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It is often found that tangent-stiffness finite element solutions for elastic-plastic materials exhibit much too stiff 
a response in the fully plastic range. This is most striking for the perfectly plastic material idealization, in which case 
a limit load exists within conventional small displacement gradient assumptions. However, finite element solutions 
often exceed the limit load by substantial amounts, and in some cases have no limit load at all. It is shown that a 
cause of this inaccuracy is that incremental deformation fields of typical two and three-dimensional fmite elements 
are highly constrained at or near the limit load. This is shown to enforce unreasonable kinematic constraints on the 
modes of deformation which assemblages of elements are capable of exhibiting. A general criterion for testing a 
mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element 
types and arrangements are, or can be made, suitable for computations in the fully plastic range. Further. a new 
variational principle, which can easily and simply be incorporated into an existing finite element program, is pre­
sented. This allows accurate cpmputations to be made even for element designs that would not normally be suitable. 
Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick·walled tube 
under pressure, and a deep double edge cracked tensile specimen. These illustrate the effects of various element 
designs and of the new variational procedure. An appendix extends the discussion to elastic-plastic computation at 
finite strain. 

1. Introduction 

In recent years, the finite element method has been employed for analysis of structures exhibit­
ing elastic-plastic material behavior [I], and many successful applications have been made (see [2] 
for a comparison of possible forms of the required incremental analysis). However, with the appli­
cation of the method, at least in its tangent-stiffness form, to problems of plane strain, axisym­
metric, and three-dimensional problems, inaccurate results are often obtained. The problem is 
most clearly demonstrated for structures of ideally plastic material. Then a limit load exists which 
can sometimes be calculated exactly or bounded from above by the kinematical theorem, while 
the finite element solution often seems to exhibit no limit load at all, but rather a steadily rising 
load-displacement curve attaining values far in excess of the true limit load. Similarly, for strain­
hardening materials having typical values for the plastic tangent modulus of two or more orders 
of magnitude less than the elastic modulus, the finite 'element solution exhibits an artificially high 
terminal slope of the load-deflection curve in the fully plastic range. 

Later we shall see examples of this for a beam in pure bending and for a punch problem. In the 
case of a plane strain extrusion problem [3], when a bilinear constitutive law with slight plastic 
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work-hardening (da/d€p H == 4.4 X 10-3 E, where E is the Young's modulus) was incorporated, 
a finite element extrusion pressure of 1.5 times a slip-line solution (using the same yield stress as 
the linearly hardening model) was attained with overall billet displacements only of order six 
times the displacement obtained at the slip line limit load. This indicates that the computed stiff­
ness in the fully plastic range far exceeds what would be expected for the small hardening modulus 
used. 
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Fig. L Load-displacement curves obtained from finite element solutions of plane strain single edge cracked tensile specimens sub­
jected to mid-ligament loading and constant end displacement boundary conditions. 

In some cases, however) the correct limit load is obtained. Fig. 1 illustrates some of the pecu­
liarities which have been encountered by ,the authors and co-workers in elastic-perfectly plastic 
analysis of plane strain bodies containing cracks. The finite element meshes shown in fig. 2 were 
used to solve the single-edge notched plane strain tensile specimen subject to both uniform end 
displacement [4] (i.e.~ no end rotation) and the static equivalent of a mid-ligament concentrated 
force. These two loading conditions have the same analytical limit load, namely, twice the yield 
stress in shear on the net section. As can be seen in fig. I ~ the overall load-deflection curves of the 
two loading conditions are quite different in the fully plastic regime. The solution for the mid­
ligament loading clearly indicates the correct limit load, while the constant end displacement solu­
tion exceeds the limit load, with the load continuing to rise at a roughly constant rate. 

A cause of these problems relates to the fact that the deformation state of an elastic-perfectly 
plastic material is highly constrained at limit load; for the usual material idealization, deformation 
increnle~ts at limit load will be strictly incompressible. In the usual finite element formulation, in 
terms of kinematically admissible displacement-fields, the same condi~ion will have to be satisfied. 

In particular} a tangent-stiffness finite element solution satisfies the incremental virtual work 
principle 

(1.1) 

precisely, ~here fIjj is the stress rate following from the prescribed constitutive law in terms of 
the current stress (Jij and strain rate €ii within each element. This stress rate can be written as 
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Fig. 2. Finite element meshes used to solve the mid-ligament loading and constant end displacement single edge cracked tensile 
specimens. 
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where Sij is the deviatoric stress increment. Since the plastic deformation will be assumed purely 
deviatoric, the hydrostatic stress increment -1 iT kk can be expressed as 

( 1.3) 

where 

K = E/30 2v) (1.4) 

is the elastic bulk modulus and Ekk is the dilatational strain increment. Substitution of (] .2) and 
(1.3) in (1.1) then furnishes 

( 1.5) 

where eij is the deviatoric strain increment. In the vicinity of the limit load, the term Sij eii will 
tend to vanish pointwise) but, as follows from plastic normality, will never be negative. Hence, 
from (I .5), ~his implies that the incremental finite element' solution satisfies 
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(1.6) 

The following result may thus be stated: 
In order for a limit load to exist for the discretized finite element model of an elastic-plastic 
problem, it is necessary that the elements be capable of deforming so that Ekk = 0 pointwise 
throughout the elements. Otherwise (1.6) requires that the load-deflection curve be steadily 
rising - i.e. no limit load exists. 
In the next section it will be shown that, except for plane stress problems, the requirement 

Ekk = 0 severely constrains the class of deformations of which typical finite element grids are 
capable. When they are forced to deform in such a constrained fashion, unreasonably high limit 
loads) or no limit loads at all, will result. On the other hand, even if no limit load is achieved in 
the finite element formulation, it is to be expected (and is indeed observed) that the slope of the 
load-deflection curve is reduced substantially from its initial elastic value at load levels near the 
theoretical limit load. This, however, does not anow an accurate inference of the limit load. 

