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SUMMARY 

Tms PAPER investigates the hypothesis that localization of deformation into a shear band may be 
considered a result of an instability in the constitutive description of homogeneous deformation. 
General conditions for a bifurcation, corresponding to the localization of deformation into a planar 
band, are derived. Although the analysis is general and applications to other localization phenomena 
are noted, the constitutive relations which are examined in application of the criterion for IocaIization 
are intended to model the behavior of brittle rock masses under compressive principal stresses. 
These relations are strongly pressure-sensitive since inelasticity results from frictional sliding on an 
array of fissures; the resulting inelastic response is dilatant, owing to uplift in sliding at asperities 
and to local tensile cracking from fissure tips. The appropriate constitutive descriptions involve 
non-normality of plastic strain increments to the yield hyper-surface. Also, it is argued that the sub- 
sequent yield surfaces will develop a vertex-like structure. Both of these features are shown to be 
destabilizing and to strongly influence the resulting predictions for localization by comparison to 
predictions based on classical plasticity idealizations, involving normality and smooth yield surfaces. 
These results seem widely applicable to discussions of the inception of rupture as a ~nstitutive 
instability. 

1. INTRODUCTION 

ZONES of localized deformation, in the form of narrow shear bands, are a common 
feature of brittle rock masses that have failed under compressive principal stresses, 
both in laboratory experiments (e.g. BRACE, 1964, WAWERSIK and FAIRHURST, 1970, 

and WAWERSIK and BRACE, 1971) and, naturally, as earth faults. It is possible that 
such behavior can be explained only by modelling in detail the processes of growth 
and interaction of the many individual fissures that ultimately join together in forming 
the rubble-like macroscopic surface of rupture. However, we investigate here an 
alternative hypothesis: That ~ocali~~~io~ can be u~l~ers~oo~ as an instability in the 

macroscopic constitutive description of inelastic deformation of the material. Specifi- 
cally, instability is understood in the sense that the constitutive relations may allow 
the homogeneous deformation of an initially uniform material to lead to a bifurcation 
point, at which non-uniform deformation can be incipient in a planar band under 
conditions of continuing equihbrium and continuing homogeneous deformation 
outside the zone of localization. 

An explanation of this kind has been proposed by BERG (1970) for the inception 
of rupture in ductile metals owing to the nucleation and progressive growth of 
microscopic voids, and RICE (1973) has given a formulation for localization in 
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connection with shear band formation in overconsolidated clay soils. The general 
theoretical framework for such localizations is given by HILL (1962). who investigates 
them in connection with the special case of a stationary acceleration wave. Indeed, 
our present considerations are applicable to a variety of localization phenomena 
in the mechanical behavior of materials. However, the specific constitutive relations 
that we propose in implementation of the criterion for localization are motivated 
by the behavior of compressed rock masses in a pressure and temperature reginte 
appropriate to brittle behavior. In this case. the apparent macroscopic inelastic 
strain arises from frictional sliding on microscopic fissures accon~panied by further 
local tensile cracking from fissure tips and local uplifts in sliding at asperities. The 
latter features lead to macroscopic dilatancy: also, the frictional nature cif sliding 
causes the criterion for continued inelastic deformation to be strongly prcssL:rc- 
sensitive. 

These circumstances are such that ‘normality’ (i.e. an associated few rule) z:innr% 

reasonably be assumed for the inelastic strain i~~cre~~lents. Also. as we shaii Ci.. ;?l:tn- 

strate, the physical mechanisms dictate a vertex-like structure to the yieIci ::ypsr- 

surface separating elastic from inelastic response. Tn contrast to classical clastic- 
plastic theories, founded on tlte associated flow rule and an assumption of smooth 
yield surfaces, both of these features are destabilizing and affect significantly the 
predicted conditions for onset of localization. 

Although the view of the inception of rupture as a constitutivc instability is not 

new, it has remained relatively unexplored. HILL’S (1952) analysis of the initiation 01‘ 
localized necking in thin, ductile sheets can be considered as a prototype of such 
studies, in that necks can be viewed as constitutive instabilities for a two-dimensional 
continuum. THOMAS (1961) later derived general geometrical and kinematical 
conditions for moving surfaces of discontinuity and applied these to problems of 
instability of solids. The invest~gatiol?, however, considered only speciiic geometries 
and the classical Mises model of an incompressible, non-hardening solid. HILL. 

(1962), as part of the study of acceleration waves noted above, investigated the 
degenerate case of a ‘stationary discontinuity’ which has the character of n planal 
zone of localization. He considered inelastic materials characterized, for a given 
constitutive branch, by a Iinear relation between strain and conjugate stress rate. 
However, he limited attention to materiais satisfying normafity in conjugate variables 
and he made assumptions equivalent to the neglect of vertex-like effects. As remarked, 
both of these issues turn out to be pivotal to the character of predicted response. 
A recent paper by TOKUOKA (1972) addresses conditions for instability without making 
contact with this prior work and fails to take proper account of kinematical condi- 
tions on the bifurcating field. 

While the general formulations of THOMAS (1961) and HILL (1962) may be used 
as a st:irting point for the present analysis, we follow (Section 2) the direct quasi- 
static formulation of localization conditions by RICE (1973): this gives an equivalent 
criterion that is immediately applied to the form in which we propose (Section 3) 
constitutive relations. The relations themselves are of two kinds. First, z simple 
isotropic-hardening model is proposed based on the first and second stress invariants. 
This incorporates inelastic dilatancy and hydrostatic stress dependence or fhe :~ielcl 
criterion in a form intended to model natural rock: it cnablcs a simple assessment 
of the role of the most obvious kind of non-normality (pressure dependence of yield, 
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not fully matched by inelastic dilatancy) in destabilizing the material. A more 

elaborate constitutive model is also proposed based on viewing compressed, brittle 
rock masses as elastic bodies having random arrays of fissures with frictional resistance 
to sliding. It is shown that this leads to a vertex-like structure of the inelastic flow 
law and an approximate constitutive model is proposed for ‘fully active’ deformation 
increments from it. Vertex effects are found to drastically alter predictions of 
localization based on similar constitutive models entailing smooth yield surfaces. 

The predictions, by application of the localization criterion, are given in Section 4. 
Calculations are simplified through a perturbation expansion for the critical instan- 
taneous hardening rate, in terms of the ratio representative stress/elastic modulus. 
The result given by the zero-th order terms is equivalent to replacing a proper 
co-rotational rate of stress in the constitutive law by an ordinary time rate; the first 
order correction to the predicted critical hardening rate is also derived. Apart from 
the specific relevance to localization processes in compressed rock masses, the 
conclusions drawn here would seem to be of general interest to the theories of plas- 
ticity and rupture, not least for drawing attention to the destabilizing roles of non- 
normality and vertex effects. One or both of these may appear in constitutive 
descriptions for a wide variety of materials and material behavior. For example, 
there are substantial grounds (e.g. HILL (1967)) for expecting similar vertex effects 
in metal plasticity. 

