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Equation (Al.15) would appear to be the basis of the pre-expo-
nential factor in the phenomenological form of the shear strain
rate equation (eqn. 1.5) found by Hart, Li and their co-workers
(see Chapter 5).
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Fig. Al.1 The stress dependence of the activation area for a
dislocation segment overcoming a simple discrete obstacle.

ABSTRACT. This chapter presents the foundations in continuum
mechanics and irrveversible thermodynamice for constitutive re-
Lations governing plasticity. Special emphasis is given to the
eonneation of macroscopic formulations to deformation mechanisms
as operative on the microscale. Indeed, much of the chapter is
organized around an internal variable framework by which inelas-
tie structural rearrangements of a vepresentative material
sample can be related to its macroscopic deformation. Thie is
tllustrated most extensively for deformation by slip, but other
mechanisms such as diffustion and phase changes arve discussed as
well. An ewtended synopsis is given in the swmmary section.

J.R. Rice,"ContinuumMechanicsand Thermodynamicef
Plasticityin Relationto MicroscaleDeformation
Mechanisms"Chapter2 of ConstitutiveEquationsn
Plasticity(ed.A. S. Argon),M.1.T. Press,1975,pp. 23-79.

2, CONTINUUM MECHANICS AND THERMODYNAMICS OF PLASTICITY IN

RELATION TO MICROSCALE DEFORMATION MECHANISMS

J.R. Rice
2.1 INTRODUCTION

The aim of this chapter is to discuss macroscopic comstitutive
relations in metal plasticity, with special reference to the
form and framework for these relations as set by underlying-
microgcale mechanisms of deformation. Subsequent chapters
{e.g., those by Kocks and Ashby) will study the detailed ki-
netic laws of separate deformation mechanisms., Here, after a
review of what can be sald on constitutive laws from a purely
macroscopic or continuum standpoint, a general thermodynamic
formalism is developed by which structural rearrangements of
material elements on the microscale, by slip, diffusion, and
the like, can be related to corresponding increments of macro-
scopic plastic strain. This framework is already sufficient for
ascertaining certain broad structural features of macroscopic
constitutive laws, for example a plastic "normality" structure
which follows from only the most essential features of a broad -
class of microscale relations for the kinetics of processes of
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structural rearrangement, Specifically, this entails that the
rate of some scalar rearrangement process be stress state de-
pendent only through the thermodynamic force conjugate to the
extent of that rearrangement.

The general framework set forth for the micro-macro transi-
tion leaves unresolved the detailed steps by which one averages,
for example, owver all the possible slip systems within a given
grain and over all grains in a polycrystalline material sample
to arrive finally at specific functional forms for constitutive
relations. There are, however, approximate means for doing this,
involving models of the "self consistent" type for polyerystals,
and work in that area is reviewed. Other chapters (e.g., by
Zarka and Chin) provide detailed studies of such averaging pro-
cedures. ]

Such models result in predictions of behavior which do reflect,
at least approximately, some of the very real, complex features
of plastic response when general states of combined stress and
non-proportional stressing paths are examined.

Still, the polycrystal models involve great complexity of
analysis with moderately large computer programs and large stor-
age requirements to evaluate stress-strain relations for even
relatively simple processes of macroscopically homogeneous de-
formation. Hence they do not seem to be feasible as input to,
say, large scale finite element analyses of inhomogeneously
stressed structural or machine elements.

Thus, in addition to the desire for physical and mathematical
rigor in formulating constitutive laws from microscale processes,
there is a compelling desire for simplicity of description in
terms of a comparatively small number of averaged microstruc—
tural parameters or, equivalently, in terms of;parameters that
are defined from relatively-simple functiomals of prior defor-
mation history. This brings one back to the context of contin-
uum descriptions but in the effort, microscale information can
be gainfully utilized if only in a suggestive rather than a
rigorously derived manner. Indeed, the chapter closes with some
suggestions of the forms that might be employed for such rela-
tions. The same approach is, of course, discussed in several
other chapters of the book (e.g., those by Ilschner, Gittus, and
Weeks and Poeppel). '

The discussion in Sections 2.2 to 2.7 is intended for arbitrary
amounts of strain, although it is frequently specialized, where
noted, to small strains or, more commonly, to small elastic dis-—
tortions from a finitely deformed plastic state. This finite de-~
formation context, or at least the latter wvariant with small
elastic distortions, is essential to any full discussion not just
because many practical problems involve large plastic strains.
Even in circumstances of small strain, by comparison to unity,
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the distinctions that arise in a rigorous finite strain amalysis
between different measures of stress and stress rate become im-
portant, e.g. in the case of a time-independent material, when~
ever the rates of increase of stresses with strains have magni-
tudes that are comparable to those of the stresses themselves.
Indeed, it seems objectionable in a general thermo-mechanical
theory to contemplate other than arbitrarily large plastic dis-
tortions, for the current shapes of many metallic objects are
obtained by the finite strains of, say, rolling or forging or
extrusion from some prior shape in the solid state.

2,2 CONTINUUM REPRESENTATIONS OF INELASTIC CONSTITUTIVE LAWS

We admit the concept of a macroscopic stress temsor T in a
continuum and suppose that alterations of stress at a point of
the continuum are determined solely by the history, experienced
at that point in processes emanating from a standard refexence
state, of the temperature © and deformation gradient F .

The latter is defined by F = 3x/3X or, on a cartesian frame,
Fij = Bxi/BXj where Xl, Xz, X3 and X5 Xy Kq are coordi-
nates of material points before and after deformation, respec-
tively, referred to fixed background axes. Hence it is ele-
mentary to write that the stress temsor T at time t 1is ex-

pressible by a relation of the form
T(t) = FIF(s), 8(s) 5 0 <s < t] (2.1)

where the notation indicates that T dis a functional of all
prior values of F and 0 , including the curremt values. Here
T is the Cauchy (or "true') stress. We shall later introduce
stress tensors ¢ with work conjugate properties relative to
rotation invariant strain measures.

Now, F may be written as RU where U , with Uij = Uji .

denotes a pure deformation and R denotes a rigid rotation,

hence satisfying RT = Rfl and det(R) = 1 where Rfl is the

matrix inverse and RT the transpose of R . If the deforma-

tion history F(s) is altered by an additional rotation his-
tory R'(s) in eqn. (2.1), it is evident that the resulting
stress at time t 1is changed only insofar as it is further ro-

-1
tated by R'(t) . Hence, with R'(s) = R "(s) , eqn. (z.1)
becomes

RU(ET(HR(E) = F0(s), 8(s) 5 0 <55 t] (2.2)
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so that the stress tensor, when rotated backward by the inverse
te R , depends only on the history of pure deformation (and
temperature)} at the material point.

There are many possible definitions of a strain temsor.
Except-where noted otherwise, we shall consistently use & to
denote some rotation invariant, or objective, strain tensor, by
which is meant that € has the same principle axes as U and
that the three principle wvalues €y and Uﬁ, o =1 to IIT , of

each are related by a monotonic scalar function h(...} , such
that

e, = B(U) , o = I, I, IIT , (2.3)

where h(1) = 0, h'(1) = 1,

The latter conditions assure that e agrees with the infi-
nitesimal strain tensor for small stretches and rotations; each
different monotonic function h , vanishing at unity with unit
slope, defines g different finite strain measure.

To each strain measure there corresponds a symmetric work
conjugate stress temnsor o . This is defined so that, if ma-
terial elements are instantaneously given virtual velocities

x to which there correspond strain rates e , then

g,,2,, = rate of stress working per unit
i] 1]

volume of reference state = det(F)Tijaijlaxi (2.4)

By using ox/ax = fF_l s+ F =RU, and noting_that T is sym-
metric, this becomes '

. _ ~1, T .
oijeij = det(U)Uij(R TR)ijki {2.5)
Further, since ¢ 1s expressible, at least in principie, as a
function of U and conversely U = U{e) , where a symmetrical
dependence on ¢ and ET is adopted, this defines o¢ as

- -1, T
o det(U)Uij(R TR)jkBUki/aEm

- n (2.6)

Since only RTTR and functions of U are involved, we can evi-
dently write eqn. (2.2) as

o(t) =els), 8(s) 3 0.5 s <t] . (2.7)
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This is a memory functional representation of a constitutive
law. Later we shall specialize it to elastic-plastic materials,
which can exhibit a purely elastic response to alterations of ¢
and € when these take place rapidly or, in the time—indepen-
dent material idealization, are appropriately directed. This
means that o(t) i1s a direct function of e(t) and 6(t) , of
a form that can be regarded as having a memory functional de-—
pendence on those portions of history at which other than elas-
tic response occurred. Alternatively, the dependence on history
can be replaced by a dependence on what it has produced, namely,
the current pattern of structural arrangement, on the microscale,
of material elements, The latter suggests an internal variable
representation in the constitutive law., Such forms have been
introduced for viscoelastic deformation by Eckart (1948}, Meixner
(1953), and Biot (1954), and have been studied in some generality
by Coleman and Gurtin (1967). 1In these studies the intermal
variables are taken tc be macroscopic parameters, but the appro~
priate variables and their rate laws are often not readily iden-
tifiable. By contrast, the internal wariable formulation in
Sections 2.5 to 2.8 takes the wvariables to characterize specific,
local structural rearrangements at sites throughout a representa-
tive sample of material, the emphasis being on a rigorous formula-
tion of the rate laws of the sample at that level, with the re-
quired averaging to form the macroscopic constitutive relations
being taken up separately.

2,3 SOME STRESS AND STRATN TENSORS AND STRESS RATES

The simplest material strain tensor to calculate for general de-
formations is the Green strain, and its conjugate is the symmet—
ric Piola-Kirchhoff stress (e.g., Truesdell & Toupin, 1960).
These are given by

2

g = %(U -I) = %(FTF—I)

det(MUT TRIRYUY = det@®F T1F LT . (2.8)

o

However, in metal plasticity we are almost always concerned with
small elastic distortions from a nearby, unloaded state, even
though that state itself may be finitely removed from some prior
reference configuration. Hence it is convenient teo have a stress
measure which capn be interpreted, apart from the effect of small
elastic distortions, as a force per unit area of that umloaded
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state. The stress measure R?TR would be ideal to that purpose,
although it is not a conjugate stress. We may think of this as
a rotation~invariant "true" stress, having components that are
always properly referenced to material elements for use in con-
stitutive relations. There is a conjugate stress measure which
has many of the properties of this rotation-invariant true
stress, equaling or differing negligibly from the volume ratio,
det(U) , times it in some important circumstances. This is the
o assoclated with logarithmic strain, the latter being defined

on principal axes as the logarithm of the corresponding stretch
ratios,

e, = log Uu , ¢ = T, IT, IIT , {2.9)
and for any axes orientation, € = log U and U = exp £ where
log U and exp £ are understood as infinite matrix power
series in U - I and e , respectively, Thus, following an
analysis by Hill (1968), one may show from eqn. (2.6) that o
has the following properties:

T )
{1} o = det(U)R'TR precisely when principal axes of deforma-
tion and rotation-invariant true stress coincide,

(i1) The normal components of ¢ along the principal direc-
tions of deformation coincide always with the corresponding

normal components of det(H)RTTR ., and

(iii) ¢ differs from detCU)R:TR by terms that are of
gquadratic order in ¢ .