Even if the material is linearly work-hardening with a small hardening coefficient, the terminal 
slope of the load-deflection curve will not necessarily be accurately determined (as was argued 
previously and will be demonstrated in an example), since the material will deform in a nearly 
incompressible fashion in the fully plastic range. 

It is clear that the problems discussed here have a strong similarity to problems encountered in 
the analysis of incompressible fluids and rubber-like solids. The difference is that the material 
behaves incompressibly only as limit conditions are approached because the effective shear 
modulus then tends to vanish, whereas fluids and rubber-like solids behave incompressibly from 
the start because the bulk modulus is very large. The essential problem is the same in both cases, 
however, in the sense that the incompressibility requirement puts too severe constraints on the 
possible deformation modes. 

2. Analysis 

In the previous section, it has been observed that elements must be capable of deforming with­
out change' of volume pointwise if a limit load is to be obtained. It is therefore useful to investi­
gate the constraints this enforces upon each element, and the effect of these constraints on the 
behavior of an assemblage of elements. 

Consider, for instance, the grid of 4-node rectangular isoparametric elements shown in fig. 3. 
Within each element, the displacement increments are of the form 

it ;;;; (~x} = a + bx + cy + dxy , 
uy 

(2.1) 

where the vectors a, b, etc. are expressed in terms of the nodal velocities and coordinates. Now, 
the incompressibility constraint for plane strain has the form . 
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. . aux .auy e +e =::- +- =0 (2.2) 
xx yy ax oy 

and this requires that d = 0 as well as that bx + c y = 0, a total of three constraints. 
The fact that d=::O mean~ that at limit load each element has strain increments which are con­

stant throughout the element. It is then evident from displacement continuity that all elements 
marked * in fig. 3 must have the same value of €xx' whereas all elements marked t must have the 
same value of €yy. Moreover, since €xx = €yY' €xx and €yy will be the same in all elements marked 
* or t. Since a similar argument can be set up for any row and column, €xx and €yy must be the 
same in every element of the grid. Clearly, this is a very unrealistic constraint. 
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Fig. 3. Propagation of incompressibility constraints in a mesh of rectangular four-node isoparametric plane strain finite elements. 

It is at least possible for this mesh to have a non-uniform shear €Xy, but the situation is even 
worse in case the grid consists of arbitrary quadrilateral isoparametric elements. Within an element 
the displacement increments are of the form 

(2.3) 

where 1} and ~ are defined by 

{;} = QI+ 1111 + Y~ + lil1~ . (2.4) 

(See, for instance, [6].) A lengthy but straightforward calculation furnishes the three incompres­
sibility constraints per element: 

(2.5) 
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A solution to this system of equations in terms of three parameters A, B, 'and Cis 

(2.6) 

"Substitution of (2.6) in (2.3) then makes it possible to eliminate 77 and ~ from (2.3) and (2.4) 
- this furnishes the displacement increments 

ii'x_ = D + Ax + By , u = E + Cx - Ay Y , (2.7) 

where the constants D and E do not depend o'n A, Band C. Hence, if the incompressibility con­
stfaint is to be satisfied, the strain increments will be constant throughout the element. 

'; " 

B 

Fig. 4. Mesh of arbitrarily skewed four-node isoparametric plane strain finite elements. 

This has catastrophic effects for an arbitrary grid. Consider, for instance, the grid in fig. 4, and 
~~specify the displacement increments of the three nodes A, Band C. Because the displacement in­
"crements of nodes A and B define the extensional strain along AB in element I, and because the 
, element must deform with a constant strain of zero, dilatation, we must then specify the compo-

~' _.' :n.ent 'of displacement increment of node E in the direction normal to AB. Similarly, because the 
.: ',,:- {, -"" ',~,displacement increments of nodes Band C determine the extensional strain along BC in element 

:' . -, .~ :~ll~'W-e musfalso specify the displacement component of node E in the direction normal to BC. 
, :. The incompressibility constraints of elements I and II then specify the components of displace-

m.ent increment of node E in two linearly independent (though not orthogonal) directions. Thus 
, the, displacement increment vector of E is fully determined, and, in fact, it corresponds to that 

_ : {ncreinent which causes identical strain increments in elements I and II. The displacement incre-
, __ ; 'merits of nodes 0 and F are then also determined. Continuation of the argument then furnishes 

" ,·that· the strain increment will be constant throughout the grid. It should be noted that this argu­
'·":'ment'holds only if the element boundaries do not form a straight line through the body; over such 

,a line the shear strain increment can be discontinuous. 
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Examples of the unreasonable constraints enforced by pointwise incompressibility upon dis­
placement increment fields of other two and three-dimensional mesh configurations are given in 
Appendix 1. 

We are now in a position to explain the results of fig. 1, bearing in mind a result of perfectly­
plastic limit analysis: namely, that while the limit load is unique, the deformation field at limit 
load need not be unique. An acceptable limit field for both loading conditions, giving the correct 
limit load, is that of concentrated deformation on 45° lines from the crack tip to the surface, as 
shown in fig. 5a. An alternative limit field for the mid-ligament loading is shown in fig. 5b. This 
field consists of constant strain increments within the region bounded by the two 45° lines from 
the crack tip. The rest of the· body is rigid, so the overall effect is that of a rotation of the two 
rigid regions about the crack tip. In fact, this was exactly the velocity field obtained at limit con­
ditions in the finite element solution of the mid-ligament loading problem. Since the deforming 
regions do so uniformly, and the 45° lines coincide with element boundaries, the mesh of focused 
isoparametric quadrilaterals could readily accommodate the incompressibility constraints, hence 
leading to a very accurate finite element prediction of the limit load. 