2. FORMULATION 

In this section, the method for addressing bifurcation conditions is presented, 
and a general criterion for the localization instability is given. Consider an initially 
uniform deformation field achieved by uniform stressing of a homogeneous material. 
Conditions are sought for which continued deformation may result in an incipient 
non-uniform field in which deformation rates vary with position across a planar 
band but remain uniform outside the band. Introduce rectangular Cartesian coordi- 
nates xi (i = 1, 2, 3), such that the x,-direction is normal to the planes bounding 
the band (Fig. 1). Since the velocities themselves remain continuous, at least initially, 
derivatives of velocity in the x1- and x,-directions, parallel to the band, remain 

l- 

FIG. 1. Coordinate system for the band of localization. 
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uniform. Thus, any non-uniformities in the rate of deformation field are kinematically 
restricted to the form 

A(&@xj) = gi(x2)fij2, (i, j) = 1, 2, 3, (1) 

where ui is a velocity component. A denotes the difference between the local field at 
a point and the uniform field outside the band, and the functions gi of .x2 are non-zero 
only within the band. 

It is also required that stress equilibrium continues to be satisfied at the inception 

of bifurcation. In the total stress and rate forms this is expressed by 

aoij/axi = 0 and t?(&~~~/dt)/d~i = d(8i.i - uk t30ij/lJxk)/axi = 0 

respectively, where oij is the stress field and the superposed dot denotes its materiai 
time rate. Thus, the stress rates at incipient localization from the presumed unifc>rm 

field satisfy 
&Yij/ZXi = 0. (7) 

It is clear from (1) that the stress rates will be functions only of .x~ within ti:~: band, 
and will be uniform outside the band. Consequently, (2) will be satisfied if and onI> 
if kZj (j = 1,2, 3) is the same both inside and outside the band. Hence, the condition 
for continuing equilibrium is 

AkZi = 0, j = 1, 2, 3, (3! 

where A has the same meaning as before. The stress rates will themselves be e~pre+ 
sible in terms of velocity gradients, by the constitutive law, and localization can 
occur at the first point in the deformation for which non-zero g’s exist, satisfying 
(1) and (3). 

Since bij is not invariant under rigid rotations, it is more convenient to introduce 
the Jaumann (co-rotational) stress rate for use in constitutive laws; this is defined 

as (PRAGER, 1961) 
Gij = sij -(Tip WPj - O,iP FVPi, 

where Kj is the antisymmetric part of the velocity gradient tensor duj/~.xi. The 
AW’s are readily expressed in terms of the g’s from (I), and thus (3) becomes 

AZ 21 = -~(~22-~1&1+ :a,,g37 

AZ22 = 021g1+az,g,, 
1 

1 

(4) 

A&, = --$(G~~ --rr,,)tl3+f~,,~,. 

The constitutive law will relate the AGij to the gi’3, and, in general, to the uniform 
field outside the band, in such a way that the AG’s vanish when the g’s vanish. With 
this, (4) can be viewed as a set of 3 quasi-homogeneous equations in gl, gZ, y3 and 
the conditions for bifurcation arc merely those for which solutions other than 

91 = !/Z = g3 = 0 exist. Some special cases are discussed by RICE (1973); for l!ie 
present we suppose that the stress rate and rate of deformation 

R,, = _:(~u~/zx~ + c:cljjax,) 
are related by 

gii = Lij!!lD,,, 

where the modulus tensor Lijkl is unspecified cxccpt that Lijrl = fa,ir, anLi 

Lijnl = Lijlk. If, at the bifurcation of deformation-rates, the values Liia, remain the 
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same inside and outside the band, the following difference can be formed: 

A~ij = Lijkl AD,, = LijkZ gk. (5) 

In this case, the g’s are uncoupled to the outside field. 
After using (4), equation (5) yields 

LzjkZgk = Rjkgk, j = 1,2,3, (6) 

where Rjkgk represents the right sides of (4). Since (6) is a set of linear, homogeneous 
equations in the g’s, the condition for bifurcation is that 

det IL2jk2-RjJ = 0. (7) 

This is equivalent to the condition given by HILL (1962) for a stationary discon- 

tinuity. The treatments differ in that Hill considers the constitutive relation to be 
phrased primitively in terms of time rates of contravariant Kirchhoff stress com- 
ponents on materially convected coordinates. Also, he expresses equilibrium rate 

conditions in terms of the nominal (or first Piola-Kirchhoff) stress sij. This leads, 
in place of (3), to the requirement ASij = 0 when the instantaneous state coincides 
with the reference state for nominal stress. The result is entirely equivalent to (3) 
given the kinematical condition (1); this may be shown formally by operating with 
A on the 2j-component of the equation that relates the rates: 

Sij = bij+~ij avklax,-(aVi/ax,)~,j, 
AS,j = ~~~~~~~~~~~~~~~~~~~~~~ = Ad-,j. > 

The physical origin of the equivalence lies with the vanishing of the A-differences in 
the rates of stretching and rotation of the planar elements upon which s,~ acts. 

3. CONSTITUTIVE RELATIONS 

Elastic-plastic constitutive relations are proposed in this section in a form 

appropriate to the behavior of brittle rock under compressive principal stresses. 
Rock stressed in this way is classified as brittle when the primary modes of inelastic 
behavior are frictional sliding on fissure surfaces and microcracking. The classi- 
fication depends not only on the particular type of rock but also on the pressure- 
temperature regime. Ductile rock behavior, by contrast, seems to involve dislocation 
processes analogous to those of metal plasticity and is of less interest in the present 
context because deformation then tends to be stable, rather than exhibiting the 
unstable shear-zone localizations that can occur in brittle rock typifying crustal 
conditions. 

A typical stress-strain curve displaying the essential features of brittle rock 

behavior in the triaxial compression test is shown in Fig. 2(a). The curve divides 
itself into four regions: (I), in which it is slightly convex upward; (II), a nearly linear 
portion; (III), a non-linear region of decreasing slope; and (IV), in which a maximum 
is reached and the curve decreases. In Fig. 2(b), the corresponding stress/volumetric 
strain curve is shown. The non-linearity in region (I) is due to the elastic closing of 
cracks, and unloading during regions (I) or (II) is essentially elastic and produces 
little hysteresis. Region (III) begins with the initiation of dilatant volume increase 
and non-linearity due to microcrack growth and frictional sliding on microcrack 
surfaces. The onset of (III) is dependent on the amount of hydrostatic stress, since 
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normal stress across crack surfaces increases resistance to frictioiial sliding and 
inhibits microcrack growth. The initiation of region (IV) is less clearly defined, but 

it is marked by accelerated microcrack growth and rapid increase of dilatant volume 
change leading to failure. The extent and details of the post-peak region are left 
unspecified. In (III) and (IV), the slope is decreasing and unloading produces large 
hysteresis. As shown in Fig. 2(b), inelastic volume change in these regions is com- 
parable to, or exceeds, elastic volume changes in magnitude, but is opposite in sign. 
(See BRACE (1964), JAEGER and COOK (1969), and WALSH and BRACE (1973).) 

Although the mechanisms of inelastic deformation in brittle rock differ from 
those of metal plasticity, the essential macroscopic characteristics described above 
can be idealized satisfactorily by elastic and work-hardening (or -softening) plastic 
relations, if inelastic volume changes and dependence of the yield surface on the 
hydrostatic stress are included in the formulation. 

