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TIlE INITL\TION AND GRO~ITH OF SHF..AR BANDS 

t J. R. Rice 

Palcer and Rice (1973), hereafter designated PR, have proposed a 
UDdel for the growth of localized shear bands in the progressive failure 
of ovcrconsolidatad clay. Their model entails a gradual decay of strength
~~thin the end zone of the shear band, fro~ peak to residual levels, with 
increasing relative sliding displacement. They derived conditions for 
propagation of the band by J-lntcgra~ oethods analogous to Rice's, 
(1968 atb) treat~ent of similar cohesive zone models for tensile cracking. 

In the present paper the problem of initiation of a shear band 1s 
first discussed, giving special atccntion to the way in which the onset of 
localized deformation night be viewed as an instability in tha constitutive 
description of ho~ogencous defo~ation. Following this, the criteria of 
PR for groy,tn of an e:-:isting band· are revic~·'ed and adopted as a starting 
point for study of sooe factors that could govern the ~ of propagation. 
These factors "iere noted in the concluding discussion of PR, as po!;sible 

. sources of the time scale for proarcssive failure, and include: 
(i) Local pora.-t,:ater suctions and diffusive flu.."(cs induced 

at the grouing end of the band by dilation of the soil as it fails 
in shear. Here it is envisioned that the induced suction augoents 
the effective ccmpressive stress on the slipping surfaces, thus 
increasing the shear resistance over what would develop, say, at a 
lo~er growth rate for ~hich there would be more time for diffusive 
equalization of por2 pressures. 

(ii) Factors which influence the bulk behavior of soil out
side the shear band, so as to result in continued relative sliding 
on the band and thus aid the degradation of shear resistance frc~ 
peak to residual. This eould result from viscoelastic creep of 
the soil, and also fro~ the tir-a-dependence of defcrr-ations due to 
bulk pore-vater diffusion in response to load changes. It could 
further include Bjorru~ts (1967) notion of a te~dency for elastic 
spring-b3ck of ovcrconsolidatad clay due to the time-dependent 
veathering bra3kdo.~ of soil bonds. 

It should be noted that rather si~ilar stabilizing influences of 
pore-~1ater could occur in dilatant rock m3sses during fnulting. Such 
effects have been proposad by Frank (1965) and Brace and }tartin (1968) t 

and have recently been suggested as a possible source of premonitory 
warnings of shallow-focus earthquakes (Nur. 1972; Aggar~al at a1. 1973) 
as well as an explanation of aftershock activity (Nur and Booker t 1972). 

DiITIATION OF SHEAR BANDS 

The pheno~ena of localization of deformation in a band is widely 
observed in the mechanics of cateria1s and, in general. there are t~o 
types of hypothesis thet can be developed for it. The first is that sone 
essenti.:llly new physical ni!ch~nis= sets in, a,bruptly, and dc~radcs the 
strength of the material. The sudden breaking fIce and multiplie3tion of 
pinned dislocations in the Luders yielding of mild steel may be an example 



· . " 

-2-

of this type. 

The alternative hypothesis is that localization can be understo~d 
solely on the basis of a smooth continuation of the materi<11' s stress-"'_ 
sttain relations as they are observed in the pre-failure re~ice. The 
notion is that these stress-strain relations ~~y lead to instabilities in 
mathematical solutions to bo~ndary valua problems. In pa.rticular, under 
boundary conditions that are compatible with hooo3eneous defor~ationt one 
may seck a bifurcation point in the solution to the 1ncreocntal defoma
tion problem, for 'l."hich the non-uniforn mode consists of localization of 
the cOtltinuit1g deforoation in a plAnar band. "Berg (1970) has proposed 
this type of hypothesis for characterizing the initiation of fracture in 
ductile eetals. He supposes these to contain m~ny small cavities'on the 
microscale \-lhich gron with i.reposed deforJlat1on, leading to C3croscopic 
constitutive relations that exhibit dilatAtional plastic flo~ and, ulti
mately, strain sof~ening. 