In particular, when the cartesian background frame is aligned
with the principal directions of ¢ , one computes that

T 1 2
= det(U) R - = -
%3 et(U) ( TR)ij [1 3 (eii sjj) +...1. (2.10)
(no sum here on repeated indices)
Even at the finite strain state €17 .25, €yp = = .25 , with

all other éij = 0 , the maximum difference between components

T
of ¢ and of det(U)R'TR is approximately 4% , and occurs for
Oyg * Further, since plastic flow is nearly volume preserving,

the volume ratio det(U) differs from unity only by terms of
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the size of elastic distortions. Hence, o = RTTR to moderately
large strains. A more consequential result of (1ii} above and
of eqn. (2.10) is that

99 - & ger(r’m] | (2.11)
precisely when the reference state for strain measurement is
chosen to coincide, instantaneously, with the current state,
apart from an arbitrary rotation R (i.e., when U =1 and,
hence, £ = 0 instantaneously). Further, for e $#0,

eqn. (2.10) assures that the difference between the two rates

in eqn. (2.11) is of order o times e times de/dt and this
would, for example, typically be negligible in comparison to
dofdt if e was a strain of elastic order. This i1s an unusual
feature. 1In general, the difference between two stress rates is
of order o times de/dt (Hill, 1968), and hence is not negli-
gible in comparison to dofdt 1if the latter were, for example,
computed well into the plastic range, where the slope of a
stress—strain diagram has a magnitude comparable to that of the
stress itself. This is readily demonstrated by writing the
analogous formula to egn. (2.11) in terms of the Green strailn
and symmetric Piola—Kirchhoff stress of eqn. (2.8). When the
reference state is likewise chosen te correspond iInstantaneously
with the current state, except for an arbitrary rotation R,

i t RSt 9% % [det(MRTIR] , _ (2.12)

although in the current state itself, det{(¥) =1 and o = R:TR

just as for the stress ¢ conjugate to logarithmic strain.

As Hill (1968) has shown, the derivative on the right sides
of eqns. (2.11,12) coincides with the Jaumann or co—rotational
derivative of Kirchhoff stress [= det(U)T] when the reference
state corresponds instantaneously with the current state. If it
corresponds except for an arbitrary rotation R , this result is
generalized to

L faermr'm] = & a@‘?[det(U)T] R, (2.13)
wheréeggﬂégk denotes the Jaumann rate, defined -as the ordimary
time rate of components of the tensor invelved, when these are

referred to a coordinate frame that is instantaneously coincident
with the background frame but spinning relative to it with an an-

gular velocity given by the antisymmetric part of fF_l (= ai/ax)
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The utility of these results is as follows. For the type of
elastic-plastic constitutive law introduced subsequently, it is
possible to associate an instantaneously unloaded state, having

deformation gradient 7P » with any state encountered in a pro-
cess. The rotation R’ is not uniquely determined, and must be

specified by, say, making F a pure deformation or by fixing
certain material or, as appropriate, lattice or fiber directions
relative to the background frame, or by some other means con—
ducive to simplicity of constitutive description of the deforma-

tion from F° to F . In most cases of practical interest the

deformation FF¥ + F involves (elastic) strains that are minute
fracrions of unity, but possibly large rotatioms.

The procedure, then, is to write constitutive relations rela-
tive to some fixed reference state that is appropriately chosen
for the instant at hand, so as to coincide instantaneously with

the unloaded state (i.e. =1 instantaneously). These rela-
tions will, in general, be most simply expressed in terms of the

rotation-invariant true stress RTTR , where R is now the ro-
tation from the instantaneous reference state to the current
state. But, with the assumption of small elastic dimension

T
changes, both R TR and its rate coincide, from what has been
said, with those of the stress ¢ conjugate to logarithmic

strain. Thus one may identify RTTR as a proper conjugate
stress ¢ for the constitutive rate relations of the following
sections and, further, directly calculate its time derivative in
terms of the Jaumann rate in eqn. (2.13). The strain rate de/dt
can then be identified, for small elastic dimension changes, as

T,
R'DR where D 1is the instantaneous rate of deformation tensor

. ' s 1
(i.e. the symmetric part of ¥F ~) and R is again the rotation
from the instantaneous reference state to the current state.
Further, within the small elastic strain assumption, it is per—

missible to replace R by ¥, or by F(FP)_l when both F and

FP are measured from some distant reference state, in the expres—
sion for de/dt and on the right in eqn. (2.13). One may also
set det(U) = 1 in eqn. (2.13) with impunity., The practical

Jé%ﬁult of all this is that one need finally involve only Fp, F,
TLéZE and D din the constitutive rate law; there is no need
to directly caleulate R and U ., Similar simplifications of
constitutive representations at finite deformation have been
discussed by Willis (1969).
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2.4 ELASTIC-PLASTIC MATERIALS AND THERMODYNAMIC CONSIDERATTONS

To further speclalize egqn. (2.7) it is assumed that the materials
under consideration may, under approprilate conditions, exhibit a
purely elastic response to stress or temperature alterations at
any stage of their deformation history. This response is re—
garded as due to lattice stretching, in the absence of any struc-
tural rearrangements of constituent elements of the material by
plastic processes such as glip, twinning, diffusion, or the 1like.
It is taken to be fully reversible. Such elastic response ig
actually elicited only in the limit of fast alteratiomns of o
and 9 in the case of time-dependent materials, for which in-
stantaneous 0, ® alterations cause an alteration only in the
plastic contribution to strain rate, but not to strain itself.
This is often called "instantaneous elasticity". Within the
time—independent idealization of plasticity, whenr the concept

of a yield surface in stress space bounding an elastic range is
introduced, such elastic response is elicited from a point of
elastic-plastic deformation only when the o, 8 alterations

are directed into the current elastic range. Of course, it does
not matter that any finite range of purely elastic response
exists, from the standpoint of a micro-mechanical model of the
material, in that one can always define the purely elastic re-
sponse as the deformation that would have resulted in a given
case had the lattice stretching not been accompanied by plastic
processes of structural rearrangement.

The further discussion in this section follows the work of
Hill and Rice (1973) in showing how the existence, on thermo-
dynami¢ grounds, of a work potential for the elastic response
sets a concise structure for elastic-plastic constitutive laws
in conjugate variables. We let H denote, symbolically, the
current plastic state of the material, in the sense that vari-
ations of ¢ and © at fixed H necessarily induce a purely
elastic response. From the standpoint of the discussion lead-
ing to eqn. (2.7), H may be viewed as denoting some fumctional
taken over those portions of the prior deformation history dur-
ing which inelastic response occcurred. Alternatively, from the
standpoint of a mechanical micro-model of the materizl, H de-
notes, symbolically, the current pattern of microstructural
arrangement of constituent elements of the material.

With either viewpoint, we may evidently specialize eqn. (2.7)
to

c = ole, 8, H) |, {2.14)

where the notation means that at fizxed H , the current stress is
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a direct function, with form dependent on the plastic state, of
the current strain ¢ and temperature 6 ., Alterations of
state at fizxed H are evidently reversible and hence must be in
accord with the existence of thermodynamic potentials. Letting
n denote entropy and u the internal emergy, both per unit
volume of the adopted reference state,

+ 6dn = du at fixed H (2.15)

Uijdsij
It proves more convenient to employ the Helmholtz free energy,

¢ = a-6n = ¢(e, 0, @) , (2.16)
and its dual on € , to be introduced shortly, so that

- ndée = dé(e, 9, H) for fixed H (2.17)

Gijdeij
Hence the stress-strain relations (2.14) have the structure

o = 3¢(s, 8, H)/Eei

13 (2.18)

37

when ¢ ds symmetrized in the components of &£ . Also, n = =
9¢/36 . It is important to realize that eqn. (2.18) applies
throughout some program of inelastic deformation, the potential
¢ being taken at each instant as that approprlate to purely
elastic response at the plastic state H prevalling at that in-
stant. Fquation (2.18) has been obtained alternatively from the
Coleman—-Noll thermodynamic formalism (Colemag and Noll, 1963;
Coleman, 1964) for materials exhibiting instdntaneous elasticity
(Bowen and Wang, 1966), and this would include many representa—
tions of time-dependent plasticity. It was also derived by adapt-
ing the same formalism to the time-independent idealization by
Green and Naghdi (1965). Indeed, im at least the present case,
for which constitutive relations of the type eqn. (2.14) apply,
the Coleman-Noll formalism and the classical thermodynamic ap-
proach adopted in this chapter lead to Identical results (Kestin
and Rice, 1970; Rivlin, 1970).

The dual potential to ¢ is

Vo= ¢ = (o, 6, H) , |, (2.19)

Uijgij -
and in terms of it, when ¢ is symmetrized in components of ¢ ,

&y = v (a, Gf H)/Bcij . | | {2.20)
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Provided that eqn. (2.19) can be defined, either directly or by
some process of analytic continuation, for the current H when
=0 and 8 = eo (the reference temperature) the strain that

remains can be called the plastic strain associated with the
plastic state H . That is, if ¢ = (7, 6, H) , then

f = g0, 6,0 H) . (2.21)

When dealing with increments of constitutive functions of ¢ ,

or £, 6, and H , the prefix d® will denote the "plastic”
part of the change in that function, defined as the change in
the function when H d1is changed to H+dH but ¢ or ¢, re-
spectively, and © are given the same wvalues, In particular

aP¢

n

¢(€! e, H+dH) - ¢(,€: e, H) > (2-22)

aPy

1P(°'; 9: H+dH) = d’(.o's ey H) ] (2-23)

where, for example, dp¢ is to be regarded as a function of o
8, H and whatever differential parameters comprise dH .

Further, one may show that dpw and - dp¢ are numerically
equal when evaluated at corresponding wvalues of ¢ and = .
The plastic part of a strain incremeant is

e = elo, 6, B - eo, 6, H) , _ _ (2.24)

and since ¢ at each of the two plastic states is given by
eqn. (2.20), by differentiating eqn. (2.23) ome has for aPe
(and analogously for )

dPe.. = 3(dp¢)/3ci

P - P
1] s df o = a(d ¢)/3Eij . (2.25)

] 1]

Thus the plastic variations in the potentials are themselves po-
tentials for the plastic variations in stress and strain. A
full strain increment includes the parts due to variations in ¢
and 6 as well as H :

" P
deij = ﬂijkldokn + aide + d Eij’ (2.26)
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where the instantaneous compliances M = Szwfacﬁa (so that M
is symmetric om interchange of 1j and k2} and thermal ex-
pansivities a = 32¢/BUBB .

It is simplest to see the relatlon of dPe to deP by as~
suming that M is independent of ¢ (as appropriate for small
lattice stretches) and considering isothermal deformation at

9 . Then

o

e = Mo+ ef whereas de = Mdo + d&Fe . (2.27)
Thus

Pe - aP = (@Pwo , (2.28)

and the two agree precisely only when the moduli are unaltered
by changes in H . This is certainly an exceptional circum
stance for moduli based on conjugate variables, even if moduli

based on a "true" stress measure, say RTTR s are essentially
unaltered by deformation. On the other hand, it seems plausible

that &M 1is of the same order as MdeP s, which means that the

right side of eqn. (2.28) is of the order Mg times de® . But
Mc is the strain due to elastic lattice stretching and, so long

as this is a minute fraction of unity, we have e = 4P to a
suitable approximation. F

Implicit to the framework is the assumption that thermodynamic
potentials have meaning during processes of inelastic deforma—
tion. This can be given justification within the internal wvari-
able framework of Sections 2.5 to 2.7, where processes necessary
to reversibly separate, shift, and rejoin lattice planes, or to
reversibly accomplish other microstructural rearrangements can
be considered in principle for purposes of finding the change in
potentials owing to changes in H . Otherwise, the existence of
the potentials is simply postulated {as in the Coleman-Noll for-
malism) although the resulting equations of the theory do not al-
low their complete operational determination, even in primciple.
For example, a function wvarying arbitrarily with H , but not de-
pending on & or o and & , could be added with impunity to
¢ or ¢ , since only their derivatives on € or o are in-
volved in, say, eqns. (2.18), (2.20), and (2.25).