3.1 A simple isotropic-hardening constitutive relution 

We present here a generalization, in the spirit of the Prandtl-Reuss equations, 
of the elementary forms of constitutive laws typically used in soil and rock mechanics. 
In order to make evident the structure of the generalization and to emphasize the 
relationship to the more simple laws, we first consider the case of a material element 
under a hydrostatic stress u (positive in compression) and a shear stress z (Fig. 3). 
The heavy curve through the current stress state in Fig. 3(a) is the yield ‘surface’. 
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to- = const.) 

(b) 

FIG. 3. (a) A portion of a yield surface showing the geometric interpretation of the coefficient of 
internal friction p and the dilatancy factor j?. (b) Curve of shear stress us. shear strain showing 
the geometric interpretation of the hardening modulus h, the tangent modulus h,,,, and the elastic 

shear modulus G. 

and its slope p defines the internal friction coejicient. Deformation increments 
tending to make dz > p da correspond to further plastic loading, whereas those 
with dz < ,u do correspond to elastic unloading. Let the resulting shear and volu- 
metric strain increments be dy, de, and let the elastic shear and bulk moduli governing 
elastic unloading be G, K, respectively. Then, the plastic portions of the strain 
increments are defined by 

de = -(do/K) + dPc, dy = (dz/G) + dPy. 

Ratios of the plastic strain increments are taken to be fixed by the current state, and 
we write 

dPE = pdPy. (8) 
p is the dilatancy factor, identified in Fig. 3(a) in which the plastic strain increment 
appears as a vector. Figure 3(b) shows a representative z us. y curve at fixed 6. 
During plastic response, dz = h dpy for constant C, and dz-p do = h dPy in 
general, where the plastic hardening modulus is h. This modulus is related to the 
tangent modulus as shown, and differs from it only slightly when h/G < 1. 

Thus, the relations between stress and strain increments are taken to be 

dy = (dz/G) + (dz -p da)/h, de = -(da/K) +j?(d~--p da)jh (9) 
during plastic response, whereas the latter terms are dropped during elastic unloading. 
Jt may be observed that the normality rule of classical plasticity corresponds to 
/3 = p but, owing to the frictional origin of the deformation resistance, this would be 
too restrictive for describing the inelastic response of rocks. 
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We generalize the foregoing to arbitrary stress-states by making the identifications 
IJ = --Qckk and z = y, where 

7 ZZ ($ij Oij) : 

(a prime ’ on a tensor denotes its deviatoric part), and by assuming that ratios of 

the plastic parts of the components Dfj arc equal to ratios of the corresponding 
components of ali. Further, the elasticity is treated as isotropic and the spin-invariant 
Jaumann stress rate is employed. Thus, the plastic shear loading parameter is 

and (9) becomes 

during plastic response. 
In order to estimate the frictional and dilational parameters, ,H and fi. equation (10) 

can be fitted to the special case of axially-symmetric compression specimens, with 
lateral confining pressures, as normally used in rock and soil stress--strain experiments. 
In this way we find from the data of BRACE, PAULDI~GG and SCHOL,~ (1966) on Westerly 
granite and aplite, and ~~BIENIAWSKI (1967) on norite and quartzite, that the pressure 
dependence of the onset of inelastic response (region Ill, Fig. 2) is described by 
p-values ranging from 0.4 to 0.9. These seem consistent with sliding friction coeffi- 
cients in mineral-to-mineral contact. Fitting the pressure dependence of the peak 

stress observed in the tests suggests a higher range of !I (0.9 to I .3); this is somewhat 
suspect because it does not represent the pressure dependence of yield after a single 
deformation history, but rather a pressure dependence among a group of specimens. 
each brought to maximum deviatoric stress conditions under different confining 
pressure levels. BRACE et al. (1966, Fig. 6) plot dilatant strain against a measure 
of deviatoric strain, and from this a representative range of p is inferred as 0.2 to 0.4. 
The /Lvalue seems to increase by approximately a factor of two from the inception 
of yield to conditions near failure; also, the value diminishes somewhat with increasing 
connning pressure. 

As for the incremental elastic moduli G and K, these diminish progressively with 
inelastic deformation. For example, the stiff-machine unloading tests of W.~WERSIK 
and FAIRHURST (1970) suggest the Young’s modulus in the axially-symmetric com- 
pression test diminishes slightly, to approximately 0.96 of its initial value, near 
maximum load and to fractions ranging from 0.9 to 0.5 in the regime of general 
failure on the descending portion of the stress-strain curve of Fig. 2. 

Although the development of the constitutive law ( IO) has been from the viewpoint 
of describing rock behavior, it also represents other types of elastic--plastic behavior. 
For example, if /? = ~1, (10) could be used to describe dilatant metal plasticity in the 
form considered by BERG (1970) for a model of ductile rupture. In this case, dilatancy 
arises from plastic hole growth on the microscale and instability is interpreted as 
ductile fracture initiation. For j? = 11 = 0, the usual form of the Prandtl-Reuss 
elastic-plastic relation is recovered. 
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In describing the inelastic deformation of @id saturated rocks, the stress in (10) 
(and the normal stress c in the simplified version of the constitutive law) is to be the 
efictive stress, defined as 

where p is the pore fluid pressure. Under undrained deformation conditions (no 
change of fluid mass content) the tendency to dilation induces suction in the pore 
fluid, thereby causing ii to increase in a compressive sense even when ~7 is constant. 
This results in an apparent hardening modulus significantly greater than that for 
drained deformation (p = constant). The phenomenon has been analyzed by RICE 
(1975) for a special deformation state, simple shear, based on constitutive relations 
similar to (9). He shows also that such dilatantzy hardened deformation becomes 
unstable, in the sense that locally induced D’Arcy pore fluid fluxes cause initial 
non-uniformities in the amount of shear to grow exponentially with time, when the 
underlying drained response has become unstable in the sense discussed here. Thus, 
our present considerations for non-fluid-infiltrated materials may be regarded as 
applicable as well to the inception of rupture in the undrained deformation of fluid- 
saturated, dilatantly hardened rock provided that any induced suctions are viewed 
as an added hydrostatic stress variation in the stressing program prior to localization. 
Indeed, the characterization of the state of an inelastically deforming, fluid-saturated 
rock mass just prior to localization is central to the interpretation of premonitory 
events in the Earth’s crust prior to faulting (e.g. NUR (1972), SCHOLZ et al. (1973), 
and ANDERSON and WHITCOMB (1975)). 

It should be recognized that the constitutive law (lo), and other simple general- 
izations of (9) to arbitrary stress-states, will be most suitable under sustained stressing 
without abrupt alterations in the ‘direction’ of deformation. Indeed, as is well 
known in the corresponding isotropic-hardening formulation for metal plasticity, 
the stiffness of response may be substantially overestimated for stress increments 
directed ‘tangential’ to what is taken as the current yield surface (i.e. increments 
doij for which d? = 0), at least by comparison to more elaborate crystalline-slip-based 
constitutive models (HILL (1967) and HUTCHINSON (1970)). In Section 3.2, this 
deficiency is examined more closely and more elaborate constitutive models based 
on corresponding ‘yield vertex’ effects for fissured rock masses are discussed. 