The same analysis could be follo~7ed for oV>2!'consol1da. ted soi~s. 
Indeed, to the' e"tcnt that a smoot.h yield locus ~Tith plastic nort~ality is 
8ppHce.blc t the problcn of uniqueness can be posed ,;ithin Hill's (1958) 

"general vsrit.t:tona1 forraulation. But the resulting predictions are very 
much affected by dcvQlop;;Jcnt of a pointed vertex on the yield locus and 
by deviations from plastic normality, and no g~neral a.nalysis is yet 
ava:i.lable. 'Ihe que:r.tion of a vertex is inportnnt becnuse, \1ithintne 
rigid-plastic apyrv:d:"lstion, localization can occur only ~hcn the bifur
cating strain rate field 1s co:~?atiblc with the e:dstcnce of a plane of 
zero defor.",1<'1::ion rate. This neans that for a tn:ltcrial \11th a sr.,Qcth yield 
locus I having ratios of strain rate co!:!ponents c0T::!)letely sflecificd by the 
current state of stress (by contrast to the situation with a vertex), bi
furcation is ir.possible unless the current state is one fer which the 1n
temediate prineip.:;.1 strain rate vanishes. lZhan this l~incnatical condi
tion is met, and norr.2lity applies, loc~lization can occur in isotropic 
materials only ~hen the rate of strain h~rdening, when phrased in tame 
of true or Cauchy stress, is non-positive. This was sugr,estcd by Berf, 
and can be proven elso from Hill's varintiona.l formulation (question on 
graduate pla5ticity e::Am, Bro'un University, January 1972). 

A gen~ral method for addressing bifurcation cor.ditions, correspon
ding to localization in a uancl, is outlinod in the remainder of this sec
tion. We let ci~ be a stat~ of stress thet has been achieved in the 
uniforn deformati"on of a sample o"f ho~o£cneous nRterial. The requlre!lent 
for continuing equilibrium from a uniform stress state is 

(1) 

where the dot deno"tes the instantaneous tiee derivative follo~ing a mate
rial particle nnd Xi' X~t Xa arc cartesian spatial coordinates. Clearly, 
these equations will be satisfied if the next incrc!lent also constitutes 
uniform defomation, i.e. spatially uni"folin aVL /ilxj ,,,,'here v£ is the 
instantaneous velo~ity field. 

But 'Io1e 'Io11sh to determine circu::Istanccs under which equilibrium can 
be satisfied by a non-unifom field corrc~;pol1ding to v2rbtions in the 
amount of deformation within a plar.ar band. If the coordir.ate syste~ has 
been chosen so that the planes x2 a constant align with the b5nd. the 

{Io~~:tte(t ~+ -(i'-.so~~t·~~ll\ t"e: O~i"+b~"0~~L5:'~'~t/;'~r V;f\'eJ WC+~ X2 

~l • 
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within the band, being uniform outside it. It is straightforward to show 
that the most general co~patiblc flow field of this kind has the form 

• (2) 

where the d denotes differences in value between the field within the 
ban4 and the uniform field outside it. and the functions g t of x 2. are 
non-zero on~y vithin the band • 

• Let 60'· be the corresponding difference in stress rates. It is 
clear that thi~J must also satisfy the continuing cquilj.brium equations 
(1). and that it is a function of x 2.. only t which vanishes outside the 
band. Hence 

• 0 (3) 

is necessary and sufficient for :aintenance of continued equilibriu~ at 
the. inception of b:tfc!'cation. The rate a lj is not invariant to rigid 
spins, and hence is aw~'vard in constitutive rela:ions. Introducing the 
Jaumann rate 0Cj • which is that cc~puted by an observer who rotates 
with the r.aterial at an angulnr Velocity fOrQcd fro~ the anti-symmetric 
part of its velocity gradient field (Prager, 1961), (3) becomes 

.. 1 ( ) 1 
A021 • - 2 °22 - °11 gl + 2 °1383 

6022 • °21g1 + °23g3 (4) 

• 1 ( ) 1 
A023 • - 2 °22 - °33 g3 + 2 u31Sl 

The analysio can be carried further only with specification of a 
detailed constitu~ive law. This will relate 6dlj to the g's and, in 
general, alGa to the unifo~ flow field outside the band, in a form for 
which ~o [j vanishes wh~n the g 's vanish. If, hOivcver t the current 
state is 6UC~ that cqs. (4) can be satisfied for soma non-zero set of gts t 

then conditions for flow localization in a band have been cet. In the 
simplest cases these equations involve an eigenvalue prob1e~ phrased in 
to~s of para~eter5 of the constitutive rate law, and uncoupled to the 
field outsid2 the band. This is so for elastic materials, and also for 
elastic-plastic 03tcria1s.having crnooth yield surfaces and plastic strain 
rate directions dete~ined by the curre~t stress st3te, provided that the 
material outside the band continues to load plastically ~s well. If it 
unloilds) or if th2 yield surface contains a verte:c so that incremental 
linearity (vs. ho=ogencity of degree one) does not result for plastic . v 
loading, considerable co~plications result in that the aO'j ts will de-
pend on the outside iield and vary non-linearly vitll the g's. 