For general irreversible processes (i.e., those in which H
changes), let Q be the heat supply to a material element, per
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unit of reference volume, so that the first law reads

+Q = du/fdt (2.29)
Uijdeij/dt Q u/
Tt will suffice to assume that all of @ results by radiant
heating at spatially uniform temperatures over an element, so
that the heat flux times 96/9x does not complicate the entropy
production inequality. This is permissible because 38/%x is
assumed to not enter the constitutive relations (2.7,14,18).
Hence
dn/dt z Qf6 . (2.30)

By substituting the inequality into eqn. (2.29) and recovering
¢ from eqn. (2.16), this becomes

/dt - nde/fdt > d¢/dt . (2.31)

cijdeij

But d¢ may be split iInto dp¢ plus another part which, by
eqn. (2.17), cancels the left side, to leave as the second law
requirement,

Lo 4le, b, BHH) - o(e, 8, B) _
dt - de = )

{2.32)

where dH is the varlation in plastic atate occurring during
time dt . This attains a very clear meaning when written sub-
sequently in terms of internal variables.

We shall later see that various microscale mechanisms for
plastic deformation lead te macroscopic constitutive laws that
are in accord with the following "normality" structure. Specifi-
cally, for time—dependent plastic flow, this entails that a sca-
lar function { = 0{o, 6, H) exist at each H so that the plas-
tic portion of the instantaneous strain rate is

dPe /dt = a9(g, 6, H) (2.33)
ij Bdij

Further, in the time-independent idealization, for which an H
dependent yield surface

F(o, 6, H) = 0 (2.34)

can be assumed to exist in stress—temperature space, the plastic
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portion of the strain increment is glven by

_ 3F(0, 0, H)
&4 dA acij ‘ (2.35)

aP

when the yield surface ig smooth at the considered point. The
scalar dA 4is homogeneous of degree one in dg, d8 and of a

sign such that daP¢ aligns with the outer normal in g space

at the current ¢ , from the elastic to elastic—plastic domain,

Alternatively, if the vield surface is not smooth at the cur- )

rent stress state, but has instead limiting segments F = 0 ,
o

y=1, 2, ..., m , then
aFa(o, 8, H)

f13 a a aoij (2.36)

o that dPe lies within the cone of iimitin
£ outer normals.
Hill and Rice (1973) were able to prove, on the basgis of the

xistence of the potentials ¢,% and dPo,dP .
0, 25), that: $,d"Y as in eqns. (2.18,

(i). If the above normality structure applies for any one
choice of conjugate stress and strain measures and choice of

reference state, then it necessarily applies for every choice
of conjugate variables and reference state; and

(ii) 1If a composite material is made up of Subelements that
can be modelled as continua in which the above normality
structure applies to the local Stress—-strain relations, then
the same normality structure is necessarily transmitted to
the overall stress-strain relations of the composite, when
these are phrased in work-conjugate variables.

. The last remark is of particular importance for polycrystal-
ine aggregates, to the extent that these can be modelled ag
lmple composites of single crystal continua. It is then well
1own that when elastic distortions of the crystal are small

1d Schmid's law or its time-dependent generalization applie; to
escribe the plastic response of the erystal, that the normality
Lructure is identically satisfied for the stress-strain rela-
ions of each crystal. Hence it is necessarily satisfied by the
1CYOScopic stress-strain relations for an aggregate of such
-ystals. This is a case for which the general framework de-
2loped here reveals a key structural feature of a constitutive
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law, even though very little can be said on the detailed form of

the comstitutive law for the polycrystal. There is an extensive

literature on the approximate calculation of polycrystal proper-

ties from those of single crystals; this is discussed in Section

2.8. The works of Havner (1973), Hill and Rice (1972), and Rice

{(1971) may be consulted for rigorous formulations of crystal con-
stitutive laws in a finite strain context.

Two separate quasi-thermodynamic postulates {Drucker, 1951,
1960; Il'yushin, 1961) have been proposed in the time-independent
plasticity literature, and lead to the normality structure of
eqns. (2.35,36). That by I1l'yushin postulates that non-negative
net work is done in enforcing an isothermal cycle of straining
that begins and ends at the same arbitrary state. This is a
separate postulate rather than a consequence of the second law
because restoration of & and © does not fully restore the
state - H has changed. Drucker's postulate deals with a mate-
rial element under an arbitrary prestress and postulates that
the net work done by an external agency in a cycle of adding and
removing some additional set of loadings is non-negative. The
postulate is not independent of the adopted stress measure and
hence cannot be unambiguously interpreted in general. However,
if limited to cycles involving only an infinitesimal accumulation
of plastic straining, it is invariant to stress measure and leads
to the normality structure of eqmns, (2.35,36) in conjugate vari-
ables.

2.5 GENERAL FRAMEWORK FOR TRANSITION FROM MICROSCALE PROCESSES
TO MACROSCOPIC STRAIN

This section presents a general framework by which microstructural
deformation mechanisms are related to macroscopic plastic strain-
ing. The formalism is wide enough to include crystalline glip,
which will be the mechanism of primary concern here, and also
phase transformations, twinning, diffusional transport, etc.
For maximum generality, a collection of "internal variables" are
introduced to deseribe the local, microstructural rearrangements
of a material sample by such mechanisms. The approach followed
is due to Rice (1971); it is related to, and provides a unified
setting for similar general studies by Hawvmer (1969), Hill (1967),
Kestin and Rice (1970), Lin (1968), Mandel (1966), Rice (1970),
and Zarka (1972).

Consider a representative macrosceopic sample of material, having
volume V in an unloaded reference state. This is subjected to
boundary loadings causing macroscopically homogeneous deforma-

tion; Uij and Eij are the conjugate macroscopic stresses and
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strains thus induced, and these are supposed to satisfy

Vaijdeij = work increment of boundary loadings (2.3D

Here, for simplicity, results are given as appropriate to iso-
thermal behavior; © d1s not explicitly listed as a variable in
constitutive functions except when 1t proves fruitful to indi-
cate the manner of generalization to the non-isothermal regime,
The latter regime is fully discussed in the work by Rice (1971).
Given that we now focus on a definite macroscopic sample of ma-
terial, ¢ and & have exact specifications in terms of aver—
ages of local surface stress and displacement fields over the
boundary of the body. These can be converted to volume aver-
ages involving the local, inhomogeneous stress and strain fields.
A full discussion is given by Hill (1967) and, in conjugate vari-
ables for finite strain, by Rice (1971) and Hill (1972).

The material sample may deform by: (1) elastic stretching
of lattice bonds, and (i1) 1local microstructural rearrange-
ments of its constituent elements by slip, etc. Following the
notation of the last section, we let H denote symbolically the
current pattern of microstructural rearrangement; this pattern
1s due to the prior distory of inelastic deformation experienced
by the sample, and H may equally be thought of as representing
this history. The free energy ¢ of the sample depends on ¢
and H . When isothermal processes at fixed H are considered,
we have, as in eqns. (2.16,17)

_ 1 3%(e,H)
Vo, . , = = =
cijdeij [dQ]H constant? and crij v FBEij (2.38)

Alternatively, if we introduce the dual potential

- 1 3%¥(o,H)
¥ = Vo,.e,. - = =
013313 ¢ , then eij v acij (2.39)

Evidently, we can identify @/V=¢ , ¥/V =g and use the for-
nilae of the last section.

Consider two neighboring patterns of microstructural rear—
rangement denoted by H, H+dB . We suppose that a set of incre-
nental internal variables dEl, dEz, cens dEn characterize

the specific local rearrangements, which are represented col-
lectively by dE , at sites throughout the sample. The required
wmber of such variables increases in proportion to the size of
the sample. Indeed, we shall see that an essentially infinite
wmber of continuous variables defined piecewise throughout the
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sample is required for, say, a description of crystalline silip
within this framework (Rice, 1971), but the structure of the
theory is made evident moxe simply in terms of the discrete

d&'s and there is no loss of generality. 1In analogy with the
definition of the thermodynamic "force" on a dislocation line or
crack front, we define a set of forces f = f (g£,H) conjugate
to the variables by @ «

I (e,B)dE = - [0(c,BHdH) - 0(e;H)] = - aPs . (2.40)
The analogous expression in terms of the dual potential is
L £ (o,H)dg, = [¥(o,BHdH) - ¥(o,H)] = afy , (2.41)

The intent of these relations is to define the f's from a
continuum model at the microscale level. Specifically, atomic
scale fluctuations with position of the energy of a2 configura-
tion are regarded as being averaged out, although the size of
these fluctuations could well be important to determining the
kinetic relations satisfied by the rates of the rearrangements,
as e.g. 1in thermal activation models. In this regard, the f's
differ from the force defined by Kocks {Chapter 3), who includes
these short range fluctuations as well. In the case of a dis-
location moving in a perfect lattice, the present f's would
include the effects of the applied and other long range stress
fields acting on the slip plane, but would not include the peri-
odic Pedierls stress due to the lattice itself, whereas Kocks'
force definition would include both, The next section identi-
fies various internal variables and their conjugate forces.

On rewriting eqns. (2.24,25) for the plastic part of a strain
increment, namely

3

90, .
1]

P - _ = 1 .p
dFe,, = sij(U,H+dH) sij(d,ﬁ) (V da'y)y (2.42)

ij

and then expressing dP¥ in terms of the conjugate forces by

eqn. {2.41), we obtain the following fundamental relation he-

tween a plastic increment of macroscopic strain and the corre-
sponding extents d& of microstructural rearrangements:

3fa(c,H)
aPe,. = = § —F—gr . (2.43)

ij v adij o
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The summation extends over all the individual sites in the sample
where rearrangements take place and, in view of the factor 1/V ,
provides a volume average over the sample. The relation plays a
key role in establishing a normality structure to constitutive
laws that is valid for a wide range of kinetic mechanisms for

the rearrangements. When the elastic stretching of the lattice
is small and suitably linearized in its stress dependence over
the range of interest,

= P
€3 €1 (H) + Mijm(n)cka . (2.44)
¥ may then be determined by integrating eqm. (2.39)2 on o ,
noting from egn. (2.39)1 that ¥ = - ¢ when ¢ = 0 3 the "locked-

n" free energy at o = 0 will be denoted ¢° = ¢%(H) . Thus

= g° Py +Ly
1] o (H) + Vcrijeij (H) + 7V (H)c

93414k , (2.45)

and by inserting this into the definition given by eqn. (2.41),

= —das° B
b fa(U,H)dga dé (H) + VUijdeij(H)

L1
* 7 V53 M i B -

(2.46)
Since this must hold for arbitrary df's , with corresponding
di's on the right side, it is seen that in general the £'s are
guadratic functions of stress. However, as discussed in connec—
tion with eqns. (2.27,28), elastic moduli when phrased in terms

T
of, say, the stress measure R TR and strain increment measure

-1 -1 .
U"du+do vy are very little affected by processes such as

dislocation motion. This means that dM based on some conju~

gate measure will be of the order Mdel » and hence that the

third term in egn. (2.46) is of the order Mg times the sec~
ond. This means that it is negligible and hence each f 1is

linear in stress, taking the form

1

_ 0
fu(U’H) = fa(H) + Uijfa,ij(H) (2.47)

It is seen that fz is associated with the "locked—in" free

..4..,...._".._..m..__.,—u~.w....._._,
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energy whereas, to the order of the approximation,

1

Pe = 4P = =1 £ ,ij(H)dga (2.48)

<=

The situation is otherwise when the mechanism of inelastic de-
formation is due to a phase change or, as a simple limiting case,
due to the stable growth of elastic-brittle Griffith microcracks.
If the material sample contains no initial stresses, then its

shape will be fully recovered on unloading and e = 0. In this

case all of dPe arises from the odM term of eqn. (2.28),
where dM 1is the change in compliance due to the crack growth.
Hence in this case the forces £ , conjugate to increments d&
of crack extension, contain no linear term but only the quadratic
term in eqn. (2.46).