3.2 Yield-vertex constitutive model for fissured rock masses 

The simple constitutive model just described is adequate for studying the effect 
of non-normality on the criterion for localization. But, as has been suggested above, 
the predictions of localization are very sensitive to the exact structure of the 
(Oij vs. zij)-relationship, and particularly to whether a vertex-like structure exists. 
In this section a randomly oriented fissure model, similar in spirit to the simple slip 
model of BATDORF and BUDIANSKY (1949) for metal plasticity, is introduced to moti- 
vate a more elaborate constitutive description, As will be seen, this leads to the 
formation of a yield vertex, and the resulting prediction of conditions for localization 
differs substantially from that for the isotropic-hardening model, even when the two 
constitutive models are made to correspond exactly for proportional stressing 
programs. 

We idealize brittle rock as containing a collection of randomly oriented fissures 
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of the type shown in Fig. 4. The orientation is given by the unit normal ~1; slip 
directions in the plane are given by ~1, where, in general, ~1 will be the direction of 
greatest shear stress on the fissure. It is assumed that the hydrostatic stress is initially 
great enough to have closed all fissures and that inelastic deformation results from 
frictional sliding on the fissure surfaces. Sliding causes dilation by opening the fissure 

F~ti. 4. Model of R fissure. Normal LI, slip direction ~1. Resolved shear stros A,,,.,, normal 
stress h,,. 

at asperities and by inducing local tensile fractures at some angle to the fissure. 
Thus, it is reasonable to assume that the dilation arising from sliding on a given 
fissure bears some fixed relation, expressed again by the parameter /I, to the inelastic 
shear strain. The stress increment governing sliding is r/z,,,-L( do,,, where G,, is 
the normal stress (positive in compression), z,*, is the resolved shear stress in the slip 

direction on the plane of the fissure, and ,U is the friction coefficient. These iocal 
stress increments are related to the macroscopic stress increments by 

&I,,, = niyj dcJji = iliQlli dc7fj, tia, = -ui[lj dOij == -_ni,lj Lio;i - ,;tiG,i. 

and thus the increment governing sliding on a given fissure of parameters ~7, ~7 is 

~~?z,fl- ,u do, -= (fiiyjTppifij) dc~;~+(“q’3) da,,. 

Thus, an individual yield surface in stress space may be associated with each 
fissure. This passes through stress states which are sufficient to initiate sliding on 
that fissure and has the equation f/s,,,,,- /I C/G,, = 0; it will be a plane in stress space 
if, as in the slip theory of metal plasticity. 112 is fixed in direction, but it will be some- 
what curved in the present case since 727 itself will be dependent on the direction of 
greatest resolved shear stress. Hence. at each stage of the deformation, the current 

macroscopic yield surface is the envelope of the essentially infinite r:tii!lber (?I’ 
individual current yield surfaces for fissures of all possible orientations (B.~;MIRF 

and BUDIANSKY, 1949, and HILL, 1967). 
It is straightforward to see how buci? a model leads to the formation o!‘ :I vcrteu 

on the current macroscopic yield surface after some amount of inelastic deformation. 
Consider a given macroscopic deviatoric (&rrr,, = 0) stress increment. Tile \a!ue oi‘ 
the fissure loading parameter L/Z,,,,, will vary according to orientation, beirrg yrea:es~ 

for the most favorably oriented fissure. Continued stressing in the same tiii-cation 
will cause continued sliding on already activated fissure surfaces a,~d the initiation 
of sliding for a progressively greater number of orientations. A stress increment in 
another direction will cause a different orientation to be most favorable and conse- 
quently a different preferential activation of other fissures. Schematically. this can 
be represented by depicting the stress history as a series of vectors in stress spacr. 
Sliding is initiated for each orientation for which the vector passes through t!re asso- 
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FIG. 5. (a) Depicted in stress space is a macroscopic yield surface formed as an envelope of individual 
fissure yield surfaces. The formation of a vertex on the current yield surface, due to sliding on 
favorably oriented fissure surfaces, is also shown. (b) A stress increment from a vertex on the yield 
surface. Components of the stress increment directed tangential and normal to the corresponding 

isotropic-hardening yield surface are shown. 

ciated yield surface (Fig. 5). Because it is this preferential activation of the fissures, 
with respect to orientation, which leads to the formation of a vertex, no vertex can 
result from hydrostatic stressing, at least if p is the same for all fissures. An increment 
of hydrostatic stress (daij = 0) has the same effect on every fissure orientation. 
Thus, the yield surface associated with each fissure is moved to or from the origin 
by the same amount, causing only smooth changes in the envelope. 

The discussion makes clear the reason that the isotropic-hardening idealization 
overestimates the stiffness of response to stress increments directed tangential to 
what is taken as the current yield surface in that idealization. In the fissure model, 
such stressing at a pointed vertex will initiate or cause continued plastic loading for 

some orientations. Hence, the response is not purely elastic, as predicted by the 
isotropic-hardening model. Rather, it is intermediate between the soft plastic response 
to ‘straight ahead’ stressing, governed by h in (lo), and the stiff elastic response, 
governed by G and K. 

Guided by the predictions of the randomly-oriented fissure model, we seek to 
modify the isotropic-hardening constitutive law (10) in a manner which preserves, 
as much as possible, its mathematical simplicity, but which more accurately represents 
the behavior at a vertex. In a recent paper, SEWELL (1974) has considered the hard- 
ening effects due to a pyramidal vertex. We take a different approach and introduce, 

in addition to the plastic hardening modulus It in (10) governing ‘straight ahead’ 
stressing, a second hardening modulus h, (h < h,) which governs the response to 
that part of a stress increment directed tangentially to what is taken as the yield 
surface in the isotropic-hardening idealization. Since it has been argued that no vertex 
is associated with hydrostatic stress increments, these tangential increments are taken 
as purely deviatoric, and can be expressed in rate form as 
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where the second term merely subtracts off the normal component of the stress 
increment. Note that the inner product formed from this expression and oij/? (the 
portion of (10,) governed by /z) is zero. Dividing the above expression by h, and 
affixing it to (IO,) gives the deviatoric component of the rate of deformation. modified 
to approximate behavior at a vertex: 

This can be used to model the response to stress increments differing by only a small 
amount from the ‘straight ahead’ direction; the corresponding relations cannot be 
linear (us. homogeneous of degree one) for the full range of directions. 

In discussing the fissure model, it was argued that the dilation was equal to the 
shear strain caused by sliding multiplied by the parameter /I. in formulating (IO), 
a similar relation was generalized to 

D& = /_?(2(D;j)"(D;j)")t, (12) 

where the superscript p denote s the inelastic portion of the rate-of-deformation 

components. However, because o f the additional term in (11) due to the inelastic 

deformation induced by the tangential increment of stressing, this expression becomes 
exceedingly unwieldy. At this point we assume, consistently with the use of (I l), 

that the tangential component of the stress increment is small. This enables the 
dilation to be expressed by a more convenient incrementally linear form. To obtain 
a linear expression for the dilation, substitute for (Dij)" in (12) from (1 I) and use the 
binomial expansion. Retaining the first two terms gives 

The second term in parenthesis contains the square of the ratio of tangential to normal 
component of the stress increment, the square of the former being understood as an 
inner product. Since this ratio has been assumed to be small and it is multiplied 
by (h/h,)‘, also a small fraction of unity, it follows that this term may be neglected 
with respect to unity. Hence, the dilation induced by the tangential stress increment 
is assumed to be negligible, and the modified constitutive law may- be written 

The effect of incorporating the modulus 11, is illustrated by noting ihat (13) may be 
obtained from (10) by making the following identifications: 

U/G)-t(l/G)+(l//~,), p + j?(l -(/l/l?,))- ‘. 