In contrast, however, the rotation produced by this field is 'incompatible with the constant end­
displacement boundary condition of the other loading. The same constant strain pattern cannot 
develop, and an ever-worsening overestimate of the limit load results. 
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Fig. 5a. Acceptable limit mechanism for plane strain single edge notched tensile specimen subject to either midaligament loading 
or constant end displacement. b. Alternative limit mechanism for mid-ligament loading. 

Although the problem has now been analyzed sufficiently for four-noded isoparametric quadd­
lateral elements, a more systematic approach is needed to find a solution to it. It is therefore use­
ful to consider the matter of convergence of the solution if the mesh is refined. Refinement of the 
mesh will have two opposing effects: 

1) It will increase the number of nodes, and since each node represents a specific number of 
degrees of freedom, it will increase the total number of degrees of freedom. 
2) On the other hand, it will increase the number of elements, and since each element has a 
certain number of incompressibility constraints enforced upon itself, it will increase the total 
number Qf constraints. 

It is clear that convergence will occur only if the total number of degrees of freedom increases 
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faster than the total number of constraints. This furnishes a relatively simple criterion to check 
whether a mesh of a certain type will be adequate to furnish accurate limit loads and flow fields. 
It should be noted that the total number of constraints is not always equal to the number of ele­
ments times the number of constraints per element. Sometimes elements can be arranged such 
that the constraints are no longer independent, an important example of which will be discussed 
in the next section. For the moment, however, these special cases will not be considered. 

Fig. 6. Nodal angles for a linear strain triangular finite element. 

It is thus important to determine the ratio of the total number of nodes to the total number 
of elements in the grid when it is refined. Consider a body, loaded in plane strain, the cross­
section of which is subdivided into a mesh of elements of identical type. Define the nodal 
angles OJ of an element ex as the inner angle formed at the node by the two adjacent element 
boundaries. For each type of element the sum of these nodal angles is a given number. Consider, 
for instance, the six-noded triangle of fig. 6. Each of the nodal angles at the mid-points of the 
sides is equal to 1f radians, whereas the sum of the angles 8~, 8~ and 8~ is also equal to 1T radians. 
Hence the sum of all nodal angles is equal to 41T radians. Similarly simple calculations can be 
made for other types of elements. For generality, let us assume that the sum of the nodal angles 
of a particular element type is equal to nrr radians. If the grid consists of p elements, then the 
sum of all nodal angles of all elements is equal to 

EL) 8?= = pn1f. • z (2.8) 
a I 

The sum of all nodal angles can also be calculated in a different way. Suppose the mesh has k 
nodes inside the body and 1 nodes on the boundary. The sum of the nodal angles around each 
interior node is equal to 21T radians, whereas the sum of the nodal angles at a boundary node is 
equal to rr-"Y radians, where 'Y is a small angle due to the curvature of the boundary. In this way 
the sum is readily calculated as 

EE8j = (2k+ 1+ 2c - 4)1f, 
O! i 

(2.9)' 

where c is .the degree of connectivity of the body (c = I if simply connected, etc.). From (2.8) and 
(2.9) then follows the equality 
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pn :;:: 2k + I + 2c 4, (2.10) 

or} alternatively, 

E. l+ I + 2c -4 
k n nk' 

(2.11) 

Now if the mesh is refined, p, k, and Z will all increase; hence the last term will vanish. Moreover, 
if the mesh is refined uniformly, k (the number of interior nodes) will increase approximately as 
the square of Z (the number bf boundary nodes). Hence 

lim (E):;:: 2 . 
k->oo k n 

(2.12) 

Consider what this means for a grid of isoparametric quadrilateral elements. The sum of the 
nodal angles in one element is equal to 21T radians, and hence n :;:: 2. Substitution in (2.12) then 
furnishes that in the limit the number of nodes will become equal to the number of elements. 
Since each node represents two degrees of freedom, and three incompressibility constraints are 
enforced upon each element, the total number of degrees of freedom is only 2/3 of the total 
number of constraints. Hence convergence will not in general occur, which reaffirms the previous­
ly obtained result. Similar derivations can be made for other planar elements as well as for axi­
symmetric elements since (2.12) holds as well for this class. The results are displayed in table 1. 
The range of value of constraints per element from 6 to 8 given for the 8-noded quadrilateral 
depends on whether the sides of the element are linear or quadratic, respectively. 

For three-dimensional elements, however, the ratio of nodes to elements is not unique, since 
the sum of the solid angles of a polyhedron is not a constant. Therefore one has to determine this 
ratio for a specific arrangement of elements. For some common regular grids, and thus of any grid 
which is equivalent, the results are displayed in table 2. It may be assumed that these results are 
fairly representative for most common types of arrangements. 

The results in tables 1 and 2 indicate that none of the usual finite elements, except the 6-noded 
plane strain triangle and, to a much lesser degree, the lO-noded tetrahedron, is adequate to analyze 
(approximately) incompressible, and thus limit load~ behavior. Before going into a more syste­
matic approach to solve the problem, let us consider what can be obtained by a special arrange­
ment of the elements. 