For non—isothermal behavior, 6 is simply entered as another
canonical variable in ¢ and V¥ , as in Section 2.4, and in the
f's ; eqn. (2.43) remains wvalid with fa = fa(c,B,H) . Also

eqn. (2.44) and, under the conditions cited, eqns. (2.47,48) re-
main valid if re-interpreted so that all H-dependent terms now

depend on 6 and H . In particular, eP is then re-inter-
preted as the strain when ¢ =0 but & and H remain at
their current values, which differs from eqn. (2.21) unless

06=28 .
0

Now, eqn. (2.46) defined the f's 1in terms of macroscopic
stresses and the associated plastic changes in macroscopic gquan-

tities such as ¢°, ¢ and M. However, for each type of mech-
anism, f can be expresgsed in terms of the local field of stress
and lattice strain prevailing near the site of the associated re-
arrangement. Some examples follow.

2.6 EXAMPLES OF INCREMENTAL INTERNAL VARTABLES AND
CONJUGATE FORCES

2.6.1 Crystalline slip

Suppose that the transition between H and H+dH can be desribed
as due to incremental glide motions of the dislocatiens in a met-
al, where the dislocations are regarded as line defects and dn
is a continuous variable along each dislocation loop, dencting
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the local advance of the line normal to itself in its slip plane.

Then in eqns. (2.40,41)

Efadgu +jL' [q dnldL , (2.49)

where q is the force per unit length of dislocation line and

L denotes an integration along all lines in the material sample.

With this representation eqn. (2.43) becomes

P - L 3q (g, H)
de, = /]: [af’ij dn]dL . (2.50)

Here the notation means that q 1is a function of the macro-
scopic stress and of the entire current pattern of dislocations
within the sample. It is'known that within the linear elastic
model the force on a dislocation contains a term 1th , where =
is the local shear stress in the slip direction at a point alcng
the dislocation lime, acting in addition to the self stress of
that segment of the line itself; b is the Burgers vector.

Thus

q = q (H) + 7 (2.51)

where T is a homogeneous linear function of o , giving the
shear stress at the dislocation site in the slip direction as
would be induced elastically by applying ma%roscopic stresses
0 to the material sample while the dislocations are held in po-
sition {(i.e., at fixed H ). The term qo represents contri- .

butions from the self stress and from all other sources of in-
ternal stress within the material sample. Note that in addition
to containing geometric orientation factors, T also varies
from point to point within the sample because the elastic ap-
plication of ¢ induces a highly non-uniform stress field on
the scale of, say, the grains and inclusions making up the mate-
rial sample. Thus we obtain, in correspondence to eqn. (2.48)
of the general formalism, an expression given by Rice (1970),

P - 1 3T
de. . c jr: [30' b dn]dL . (2.52)

The terms dn and dL of eqns. (2.49,50) must be measured in
.units of, say, lattice spacing at finite lattice strain, to re-
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main invariant under elastic distortiom (Rice, 1971),
More generally, we shall average cut the individual disloca-

tions, specifying instead the local amounts of shear dy(l),dy(z)
... on the operative slip systems of the crystalline subelement
encompassing any considered point of the material sample. If
eqn. (2.52) were applied to a single ecrystal under macroscopi-
cally homogeneous deformation we would have

o - 1 b dnldn = b K cgn> 1 (2.53)
v

where now the integral extends only over the dislocations on
system (k) , and we express the result in terms of dislocation
density p = L/V, b , and average advance <dn> on that system,
The same interpretation is adopted leocally within the hetero-
geneous material sample in that, e.g., we consider the p's and
v's to be defined locally throughout each grain of a polycrystal,
Thus in eqns. (2.40,41)

r Fag -»f izt ®ay® gy | (2.54)
[s2 [s % v

where this defines thermodynamic "stresses' conjugate to the
dy's , and from eqn. (2.43)

(k)
dpsij = %j‘; {E%ﬂdy(m]dv ) (2.55)

Here, from eqns. (2.51-53), it is evident that the rt's will
have the form

LB 1:C(,k) @ + (0 (2.56)

where, again when the lattice elasticity can be treated as linear,

?(k) is the homogeneous linear function of ¢ giving the shear
stress that would be elastically induced on the slip plane in

(k)
o

the slip direction by o . The term T includes the shear

stress induced by misfits and other sources of residual stress,
and also a part accounting for energy that is "locked-in" at the
discrete dislocation level.

‘An alternate, direct mechanical identification of the thermo-
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dynamically defined +t's is made by calculating the total re-
versible work, or change in ¢ , done in the following steps,
which are carried out under fixed overall deformation of the
sample. These are assumed to take place under circumstances of
small elastic stretches with moduli, referred to crystallographic
axes, being unaffected by plastic shears.

(1) Cut free an element &V , applying to it and the walls of
the cavity thus created surface tractions appropriate to the

local stress field sij at that point; no work is involved.

{(ii) Remove 814 from 6V ; the work of elastic unloading

is domne. J

(iii) Move the dislocations as appropriate to accomplish the
considered increment dy of plastic shear; &V dp¢o is the
energy change, where ¢°(H) is the density of locked-in energy
at the discrete dislocation level,

(iv) Elastically reload the body to the shape it had in (i);

this regains the work of (ii) except that there is a defi-
cit - sSdT times 48V (where Sg 1s the resolved shear com-

ponent of Sij) which arises because the required elastic
reloading strain is less by the shear dy , plus a term of

order (dy)2 which arises because Sy 1 is now altered by
some amount dsij. J =
I

(v} Put the element back into the cavity, removing the un-
wanted layer of body force arising from dsij of (iv) :

this causes displacements of its own order and hence the net
work of this step is of order (dy)2
Thus, the net change in ¢ , which must equal -(1dy)§V from

equs. (2.40,54), is, by summing the contributions of steps (iii),
(ii) and (Ev)

dPe = -1dy sv = dp¢osv - s dy 6V . (2.57)

res
8 ?
plus the part T that is induced elastically by ¢ this becomes

If we divide S into a part due to residual stresses, day s
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res

s + Tt , (2.58)

T = .—dp¢o(H)/dY + s

in conformity with the discussion following egqn. (2.56). Rice
{1971) and Hill and Rice (1972) have discussed the identification
of <t when no simplifying assumptions are made as to the size
of lattice stretches or the effect of slip on moduli. :

Often eqn. {(2.54) will be insufficient to completely repre-
sent the H change in @ ; e.g., during annealing, dislocations
may annihilate one another without creating dy's. Put another
way, increments in dislocation density p on the various slip
systems cannot, especially at elevated temperature, be consid-
ered universally related to the corresponding dy's. Thus eqns.
(2.54,55) m%{;be generalized to

I £ dg +f iz 1 gy () o 4G5 () 4y (2.59)
v
(k) (k)
1j i3

where A(k) are affinities conjugate to the dislocation densi-
ties on the various slip systems. A simpler generalization '
would involve just one p , the sum of those for all systems.
But alterations in ¢ when the +v's are fixed can create
no strain, unless there is an effect of p on elastic moduli
[and even then the resulting effect is second order in ¢ by

eqn. (2.46)]. Thus from eqn. (2.60) aA(k)/QU = (0 and A(k) =
A(k)(H) . The simplest assumption is that the locked-in energy

¢ depends only on the p's , and not on the ¥'s . Then,
through the type of argument leading to eqns. (2.57,58), one
has

A o g0, ® (k) res o (2.61)

2.6.2 Diffusion

For simplicity, consider a single, foreign diffusing substance
which can move through the lattice of the crystallites in the
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sample and along its internal surfaces A , where A includes
grain interfaces, boundaries of cavities, etc. Let the struc-
tural rearrangement of the material sample be characterized by
the increase dn in concentration of the substance per unit
volume of V and dN per unit area of interface A . Then the
local chemical potential u of the substance, at points through-
out the sample, is defined by writing the change in Helmoltz free
energy at fixed temperature and overall strain of the sample as

aPs =f [udn]dv+f [udN]dA—f [udN1dS (2.62)
v A s

for arbitrary alterations dn, dN 1in composition. In the last
integral over the external surface 8 of the material sample,

dN represents the amount of substance that has exited. Hence

one can make the identity

L EdE + - f[udn]dv—f [udN}dA+f [udNTdS (2.63)
o ¢
v A s

However, as is well known, quantities such as dn/dt and
dN/dt cannot be written in rate equations of a local kind,
Hence the di's are identified with increments of diffusive
flux. These characterize structural rearrangements by the lo-
cal amount dqi (i=1,2,3) of material crossing unit area in

the x; direction within V , and the amount in (i=1,2)

crossing unit length in the z4 direction on f A , where z,2,
is an orthogonal cartesian coordinate system locally tangent to
A . Further, for mass balance

dn = -~ a(dqi)/axi in V (2.64)
and, in the simple form when A 1is locally flat,

+ -
dN = —a(in)/azi + (uidqi) + (vidqi) on A , (2.65)

where the last two terms represent fluxes from the two gides of
A , v being the local outward normal to the portion of V sup-
Plying the dg (the divergence term is more complicated when

A is curved). Thus, applying the divergence theorem in eqn.
(2.62), taking dN = vidqi on S , assuming that incoming and
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outgoing fluxes dQ balance at all intersections of internal
surfaces, and assuming that 1 is continvous and piecewise dif-
ferentiable, there results

).'Ifmd&;0£ +_/v‘ [—(aulaxi)dqi]dv+-/l; [—(Bu/Bzi)in]dA s (2.66)

and this final result is valid for locally curved A as well.
The dependence of 1 on the local stress field within the
sample can be ascertained directly from eqn. (2.62). Suppose
that addition of ‘an amount dN of the substance to a grain
boundary thickens it by an amount kdN where k=k(H) , which
means that k depends on the current arrangement of the mate-
rizl sample and concentration level at the place where dN is
added. Then the work done by inserting the matter in presence
of the local stress field contains the term —snde where s

1s the normal stress acting on the interface. Hence

o= ub(H) - Snk (2.67)

Similarly, if the addition of dn to an element of volume
causes the shape change strain Bijdn then, by arguments analo-

gous to that for the continuum slip model,

o= UV(H) - (2.68)

Sijsij
when elastic lattice distortions are small and moduli negligibly
affected, where sij is the local stress field at the site
within the material sample. As for =t , s, and sij can be
split into portions En and gij which are the parts elasti-
cally induced by the macroscopic stress, and therefore homo-
geneous linear functions of ¢ with position-dependent coeffi-
cients, In general, plus portions due to residual and misfit
stresses. Thus the force terms —Bu/Bxi and —Bu/E)z:.L of eqn.

