a neck, and certainly when the problem is analyzed 
on the basis of the rigid-plastic isotropic-hardening material model, with a smooth 
yield-locus at the applied stress-point, no neck can be predicted for p > 0 without 
the assumption of imperfections (MARCINIAK and KUCZYNSKI, 1967). Both initial 
imperfections and the kind of constitutive features discussed here, allowing bifurcation 
instability, may contribute in general, although a tentative interpretation of the com- 
parison with experimental results is that it may be unnecessary to invoke the former. 

(ii) This kind of instability is very sensitive to details in the stress-strain relations 
of the material. The destabilizing effect of a pointed vertex on the yield locus in a 
rigid-plastic incompressible material is demonstrated in the present paper. Other 
effects, such as anisotropy (BERT and SHAH, 1971), non-normality (RUDNICKI and 
RICE, 1975), elasticity (HUTCHINSON and MILES, 1974), and pre-fracture plastic 
dilatation (BERG, 1970), could possibly contribute and might also be considered. 

(iii) More generally, it can be argued that the Prandtl-Reuss model of isotropic 
expansion of a smooth yield-surface is clearly too simple a description of the change 
in properties during plastic flow. In many circumstances this is inconsequential, 
but for problems of the type considered here, involving bifurcations, further efforts 
should be directed towards a more detailed description of work-hardening in solids, 
particularly with regard to clarifying the nature of the relation between stress incre- 
ments and strain increments over a wide range of directions for the latter. 

29 
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APPENDIX I 

AIternative formulations of deformation-theory models for yield surfaces with 
vertex at the current stress-point 

Assume that the equations of deformation theory of plasticity in its simplest 

isotropic form, 
E = (1/2h,)+, (AI.1) 

and in their rate-form, 

$, = (1/2/2,)?+((1/2h)-(1/2h,))(z’ : 212’ : T’)T’, (AI.2) 

govern finite rigid-plastic deformation for a limited range of loading regimes that 
includes, but is not restricted to, proportional stress increase and fixed principal 
axes of E (BUDIANSKY, 1959). 

We now look for rotation-invariant definitions of E and t that have the following 

properties : 

(i) E equals the logarithmic strain measure when the material deforms with 
principal axes that are fixed relative to the material (KEELER and BACKOFEN, 1963). 

(ii) z is congugate to E (HILL, 1968). For incompressible materials this means 

that the following equation has to be satisfied (equation (13)) : 

z:E=o:D, (AI.3) 

where (r is the true stress and D the instantaneous deformation-rate (equation (23,)). 
This requires that z = <r when the principal axes of stretching are fixed relative to 

the material and to space. 

The alternative formulations thus obtained are compared with the rate-equation 
proposed by RUDNICKI and RICE (1975) : 

D = (1/2h,);‘+((1/2h)-(1/2h,))(o’ : +J’ : d)d, ; = k++Ta+aSL, (AI.4) 

where R is the spin tensor (equation (23,)) and g the Jaumann rate of the true stress. 
For the sake of reference, some equations from the general analysis of defor- 

mation are now written down. Let the Lagrangian description of the deformation 
process be represented by 

dx(t) = F(t) dX, det (F(t)) > 0, (AI.5) 
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where X and x(t) denote the initial and current coordinates of material points. 
F(t) is the deformation gradient. According to the polar decomposition theorem, 

F(t) = R(tjU(tj = RMAM“, (A1.6) 

where U(t) = M(tjA(tjMT(tj = UT(t) is the pure deformation, A is the diagonal 
matrix of U, and M is the orthogonal matrix with the unit eigenvectors of U as 
columns, M-’ = MT, and R(t) is the rigid rotation, R- ’ = R’. det R = 1. 
det F = det U. If the material is incompressible, then 

det U = I. (A1.7) 

The logarithmic strain zL is defined by 

zL = M In A MT = In U. (A1.8) 

The Eulerian description of the process is given by 

dv = elk = fi(t)F-‘(tj dx = (D-t-n) tix, k(O) = dX, (Ai.9) 

where the instantaneous deformation-rate D is the symmetric part of I?F-’ and the 
spin tensor R is its antisymmetric part. By using (AI.5), D and R may be written as 