3. Special arrangements of elements 

As has been mentioned previously, the total number of constraints is not necessarily equal to 
the product of the number of elements arid the number of constraints per element. For special 
arrangements of elements, the total number of constraints may be less than this product. The ob­
tained improvement, however, will be small, since it is necessary to combine a number of elements 
to eliminate one constraint. Thus this method will work only for elements for which the ratio of 
degrees of freedom to constraints in tables I and 2 is close or equal to one. 
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Table 1 
The effect of mesh refinement on the ratio of total degrees of freedom to total number of incompressibility constraints for some 
common two-dimensional finite elements_ 

Ratio Ratio 

Element Type Constraints Nodes Deg. Freedom 
Element Elements Constraints 

b. constant strain 1 1/2 1 
triangle 

s:: \J .~ 4-node 3 1 2/3 H quadrilateral +' 
til .. 
~ linear strain fa 3 2 4/3 ,.... 

triangle ,Il.t 

D 8-node 6 to 8 3 1 to 3/4 
quadrilateral 

~ 3 1/2 1/3 

u a .,., 
5 1 2/5 Sot 

f..t 

I 
~ 2/3 .~ 6 2 

< 

CJ ~ 9 3 ~ 2/3 

Consideration of tables 1 and 2 with this in mind indicates that only a few types of elements 
could possibly be used for this purpose: for plane strain, the 3-noded triangular element and 
perhaps the 8-noded quadrilateral element, and for three-dimensional problems, the IO-noded 
tetrahedron. None of the axisymmetric elements could possibly be used. As yet the only success­
ful arrangement that has been discovered is the combination of four 3-noded triangles as shown in 
fig. 7. Note that the triangular element boundaries form a quadrilateral "element" and its diago­
nals. This combinatiof? has the special property that if the incompressibility constraint is satisfied 
in three of the elements, the constraint in the fourth element is automatically satisfied. This brings 
the ·ratio of degrees of freedom to constraints from 1 to 4/3, which makes the arrangement suit­
able for anaiysis near limit load. The proof of this special property is given below. 
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Table 2 
The effect of mesh refinement on the ratio of total degrees of freedom to total number of incompressibility constraints for some 
common arrangements of three-dimensional finite elements. 

Ratio Ratio 
Element Type and Cons train ts Nodes Dei- Freedom 

Arrangement Element Elements Constraints 

5 constant strain 
~ 1:e1:rahedra in cube; 1 1/5 3/5 cubes in regular 
. ~ - __ _ lat'tice 

~8-nOde : isoparame'tric 7 1 3/7 
! cubes in 

- - - - • - _ regular la'ttice 

~ 5 linear s1:rain 
tetrahedra in 4 7/5 21/20 
cube; cubes in 

- & - regular la'ttice 

~ 20-node 
~ isoparametric 
.~ ~ ~ 4~cubes in ~ 16 '+ ~ 3/4 

...... ()... regular 
~~ ~ lattice ..... 

~------------_____ 4 

3 

Fig. 7. Four constant strain triangular finite elements arranged to form a quadrilateral and its diagonals. 

Let the coordinates of the node i be Xi' and let the node have a displacement increment ui . The 
area A of element I before the displacement increment has taken place is then equal to 

A (3.1) 
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where X ~nd • denote the-usual vector and scalar products respectively, and k is the unit vector 
perpendicular to the plane of the elements. Similarly one finds that after the .displacement incre­
ment has taken place, 

(3.2) 

Subtraction of (3.1) from (3.2) furnishes 

A =l[(xz xo) X (u.- UO) (Xl -xo) X (u 2 - uo) + (u2 - uo) X (u l - uo)]· k . (3.3) 

When one neglects the second order terms, the incompressibility constraint takes the form 

(3.4) 

Similarly, for the elements II ,and III, one obtains 

(X3 -xo) X (ul uo) ~ (Xl -X'o) X (U 3 - uo) , (3.5) 

(X4 - X'o) X (U3 Uo) ;::; (X3 - Xo) X (U4 - Uo) . (3.6) 

Now multiply (3.4) by IX3 -X'o Ifixi -xo I, furnishing 

(3.7) 

since X3 -xo and xl -Xo ~ave ~pposi!~ directions. ,Similarly, one obtains for (3.6) 

• • IXz",:"xol ... 
-(Xl -xo) X (u 3 -uo) = I I (x3 -xo) X (u4 -uo)' x4 -xo 

(3.8) 

Substitution of (3 .. 7) and (3.8) in (3.5) then furnishes 

(3.9) 

or, alternatively, 

(3.1 0) 

With the same argument as was used for (3.7) and (3.8) this yields 

which proves that the incompressibility constrai,nt in element IV is satisfied. 
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It should be noted that this approach requires no modification of existing finite element pro­
grams. The groups of four elements have all the generality in application of the usual quadrilateral 
elements, and the calculations can be carried out without changes to an already existing program. 
The principal shortcoming of the method is that it can be applied only to problems of plane strain, 
for which another alternative (the 6-noded triangular element) already exists. Even this alternative 
can be slightly improved by arranging the 6-noded elements similar to the 3-nodes ones. The ratio 
of degrees of freedom to constraints then improves from 4/3 to 16/1 I. 

It should also be noted that the degrees of freedom available need not actually be incorporated 
into the finite element solution. For example the degrees of freedom corresponding to the interior 
node "0" of fig. 7 may be "condensed out" of the master stiffness matrix and recovered later. 
(See, for example, [7].) 

As yet no method has been devised to arrange the I Q-noded tetrahedra such that an acceptable 
ratio of degrees of freedom to constraints is obtained. Therefore a different, more general approach 
is needed to solve problems other than those of plane strain. 

4. A modified variational principle 

It has been discussed before that an absolute requirement for the existence of a limit load is 
that the dilatation increment €kk vanishes pointwise. It has also been demonstrated that only a 
few of the conventional element types are, or can be made, useful to analyze problems under this 
constraint. Therefore it is desired that different elements be constructed for which fewer con­
straints per element are sufficient to satisfy the incompressibility requirement . .This goal can be 
obtained by taking care that the dilatation is governed by fewer parameters than in the conven­
tional elements. Clearly, this procedure may be applied only to higher order elements for which 
the conventional number of constraints per element exceeds unity. Theoretically it is possible to 
construct interpolation functions that have this property; in fact, if the arrangement in fig. 7 is 
taken as a single element, and the displacement of node Q is chosen such that the dilatation in all 
subelements I through IV is the same, one has obtained such a function. This special field must, 
however, be considered as a "lucky guess", and a general approach to construct similarly simple 
fields for other elements does not seem to exist. 