(2.66) can be thought of as functions of ¢ and H , linear in
the former for the present circumstances, and the relation anal-
ogous to eqn. (2.43) can be written. In the special case when
the above linear forms are used,

o Ll N
d Eij = V./‘;[sz qr 30 )qu]dV-l- f[ (k )dQ ]dA

(2.69)
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Here, in the differentiation on o , En and Eij are regarded

as functions of o and H , whereas the differentiations on x
and z are, of course, total spatial derivatives in the usual
sense. It is reasonably straightforward to generalize this dis-
cussion to multi-species diffusion, including self diffusion,
and hence to provide a framework for imelastic deformation by
diffusional creep.

2.6.3 Phase changes

Here we consider diffusionless phase changes, examples being
martensitic transformations and twinning, in which a form o of
a solid is converted to form B at an interface. Let A be the
locus of all internal o = B interfaces in the material sample.
The structural rearrangement in this case is characterized by

the amount dz of normal advance of the intexrface into the o
phase, where dz is a function of position on A . The thermo-
dynamic force per unit area of the interface is denoted by p ,
50 that eqmns. (2.40,41) become

I fudgOL +—d£: [pdz]dA . (2.70)

Thus eqn. (2.43) gives

aPe, f [MLH— dz]da . ¢ (2.7

Eshelby (1970) has given the explicit formula which relates p
to the local field at the interface. This can be obtained by
(1) cutting out the volume of o dinvolved in the advance dgz
over an element of A and applying tractions in accord with
the local stress field acting there, (ii) unloading, (iii)
transforming the o to 8, (iv) applying stresses to regain
the initial shape, (v) reinserting and removing the unwanted
layer of surface force. Eshelby's result is

aui

po= @, - @~ T, (G, ( )] s (2.72)

where the $'s are local free energy densities on the two sides
of the interface, Ti is the surface traction vector, and the
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terms Bui/an are the normal spatial derivatives of the dis-

placement vector on the two sides. Of course, the base levels
for the ¢'s are not arbitrary since B obtains from o or
vice-versa,

When the transformation corresponds to the growth of a void
by cutting away material at a traction free surface, this re-
duces to the formula derived by Rice and Drucker (1966) with
the ¢ difference heing the strain energy density at the void
surface. If the intefface is considered to have a surface free
energy 7Y , Eshelby's formula must be given an additional term
of the form - 'y(K1 + Kz) » Where the «k's are principal cur-

vatures of the interface.
2.6.4 G@riffith cracks

The formalism can also be applied to a material sample contain-
ing some distribution of Griffith cracks and this forms a final
example. Indeed, in rock and some other brittle materials mi-
crocrack growth is an important mechanism of inelastic deforma-
tion. Let the locus of all crack fronts be denoted by L and
let d& be a function of position along L describing the
amount of local advance of the cracks, and hence constituting
the structural rearrangements, The advances considered here
will be such that the surfaces of cracking have continuously
turning tangent planes, without abrupt forking or branching.

If F denotes the thermodynamic crack extension force per unit
length along L , then eqns. (2.40,41) become

T fadgu > .L [F do]dL . (2.73)

The model conventionally adopted, following Griffith, computes

the change in free energy d®s in quasistatic crack advance as
the sum of the change in that part of & representing elastic
deformation (i.e., in the "strain energy") plus that in the
part of & representing surface energy. Thus

F = G- 2y (2.74)

where G is the elastic energy release rate as introduced by
Irwin (1957) and vy 4is the suxface free energy. Thus, when
the local crack tip energy release rate is expressed in terms
of the macroscopic stress o on the sample, there results from
eqn. (2.43) :
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1
Fe = -‘—,-f [%%—S-gﬁ)— dz]dL . (2.75)
L

1]

In the absence of residual stress, ef  will always be zero and

hence, in terms of egms. (2.27,28) all of dPe reflects changes
in overall elastic compliances under stress.

The local representation for G , within the linear elastic
treatment of lattice stretching, can be given as a homogeneous
quadratic function of the crack tip stress intensity factors,

denoting the strength of the characteristic r"l/2 stress sin-

gularity. Indeed, while a somewhat different notation is usu-—
ally employed, these are here defined for the most general ani-

sotropic material so that the stress vector Ti at distance r

ahead of the crack, on the'plane of prospective growth, is given
by

T, = k r-l/2+

5 i cee i=1,2,3 (2.76)

the dots representing non-singular terms, whereas the crack

. + -
opening u, - u, ata small distance r behind the tip is

+ - 2

4 5 ijkj + ... . (2.77)

&

1
Here Cij are certain coefficients dependent on the local elas-

tic compliances, and the stress intensity factors k, , i=1,2,3,
1

are linearly dependent on the applied stress ¢ . Thus, follow-
ing Irwin's (1957) method of calculation of the work of unload-
ing the crack surfaces,

limit 1 1 At 1/2
G = A0 AL E,/o. [kir + ...]

1/2 T
C..k, (A= e = -
[ 1ka( 2-1) + Jdr i Cijkikj (2.78)
One may write

k, = k + k, (2.79)
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where k'°° is induced by residual stresses and where k is a
homogeneous linear function of o , denoting the stress inten-
sity factor induced by elastic application of o . Also, writ-

ing dPe = gefP + aMo  from eqn. (2.28), one finds from eqms.
(2.75,78,79) that the inc¥ements of plastic strain and of over-
all elastic compliances due to crack advance are:

1 kil re akr
dez, = 7 f 3 Cqr &g S o= arjar
] L 1j
1 f . ak BEr
o, o= = ¢ —3 aeldL (2.80)
1k v L 2 qr Bcij ackn

The latter formula is closely connected with Irwin's (1960)
relation between the stress intensity factor and load-point
compliance changes for a cracked body. It also provides a gen-—
eral solution for the effect of cracking on overall elastic
moduli, as has been considered in some particular cases by
Walsh (1965). Equation (2.78) for G 1is generalized to non-
linear elastic behavior as the crack tip J Integral (Rice,
1968; see also Cherepanov, 1967) which takes the same form as
Eshelby's (1956,1970) general formula for the force om a point
or line defect in an elastic field.

2.7 KINETIC RELATIONS AND PLASTIC NORMALITY

The last two sections have outlined the general method by which
macroscopic strains are related to structural rearrangements on
the microscale, and some specific d&'s with their conjugate
f's have been identified. The framework is completed in prin-
ciple by a specification of kinetic relations for the rates
dg/dt of structural rearrangement.

Of course, the assumption throughout is that such f£'s as
we have introduced (force on dislocation or interface, chemi-
cal potential, ete.) retain meaning at states far removed from
global thermodynamic equilibrium for the material sample.
Specifically, the relations that define the f's and relate

the d&'s to d’c are strictly valid when one considers the
transition from one to another constrained equilibrium state,
having structural arrangements H and H+dH respectively.

But the structural arrangements are unconstrained during actual
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processes and it is assumed that eqn. (2.43) and its various
speclalizations of the last section can be applied then as well,
provided always that the f's are identified as those of the
imagined state of constrained equilibrium corresponding to the
current H . The same assumption is tacitly adopted in much of
dislocation theory and physical metallurgy, but bears statement
before proceeding to kinetic aspects.

The kinetic equations are restricted by the second law as inm

eqn. (2.32). Indeed, writing d?% as in eqn. (2.40), this be-
comes

b fudga/dt = 0 . (2.81)

In the special cases for which f_  is linear in ¢ as in eqn.
(2.47) we can note that I fgdga = - do°(H) and use aqn.
(2.48) to convert thisg to

P o
g dsij/dt > de /fdt (2.82)

1]

for isothermal processes, where 8° is the locked-in energy.
Hence the macroscopic plastic work rate need not be positive,
but can be negative when 'locked-in" energy is being taken from
the sample. This is evidently the case for a Bauschinger effect
which commences during unloading in a temnsile test, while the
stress is still acting in tension. It is also the case for
time—dependent strain recovery after reduction of the load on
a specimen to a small but still tensile wvalue.®

In several instances it has been seen that the structural
rearrangements can be resolved into individual, scalar pro-
cesses characterized by some set (effectively infinite) of sca—
lar variables dEa + For these cases it is natural to think of

the rate dga/dt at which a particular rearrangement takes

place as being primarily dependent on its associated thermo-
dynamic force fa » for a given & and current pattern H of

structural arrangement. That is, when some instantaneous rate
dEa/dt is thought of as a function of 0,0, and H , the de-

pendence on ¢ occurs primarily through dependence of the rate
on the associated scalar force fa = fu(o,S,H) . To this ap-

proximation, kinetic rate laws have the form

dEa/dt = ra(fa,B,H) (2.83)
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s

with each rate being stress dependent only via its conjugate
thermodynamic force. The second law requirement will be satis-
fied so long as the rate function r, has always the same sign

as does fu . The form is suggested by thermal activation mod-
els, in which.case fa represents the effect of applied stres-

ses on blasing the pre and post-barrier energy levels. However,
as a secondary effect, local stress terms not included in £
could alter the size of the barrier itself, at least to the ex-
tent that lattice dimensions are affected, so that eqn. (2.83)
should be thought of only as an approximation and not as a
physical law,

FKinetic relations of the Schmid type that are usually taken.
to describe crystalline slip are, in fact, in accord with this
class of rate law. Specifically, these relations entail that

(k)/dt

the rate of slip dy [or average dislocation velocity

<dn/dt>(k)] on a given slip system is dependent on .the local

. k
stress state only via the resolved shear stress sé ) on that

system. As seen in eqns. (2.56,58,61), the net resolved shear
stress differs from the thermodynamic shear stress only by a
term dependent on H (and 6 1in a non-isothermal analysis) so
that the type of kinetic law just described for crystalline slip
has the form

ey ®ar = 1O O 5y (2.84)

and is thus a special case of the general class of eqn. (2.83).
This form includes, of course, such effects as direct and la-
tent hardening against further slip, via the dependence on H .
Agaln, some approximation is entailed. The large isotropic
compression of a crystalline lattice by high pressure would
alter the resolved shear stress for a given shear force only
insofar as the area is changed, but sufficiently large pres-
sures are likely to .alter eqn. (2.84) in a more complicated
way. Of greater interest, however, is the possibility, pointed
out in private communication by F. Kocks, that when disloca-
tions split into partials, not enly is the resolved shear
stress on the slip system important but so also are the re-
solved shears on different planes which tend to either coalesce
or widen the partials. In such cases the stresses which "set-
up" the deformation are not synonymous with those that drive
the dislocation.

For vector processes of structural rearrangement as in dif-
fusion, it is in general not possible to associate a given com—
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ponent dqi/dt of the matter flux only with its force
- Bulaxi . WNevertheless, it is usually taken as sufficient to

assume, in the abgence of, say, large lattice strain effects on
the intrinsic height of energy barriers, that the flux vector
for some diffusing species at a point depends only on the
various forces - ?1/3x as defined for all the diffusing spe~
cies at that point. Hence, within the general framework, con~
siderable interest attaches to the case for which an individual
rate dEu/dt depends, at a given 6 and H , on some set of

forces f , conjugate to that rate and te others present lo-
cally. The special case in which these are taken to be instan-—
taneously linear,

dg fdt = I LaB(e’H)fB s (2.85)

with Onsager reciprocity LaB = LBa is, in fact, just a par-

ticular case of eqn. (2.83). This is because, as Kestin and
Rice (1970) have remarked, re-definition of the f's and d&'s
by linear combinations, in accord with the rotation to prinecipal
axes of I in f space, reduces eqn. (2.85) to a diagonal
form, in which each instantanecus rate is stress-state depen-—
dent only via its conjugate force.