(llh)~(llh)_(l!h,), /1--+/I(l -(11/11,))-‘. 1 

(l/K)-,(iIK)-(PlrIh,)(l-(h/h,))-’. I 
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4. CONDITIONS FOR LOCALIZATION 

383 

4.1 Based on isotropic-hardening constitutive model 

In this section, the condition for instability (7) is used with the constitutive laws 
(10) and (13) to derive expressions for the critical hardening modulus and for the 
plane of localization. Results are obtained first for the simple isotropic-hardening 
model (lo), and then compared with those obtained by using the more realistic 
constitutive law (13). 

Equation (10) can be inverted to yield 

Since this is of the form (5), the condition for localization can be written as (7): 

det [Mijl = 0, (15) 
where 

Mij ~ L2ij2_Rij, 

and 
G 
7 o;i+bK6,i >( G 

Lzijz = G(6i,6,j+6ij)+(K_3G)6,,6j, - 

7 aj2+Kpaj2 

h+G+pcKj? 

In order to simplify the expressions which will be derived from (15), we adopt, 
at this point, the assumption that the Rij, the terms in Mij introduced by the co- 
rotational stress rate, are negligible, and, as a result, gij w ~ij. More explicitly, this 
involves neglecting terms of magnitude stress divided by shear modulus in an expression 
for the critical value of h/G. But it is expected that, under certain circumstances, 
the predicted value of h/G for localization may itself be near zero, and the neglected 
terms could then be important. Thus, in a later section, this assumption will be 
made more precise by developing the critical hardening modulus in terms of a per- 
turbation expansion in the stress/elastic modulus ratio; the development here is of 
the zero-th order term. 

The condition (15) relates the hardening modulus at localization to the incremental 
constitutive parameters G, K, p, j and to the prevailing stress-state. Neglecting the 
Rij in Mij, evaluating (15), and solving for the hardening modulus yields 

h 
-------------= 
G+lrKP 

(Ga;,+PKS)(Ga;,+~K?)+(~G$K)G(a221+a223) _ 1 

z2($G + K)(G + yKP) 
(16) 

This value of h is a function of the orientation of the potential plane of localization, 
and we wish to seek, for a fixed state of stress, the orientation of the plane for which 
the localization criterion is first met. This can be done precisely only when the 
detailed variation of each constitutive parameter with the deformation is specified. 
But it is expected that h will vary in a substantially more rapid fashion than G, K, p 
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or p, and thus, because h is a decreasing function of the amount of strain, we seek 
the orientation for which the value of h is a maximum. 

To establish a frame of reference, axes corresponding to the principal stresses 
c,, c,, and c,,, are introduced, with (T, r g,, 2 o,,,. Let nh. (K = I, II, 111) denote 
the corresponding components in the principal directions of the unit normal to the 
plane of localization. Then, the stresses in (16) can be rewritten in terms of the 
principa! stresses as 

($2 = I$,; + 1,; a;, + /7;, CT;,,. 

1 
(17! 

q;, +o;, = I?i(T;L+~?:l~;f+n:,,o;,:-ai”,. 

After substituting into (16), the orientation of the plane of localization can be 
obtained by requiring h to be a maximum with respect to the flk. (some details of thi\ 
calculation are given in Appendix I). 

If the principal stresses are distinct, the normal to the critical plane of localizstio,~ 
is perpendicular to the direction of gI, if the inequality 

2a;-4-a;,, > zr(p+/l) (1X) 

is satisfied and to that of o,,, if it is not. 
The deviatoric stresses occurring in this and other formulae ma)) be expressed 

in terms of 5 and a sirrgk stress-state parameter N defined by o;, = N?. This is 
particularly attractive since this parameter is zero for pure shear and t&c>; on its 
maximum and minimum values (N = F I/, 3) for axially-symmetric compression 
(c, = gI, > al,,) and extension (c, > u,, = G,,,), respectively. With N. the inequ:4ity 
above becomes 

3(1 -3N2!‘4)~-3N/-l > 2(/1$-/O. 

and hence a conservative bound assuring that II is perpendicular to the o,,-direction ikb 

, 3j.2 > /i+,fl, 

whereas the condition 

,,3 < Pt-/f 

assures that n is perpendicular to the o,,,-direction. Given the range of /I- and 
/r-values noted earlier, this latter case would seem to be exceptional. Indeed, the 
necessity for condition (18) may solely be an artifact of the isotropic-hardening 
idealization. The approximate calculation with the constitutive law (13) indicates 
that n is normal to the intermediate principal direction for all values of /? and 1, 
which were considered, except when /1,/C takes on extreme values (see Appendix I!). 

Because the normal to the critical plane is always perpendicular to a principal 
direction, there exists a direction in the localized band for which there is no shear 
and fo:- which the associated gi (see (1)) is zero. If two of the principal stresses arc 
equal, only the angle between the nor,nal to the critical plane and the third of the 
principal axes is uniquely determined. The direction of the projection of the normal 
on the plane of the two equal principal stresses is arbitrary. Therefore, the rcsuit 
that there exists a direction of no shear in the plane of localization is unchanged. 

Although the possibility that (18) may be violated has not been ruled out, this 
will occur for relatively large values of /3 and 11. For definiteness, it will be assumed. 

in the following, that (18) is satisfied and that the normal to the plane of localization 
is perpendicular to the o,,-direction. If the normal is perpendicular to cr,,,, then it 
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is only necessary to exchange the subscripts II and III in the relevant formulae. 
With this assumption, we may write 

nt = sin 6, n,, = 0, n,,, = cos 9, 

where 0 is the angle between the normal and the o,,,-direction. The angle B0 which 
maximizes h, and hence defines the plane of localization, is given by 

tan 00 = ((5 - Nmin)I(Nmax - 5))+, (19) 

where 2 = (I+ v)@ + ~)/3 -N(l - v), v is Poisson’s ratio, and N,,,, N, and Nmin 
are a;/?, af,/Y, and a;,,/?, respectively. The corresponding value of the hardening 
modulus then takes a simple form: 

h 
-g = g~2?~((Bp)’ - ‘:y (N + !y’, 

from which the role of the constitutive parameters and stress state are readily discerned 
in determining the critical modulus. 

4.2 Discussion of predicted hardening-rate at localization 

The expressions (19) and (20) are most easily interpreted for deviatoric states 
of pure shear stress (N = 0). For p = p = 0, they yield the expected result: h,, is 
zero and localization occurs on the plane whose normal is 45” from the principal 
stress directions. For all cases in which p = u, h,, is non-positive. However, if 
normality is not obeyed, the value of the hardening modulus at localization can, in 
general, be positive. 

k 
G TRIAXIAL TRIAXIAL 

PURE SHEAR 

FIG. 5. Schematic showing the variation of h,,/G with N, and (dashed line) the estimate from the 
modified constitutive law. (Not to scale.) 