An alternative way to solve the problem is to create a variational principle in which the dilata­
tional strain increment and the displacement increments are present as independent variables. We 
then have complete freedom to characterize the dilatation by as many (or as few) parameters as 
we choose. Such a variational principle is akin to the Hellinger-Reissner principle [8], which 
admits the displacements and the stresses as independent variables. The validity of the present 
principle will, however, be proved here independently of the H-R principle. 

Consider the functional 

(4.1) 

where 
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ei; t (Ui,j + U;, j) i 0i; Uk, k is the deviatoric strain increment, 
JY'(e jj ) is the deviatoric rate potential [W' =-!sjje jj ; oW' s/joejiL 
¢ is the (independent) dilatational strain increment, 
I<. is the (instantaneous) bulk modulus. 

This functional is well defined if a finite bulk modulus K exists. 
That this functional corresponds to a valid variational principle is readily proved in the usual 

way. By taking the first variations in ui and ¢ one finds 

0/= J (SijOeij+l<.~ouk,k)dV - J TjouidST + J K(Uk,k ¢)o¢dV, 
v ST v 

and since 

this can be written 

0/ J ai; OUI,j d V 
v 

(4.2) 

(4.3) 

(4.4) 

The first two terms express the virtual work principle and hence imply that aii satisfy the con­
tinuing equilibrium equations in V and force rate boundary conditions on ST in the usual manner. 
The last term provides the additional result that if> = Uk,k' 

It is appropriate to compare the present principle with the principle created by Herrmann [5] 
for the analysis of incompressible, linear elastic materials. The functional used by Herrmann would 
have the incremental form 

H=H[u,h] = J p.[€ij€;j + 2vhekk - v(1-2v)h2] dV f Tiu;dST ' 

v ST 

where 11 is the shear modulus, v is Poisson's ratio, and where the "mean pressure function" is 
given by 

h 

(4.5) 

(4.6) 

Apart from its specialization to linear elasticity, the fact that f.kk enters Herrmann's principle 
quadratically is an essential difference. Indeed, this does not allow for it the same simple proce­
dures that can be based on the present principle and that allow the easy adaption of existing con­
ventional stiffness programs· to it. 

Before going to the application of the principle, let us determine how many constraints per 
element would be desired, in order to get an as close as possible approximation to continuum 
behavior. In the continuum j each material point represents two (in problems of plane strain or 
axisymmetric problems) or three (in three-dimensional problems) degrees of freedom. For incom­
pressibility, one constraint is valid at each material point. Hence the ratio of degrees of freedom 
to constraints in the continuum is equal to two or three, depending on the type of problem. 
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It seems plausible that a finite element solution to an elastic-plastic problem would give the 
best overall approximation if the ratio degrees of freedom to constraints would be the same as in 
the continuum. Hence a "two" would be desired in the last column of table 1 and a "three" in 
the last column of table 2. This readily leads to a desired number of constraints per element. For 
instance, for the 4-noded quadrilateral elements in table 1, the desired number would be one) and 
for the 8-noded quadrilateral elements, it would be three. Similarly, for the 8-noded cube in 
table 2, one constraint would be desired. Similar desired numbers can be obtained for the other 
elements in the tables. 

Now let us for the moment restrict the discussion to those elements for which the desired num­
ber of constraints is equal to one. As has been discussed before, one then needs a dilatation incre­
ment governed by a single parameter. It is, on the other hand, negessary for convergence that at 
least a consta~t dilat<;ltional strain increment be obtainable within an element (see, for instance, 
[7]). Hence, it is necessary to choose in an element 01. 

. . 
tf> == tf>ex == constant. (4.7) 

Substitution of (4.7) in (4.1) then furnishes 

p . 

1== B J [W'(eij} + K~(XUk.k iK¢~] dVex - J T/l i dST • 
ex=1 V(X ST 

(4.8) 

Variation of ¢(X then yields the relation 

¢(X == J KUk,k dVOl / .f KdV(X. (4.9) 
Vex V(X 

In practically all cases the bulk modulus K will be constant within an element; in problems of non­
dilatational plasticity, for instance, I<. == "el is a constant, and may be brought outside ·the integral 
in (4.9) so that 

¢Ol == V;;l f Uk,k d Va . .(4.10) 
VOl 

Substitution of (4.10) in (4.8) then furnishes the modified functional 

7= E J [w'(e1i ) +-tK {V;;l J Uk•k dV"f] dV. - J t;iJidST · 

v~ VOl ST 

(4.11) 

This functional can be simplified by defining the modified strain increment 

=-!(U~j·+Uj.i)+10ij (V;;l J Uk,k dV(X -Uk,k) 
Vex 

(4.12) 
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so that the functional (4.11) can. be written as 

( 4.13) 

where W represe~ts the total rate potential (i.e. 8 W(e) = fI ij oe;j)' but evaluated for the modified 
strain increment "iii" It should be observed that the functional (4.13) may be expressed purely in 
terms of nodal displacement increments; hence no additional variables (i.e. mean pressure) have 
to be used. It should also be noted that the functional is identical to the usual rate potential func­
tional with the exception of the relation between strain and displacement increments. As was 
mentioned before, this makes it extremely simple to adapt an already existing program for this 
method. One need only rewrite the matrix converting nodal parameters to strains in accord with 
(4.12). An equally simple formulation cannot be obtained with Herrmann's variational principle. 