For the rigid-plastic idealization. stress rates are not uniquely 
exprensiblc in teres of the deformation field and this procedure must be 
~odified. As noted above, a non-unifo~ flow field is possible only' if 
the Gtrain rates allowable under the current stress state have a surface 
of zero dcfor~ation rate. If this condition is mat, the sts can be 
expressed in terns of the non,,:,unifori'!1it)' of stress rate and bifurcation 
conditions.are again obtained by r~quiring that (4) h3s non-zero solutions. 
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FR HODEL FOR SHEAR BAND 

In any event, once localized deformation has initiated, say by the 
strain concentration induced by cutting or erosion at the base of a slope, 
a different constitutive description ~ust be developed for the material of 
the band. For ex~?le, in the PR model the band is treated as a single 
surface of discontinuity and the description relates the shear stress T 

acting on it to the nlnount of relative sliding displace.tlent 5 and pre
vailing effective co=.pressive stress a. 1\'hen viewed from the standpoint 
of analysis of tho surrounding continuuD, this constitutive law for the 
band enters as a coupled boundary condition involving .the stress.and dis
placecent junp on the surface of discontinuity. 

At 
'tp - - - -- --

W//> ,..-S(-c ~ 'trl dS 
~ ~L1~~--------r 

6 
~------------------------~~ 

Fig. 1 ,-0 relation for shear band and effect of a. 

Fig. 1 shows a reprc3entative T-& curve as would be inferred 
fra.n a shear box or triaxial test on overconsolidated clay, on the a5s~p
tion that localization has initiat~d at the peak load yith post-peak de
formation of the speciocn resulting prL~3rily from sliding on a single 
band. Due to the loss in strength with increasing 0 J a shear band, once 
initiated, can provide a crack-like stress concentration at its tip and 
hence drive itself on. Indeed. ~he condition adopted for continued growth 
of the band is that the concantr~ted shear stress in material eleoents at 
the tip 'has just been brought up to Tp, and this can occur for a suffi
ciently long band under average stresses only slightly above the residual 
strength Tr. Further, since T 1s related to 0 as in fig. 1, the PR 
model fulfills in a self-consistent Qanner the suggestion of Bishop (1971) 
that strength levels along the band should be considered to vary from peak 
toward residual with increasing distance fron the growing end. 

An important feature of the model is that. it associates a charac
teristic length with the material. This may. e.g., be identified as the 
displacement d defined by 

(T. - T)~ -P r J(T - T )do , r 
(5) 

the integral being identified as the cro5sed area in fig. 1. Typically, 
from the data of Ske~pcon (1964) and Sk~~pton and Petley (1968) on over
consolidated clays, 6 is in the rnnge of 3 to 8 00. The result of 
this length scale is that predictions of the ~odel exhibit Griffith-like 
size effect, "lith the larger soil masses, having lon~er shear bands. meet
ing the propagation criterion at a lower average stress level than would 
a smaller but geometrically similar mass. 
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SOME PROPAGATION CRITERIA 

Fig. 2 illustrates a long slope, inclined ac angle a to the hor
izontal, into vhich a step of height h has been cut. A shear band of 
length R. has progressed up':.lard from the base of the cut. paralleling the 
gro~nd surface. This was analyzed approximately in PR through use of the 
J-Integral, with the assumption that hand ware small in co~?arison 
to t. Here w is the size of the end zone near the tip, beyond ~hich 
the shear stress T is essentially equal to tr 

~ .: h ~ b) -+- -->~p. -
~ 

t ! )0-

Fig. 2 Shear band emanating from step in long slope. 