The variation with N of h,, and 0, is shown in Figs. 6 and 7 for representative 
values of /? and p. Also, in Table 1, h,,/G at instability and 19~ are tabulated for 
various stress-states and for various values of /? and p. Since fi and ~1 appear sym- 
metrically in (19)-(21), only a few values of each parameter are shown. 
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FK;. 7. Variation of 0, with N. (Actual graph for /I y= 0.3, p 7 0.5. I’ = 0.3.) 

TABLE 1. Values of h,,/G ut instability for vurious stress-states (0, irl degrees is give,1 

in parenthesis). Based 011 the constitutive law (IO). h,,/G = ( I+ v)(p - p)‘/9(1- V) - 
(l+~)[N+(fl+~)/3]~/2, except as noted below. N = o;,/?, v = 0.3 

IL 

0 

0.3 
0.3 
0.3 

0.6 
0.6 
0.6 
0.6 
0.6 

0.9 
0.9 
0.9 
0.9 
0.9 

Axially-symmetric Maximum Pure Axially-symmetric 

B extension value shear compression 
N =--l/-\/3 N--(/L+$-8)/3 N=O N -= l/d3 

~___ 

0 -0.216(48.7) 0 (45 .O) 0 (45 .O) -0.X6(41.2) 

0 -0.129(53.1) O.OlS(49.2) 0.012(48.7) -~-3.281(45.3) 
0.15 -0.115(55.4) O.OOS(51.6) -0~010(50~7) -0.339(47.5) 
0.3 -0.092(57.8) 0 (53.9) -0.026(52.4) 0.392(49.7) 

0 -0.018(57.8) 0.074(53.9) 0.048(52.4) - 0,318(49.7) 
0.15 -0.028(60.3) 0.042(56.3) O.OOl(54.3) -0.405(51 G3) 
0.3 -O-032(62.7) 0.018(58.6) -0.040(56.3) ---0.456(90.0)? 
0.45 -0.029(65.6) 0.005(61.6) -0.075(58.5) ~~0.417(90.0)t 
0.6 --0.020(68.7) 0 (64.7) ~-0.104(60.5) --0.370(90.0)t 

0 0.116(62.8) 0.166(58.9) 0.107(56.4) -0.380(90.0)1_ 
0.15 0.082(65.6) 0.115(61.7) 0.035(58.5) ~~~0.305(90.0)t 
0.3 0.053(68.6) 0.074(66.5) -0.030(60.6) --0.295(90.0)t 
0.45 0.031(72.0) 0.042(68.5) -0.090(62+3) ~-0~280(90~0)t 
0.6 0.015(76.0) O.Olg(73.1) -0.144(65.2) --0.259(90.O)t 

t For these cases, /I,, is given with N,,,,, C&/T substituted for N. 

From (20), it is obvious that the maximum value of the critical hardening modulus, 
over all stress states, occurs for N = - (fi +- ,~)/3, and is given by 

This illustrates a fundamental difference in stability characteristics between 
materials which obey normality and those which do not. If normality is satisfied 
(fi = ,u), then localization is possible only at values of the hardening modulus which 
are non-positive. On the other hand, if normality is not satisfied, and if the stress 
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state is sufficiently close to that given by N = -(/3+~)/3, then localization can occur 
with positive hardening, under circumstances for which the pre-bifurcation stress 
history corresponds to steadily rising loads. A basic conclusion is that fissured rock 
and other inelastic solids not satisfying normality are more inclined to instability, 
by localization of deformation, than are materials for which the normality rule holds. 
Further, while there has been a long association in the plasticity literature between 
normality and some forms of uniqueness for hardening materials, this seems to be 
the only case in which the converse is examined, in that non-normality is shown 
specifically to allow non-uniqueness with positive hardening. 

As has been noted, however, the isotropic-hardening model is not without its 
defects. For example, although the present writers have been unable to find any 
precise measurement of conditions at the onset of localization in brittle rock or soils, 
the strongly negative values of h,, predicted for localization in axially-symmetric 
(or ‘triaxial’) compression (Fig. 6 and Table 1) must be regarded as suspect. While 
it has been reported that localization (‘faulting’) in triaxial specimens can occur 
after maximum load (WAWERSIK and BRACE, 1971, and WAWERSIK and FAIRHURST, 
1970), the slopes seem to be considerably less negative than predicted. Certainly, 
the decrease of the incremental elastic shear modulus G owing to progressive fissuring 
reduces accordingly the actual negative slope associated with the calculated negative 
values of h,,/G, but nevertheless the situation of the triaxial test must be regarded 
as one for which inadequacies of the isotropic-hardening model are likely to dominate. 
Indeed, the over-prediction of material stiffness in response to abrupt changes in 
the direction of stressing, as discussed earlier, is apparently the central factor in 
prediction of the strongly negative values of h at the extreme values of N. 

4.3 Localization criterion based on yield-vertex constitutive model 

The same analysis has been performed using (13) to illustrate that more realistic 
predictions for h,, result for triaxial compression if a constitutive law is used for 
which stiffnesses for tangential deformation directions are more comparable to those 
for sustained straining in the original deformation direction. Because the resulting 
formulae, unlike (19)-(21), are decidedly opaque, they are relegated to Appendix II, 
in which the calculation is outlined. Table 2 gives h,,/G and 8, for various states of 
stress and values of b and p (j? and ,U again appear symmetrically), and a schematic 
for the approximate variation of h,,/G with N is sketched in Fig. 6. For the calculations 
reported in Table 2, h,/G was taken to be 0.1; Table 3 records the variation of h,,/G 
for h,/G ranging from 0.05 to 1 .O. Inspection of this Table and the formulae of 
Appendix II indicates that h,,fG varies roughly linearly with h,/G for small values 
of the latter and it approaches the values predicted using the isotropic-hardening 
model for large values of h,/G. 

We again remark that h, could be determined more precisely from a slip theory 
analysis. In particular, in the Batdorf-Budiansky slip model for metal plasticity, 
h, is the plastic secant modulus in pure shear (h, = z/r”), whereas the modulus 
h = dz/dyp. Thus, h,/G is the ratio of the elastic to plastic parts of the shear strain 
and becomes very small with continuing inelastic deformation. Given the similarity 
in motivation of the constitutive model, an approximately similar interpretation might 
be assumed here; its precise specification or estimation will require a great deal of 
further study. 

26 
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TABLE 2. Values of h,,/G at instability jtir various stress-states (0, i:l &pees is given 
in parenthesis). Based on the constitutiue law (13). N = +‘?, 19 = 0.3. h,/G = 0.1 

0 P 

0 0 

0.3 0 
0.3 o-15 
0.3 0.3 

0.6 0.0 
06 0.15 
0.6 0.30 
0.6 0.5 
0.6 0% 

0.9 0.0 
0.9 0.15 
0.9 0.30 
0.9 0.45 
0.9 0.6 

Axially-syrn~netrj~ Pure Axially-symmetric 
extension shear compression 

N ---I/\,‘3 ,yl zz 0 .3’ l/\/3 

- 0.029(45.4) 0 (45.0) 0029(44~h) 

-0~017(49~6) 0@02(49.3) --0@37(48.2) 
-0‘015(51-6) -0.~1(51.4) -0~045(50~0) 
-0.013(53*8) -0~003(53~6) -0~052(5r ‘7) 