It is interesting to note that the frequently employed procedure of replacing the radial1y­
varying strains in axisymmetric triangular e1ements by their values at the element centroid could 
be viewed as being based on a variational principle similar to the present one, in both cases imple­
mented by changing the strain-displacement relationship. 

For element types for which the desired number of constraints is larger than one, the situation 
is only slightly more complicated. Consider for instance the 8-noded quadrilateral plane strain ' 
element. For this element type, the desired number of constraints is equal to three. A possible 
choice for ~o. is then 

( 4.14) 

where ~~, ~~ and ~& are constants, and xO' Yo is the centroid of the element. Following a proce­
dure similar to the one followed before, one readily derives the relations 

¢~ = V;l' J Uk,k d VOl ' 
Va 

~~ = r;~ J (x xo) Uk,k d VC( ) ( 4.15) 
VOl 

¢& == /;~ J (y - yo) Uk,k d Va , 
Va 

where/
xa 

andI
Ya 

are the moments of inertia around thexo andyo axes. A similar procedure can 
be followed for the 8-noded quadrilateral axisymmetric element and the 20-noded cube. In each 
case Eij is defined analogously to (4.12) in terms of nodal displacements, and the incremental 
stiffness equations are derived in the usual way from (4.13). 

Finally it should be noted that only the quadrilateral or cubic elements have a desired number 
of constraints which corresponds to a simple and symmetric choice of the dilatational strain in­
crements. For the triangular or tetrahedral elements the desired number of constraints does not 
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make such a simple choice possible. If we did not already know that the six-noded plane strain 
triangle was suitable for incompressible analysis, we would conclude, for example, that the de­
sired number of constraints is two, which does not correspond to a complete symmetric develop­
ment of the dilatational strain increments. 

Because the most significant errors in computed overall load-deflection curves occur in the 
fully plastic range, where the deformation gradients may no longer be infinitesimal, a rigorous 
finite strain finite element formulation may in some cases be required. An implementation of the 
variational principle presented here for such a formulation is given in Appendix 2. It may also be 
noted that the present variational principle, eq. (4.1), may be put in a mean stress form by letting 
Jab == q, say, be the variable, and this is suitable for strictly incompressible materials (K -7 00). 

5. Numerical examples 

In order to examine the results of the analyses of the preceding sections in specific numerical 
solutions, plane strain beam bending, the thick-walled plane strain tube under internal pressure, 
and the tensile analogue of the Prandtl punch problem were solved. 

For the first type of problem, the kinematic requirement of pure bending that plane sections 
remain plane was enforced, so it was necessary to examine only one row of elements across the 
beam thickness. Ten square 4-noded isoparametric elements were placed across the thickness. 
Displacement boundary conditions were imposed, and the total moment was computed from the 
calculated nodal tractions. The material was modeled as elastic-perfectly plastic with a Poisson's 
ratio of 0.3. The problem was also solved by applying identical boundary conditions to a mesh of 
the constant dilatation isoparametrics developed in Section 4) and to a mesh composed of 10 
squares', each of which was composed of 4 di~gonal1y crossed triangles, as presented in Section 3. 

The results are shown in fig. 8. The limit moment for plane strain, assuming a Mises yield con­
dition, is simply 

1.4 
REGULAR ISOPARAMETRICS. 

ONE STRESS/ELEMENT ---. 
STRESS AT EACH INT.STA. 

1.2~~~~~~~~§§§~~§§~ 
1.0 CONSTANT DILATATION ISOPARAMETRICS 

ONE STRESS/ELEMENT 

~
CROSSED TRIANGLES 

AND 
CONSTANT DILATATION ISOPARAMETRICS 

STRESS AT EAClI INTEGRATION STATION 

PERFECTLY PLASTIC 
PLANE STRAIN 
BEAM BENDING 

(5.1) 

Fig. 8. Moment-curvature curves obtained from finite element solutions of perfectly plastic plane strain beam bending. 
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where 00 is the tensile yield stre~s and h is the beam thickness. The beam curvature X is normal­
ized with respect to XO' the curvature necessary to bring the outer beam fibers to yield. 

As can be seen, the ordinary isoparametric element does not find a limit load at all; all ele­
ments across the thickness reach yield, and the moment-curvature curve continues to rise. The 
steepest curve shown in fig. 8 is the case for which one stress state per element, calculated at the 
element centroid, is used to represent the stress state throughout the element. The next steepest 
curve results from calculating and storing the stresses at two thickness-direction Gaussian integra­
tion stations per element. 

The third steepest curve is the result of using the constant dilatation quadrilateral element with 
one stress state per element. Finally) the two essentially coincident curves which actually find the 
correct Hmit load are the results of the crossed triangles and the constant dilatation quadrilaterals, 
calculating and storing the stress state within each element at each Gaussian integration station. 

We may interpret these results by recalling that point-wise incompressibility is a necessary but 
not sufficient condition for a limit load to exist in the finite element modeL In fact, it is also 
necessary that, at limit load, all deviatoric strain increments be normal (pointwise) to the yield 
surface. However, it is not in general possible for the constant dilatation quadrilateral to deform 
in a manner so that the deviatoric strain increment, which is permitted to vary within the element, 
be pointwise normal to a single stres~ state on the yield surface. When the stress state was calcu­
lated and stored at th~ Gaussian integration stations, however) the computed deviatoric stress in­
crements tended to vanish in the fully plastic range for both the regular and constant dilatation 
isoparametrics. In fact, the difference between the terminal slopes of the moment-curvature rela­
tions for one versus four stress measures per element was identical for the regular and constant 
dilatation isoparametrics. 

Thus, for this particular problem, the relative magnitudes of the errors in the terminal load­
deflection curve associated with failure to meet the necessary conditions of pointwise incompres­
sibility and pointwise normality of deviatoric strain increments in isoparametric quadrilaterals are 
given, respectively, by the terminal slopes of the second and third steepest curves of fig. 8. 