The principal appro,~~ation is itt assuming that the overhanging 
layer can be treated as a one dimensional element, whosedo~~slope ex
tensional stra,in & at any point along its ler.gth is given in ter::1S of 
the average a of the tensile stress acting through the depth h at 
that point: £ = &(0). The strain is ceasured fro~ zero ~hen a = -p J 

where p is the average co~pressive stress acting over the depth h at 
points uphill fro~ the perturb~tion caused by the shaar band. Hence, 
within the one-di~ensicnal approxi~ationt a = -p just before the end 
zone reaches a ~terial point, and a = (Tg-T~)l/h just after the end 
zone passes by, ~here Tg = pgh sina is the doymslope shear stress that 
would be exerted at depth h by gravitational loadings, in the absence 
of the step or shear band. 

The resulting criterion which must 
able to propagate is, from PR, 

I (tg-T~)!/h - - -
h t(a)da· J(T-tr)dO 

-p 

be met for the band to be just . 

or (6) 

"g + P hIt - "r sa (' 2E' 6h) 1/2 (7) 
tp - tr tp - tr 12 t 

where in the latter form (5) is used and the stress-strain relation for 
the layer in its transition from -p to (t,-T~)1/h is linearized to 
o • -p + Ett. In (7) it may be noted that tg + phi! is the average 
shear stress \-'hieh could be considered to act on the band, due to the 
gravitational loading and to the side force of the initial ~ateral pres
sure p. Thus we see the size effect: for s~all 6, or for large over
all dimensions of the slope, the propagation criterion can be met at an 
average stress that _is well below T p and only slightly above T y • 

Alternatively, if 0 and the physical di~ensions are such that the right 
side of (7) is near to or greater than unity; the small end zone approxi
mation in the analysis is untenable and propag~tion occurs under an aver
age stress near Tp. We may note also that even if the slope angle is 
such that T8~ Tr I a sufficic~tly large initial lateral stress p will 
drive the band indefinitely. 
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The energy balance interpretation of the PR propagation criterion, 
discussed in general terms in theiF Appendix, is cade evident after multi
plying by dl in (6) t integrating by parts on the left and rearranging 
it to read '£ 

(i !)(&3d1) • hdl J La(C)d& + (T 1)(ct d1) + dt !(T-T )do • (8) 
g ~ . 0 r r 

Here £k is the strain at the point which has just been passed by the end 
zone, and at which G = (Td-Ty )l/h. Thus if the band advances by dl 

c • 
the overhanging layer beyond the end zone moves dOw~slope un1formly by 
ltd!. From the definition of Tg t. Tgt is the net downslope gravita
tional force. on the overhang and hence the left side of (8) is the work 
input during the novement. This should balance against the stress work 
of deforming the material plus the frictional dissipation on the shear 
band and, indeed, the right side of (8) has exactly this interpretation: 
The first term is the stress work in bringing the ele~ent hd! of over
hang to the strain £l' whereas the second term represents frictional dis
sipation against the residual part of the shear strength and the final 
term, involving the shaded area of fig. 1, represents dissipation against 
strengths in excess of the residual level. This interpretation makes it 
clear that the propagation criterion as given by (6,7) is, ~ithin the one
dimensional approxi~4tion, valid even if the overhang defo~s inelasti
cally, so long as the relation £ = c(5) e~ployed in the criterion re
presents the actual strain evolution as the stress increases from -p 
to (Ta-T~)~/h over the end zone size w. Of course, the ·one-dicensional 
approximation itself is more justified in the elastic ease because then 
the stress work in non-uniform d~forcations near the tip is fully re
covered. 

A general analysis was also given in PR for the case in which the 
.surrounding continu~ is regarded as linear elastic and the end zone w 
is taken to be small in co~parison to the shear band length and other 
dimensions of t~e soil mass. In that case the propagation criterion is 
phra.sed in terms of the shear mode stress intensity factor K (see, e.g., 
Rice, 1968 a) as co~puted from the singularity of the slastic stress field 
solution that results when a vanishingly s~all end zone is assumed, so 
that ,. is taken to be ,. r' everywhere on the band. The resul t for an 
isotropic material is 

• J (T-T )do . r • (9) 

where E' • as earlier, is the plane strain tension modulus and is re
lated to the shear modulusG and contraction ratio v by E' - 2G/(1-v). 

The elastic singularity characterized by K is actually consider
ed to be annulled. in the ~nner of Barenblatt (1962), by that of opposite 
sign induced by resisting stresses in excess of T~ within the end zone. 
Because of the assumed smallness of the end zone, this can be cocputed 
from the formula for surface loads on a semi-infinite shear crack in an 
infinite body, and the result is 

x • (2/v)1/2 Ie R-1/2 [i(R) - TrJdR 
o 

(10) 

. where T(R) is the stress at distance R from the tip of the band. 