D = +R(iTV1 +U-‘iljR= 

= RM[liA-1 ++(AtiTMA-’ +A-‘M=l+lA)]M=R, (AI.10) 

n = B~~+~~(ti~-*-u-~tijR~ 

= fiRT+RMIMTI\;I+_S(ARiITMA-‘-A-‘M=1\SIAj]M’R. (AI.1 1) 

In view of these general equations and the imposed restrictions (ij and (ii) above, 
the following definitions (a), (bj, (cj of E are proposed. 

(a) The ‘rotationless’ deformation Ed 

The most natural choice of E is perhaps 

ER=)j(ijU-l+U-liljd,, 
0 

where the integrand 

(AI. 12) 

k, =+(iJU-‘+U-‘ir) = R=DR (A1.13) 

is the ‘rotationless’ part of the instantaneous deformation-rate D (equation (AI.10)). 
(ij When I$l = 0, i.e. fixed directions of principal axes of Ed, then 

1, = MAA- ‘MT, E~=M [~~A-‘dtlMT=MlnAMT, 

that is, it gives the logarithmic strain, equation (AI.8). 
(ii) From (AI.3), 

zR : & = zR : (R=DR) = (RzR=) : D = c : D, 

and we obtain the conjugate stress 

t R = RTaR. (Al.14) 

(iii) The time-rate of zR is 

i, = R=(& + Rk=a + alkRTjR. (AI.151 

Substitution of (AI.13)-(AI. 15) into (AI.2) then gives 

R=DR = (1/2h,)R=(~+R~=~+alkR=)R+((1/2h)-(1/217~))(~;( : i, (rk : G)R’a’R 
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D = (1/2h,)&+((1/2h)-(1/2h,))(a’: i/a’ : a’)~‘, (AI.16) 
where 

: = ++RR=o+aRR’. (AI.17) 

Equation (AI.16) is the rate equation proposed by RUDNICKI and RICE (1975) but 
with the Jaumann stress-rate (equation (AI.4)) replaced by the rate given in (AI.17). 
It is observed from (AI.1 1) that these two rates coincide when A = I or when 
M = 0. 

It should be noted that the integrand (AI.13) is not a total differential. This means 
that the aR is path-dependent and therefore does not possess the property of a strain- 
measure required by HILL (1968). Ed may thus be called a deformation-measure and 
not a strain-measure. 

(b) The ‘spinless’ deformation Q 

Another ‘candidate’ is the ‘spinless’ deformation 

Q = 3 6 R*(t)(UU-’ + U- ‘U)R*T(t) dt (AI.18) 

with the integrand 

ts = 3R*(t)(UU-’ +U- ‘U)R*=(t) = R*RTDRR*T, (AI.19) 

where R*(t) is a rotation chosen so that the deformation gradient F* = R*U is 
spinless, that is, from (AI.1 l), 

(AI.20) 

(AI.21) 

or 

$-&* = R*[R*=~*+t(OU-‘-U-‘O)IR*T = 0 

R*%* = -+(UU-’ -U- ‘U) = R=(RR=-R)R. 

(i) When &I = 0, then R* = I and as = In U. 
(ii) From (AI.3) and (AI.19), 

zs : Gs = (RR*=rsR*RT) : D = (r : D, 

and the conjugate stress is obtained, 

zs = R*R=oRR*=. 