O.OOl(55.5) O.OOS(54.4) --I 0.042(5 1 ‘6) 
--O.OOl(57.4) 0.002(56.4) -0.054(53.3) 
-0.003(59.3) --0.003(58.5) 0.064(55.0) 
-0~003(61~9j -0~007(60~7) - 0.074(56%) 
-0.~3(64.9) -m0.011(63+1) - 0-083(58~2) 

O-035(71 ‘9) 0.022(62.3) -0~043(55~0) 
0.028(73.5) 0.013(64.2) -0.058(56.8) 
0.021(75.2) 0.004(66.0) -0.072(58.4) 
0.015(77.3) -0@05(6S~O) -0.086(59.9) 
0*009(79.9) -0.012(70+1) -0*098(61.5) 

TABLE 3. Variation of h,,/G with h,jG for various stress-states (0, in degrees is Riven 
in parenthesis). N = C&/Y, 11 = 0.3 

F( P 

0.6 0.0 

0% o-3 

0.6 0.6 

&lG 

o*os 
0.10 
0.50 
1-o 

0.05 
0.10 
0.50 
1 .o 

0.05 
0.10 
0.50 
I.0 

Axially-symmetric Pure Axially-symmetric 
extension shear compression 

N--l/1/3 NzO N -:= I/d/3 
._--. 

0.001(55*4) 0.005(54.6) - -O-022(5 I ‘hi 
0.001(555) 0~008(54~4) --0.042(51’6) 

-0.001(56.1) 0.025(53.7) --0.137(51.0) 
-0~004(56~5) 0.033(53.3) -0*192(50.7) 

-0-001(59~3) -0.002{58,6) -0.034f55.0) 
-0.003(595) -0.003(58.5) --0.064(55-O) 
-0.01 l(60.5) --0.012(57*8) -0.209(54%) 
-0.017(61*1) -0.019(57.5) .- 0.292(54.6) 

-0.001(64*7) -0*006(63.3) -- 0.044(58* 1) 
-0,011(63.1) -0.01 l(63.1) -- 0*083(58,2) 
-0~009(66~1) -0.038(62+4) -0~270(58~4) 
-0.012(66*8) --O-056(61.9) -0*376(58-S) 

Comparing the results from Tables 2 and 3 with those of Table 1 reveals that the 
values of h,, are reduced in magnitude by a factor on the order of h,jG. This reduction 
does not change the essential character of the results for pure shear in that it,, ib 
still a small (or very small) fraction of G and may be positive for certain combinations 
of p and /I. On the other hand, the results in Tables 2 and 3 for triaxial compression 
and, to a lesser extent, triaxial extension, represent substantial changes from the 
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large negative values in Table 1. Thus, it does seem that the isotropic-hardening 
idealization may adequately predict the critical hardening modulus for states of 
stress near pure shear, but that it grossly underestimates the value for triaxial com- 
pression and extension. It should be remembered that (13) was formulated under 
the assumption of small tangential stress increments, and that no fully general model 
of constitutive response at a vertex is yet available. We note also, from the tabulated 
results in Table 2, that localization occurs with a positive hardening-rate only when 
normality does not appIy (p # p) and then again only for a limited range of stress 
states. 

4.4 Corrections for the co-rotational terms 

In the previous sections it was assumed that ~ij M Sij. It will be shown that this 
assumption amounts to retaining the first term in an expansion in the stress/elastic 
modulus ratio. Additional terms may be retained as necessary. Explicit expressions 
for the first order term are developed. The procedure is carried out in detail only for 
the isotropic-hardening law (IO). 

Since it has been shown that there exists a direction in the plane of localization 
for which one of the gi’s is zero, without loss of generality, we can take g, = 0, and 
consider the reduced matrix 

1 + %21$L _ ~ G& -~G&+PK~~ 

Mjj Z 

I 
z (h+G+,uKP) ?(h + G -t /.dCP) 

-a2*(Ga;,+j3Kfj 021 (K++G) (Gcr;,+jXf)(Ga;,+pK~) ’ --__-- _ - ~- -- 
72(h+G+pKP) G G G?(h + G +/.X/3) I 

,44ij has been formed from Mij by deleting the third row and the third column. 
Using the condition 

det IMrjl = 0 

and solving for the hardening modulus yields 

h = k,-th*, 
where 

(22) 

+ -kz!i Qi2 + p - 
T (1 i-v) 

_____ 

1 2(1-v) 3 (1-Y) ’ 

and ho is the value of the hardening modulus computed by neglecting the co-rotational 
terms and given by (16). We can write iz o = h,(B), h, = h,(Q) where B is the angle 
between the normal to a prospective plane of localization and the out-axis, as earlier. 

To determine the change in orientation of the plane of localization, a linear 
expansion of the condition h’(B) = 0 was used, where the prime ’ denotes the deriva- 
tive with respect to 0. Expanding the function h’(0) about B0 of (19), and noting 
that &(8,) = 0, the condition, to first order, can be written as 

bye) = ~~(e*)~e - e,) + ~~~(e~) + ~~~e*)(e - 0,) = 0. 

This results in 

$ (1 - $V2)f‘ sin 28 0] + 0 (:;)‘. (23) 



390 J. W. RUDNICKI and J. R. RICE 

The critical hardening-rate can be written by expanding (22) in similar fashion. 
Because hb(&,) = 0 and both h,/G and O-0, are order f/G, we can express VI,, 
as ~~~(~~)~~z*(~~), where the terms are of respective order G and ?, and where the 
neglected terms are order (i/G)’ and smaher. Thus, one finds that (20) is amended to 

It is interesting to note that inclusion of the co-rotational stress-rate terms now 
causes /3 and p to enter in an unsymmetrical manner. 

It is seen that in the case of normality, p = ,u, the effect of the co-rotational terms 
on both 0 and h,, is zero to first order. However, in general, the inclusion of the 
co-rotational terms introduces a correction in the critical hardening modulus on the 
order of a typical stress component and a correction in the orientation of the most 
probable plane of localization on the order of SWXY OWY shear modulus. in short, 
the simple formula (20) merits continued expansion only when the critical hardening 
modulus as predicted is so small as to be comparable to a representative stress level. 

5. CONCLUUIXG DISCLESION 

Although the constitutive laws have been developed from the point-of-view of 
describing brittle rock under compressive principal stresses, the analysis raises some 
issues that seem fundamental to plasticity theory at large. The importance of yield 
surface vertices in altering incremental deformation predictions as based on a smooth 
yield surface has long been recognized, and its relevance to structural bifurcation 
analyses has been clear to at least some workers (see HUTCHINSON (1974) for dis- 
cussion). In the present paper, a physically motivated constitutive law has been 
formulated that suggests the presence of a vertex and approximates incremental 
response from it. By performing the localization calculation with this law, it has 
been demonstrated that substantial alterations in the predictions of h,, result from 
vertex-like behavior. Furthermore, while there is a long standing association in 

plasticity literature between normality and uniqueness in hardening materials, we 
have specifically investigated the effect of deviations from normality. In particular, 
it has been shown that non-normality permits non-uniqueness with positive hardening. 
This is of obvious importance in the deformation of brittle rock and other geological 
materials in which the pIasticity arises from frictional sliding and local tensile fissuring, 
and normality cannot reasonably be expected. That localization can occur for 

positive, although small, values of the tangent modulus indicates a tendency for 
brittle rock to deform by localizing deformation. This is particularly significant 
in that the instability we have discussed is a limiting one (e.g. HILL (1962)), in the 
sense that local non-uniformities, for instance in pore pressure or crack content, 
may cause localization before the onset of the instability described here; it may also 
be preceded by geometrical il~stabilities analogous to neck formatioJ1 in the extension 
test. 