It is of interest that rate laws of the class of eqn. (2.83),
for which conjugate forces govern rates, lead to a remarkable
nermality structure for macroscopic constitutive laws (Kestin
and Rice, 1970; Rice, 1970, 1971), independently of the detailed
form of the rate equations. Indeed, the balante of this section
is devoted to an exploration of the topic. The structure under
consideration is such that a macroscopic scalar flow potential
2 = 2(0,8,H) exists at each instant of the deformation such
that the instantanecus plastic portion of the macroscopic strain
rate is given by

dpeij/dt - 20(0,8;H) (2.86)

g, . ’
ij

It is easiest to derive the equation by directly writing the
microscale representation for @ :

£ _(0,0,H)

(o,8,H) =

<]
1

x (£ ,8,H)df (2.87)

.
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where the integration is done at fixed 8 and H , and with
this eqn. (2,86) may be proven as a direct application of eqn.
(2.43):

o0 _1,% 1.
20, . vV © %0, ta v * 3o,
1] 1] 1]

o

— P
dEa/dt = d Eij/dt .

If we specialize these results to the crystalline slip model,
with the rate law of eqn. (2.84),

(AL

k
(¢,8,H)
P(k)(r(k),e,H)dr(k)} dv
(2.88)

and now eqn. (2.86) may be proven directly from the coxrespond-
ing special version (2.53) of eqn. (2.43). This shows also that
the macroscopic flow potential is just the volume average of
local flow potentials for each slip system of each iadividual
crystallite of the material sample.

Consider the significance of the flow potential from a purely
macroscople standpoint: Now instead of requiring six separate
constitutive relations for the stress and history dependence of
the instantanecus plastic strain rate components, we require
only one for the scalar Q , from which the others are gener-
ated. Further, this has a geometric interpretation in a stress
space having coordinate axes which are the components of o .

At each apoch in the history of deformation, a family of sur-
faces of the form { = constant exists in this space, and have
the property that the ilnstantaneocus plastic strain rate has a
direction 'normal' to the € surface through the current
stress point, and a magnitude equal to the gradient between
neighboring § surfaces. Provided that the local rates are
steadily increasing functions of the conjugate forces for any
given 8 and H , and that conditions for the forces to be
linear in ¢ are met, each § surface may be shown to be con-
vex, in that a plane which is tangent to the surface at any
point will never cross it. Indeed, if we consider two different

A
stressg states ¢ , UB but the same plastic state H and & ,

<

2(0,06,H) =

¥ (fg - fg)[(dga/dt)A - @ /an?] 2 o (2.89)

by the assumed monotonicity of the rate law. But by eqns.
(2.47,48) which apply when the forces are linear (in which case

deP/dt = dPe/dt), the inequality becomes, successively
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Doy - OgpEy g lWE At - (e fan®) 2 0

A

G c?j)[(dpe jaey® - (dpeij/dt)B] > 0 (2.90)

i]

This, in combination with eqn. (2.86), proves the convexity of
 surfaces (see Rice, 1970).

Often the kinetic relation of eqn. (2.84) is strongly non-
linear: At any given H and & , an essentially zero dy/dt
results for a certain range of Tt values, whereas dy/dt
takes on very large magnitudes for values of 7 only slightly
beyond the limits of this range. Of course, these limits
change with accumulating H . Evidently, if we consider a
restricted range of deformatlon rates, then the resulting be-
havior 1s well described by a time-independent idealization in
which the limits represent critical shear stresses for yield-
ing a slip system, and in which the changes in the limits with
H represent strain hardening.

Within this time—independent model, we may take state B in
the preceding inequality to coincide with a point within the
elastic domain at the current H and A to lie on the current
yield surface. Thus it reduces teo the classical inequality of
maximum plastic work,

A
(cij

except that the present form, in conjugate deformatlon vari-
ables, 1s properly invariant to rigid rotations in going from
A to B , under the tacit assumption of small elastic lattice
stretches between the two states. This inequality is well
¥nown to lead to the time independent normality structure dis-
cussed in connection with eqms. (2.35,36) and also to require
that all yield surfaces be convex. Rice (1971) and Hill and
Rice (1973) have further shown, in fact, that validity of the
inequality (2.89), in the time-independent theory, implies the
I1'yushin inequality, and hence normality in conjugate vari-
ables, without regard to the magnitude of elastic deformations.
By directly adopting the time-independent idealizatiom in
connection with a somewhat more restricted crystalline slip
model than necessitated in the present framework, Hill (1967),
Mandel (1966), and Rice (1966) independently derived such re-
sults on plastic normality and convexity as Just discussed.

- Uij)(dps fanyt > o, (2.91)

ij

They show that the plastic strain increment dPc has the di-

<
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rection of the outward normal to the current macroscopic: yield
surface in ¢ space when that surface is smooth, and a2 direc-
tion within the cone of limiting normals at a vertex. In fact,
as Hill has emphasized, a vertex is usually to be expected,
within the model, on subsequent yield surfaces at points of
sustained deformation. This 1s because the macroscopic yield
surface 1s the envelope of an infinite family of yield planes
in ¢ sgpace, each corresponding to a critical shear stress on
a local slip system. These planes may translate as residual
gstress contributions to T build up and as direct or latent
hardening occurs, but their normals remain of fixed orienta-
tion. Every individual plane corresponding to a slip system
active in the sustained deformation must pass through the cur-
rent stress state, and this creates the vertex. Hill has also
proposed that vertex—free large offset "yield surfaces" can be
interpreted as families of plastic limit states as defimed in
terms of the local distribution of hardness in a polyecrystal-
line aggregate. This is tantamount to treating the material as
rigid-plastic, as in a study by Bishop and H111 (1951).

Rice (1970) has discussed the time-independent idealization
in terms of a clustering of I surfaces outside the non-yield-
ing domain of ¢ space. Also, he has shown that if the rela-
tion between dy/dt and T on each slip system is continuous,
then the @ surfaces do not contain vertices except possibly
when a surface corresponds to zero strain rate. This latter
case arises when a non-yielding domain, in which & = constant,
exists,

The dual potential to Q is of some utillty. Let us sup-

pose that the relation of dPe/dt to o is invertible to the
extent that a function (Rice, 1973)

- P o= P -
A A(@efdt,8,H) Uijd e:ij/dt 9] (2.92)

may be defined. Then by eqn. (2.86) when 6 and H are con-
sidered fixed,

p
ah = o0y,d(@sy/de) , or o = 8A(d"e/dt,6,H) (2.93)

4 B(dpeij/dt)

if components of dPef/dt can be varied independently. TUsually
they cannot be, because plastic straining is 1ncompre551ble.
In this case i1t is easy to see that the differential form of
eqn. (2.93)1 allows solution for the deviatoric part of o .
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By using eqns. (2.43,87) and by writing r, for dga/dt

and integrating by parts, the microstructural interpretation of
A is

1 %o Bfa
A = vz[jo. £,(ry»8,M)dr, — (£,-0,, acij)ra:l , (2.94)

where, for purposes of the integration at fixed 6,H , the ki-
netic law given by eqn. (2.83) is supposed to have been in-
verted to obtain f din terms of r . Of course, when f is
linear in ¢ this becomes

<=

rCﬁ
z[f £ (x,,0,B)dr - fZ(G,H)ru:l , (2.95)
A _

where fg is now the walue:of fa when o = 0 . This would,

for example, take the form

(k) '
n
N g -L‘ 2[] e () 6,myan™ - rék)(e,n)n(k)] av
° (2.96)
for the slip model which averages out the individual disloca-

tions, where n(k) is written for dY(k)/dt , and where the
rate law of eqn. (2.84) is supposed to have been inverted in
the integrand.

For the time-independent idealization, fai‘will have a defi-

nite value (namely, the current yield value) if the associated
r, or dEa/dt is non-zero. Hence each of the integrals in

eqn. (2.94) amounts in a term fara , and so
af

o

1j 3o

= 1 . = P
A 7 Ig 5 r, = Gij d Eij/dt (2.97)

by eqn. (2.43)., Thus eqn. (2.93) reproduces a known result for
time-independent materials satisfying the normality rule: that
components of ¢ are derivatives of the rate of plastic work-

ing with respect to corresponding components of dpa/dt. This
identification of A could also be developed directly from
egn. (2.92) in the rate—insensitive limit.
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2.8 THE AVERAGING PROBLEM; POLYCRYSTAL MODELS

The general framework must be completed by some procedure of
averaging a given set of rate relations over all the local
sites of rearrangement within a material sample, to arrive fi-
nally at specific macroscopic representations of constitutive
laws. Here we shall examine some approaches to the averaging
problem for the plastic behavior of polycrystalline aggregates
deforming by slip, on the assumption that kinetic relations of
the kind (2.84) are given, a priori, from dislocation dynamics
considerations and/or experiment for the operative slip sys-
tems within the individual crystals of the aggregate. Of
course, these relations are not known precisely in general and
very simple forms have been employed in the studies under
review. Nevertheless, they do presumably show the manner in
which constraints of neighboring grains and induced residual
stresses affect the macroscopic constitutive behavior of poly-
crystals. All the discussion of this section 1s carried on
within a small displacement gradient approximation, for which
distinctions between stress and deformation measures of dif-
ferent kinds and their rates are ignored. Further, elastic
moduli are taken to be uninfluenced by slip.

Local stress and strain fields within individual crystalline
elements of the aggregate are dencted by & and e . The plas-
tic strain is given in terms of the local shears vy by

elij - gu%ﬂy(k) ) (2.98)

where the summation extends over all operative slip systems of
the element and where

= L
uij = 3 (nimj + njmi) . (2.99)

with n and m being unit vectors describing the slip plane
normal and slip direction for a given system. The mechanical
shearing stress acting on a given system is

&) k)
T = Sij“ij 3 (2.,100)

this differs from the thermodynamic shear stress of egn., (2.54)
only in that the latter contains an additicnal part accounting
for energy which would remain stored in the dislocation sub-
structure even if the local stress were reduced to zero (s =+ 0}.



60 J.R. Rice

Hence T as we now use it includes the long range residual
ghear stress as well as that induced elastically by o , and

called T earlier.

Taylor (1938) and Bishop and Hill (1951) considered a single
phase polycrystal and neglected elastic strains (rigid-plastic
model), further supposing that each individual grain sustains

the macroscopic strain e? of the aggregate. While their con-

siderations were for time-independent behavior only, we can in
fact consider the general time-dependent case, presuming that
by inversion of eqn. (2.84), rate laws are given in the form
{(isothermal for simplicity)

T(k) = T(k)(n(k),ﬁ) , where n(k) = dy(k)/dt (2.101)

The procedure is to directly calculate the potential A from
eqn. (2.96) as .

A = %fz[f r(k)(n(k),H)dn(k):I aw . (2.102)
v o

(k)

Now the term with LN of egn. (2.96) has seemingly disap-

peared. This is because its part representing stored energy
in the dislocation substructure has already been incorporated,
due to the discussion following eqn. (2.100), and because the
-remaining long-range residual stress part does no net work on
the dy's by the principle of virtual work, which can here be
appllied because elastic strains are neglected and hence the
¥'s give the total strain and correspond to a compatible de-—
formation field.