(iii) By taking the time-rate of zs and making use of (AI.20), we have 

zs = ; [R*RToR~*7 = R*RT;RR*T, (AI.22) 

where g is the Jaumann rate (equation (AI.4)). 
Substitution of (AI.19), (AI.21), (AI.22) into the rate equation (AI.2) yields 

R*R’DRR*= = (1/2hl)R*R=~fRR*T+((1/2h)-(1/2h,))(a’ : i?/tf : a’)R*R=a’RR** 

or 
D = (1/2/&‘+((1/2h)-(1/2h,))(a’ : &f : d)d, (AI.23) 

which is precisely the equation proposed by RUDNICKI and RICE (1975) as the rate 
equation of deformation theory. 

aS is also a deformation measure, and not a true strain-measure, since ts is not a 
total differential. 
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Alternatively stated, both aR and Ed may be equated to an integral of the kind 
f Ddt computed for a deformation history that preserves the actual history of U, 
but that has appropriate spins superimposed upon it so that (i) for sR, I% = 0 and 
(ii) for Ed, R = 0 throughout the deformation. This is the origin of the names 
‘rotationless’ and ‘spinless’, and the two rates 8 coincide exactly for infinitesimal 
strains (but arbitrarily large rotations) or for increments from special deformation- 
paths, such as those involving fixed principal directions relative to the material: 
these are cases for which R* = I. 

(c) The ~o~a~~lhrnic strain zL 

The logarithmic strain as defined by (AI.8), 

eL = In U = M In A MT, (AI.24) 

may also serve our purpose. It has the advantage of being a true strain-measure 
(HILL, 1968). The time-rate of cL is 

2, = M~A-‘M~+~ In AMTtM In A&I’. (Al.25) 

By comparing (A1.25) with (AJ.IO), however, it is observed that the general 
relation between kL and D is very complicated. In view of (AI.3), this implies that the 
expressions for the conjugate stress and its time-rate also become very complicated, 
and thus makes the strain-measure aL essentially intractable as a general measure 
in deformation-theory formulations. 

From the above considerations we may conclude that both the ‘rotationless’ and 
the ‘spinless’ deformation measures may be used in formulating a theory that is at 
least tractable, but that the ‘spinless’ deformation Ed is to be preferred on these 
grounds since it gives a simple relation between the conjugate stress-rate and the 
Jaumann rate of the true stress. Of course, our tacit assumption is that there are no 
compelling physical grounds for preferring one of the above three measures as 
constituting the more fundamental measure for use in a constitutive law of the 
form (AI.]). In view of their common features as enumerated at the outset of this 
appendix, all are expected to give rather similar predictions, and our choice of Ed 

is made on the basis of tractability and simpficity. 

APPENDIX I I 

Assume that the principal plastic strains E, and a2 in the plane of the sheet uniquely 
characterize the state of the sheet metal at the onset of necking. Denote the ratio 
between them by (equation (39)) 

p = E&I. 

If the material is isotropic and the sheet is in a plane-stress condition, then. 
from (20) or (27), 

1+2p 
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and the equivalent strain and stress may be written 

7 = 2(E:+E1E2+E:)+ = 2s,(1+p+p2)$ (AII. 1) 

f = (*(a:-a,o,+a;))+ = -+l+p+p2)f. 
2+P 

(AII.2) 

Thus, the rate of work-hardening h for a power-law work-hardening material is 
given by 

h = NT/r = Ncr1/2s,(2+p). (AII.3) 

With substitution of (ATT.2) and (AII.3) into (37) and use of the relation 

n; = l-n& (AII.4) 
we obtain 

where 
F,(P, n,2, JW/~~-~~(P, $3 NWEJ-F~P, & N) = 0, (AILS) 

F1 = 4N(l+p+p2)+3(1-N)(p+(1-p)n:)2, 

F, = 6(1+p+p2)(p+(1-p)?z~)+(l-N)(2+p-(1-p)n:)(2+p-3(1+p)n:)(l-p), 

F, = 2(1-p)(l+p+p2)(2+p-3(1+p)n;). 

Within the actual range of the parameters, namely 

-llPll, 0 I nf I 1, O<N<l, 

it can be shown that the roots of (AII.5) are real (FZ+4F, F, 2 0) and at least one 
of the roots is positive (FJF, > 0 or FJFl I 0, F,/F, > 0). 

For each incremental step of p, the algebraically largest value of I/L-~, within the 
range of ng and with N constant, is determined numerically. The inverse of this 
value, sf, is then the ‘limit-strain’. The result of this computation is plotted in Figs. 
5 and 6 for different values of A? 