-7-

One may also compute the relative sliding displacement 6 near the tip 
of the band from the same seni-infinite crack model. The result for 0 
at a distance S from the tip of the band is, when (10) is used to eli
minate an explicit dependence on K I 

.6(5) .. (4/1IE')r[T(R)-Tr){2(S/R)"~- 10g{1+(S/Rjl1] + log Il-(S/R)'I1I}dR • 
. o. 

(11) 
as may. e.g., be developed from methods of crack elasticity given by 
Rice (1968 a). By assuming a linear variation of i with R. from 
t P. to TrOver the distance tAl. and requiring that the result of (10) 
satisfy the propagation criterion (9). the end zone size was est~ted 
in PR as 

91f G 6 
w • 16 (I-v) T -t • 

P r 
(12) 

With G taken as the loading n:odulus for London clays studied by Wroth. 
this gave w % 250 6 when t~ is hal~ Tp, suggesting end zone sizes 
from 3/4 to 2 m fo:, the range of 0 noted earlier. Larger values 
result if G is taken as the unloading modulus. 

The discussion of time effects is Dost easily organized around (6). 
The rate factor listed as (i) on the opening page atlounts to altering the 
right side of (6) (i.e. the c~ossed area of fig. 1) because T is ele
vated locally by the induced suctions. Thus this term. representing the 
energy which must be supplied to the band for dissipation against strengths 
in excess of ~r t will be an increasing ~unction of the growth rate. 
Those factors listed as (ii) affect only the left side of (6). In parti
cular. viscoelastic and bulk diffusion effects alter the strain £1 pro
duced by the given stress variation, and hence the energy that can be 
made available to supply the required end zone dissipation. These effects 
are such that the energy that can be supplied decreases vith gro~th rate. 
Bjerrum's notion of weathering would in~rease both the initial stress p 
and the springiness with ~hich it is released, and thus increase the 
energy supply. To the extent that such a process will actually take place, 
it is possible that it could be initiated or very much augmented by ex
tensional straining of ground near the growing tip ~f the band, and hence 
contribute to determining the rate of growth in a manner similar to that 
of viscoelastic effects. 

INDUCED SUCTIONS IN A DIL..A.TING mID ZONE 

The analysis of shear failure at the end of a band in saturated 
soil, with local dilation and consolidation effects. poses a formidable 
problem, especially because of the coupling bet~een the induced effective 
compressive stress and the resistance to continued sliding in the band. 
The approach taken here is very much Simplified. 

Let R denote the total volume of water that has been drawn to 
a unit area of the shear band by dilation 'tIithin the end region. For 
convenience. the content is tak~n to rise linearly with distance over the 
end region size W t as in fig. 3. Thus ~hen the band is growing at a 
steady speed V. fluid is being dra~m from soil on both sides of the 

'band at an apparent velocity (H/2)V/w. 
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R 

water 
content 

->v 
suc.t(on 

u.. 

Fig. 3 Water content fro~ dilation and induced suction. 

If fluid diffusion in the soil in directions parallel to the band 
is ignored and if the total no~~l stress on the band is assumed 'to re
main constant. the fluid suctions u induced by this ~ithdrawal can be 
calculated approxinately fro~ the one-di~ensional consolidation/swelling -
equation. Under well known assumptions, this is 

I (13) 

where y is measured perpendicular to the band, M is conpressibility, 
y the weight density of the fluid, and k the permeability or apparent 
velocity per unit gradient in pressure head. Fron standard diffusion 
solutions, the suction on the plane of withdrawal that is required to 
maintain the above constant rate, starting at taO, is 

U .. (H/2)V /Ul (4 k t- )'/2. (14) 
k/y 11 Y H 

Identifying t = R/V from fig. 3~ and noting that the cessation 
of withdrawal at R = Ul is describable by superposition of the neg3.tive 
of the above solution with a shifted time origin, the induced suction 
distribution along the shear band is 

U .. u
1 

(R/w)'i1 for 0 < R < W ; 
1/1. t/l 

U a U1 [(R/w) -(R/w-l) 1 

as shown in fig. 3. where the maximum suction is 

I 11'~ .. H (yV 1ikHw) 

for R > III t 

(15) 

(16) 

For example. taking H" 2 tLt."n, k := 10- 8 m/sec , H \II .02/bar as may be 
appropriate for elastic swelling·of stiff clay, w a 1.5 m as representa
tive of the above estimates, and y for water. 

u
1
=20 bars (V/m/sec)'I'L::;: .07 bar (V/m/day)'~?- (17) 

Thus speeds in the neighborhood of 1 m/day or larger might induce suc
tions that could h3.ve discernible effects on shear resistance. 