To calculate each n(k) of an individual grain so that A
may be computed, one recognizes that these are to be con-
strained by the approximation that each grain sustains the
same strain. Hence

(k)_(x)y _ P
b iy = deij/dt (2.103)

for each. We must further choose the n's so that the asso-
ciated set of t's as computed from eqn. (2.101) are, in fact,
derivable from a local stress field s by eqn. (2.100). The
correct n's are given by minimizing the bracketed terms in
eqn. {2.102) subject to the constraint of eqn. (2.103), for by
the method of Lagrange multipliers, this is equivalent to

t\J*
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oo |

ﬁ{ [2 fo T<k>(n<k),ﬂ)dn<k>] .y [E uj(-?)n(k)]} .
(k) (k) (k) k)

or {T (n*",H) - Aijuij }Gn = 0 , (2.104)

where lij are the multipliers. Evidently, the equation is

solved when

(k) _ (k)
T = Aijuij . (2.105)

which 1s the same as saying that the t1's are derivable from a
stress field. In fact, A = s .
By performing this constrained minimization, the bracketed

term of eqn. (2.102) is determined as a function of deP/dt

for each grain orientation. The remaining volume integral means
that A is given by the average of this functiom over all grain
orientations, and ¢ 1s computed from eqn. (2.93). The time~
independent version of this general approach is exactly that
employed by Bishop and Hill (1951}. The net result is that
Taylor orientation factors have been determined showing, for
example, that the flow stress of an fce . polycrystal loaded in
simple tension 1s approximately 3 times the corresponding shear

strength on its (1 1 1)[1 1 0] slip systems (assumed equal for
all), Lin (1957) has further extended this approach to the
elastic-plastic case by assuming that the total strain is con-
stant in each grain; this allows an estimate of the entire
stress-strain curve, Of course, the constraint that each grain
deforms the same makes it impossible for stress equilibrium to
hold and also causes an overestimate of the resistance to flow,

Batdorf and Budiansky (1949) have proposed a slip theory of
plasticity which, if reinterpreted in the present context, can
be seen as complementing the above approach by assuming that
each individual grain carries the same stress, equal to J.
Hence egn. (2.100) becomes

(k) _ (k)
T = Uijuij - (2.106)

and with this together with rate laws of the type (2.84),
phrased in terms of the mechanical shear stress, one may di-
rectly calculate  from eqn. {2.88) as the average over all
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orientations of the flow potential which an individual grain
would have, 1f subjected to the stress o . The corresponding
plastic strain rate is then given by eqn. (2.86). Of course,
this approach does not satisfy displacement continuity between
adjacent grains, nor can it account for development of residual
stresses which tend to build up preferentially on the systems
of greatest slipping; hence it underestimates the resistance to
flow.

Recently Clough and Simmons (1973) have proposed an approach
to rate-dependent flow which, on examination, may be seen as
amounting to the formalism outlined above with a rate law for
which dy/dt wvaries as a hyperbolic sine of <t , with no effect
of B on the relation. The original Batdorf-Budiansky appli-
cation was to rate~independent slip, with hardening of active
systems, but no latent hardening or reverse hardening. This
led to a pronounced vertex at the current leoad point. Also,
for any stress path which continusouly activated every slip
system, once initially activated, the total strain was seen to
depend only on the stress —— i.e., 'deformation theory' applied
(Budiansky, 1959).

Lin and Iteo (1965,1966) analyzed by methods of three dimen-
sional elasticity the behavior of a polyecrystalline model of
4 x 4 x 4 square blocks, each containing one permissible set
of slip planes with three equally spaced slip directions. Ori-
entations were chosen to simulate a macroscopically isotropic
polycrystal., They showed that a vertex formed at the current
load point when a zero offset strain definition of yield was
adopted, but they also showed that this vertex became a rounded
bulge when a small but finite offset definition was used.

The bulk of work on predicting elastic-plasikic behavior of
polycrystals has been based on the self-consistent model of
Kroner (1961) and Budiansky and Wu (1962). It considers s
and e to take on constant values within each grain, Apart
from any constitutive connection between the two, these are re-
lated to o and e by the same formulae that would apply if
the grain were a homogeneous spherical inclusion imbedded in an
infinite homogeneous matrix, having the overall elastic proper-
ties of the aggregate, and carrying the remotely uniform fields
¢ and € . Thus, if these overall properties are isotropic
with shear modulus G and Poisson ratio v ,

7=5v - .
ij(ekkmskk) - sy G (eij—eij) . (2.1071)

Here, e,0 are volume averages of e,s ,
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- 1 - 1
Eij = V/V-eij av o, 04 3 V.£ Sij dav {(2.108)

and the first of these will imply the second by eqn. (2.107).
Now, in the special case when each grain is idealized as
being elastically isotropic with the same constants v and G
eqn. (2.107) may be re-written solely in terms of plastic

strain as

2 7-5v

2 P
ij = 15 T-v )

;. = O s (2.109)

ij j
and in this case, although not generally (Rice, 1970; Hill,

1971), e is the volume average of e? . Hence, using eqns.

(2.98,100} the shear stress associated with a slip system in a

given grain, having the orientation parameter u(k) , is -
(k) (k) _2_ 7-5v (2) (k) (2
T o'y T I5 T O [Pegyuggy
1 (R)’ (k) N
—sz My Y av'] , (2.110)

where the first sum, on (&) , extends over all slip systems of
the same grain and the gecond, on ()' , extends over all sys-
tems of every grain as it is encountered in the volume integral
(or orientation average); the primes distinguish those variable
quantities in the integration. This gives an explicit repre-

sentation for the long range residual stress, as a linear func-

‘tion of all the ¥'s d4n all the grains. The procedure is then

to solve the kinetic relations for the vy's , given a history

of o variation, and to thereby compute e .

Hutchinson (1964) has applied this procedure to time-inde-
pendent calculations, both without hardeming and with Taylor
hardening, for fecc and beec polycrystals. "His results in-
clude the calculation of Bauschinger effects and of the re-
sponse to proportional loading under combined stress. 3Bul
{1970) has adopted the model to compute subsequent yield sur-

‘faces-and shows a cleéar vertex formation. Kocks (1970) has

given an extensive general survey of work with the self-con-
sistent model and with the Taylor model in predicting the yield

‘behavior of polyecrystals, including experimental comparisons.

Brown (1970a) and Zarka (1972) have considered time dependent

‘behavior; the former has adopted a power ‘law relation between
-dy/dt ‘and T -for fec polycrystals, and has’ conputed the
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surfaces of constant flow potential in tension-torsion stress
space for various deformation histories. These seem, to a fair
approximation, to show kinematic tramslatiom without much shape
change. Brown {1970b) has also attempted direct experimental
measurement of © surfaces. These, for an aluminum alloy at
elevated temperature, seem to show the same pronounced aniso-
tropy as did the lower temperature yield surface for tension-
torsion specimens of the same material.

H1ll (1965) has suggested a more elaborate self-consistent
model which is intended to take account of directional weak-
nesses developing with continuing deformation in a time-inde-~
pendent plastic framework; the corresponding generalization for
time-dependence is, however, unclear. Recently Hutchinson
(1970) has given an extensive review, contrasting the Hill
model with that of Kroner-Budiansky-Wu. The latter gives limit
states which agree with the Taylor model, and are thus overesti-
mates, whereas the Hill model seems to give lower values,
Hutchinson also calculates the plastic moduli governing incre-
ments of shear after tensile loading. These are considerably
nearer to the predictions of 'deformation' theory than to those
of a "flow' theory with a smooth yield surface, although the
theory itself is, of course, of the flow type.

Similar averaging procedures, to obtain macroscopic constitu-

tive laws, could presumably be carried out for other of the in-
ternal variable and conjugate force sets of Section 2.6. The
point which must be achieved, in general, is the development of
an equation analogous teo (2.110), which expresses the forces

fa in terms of the macroscopic stress o and the various mi-

crostructure parameters whose increments are measured by the
df's . These, together with a kinetic relafion of, say, the
type (2.83) relating d&/dt to £ enable one to write dif-
ferential equations for df/dt in which ¢ enters as a fore-
ing function. The resulting macroscoplc plastic strain rate

is expressed in terms of the f's and d&/dt's by eqn. (2.43),
or by eqn. (2.48) when appropriate, and this is in the form of
a volume average expression, As for the self-comsistent crys-
talline slip models, the balance of the analysis consists of
carrying out the averaging over all sites and their orienta-
tions within a representative material sample to arrive finally
at specific macroscopic constitutive relations.

Judging from the progress with slip models as just reviewed,
this general procedure does seem to reveal many of the observed
features of combined stress behavior, including Bauschinger ef-
fects, kinematic like tranmslation of yield and flow potential -
surfaces, tendency toward vertex formation on small offset yield
surfaces, etc. However, the computations involved in estimating
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the constitutive response to even simple deformation histories
are quite complex and invelve large storage requirements since,
e.g., shears vy on all systems of crystals of all the repre~
sentative orilentations chosen for the calculation must be ana-
lyzed in each step. Indeed, when each dy/dt 1s expressed in
terms of its associated T , eqn. (2.110) becomes & large sys-
tem of coupled, non-linear differential eguatioms.

Thus the use of averaging procedures that involve, even with
substantial approximations, a direct calculation from micro-
scale models entails substantial complexity, and this would
seen overwhelming 1f required in each increment of deformation
for each element of, say, a finite element computer formulation
for some structural problem involving inhomogeneous deforma- -
tion. This means that any reasonably direct prediction of ma-
terial response is unlikely to displace the phenomenological
and less rigorously based structure—parameter models, discussed
in subsequent chapters, as a basis for practical calculation.
A brief discussion of this type of approach follows.

2.9 PHENOMENOLOGICAL AND MACROSCOPIC STRUCTURE-PARAMETER
FORMULATIONS

There is an extensive literature on purely phencmenological ap-
proaches to constitutive laws within the time-independent plasti-
city idealization (see reviews by Drucker, 1956; and Naghdi,
1960) and some attempts at generalization to the time—dependent
range have been made. Here we examine a simple formulation,
intended for problems of time~dependent plastic f£low under vari-
able temperature and non-proportional stressing, which incor-
porates and generalizes, in what seems to be a physically ac-
ceptable form, notions such as kinematic and isotropic harden-
ing as developed in the time-independent theory. We deal with
initially isotropic materials,

Taking the viewpoint that the instantaneous plastic strain

rate dps/dt is some function of o¢,8 and the current plastic
state H , we can define a rest stress tensor Aij (see Rice,

1970; Ahlquist and Nix, 1969) associated with 6 and H as

that for which dpe/dt vanishes when o = A . The tensor A

is approximately interpretable as a macroscoplc structure param-—
eter, or internal variable, that measures the intemnsity of re—
sidual stress contributions to the forces f . As seen in eqn.
(2.47) and in the slip and diffusion examples of Section 2.6,
these typically have a form in which there is a term directly
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proportional to ¢ plus another term of long and short range
residual stress origin, the latter being reflected by X .
Still, A 1is not purely a structure parameter because its def-
inition, as the stress corresponding instantaneously to a null
plastic strain rate, involves the kinetic relations as well,
For this reason, and also because temperature alterations can
cause residual stresses in heterogeneous materials, A will
vary at least slightly with 6 at a given H .

Now, A can be taken as a measure of the anisotropy that
has been induced by plastic deformation. It is known within
the time—independent framework, however, that when offset
strains of the order 1/2 to 2% are taken to define yield,
subsequent yield surfaces in stress space.are essentially iso-
tropic, with little evidence of the pronounced anisotropy that
shows on small offset yield surfaces. Thus there is need for a
further scalar structure parameter, called p here, which char-
acterizes the intrinsic resistance to flow that exists apart
from anisotropic and related strain transient effects (see the
chapter by Hart et al.). We may think of p as denoting a
parameter such as the net dislocation density, or some average
measure of the kind Bb/L where L is a distance between
strong dislocation pinning points, or instead just as the flow
stress (suitably averaged among directions to free the defini-
tion of anisotropy) at some fixed temperature, sufficiently low
that creep effects are absent. This single parameter character~
ization would seem suitable so long as the deformation is not
g0 large as to induce significant preferred orientation and
texturing.