Indeed, when applied to stressed regions on a tectonic scale. the analysis discussed 
here may well be relevant to the inception of localized shear in the form of unstable 
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earth faulting. The problem is greatly complicated by heterogeneities in rock pro- 
perties and pre-rupture stress distributions. But the analysis suggests that, depending 
on the nature of the prevailing stress-state (characterized here by N) and on the con- 
stitutive parameters p, /I, and hi, localization may set in either while the rock mass 
is continually hardening (h,, > 0) or when it is past the peak strength and progressively 
softening (h,, < 0). Premonitory events in the region which ultimately faults are 
detectable by alterations in seismic and electrical properties (e.g. NUR (1972), 

SCHOLZ, SYKES and ACGARWAL (1973), and ANDERSON and WHITCOMB (1975)), and 
these should be explainable in terms of the extent to which the rock has deformed 
into the inelastic range prior to the localization instability. It is possible that distinctly 
different patterns of premonitory signals will result when localization occurs before 

vs. after the peak stress is attained; also, for fluid-saturated rock such as that adjacent 
to faults in the upper crust, the instability analysis must be carried out with due 
attention to dilatant hardening effects (RICE, 1975). Perhaps the least understood 
constitutive feature, and that most influential on predictions of localization, is the 
structure of incremental stress-strain relations at a yield vertex. There seems at 
present to be an absence of relevant experimental studies on this in the rock mechanics 
literature. 

More generally, the results of this analysis lend support to the hypothesis that 
the inception of rupture can be modelled as a constitutive instability. As remarked 
in the Introduction, investigation of this point-of-view has been limited, and we would 
argue that it merits greater attention than that given thus far. At the same time, it 
must be recognized that, generally, the predictions will be strongly dependent on 
subtleties of the incremental constitutive description which are themselves not well 
understood. 
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APPENDIX I 

Localization calculation for isotropic-hardening case 

The plane of localization has the orientation for which the hardening modulus /Z 
is a maximum. After using (17) in (16) this orientation can be determined by seeking 
the maximum in h with respect to the 1~~ (K = I, II, III), the components of the unit 
normal to the plane in the direction of the principal axes. Since the nK are subject 
to the constraint 

nf+ni+ni, = 1, (AI.]) 

the method of Lagrange multipliers is used. The necessary conditions for a maximum 

are then 

nK(&/7>[(ak/Z> +x] = 1IK i,, K = I, II, III, (A1.2) 

where A is the undetermined multiplier, 31 = j(p+/~)( 1 + v)/( 1 - v)-criJS( I- v), and 
0; 2 o;, 2 aill are the principal deviatoric stresses. Three possibilities can be 
identified, as follows. 

(i) None of the nK is zero. Since each equation may be divided through by the 
respective component of the unit normal, (A1.2) reduces to two independent 
equations: 

(4/3[(4i~) +x1 = C~;,i~N4i~> + xl = c&i~XM,,/~~ + xl. 
It is not possible to choose x such that these equations are satisfied. Therefore at 
least one of the nK is zero. 
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(ii) Two of the nK are zero. Although a solution is possible, computing the 
corresponding value of h,, for this solution reveals that it is less than that given by 
(iii) for the range of /I and CL investigated. Physically, this is expected since this 
configuration is one for which there is no shear stress on the plane of localization. 

(iii) One of the n, is zero. In this case, it is easiest to proceed by guessing which 
of the nK is zero, obtaining an expression for h,,, and then checking the guess. Since 
it is anticipated that the plane of localization contains the maximum shear stress, 
we take n,, = 0. Equations (AI.2) now reduce to the single equation 

(@)CX + (ml = (41/m! + (411/~>1. (AI.3) 

The solution is easily found to be 

x = - [(a;/?) + (o;&] = ah/?. 

Writing a;,/? = n:(a$) + &a;,,/?) in x and using (AI.1) gives two linear equations 
for n: and n$,. Solving and forming the ratio q/n,,, gives (19). 

Substituting the expressions for nf and n$ in (17) and the resulting expressions 
into (16) yields, after rearrangement, equation (20). Now, we recognize that the 
expression for h resulting from choosing nr or nri, equal to zero may be obtained 
merely by substituting o;/? or a&/S, respectively, for N = oil/Z. By comparing these 
expressions, the inequality (18) may be derived. Using, in addition, the relation 

(a;/?>’ + (C&/z>” + (a;,r/?)’ = 2, 

it is easily shown that for n, = 0 to yield the maximum h, it is necessary that (fi+p) 
be negative. This is not possible for frictional materials showing positive dilatancy, 
but may be of interest for loose granular materials which compact during shear. 

APPENDIX II 

Localization calculation for the modiJed constitutive law (13) 

In this Appendix, the localization analysis, presented in the text and Appendix I 
for the isotropic-hardening constitutive law, is outlined for the modified law (13) 
incorporating vertex effects. An expression, equivalent to (16), for the hardening 
modulus at localization can be obtained from (16) by making the identifications 
listed after (13). This gives 

h h, IC/-P~o;~--48~(~:1+~~3)-~;zZ(~+~)(1+hl/G)-?2(a-4~~h,/3G) 
Z = G- Il/+72ah,/G 

, (AII.l) 

where CI = 1+3(1-v)h,/G(I +v) and $ = (a~2)2(h1/K)+a(a~,+o~,). The necessary 
conditions for a maximum in h are given by exactly equations (AT.2) if x is now used 
to denote 

where 

@ = -_P~~;~-~~~(~~l+~f3)+~;2Z(~+~)(1+hl/G)-~2(a+4hl~~/3G). 

Note that in the limit h,/G + 0, then h/G -+ 0; and in the limit h,/G -+ 00, then 
(AII. 1) and x reduce to the corresponding expressions of the isotropic-hardening case. 
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By the same process as in Appendix I, it is determined that x = o;,/Z is the appro- 
priate solution. Now, however, the equations for nf and n& are quadratic,: 

Anf+2BnF+C = 0, (A11.2) 

where 

A = (4-3P)[P/fAJ+(P++)]. 

B = - (4 - 3N2)?l - P(&,/Wl - P(MZ)), 
I 

C = -~-~~;,,/~>‘~~+B~~~,l~~+~~+$_B)~~,l~-~~~,’,l~~CP~~~,/~-~~,/~l. 1 
In writing the expressions for the coefficients, terms involving hi/G (or h,/K) have 
been neglected when added to unity. The normalizing condition n; +n& = 1 can 
be used to determine n& and the remainder follows as in Appendix I. 

Equation (AII.2) yields a suitable solution (i.e. 0 _( 11; i I) for the range of 
fi and p investigated, except at very small values of h,/G. As h,/G becomes small, 
equation (AII.2) yields no solution for triaxial extension for large values of 11. In 

this case, the solution giving the maximum h,, is such that the normal to the plane 
of localization is in the direction of the algebraically greatest principal stress 
(n, = I, ai = a;, c2a = c2r = 0). 