To estimate the resulting effect in the propagation criterion for 
t~t:.'! b;!~-!, ~h~ !.!::~:lr elast:ic =:odel with a s::a:!'l end :one is considered. 
We simplify the "t - S relation of fig. 1 to a step form by assuming 
that, in the absence of induced suctions. a co~stant T develops for 0 
less than a certain critic.al value and that T drops abruptly to Tr 
bayoud this value: 

t - T +1 (T -T) for 0 < 16 t'. t'r for 0 > 236. (18) r 3 p r 2 
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This choice of stress level and criticai 0 preserves the value of the 
shaded area in fig. 1, which is the most important parameter in the pro
pagation criterion for the scalI end zone case; the factor 2/3 of 
(Tp-T~) is chosen as this ensures that ,the end zone size ~ computed 
for this T-6 relation agrees exactly with (12). 

The induced suction u increases the effective compressive stress 
on the band by U J and this increases T as shown on the right in, fig. 1. 
The amount of increase is pu, where p is the coefficient of friction 
(a ta~ $). We take a constant value Pp for the nea~-peak range 
IS < 3§../2 , and another constant value u~ fO,r the residual range 
IS' 36/2. Thustladding the terms ~u to T as given by (18), we have 
T as a function of u and 6. The unknoYn of the problem is the dis
tance ~ from the tip of the band at which 6 reaches the critical value, 
but we can write the stresses acting in terms of ~ from (18) and (15): 

T-T
r 

.. ; (Tp -'t r ) + J.1
p

U1 (R/w)'/1.. for 0 '< R < w 

(19) 

T-Tr • urul r (R/w)l!i - (R/w-ljh1 for R > w • 

Thus, by seeing that the IS as calculated from this stress distribution 
by (11) agrees with the critical value at a distance Saw from the tip, 
we obtain the following equation to determine w : 

1 6 " 2(1-v) {~3 T -T )W +"p u1w (I-log 2) - P u1w log 2} (20) 2 ~G P r P r 

Recognizing that u1 is itself dependent on w, this can be solved to give 

~ _ WO [(1+B2j~-SjL. where B. ~ Pp<1-10~ ~~-Pr log 2 u~. (21) 
. p r 

o where w is the value of w given by (12), when there are no suction 
effects, and where u~ is the value of the maxim~ suction that would be 
computed from (26) ~hen WO is inserted for w. Since a vanishes when 
lI ...... 44 lJ f and since a is still very small for typical J.1' S even when 
the velocity is so great that the augmented shear resistance lJpUi has 
become comparable in value to Tp, we can conclude that the size ~ ·of 
the end zone will be virtually unaffected by the induced suction. 

What is affected, however, is the stress intensity factor K nec
essary to drive the band. This is computed froQ (10) in terms of the shear 
stresses of (19). The integral is formally divergent, in a logarithmic 
fashion, and thus we cut off the assuced suction distribution at some dis
tance t from the tip, where 1 can be identified as the length of the 
band or, better, the increase in length that has taken place while the 
band has beea growing at velocities comparable to the current V. Thus ' 
one obtains 

It· (;"r(4<VTr) + lIpu1 + Pru1 {! -1': ! {1- ~r+ log [(er~ (! -1)"1.J)] 

(22) 

The terms in { ••• } approach log (4t/elJJ)"1 when L/IJJ is large, and dif
fer fro~ this by only a fe~ percent even when t. 2w ; hence the latter 
form will be ~sed subsequently. 
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Of more fundacental interest is the augmentation of the resistance 
term S(t-\r)do which arises from ~he local suctions, since this enters 
the general propagation criterion in PR. The term can be co~puted fro~ 
the above K through (9) and, given the earlier remarks, we can use (12) 
fo~ w to simplify the expression. The result is }~ 

f (t-Tr )d6 .. o(tp -Tr ) '6 {1 + : ~~:~Tr) [1 + :: log t:: )"'] (23) 