The balance of the discussion is done within the conven-
tional small displacement gradient approximation. All that is
said can, however, be taken to apply as well for large plastic
deformations, within the limitation of texturing, by using the

procedure outlined at the end of Section 2.3 and taking FP

there to correspond to a pure deformation. In that case o is
to be interpreted as the stress conjugate to logarithmic strain
based on a reference state instantaneocusly coincident with the

elastically unloaded state, or as RTTR to the order of the
approximation, and the rates dg/dt and de/dt are interpreted
as discussed there in terms of 4£2£ and D .

The assumption made is that the instantaneous dpe/dt de~
pends only on (i) the stress difference o-i , (i1) tem—
perature 6 , and (iii) the scalar structure parameter o .
The assumption (i) 1is, of course, far too simply to closely
match either observed behavior or the predictions of detalled
microscale models for general loading paths, particularly in
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the neighborhood of yield surface vertices or sharply rounded
portions of flow potential surfaces. Tt does, however, com-
prise a sultably simple basis for applications to stress analy-
sis.

It 15 assumed that the microscale mechanisms of deformation
are such that the flow potential § exists and, from (i)
above, it is eclear that this can be stress~state dependent only
through the three invariants of the stress difference o - XA .

If, however, the plastic response dpE/dt’ is volume preserving,
or conversely if the microscale forces are uninfluenced by
hydrostatic stress of the levels considered, then & depends
only on the second and third invariants of the deviatoric part
of o - X ., This means that any hydrostatic part of A 1is
without effect and A can therefore be taken as a deviatoric
tensor. It usuwally constitutes a sultable approximation to
assume, as in the Prandtl-Reuss equations, that there is a de-
pendence only on the second deviatoric invariant, which can be
expressed as an equivalent shear stress T :

eq
T = 1 {o=2) = l-(o’ =A, ) (a7, -2 )]1/2
eq eq 2 Y13 i M43 45 ?
where o, = ¢ -1 §,, © (2.111)
ij 15 73 13 “kk :
Thus we arrive at the form
8 = alr, (0=1),8,0] , (2.112)

and there follows from egn. (2.86) the plastic strain rate

Uij_lij aﬂ[req,e,p]

2t (o=A) T * (2.113)
eq eq

P -
d Eij/dt =

Note that the explicit dependence of @ on Teq at different

states € and p can be determined experimentally by examining
the variation of instantaneous plastic strain rate with stress
at various stages throughout a program of uniaxial temsion and
compression, or of pure shear deformation, provided results are
fitted to the assumed symmetric dependence on o-i .

The constitutive description must be completed by a specifi-~
cation of equations governing alterations in the structutre
parameters A and p . This 1s perhaps the most arbitrary
part, and there is little hope of including all possible ef-
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fects. An appealing form for p is

1/2
dPE dpa
do _ 1j ij
ac = 2.8 5 T
dpsi.
* 80,08) Ay qe o - re,e) (2.114)

where h represents an intrinsic rate of "hardening", the same
for all directions, and B represents the extent to which the
hardening induced by a strain increment is hiased by d1ts direc-
tion relative to the current rest stress. In fact, the first
two terms are independent of the time scale and contribute net
hardening rates

Bp,8) + 8(o,0) (A, Aijllfz > B(0,0) - B(p,8) A, lij}llz

when dPec is respectively co-directional and oppositely direc-—
ted to X . The minus sign in the latter form may be thought
of as representing the annihilation of dislocations that have
not spread widely from their sources, but rather have been
blocked by obstacles in the deformation that produced A . The
last term r(p,6) of eqn. (2.14) i3 the temperature-dependent
rate of hardness recovery. Provided that X can be ascertained,
the functions h and B can be determined in principle by
loading a tensile specimen to a given hardnessi state p , and
then measuring the increments of p due to rapid increments of
further loading and reverse compressive loading, both done on a
time scale for which the recovery effect is negligible. Also,
r(p,8) dis accessible either from recovery studies or from ob-
served values of p and the strain rate in states of steady
creep at various temperatures, Provided that these correspond
to p = constant.

It i3 plausible that X be chosen codirectional with ¢~ in
a program of proportional stressing, commencing from a state at
which A =0 . Further, X should approach some saturation
magnitude, with ongoing deformation, that increases with in-
creasing o7, and is here supposed to take the form

at , .
?«fj = 16,0 of, (2.115)

where Q@ < q < 1 , although the saturation magnitude itself may
never be attained if o increases indefinitely., A simple man-
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ner of describing the change in X is by writing

o p 1/2
da d'e de..
ij _ sat _ ij ij 2.116
i - P9 [Aij )‘ij] [ dt dt ] ( )

so that changes in A always follow the direction from A to
the instantaneous saturation value associated with the current
state. It is seen that p 1is a relaxation parameter when
phrased in terms of plastic strain arc length

1/2 _,
tlaPe, . dPe, -
L = i 4 dt . (2.117)
o dt dat

For example, if p and ¢ are taken as constant during some
program of creep deformation at constant stress ¢ , commencing
o

from a state at t =0 for which A = A~ , then
= PV % 4+ - e Pyq o, (2.118)
)Lij e )\ij (1 e )q ij 1

and this shows the decay of prior influences as the new satura-
tion state, appropriate to o , is approac@ed. Evideqtly, P
would have to be of a magnitude so that prior memory is lost in
strains & of order 1/2 to 2% . As it standsf eqn. (2.116)
has no time scale, but A 1ike »p should.be subjecF to re- :
covery at high temperature and one way 9f incorporating this is
by adding a term proportiomal to - A in eqnm. (2.1%6). .
For an application of the formulation, consider isotherma

deformation and suppose that dPefde in eqn. §2.}12) varies
from negligible to very large values as Teq is increase

through a certain critical magnitude, depe?dent.on Fhe current
plastic state. Thus the time-independent idealization is
adopted and we interpret the structure parameter p , for con-
venience, as the critical stress magnitude for flow. 1In the
notation of egn. (2.35), the yield condition is then

F = Teq(o—l) - p=20, and eqn. (2.112) is now replaced by

[ Y

dPe.. = _-j'ﬂlm-;—'J)t—)dA = Loy an, (2.119)
ij 2 Teq( -

where N 1is the indicated unit tensor (NijNij = 1) giving the .

direction of stressing relative to X . We solve for dA in
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the standard way (e.g. Naghdi, 1960), writing dF = 0 during
a plastic deformation process and expressing dp and dA as
in eqns. (2.114,116), ignoring the recovery term in the former.
This results in

dPe., = N,, N,, do , for N, do

1
ij E, 1] Tkt T k2 k2% 20 (2.120)

where the total or overall hardening rate Et is given by

i
It

V2 (h+pqop)-[~728+p(-q)lK (2.121)

13 lij ?

and where explicit relations for the change in p and A dur-
ing a deformation process with Ndo > 0 are

I §
dp = E;—[h + 8 Nij Aij]NKE'dUkR (2.122)
= B v/ - (1-
dlij Et (V2 q p Nij (1 q)lij]Nkl dokg (2.123)

Examining eqn. (2.121) for Et s We see that a result of the

formulation is anisotropy of the overall hardening, depending
on the direction N of the stress difference o-i  at flow
relative to the direction of A . Indeed, unless the bias
parameter B in eqns. (2.114,122) is large by comparison to
unity, the dominant term in the latter part of the expression
for Et is that containing p ., since from the discussion fol-

lowing eqn. (2.118), this would have to be very much larger

than unity. Thus, when the rest stress A 1is near its satura-
tion level [i.e. the bracketed term in eqn. (2.123) vanishes],
the anisotropy is most pronounced, with the greatest differences
‘being between the Et for continued stressing in the direction

of A and that for reversed stressing. The former is of order
h , whereas the latter is of order h+ 2 p qp .

It is also of interest to note that the anisotropic effects
represented by A are indeed transiernt, and that large amounts
of deformation under a filxed stressing direction regult ulti-
mately in strain increments that become normal to an isotropic
hardening "yield" surface. This surface is of the form

Teq(o) = ¢constant, and has an apparent. hardening rate of order

h dn all directions, when saturation conditions have been
achieved. However, it is not am actual yield surface, but

Mechanics and Thermodynamics of Plasticity 71,

rather an envelope of individual yield surfaces of the kind
Teq(d—l) = constant, each being generated by a different load-

ing history and each exhibiting a pronounced anisctropy of
hardening.

There are many 1ssues to be further explored here, concern-
ing both the general formulation and the assignment of specific
forms to the functions involved. An interesting question of
the former kind is the following: Given an initially isotropic
material in which the plastic state 1s assumed to be fully
characterized by a scalar p and second order tensor A , what
is the most general possible class of flow and structure param-—
eter equations? The present efforts have generated a member of
the class, but others are possible that could, for example,
model substantial shape distortions in flow potential and yield
surfaces.

2.10 SUMMARY

This chapter has presented the basis in continuum mechanics and
thermodynamics for constitutive descriptions of plasticity, .
with special attention being given to the connection between
macroscopic formulations and deformation mechanisms as opera-~
tive on the microscale. Conjugate stress and strain measures
have been introduced in Sections 2.2 and 2.3, and procedures
outlined there for materially objective formulations of elastic-

- plastic constitutive equations at large or small deformatioms.

Further, the thermodynamic framework for inelastic constitutive
laws, as set by the existence of potentials governing purely
elastic response, has been reviewed in Section 2.4 and second
law restrictions have been stated.

Section 2.5 has presented the general procedure by which

structural rearrangements, -on the microscale, of the elements
of a representative material sample can be related to its macro-
scopic plastic deformation. This involves the thermodynamic
forces f conjugate to the extents df of the rearrangements,
and each f is shown to be a "plastic potential' for the macro-
scopic strain induced by its ‘associated di [egqn. (2:43)].
The procedure is applied in Section 2.6 to inelastic deforma-
tion arising from crystalline slip, diffusion, phase changes,
and micro-cracking, and the appropriate dE's and f's -are
identified in each case.

In Section 2.7 it is remarked that kinetic relations for
crystalline glip in accord with a Schmid resolved shear stress
dependence, and also for linear diffusion with Onsager coeffi-
cient symmetry, fall into the general class for which a given
rate df/dt is stress state dependent only through its con—
Sqoa+ta £ 0 ATl micvacemrala Firnafrde Tawa AF +hie rlace are
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shown to lead to a unifying normality structure in macroscopic
constitutive relations, for which components of the instan~
taneous plastic strain rate are given by derivatives of a
scalar flow potential on corresponding stress components.
Associated results in terms of normality to yield surfaces are
demonstrated within the time-independent idealization of crys-—
talline slip.

The problem of averaging microscale kinetic relations over
all sites within a representative material sample, to arrive
at specific macroscopic constitutive descriptions, 1s illus-
trated in Section 2.8 by review of procedures for predicting
the behavior of polycrystals deforming by slip. It is sug-
gested that polycrystal models of the type considered seem ca-
pable of modelling some of the real complexities of path de-
pendence in plastic response and of shape distortions of flow

potential or yield surfaces, but the necessary computations are
very extensive, even for simple deformation paths. Thus con-
siderable interest remains in phenomenological and less rigor-
ously based structure parameter formulations. A class of such
constitutive relations is presented in Section 2.9, where the
effect of prior deformation on am initially isotropic materilal
is taken to be represented by a single scalar hardness param-
eter and by a rest stress temsor, the latter coinciding with
the stress state at which the Instantaneous plastic strain rate
vanishes.
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