The same problem was also solved for the case of linearly hardening material behavior, with a 
hardening modulus of one-hundredth the elastic modulus. In this problem, a constant terminal 
slope to the moment-curvature relation is readily calculable. The results are shown in fig. 9, where 
it is seen that the ordinary isoparametric element formulation exhibits much too stiff a response 
in the, fully plastic range, a result discussed previously. The essentially coincident terminal slopes 
of the moment-curvature curves exhibited by both the constant dilatation quadrilaterals and the 
crossed triangles were less than one percent in error from the analytical terminal slope. 

The beam-bending problems were also solved with ten irregularly-shaped constant dilatation 
quadrilaterals across the thickness, and the results were essentially unaffected. 

The thick-walled plane strain tube under internal pressure proved a less dramatic example of 
the analysis of the preceding sections. A IO-degree sector of a tube with outer diameter to inner 
diameter ratio of two was modeled with five quadrilateral elements, the nodes having equal radial 
spacing. The problem was also solved with the same quadrilaterals formed from four triangles with 
the additional node lying at the jntersection of the diagonals of the quadrilateraL Radial displace­
ment increments were prescribed at the two nodes on the inner diameter, and all boundary nodal 
displacements were constained to be radial in direction. Pressures were inferred in the virtual work 
sense from the nodal forces at the two inner-diameter nodes. 
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Fig. 9. Moment-curvature curves obtained from finite element solutions of linearly hardening plane strain beam bending. 
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The trend in load-displacement curves obtained was the same as in the beam-bending problem. 
However, the quantitative differences between loads at a given deformation were greatly reduced. 
In fact, the maximum difference in any computed load at any point in the deformation was less 
than four percent. The load obtained when "steady state" conditions were reached was within a 
few percent of the known limit load, and the pressure-expansion curves agreed closely with that 
obtained by Hodge and White [9] using finite differences and presented graphically in [10]. 

Finally, the problem of the plane strain deep, double-edge-notched (DEN) tensile specimen, 
shown in fig. 10, was solved using a very fine mesh of first regular then constant dilatation iso­
parametrics. This problem is the tensile analogue of Prandtl's punch problem (see, for example, 
[ 10]). In this case, the limit load in terms of the net stress on the ligament is given by 

for the von Mises yield criterion, where ao is again the uniaxial tension yield strength. 
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3.0 i"------:/"'---:============-
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(5.2) 

Fig. 10. Load-displacem~nt curves obtained from finite element solutions of a deep double edge notched tensile specimen. 



172 I.e. Nagtegaal el 01., On numerically accurate finite element solutions in the fully plastic range 

By symmetry, only one-fourth of the DEN specimen was analyzed. The specimen width to 
ligament width ratio was W/b == 10. The loading was accomplished by imposing increments of 
constant end displacement at the upper end of the specimen. The load was computed both from 
the nodal tractions along the top row of nodes and from the average stresses in the top row of 
elements. Both methods gave essentially the same results. 

Fig. 10 shows the load-displacement curves as computed from the two finite element formula­
tions. As can be seen, the ordinary isoparametric elements fail to find the correct limit load, and, 
in fact, the load-deflection curve continues to rise at roughly constant rate, exceeding the limit 
value by approximately 25% at the point for which computation was stopped. Indeed, this large 
error has accumulated at an end displacement of only about 5 times the displacement given by 
extrapolating thelinear elastic loading line to the limit load. 

The load-deflection curve obtained from the mesh of constant dilatation quadrilateral elements 
is indistinguishable from that of the regular isoparametric elements up to roughly 60% of the limit" 
load, at which point it begins to decrease in slope more rapidly. As the deformation proceedsintb" 
the fully plastic region the difference between the two load-deflection curves increases rapidly. 
At the point at which computation was stopped, the load' was approximately 3% less ~han the 
analytical limit load, and the tangent modulus load-deflection slope was roughiy 0.1.% of its elas­
tic value, versus an apparently not decreasing 5% for the regular isoparametric elements. 
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Appendix I: Incompressibility effects in finite element meshes 

The condition €kk = 0, pointwise} has been shown in the text to enforce the unrealistic con­
straint on rectangular plane strain 4-node isoparametric elements that €xx and €yy must be the 
same for every element of the grid, and, if the 4-node isoparametrics are arbitrarily skewed quadri­
laterals, then the shear strain increment rate €Xy must also be the same in every element. 

In this appendix, the consequences of €kk = 0 pointwise will be examined for some other typical 
mesh configurations in both two and three dimensions to demonstrate the unrealistic constraints 
which are enforced upon admissible displacement rate fields. 

Consider the array of triangular constant strain elements shown in fig. 11, and generated by 
single skewing of a rectangular grid. Since Exx + €yy == 0, one can go from element to element 
along the band of elements marked * and show that Exx and Eyy are the same in every element of 
such a band. 

Consider a rectangular array of 8-noded, three dimensional isoparametric elements, shown in 
fig. 1 2. The displacement rate field within such an element can be expressed as 

= d + bx + cy + dz + exy + fyz + gzx + bxyz . 
. '. . , 

(Al.I) 
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Fig. 11. Propagation of incompressibility constraints in a rectangular mesh of singly skewed constant strain triangular finite 
elements. 

z 

Fig. 12. Three-dimensional block of rectangular eight-node isoparametric brick finite elements. 

The incompressibility constraint, namely 

• • • aUx aUy auz 
€ +€ +€ =--+--+-=0 
xx yy zz ax ay az 

requires that h = 0 and that the other terms be constrained such that the direct strains vary 
linearly within the element according to 

€zz = -(p+q) + ax + ~y, 

(AI.2) 

(A 1.3) 
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where p, q, 0:, ~, and 'Yare constants within an element and are expressible in terms of nodal 
coordinates and displacement increment rates of a kind compatible with the incompressibility 
constrain t. 