The dependence on 1 is not very strong: e. g. 1f II r - (2/3»)..1 p , which 
is a typical ratio, the values of [ ••• l for l/w a 4, 20, lOa, and 500 
are. respectively, 1.6, 2.1, 2.7, and 3.2. Thus ve see that the energy 
which must be supplied to the end region, for dissipation against strength 
levels in excess of \r t eould be approximately doubled if ther~ were 
sufficient suction u1 induced to make the augmented shear stress llpU\ 
equal to about 20 to 25% of tp-t r • For example, using the numerical 
values leading to (17) and taking Up a tan (25°) I tp-\y· 0.3 bar t 

this doubling of the dissipation would occur at a growth. rate of approxi
mately 4 m/day. 

There is, of course, considerable latitude in choosing numerical 
values in these formulae. But the conclusion would seem to be that dila
tionally induced suctions could govern the rate of progressive failure 
of a slope only during the terminal stages of shear band growth, involv
ing a time scale on the order ,of one to several days. 

EFFECTS OF BULK TIME DEPENDENCE 
.. 

Effects on longer time scales are, instead, probably explainable 
in terms of time-dependence in bulk material. behavior, although there is 
also the possibility of creep-like effects in the t-o relation for the 
band itself. With reference to the slope of fig. 2 and the corresponding 
propagation criterion (6.7). it is evident that if the band groys with 
speed V , then the constitutive properties (i.e., E' in the linear case) 
used in the criterion should be those appropriate to a time seale of order 
w/V t over which the main stress alterations take place. 

A similar choice of material properties, based on w/V, is sug
gested by solutions to cohesive zone models for steady speed tensile crack 
growth in isotropic, linear viscoelastic materials (e.g., Barenblatt 
et ale 1970; Wnuk and Knauss, 1970). When these a~e adapted to the shear 
mode, in the context of a small end zone model paralleling the elastic . 
results (9-11). and when the t-O relation is simplified to that in (18). 
the propagation criterion has the same form as (9). namely 

K2/Et (w/V) • (t -T )6 
p r • (24) 

where now l/E'(w/V) denotes the creep ccmpliance function for plane
strain tension. evaluated at a time which is a materially-dependent frac
tion of w/V. This time is fJJ/3V for the l-taxwell tlodel. The K which 
appears is the stress intensity factor of the singular viscoelastic stress 
field. cooputed as if there were no end zone; it corresponds with that 
of the elastic solution in certain traction boundary value probleas. The 
distance ~ at which the critical 0 is reached is now no longer a 
material constant. but it is related to K by (10) which remains valid 
in the viscoelastic case. Thus 
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2 2 (9w/32) K /(~ -~ ) p r (25) 
(~ 

and this together with (24) enables the calculation of the K necessary 
to drive the band at any given velocity V. 

Bishop (1968) has summarized some creep data of Lovenbury on 
London clay, suggesting strain increases of approximately 7% and 25% 
over the 3 day value in 30 days and 300 days, respectively. These same 
percentages may be taken as the appro:cimate amounts by which E' should 
be. regarded to have decreased from its 3 day value for end zone processes 
on the tyO longer time scales. Hence (7) would predict that the ~equired 
excess of the average shear stress over ~ necessary to drive the band 
is about 37. and 12% less, respectively, for the two longer time seal~s 
than for the 3 day scale. Given that end zone sizes of order I mare 
expected, and equating the t~e scales to w/V. this data suggests that 
creep effects would require a 10-15% increase in average shear stress 
excess to bring V from speeds of order 1 m/year to those of order 
1 m/day. 

Finally, to briefly consider effects of bulk diffusion, suppose 
. that the slope overhang of fig. 2 is regarded as a porous, linear elastic 
material with shear modulus G. Then the plane-strain tension modulus 
E' would decrease from 4G under completely undrained, ·short-time con
ditions to 2G/(1-v) for coopletely drained. long-time conditions, vhere 
v 1s the drained contraction ratio. If v·.2 this would be a 37% 
drop and would account in (7) for a 21% drop in the excess of the 
average shear stress over T~ that is needed to propagate the band. The 
3mount of this drop that could actually be realized in propagation at 
,peed V would, of course, depend approxi~tely on the dimensionless 
combination of diffusivity multiplied by the characteristic straining 
ttme w/V t div~ded by the square of the shorter of the two diffusion 
poth-lengths. ~ And h. 
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