Now consider any inter·element interface of the kind z = constant. The tangential strains €xx 
and €yy must be continuous across the interface and, because = (€xx + €yy) always, so must 
€zz be continuous across the interface. But from (A 1.3), since does not vary with z within an 
element, and since is continuous across element boundaries, we therefore have the constraint 
that has the same value at all points along a line extending in the z-direction. That is, €zz is 
independent of z, and by similar reasoning €xx is independent of x, and €yy is independent of y. 

In fact, by further considerations of continuity, it may be shown that the normal strain rates 
throughout the entire array are given by equations of the kind 

€xx = B(y) C(z) , 

€ = C(z) A(x) , yy (A 1.4) 

= A(x) B(y), 

where A(x), B(y), and C(z) are each continuous functions of their arguments, varying 
linearly within elements. 

To see how severely this constrains admissible incremental deformation fields, suppose that the 
plane z = 0 corresponds to a fixed boundary on which all displacements must be zero. Then € xx 
and €yy vanish on this plane and, by the argument advanced so does €ZZ. Hence, from (A 1.4), 

A(x) B(y) 0, 

C(O) A(x) 0, (A1.5) 

H(y) C(O) 0, 

which requires that A(x) = B(y) = C(O), and hence the most general admissible deformation field 
for the entire array of elements is 

C(z) C(O) , (A 1.6) 

€zz = 0 . 

If we further suppose that the plane x = 0 also coincides with a fixed boundary, then 

€xx = €yy =0 (A 1.7) 

throughout. 
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Appendix 2: Generalization to finite deformations 

For the class of elastic-plastic materials deformed at finite strain which admit the existence of 
a constitutive rate potential, Hill [11] has shown that the solution of boundary value problems 
can be obtained from the following variational principle, and an Eulerian finite-element formula­
tion for problems of large plastic flow has recently been based upon it [12, 13]: 

ji';v;dST] =0. 
ST 

(A2.1 ) 

Here V is the current (deformed) volume, and ST is the portion of the current boundary on which 
nominal traction rates ti based on the current state as the reference state are prescribed. The rate 
of deformation tensor is D ij , Gij is the Cauchy (true) stress tensor, and av)aXj is the velocity 
gradient with respect to current coordinates. The function U(Dij ) is homogeneous of degree 2 in 
Dij and has the property that . 

(A2.2) 

Here £ijkl are the instantaneous moduli appropriate to the adopted measure of stress rate, and are 
possibly dependent on the direction of Dij' The stress rate itself, ¥ii' is the Jaumann, or co­
rotational, rate of Kirchhoff stress, based on a reference state that has been chosen to coincide 
instantaneously with the current state, and Kirchhoff stress Tij is defined as a Ij times the ratio of 
reference state to current material density, so that Tij = Gij instantaneously. Note that the exis­
tence of U requires that moduli have the symmetry 

(A2.3) 

and this ensures a symmetric incremental stiffness matrix for the corresponding finite element 
equations. The class of materials which admit rate potentials include all elastic materials for which 
a strain energy function exists, and also all elastic-plastic materials which satisfy the normality 
rule when phrased in terms of work conjugate stress and finite strain measures [14]. 

A generalization of the Prandtl-Reuss equations for finite deformation [12,13] which admits 
the rate potential U is obtained by relating the Jaumann rate of Kirchhoff stress to the rate of 
deformation tensor in the usual Prandtl-Reuss form: 

DP.= 
lJ 

and 

(A2.4) 
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for continued plastic loading. Here 7 2 = 1 T;j Tli and h is the slope of the stress-logarithmic plastic 
strain curve for simple tension. Note that in this case and for other plastically incompressible 
materials ¥-ij differs from Zjj only by the term (1 2v) aij Ukk/E, and this is negligible by compari­
son for almost all technological applications of the theory to metals. 

Thus equations (A2A) can be inverted, and the resulting Jaumann rates of Kirchhoff stress 
separated into hydrostatic and deviatoric parts' to give 

v, E [Df 
T i; = 1 + V ij (A2.S) 

if at yield and T~lD~l > 0 

otherwise. 

Thus the deviatoric and hydrostatic Jaumann rates of Kirchhoff stress have functional depen­
dence only on the deviatoric and hydrostatic parts of the rate of deformation tensor, respectively. 

From these relations, the volume integral of the rate potential U = 1 ~ijD ij in (A2.l) can be 
separated into deviatoric and hydrostatic parts to obtain 

J 1 JjjDij d V = J [1 ~;jD;j +1 KD;kJ d V . (A2.6) 
v v 

Because this integrand has the same functional form as the conventional small-strain rate poten­
tial for Prandtl-Reuss materials, the variational principle of Section 4 can be readily generalized 
by replacing the term -!- KDik in (A2.6) with K.(Dkk¢ ~2), as in (4.1). As in the text) independent 
variation of the velocities and of ~ furnishes ¢ = Dkk , the dilatation rate. 

The finite element implementation of the finite strain version of the variational principle of 
Section 4 then follows straightforwardly, with the total element stiffness matrix being the sum of 
the stiffness corresponding to the modified rate potential and the "initial stress" stiffness, which 
corresponds to the· second volume integral of (A2.1). 
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Note Added in Proof: Dr. S. W. Key has infonned us of his development of a variational principle 
for elastic materials which presents an alternative to Herrmann's principle in the same fonn as our 
eq. (4.1). He does not comment on the way this may be implemented within standard programs 
by simple redefinition of the strain-nodal displacement relations, as discussed in connection with 
our eqs. (4.11-4.13), but this may be done also with his approach. Key's work is published in: 
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