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THE INITIATION AND GROWTH OF SHEAR BANDS

Jc R. Rice?

Palmer and Rice (1973), hereafter designated PR, have proposed a
model for the growth of localized shear bands in the progressive failure
of overconsolidated clay. Their model entails a gradual decay of strength
wvithin the end zone of the shear band, from peak to residual levels, with
increasing relative sliding displacement, They derived conditions for
propagation of the band by J-Integral methods analogous to Rice's
(1968 a,b) treatment of similar cohesive zone models for tensile cracking.

In the present paper the problem of initiation of a shear band is
first discussed, giving special atrention to the way in which the onset of
localized deformation night be viewed as an instability in the constitutive
description of homogencous deformation. Following this, the criteria of
PR for growth of an existing band are reviewed and adopted as a starting
point for study of some factors that could govern the rate of propagaticn.
These factors were noted in the concluding discussion of PR, as poscsible
"sources of the time scale for progressive failure, and include:

(1) Local pore-water suctions and diffusive fluxes induced
at the growving end of the band by dilation of the soil as it fails
in shear. Here it is envisioned that the induced suction augments
the effective comwpressive stress on the slipping surfaces, thus
dncreasing the shear resistance over what would develop, say, at a
lower growth rate for which there would be more time for diffusive
equalization of pore pressures.

(ii) Factors which influence the bulk behavior of soil out-
side the shear bard, so as to result in continued relative sliding
on the band and thus aid thz degradation of shear resistance from
peak to residual, This could result from viscoelastic creep of
the soil, and also from the time-dependence of defernations due to
bulk pore~wvater diffusion in response to load changes. It could
further include Bjerrum's (1967) notion of a teadency for elastic
spring-back of overconsolidated clay due to the time—dependent
weathering breakdown of soil bonds. .

It should be noted that rather similar stabilizing influences of
pere-water could occur in dilatant rock masses during faulting., Such
effects have been proposed by Frank (1965) and Brace and Martin (1968),
and have recently been suggested as a possible source of premonitcry
warnings of shallow-focus earthaquakes (Nur, 1972; Aggarwal et al, 1973)
as well as an explanation of aftershock activity (Nur and Booker, 1972),

INITIATION OF SHEAR BANDS

The phenomena of localization of deformation in a band is widely
observed in the mechanics of materials and, in general, there are two
types of hypothesis thzt can be developed for it. The first is that some
essentizlly new physical mechanism sets in, abru 1iptly, and degrades the
strength of the material, The sudden breakinﬂ ree and multiplication of
pinned dislocations in the Luders yieclding of mild steel may be an example
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of this type.

The alternative hypothesis is that localization can be understood
solely on the basis of a smooth continuation of the material’s stress~
strain relations as they are observed in the pre-failure regime. The
notion is that these stress-strain relations may lead to instabilitdies in
mathematical solutions to boundary valus problems, In particular, under
boundary conditicns that are compatible with homogenecous deformation, one
may seeck a bifurcation point in the solution to the incremental deforma-
tion problem, for which the non-uniform mode consists 6f localization of
the continuing defornmation in a planar band., Berg (1970) has proposed
this type of hypothesis for characrerizing the initdaticn of fracture in
ductile metals, He supposes these to contain many small cavities on the
microscale vhich grow with Imposed deformation, leading to macroscopic
constitutive relations that exhibit dilatational plastic flow and, ulti-
wmately, strain sofiening.

The same analysis could be followad for overconsolidated soils,
Indeed, to the extent that a smooth yield locus with plastic nornality is
appllcgble, the problem of uniqueness can te poced within Hill's (1958)

- general varlzational formulation, But the resulting predictions are very
much affected by development of & pointed vertex on the yield locus and

by deviations from plastic normality, and no general analysis is yet
available, The quecstion of a vertex is irportant because, within the
rigid-plastic approxination, localization can occur only when the bifur-
cating strain rate field is coumpatible with the existence of a plane of
zero deforiation rate. This means that for a material with 2 smocth yvield
Jocus, having ratlos of strain rate components completely specified by the
current state of stress (by contrast to the situation with a vertexr), bi-
furcation is impossible unless the current state is one for which the in-
termediate principzl strain rate vanishes. Vhen this kinematical cendi-
tion is met, and normality applies, loczlization can occur in isotropic
materials only vwhen the rate of strain hardening, vwhen phrzsed in terms

of true or Cauchy stress, is non-positive. This was suggested by Berg
and can be proven alss from Hill's variationzl formulation (gquestion on
graduate plasticity emxam, Brown University, Jznuary 1972).

A general method for zddressing bifurcation conditions, correspon=-
ding to localization in a band, is outlined in the remainder of this sec—
tion. Ve let Ci; be a state of stress that has been achicved in the
uniform deformation of a sampie of homogencous material., The requirenent
for continuing equilibriuxm from a uniform stress state is

aaijfsxi = 0, 1
vhere the dot denotes the instantaneous time derivative following a mate~-
rial particle and x,, X;, X5 are cartesian spatial coordinates. Clearly,
these equations will be satisfied if the next increment also constitutes
uniform deformation, i.e: spatially unifornm vy /aho » where v; is the
instantaneous velozity field.

But we wish to determine circumstances under which equilibrium can
be satisfied by a non-uniform field corresponding to variations in the
apount of deformation within a plarnar band, If the coordinate svstem has
been chosen so that the planes x, » constant align with the band, the
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within the band, being uniform outside it. It is straightforward to show
that the most general compatible flow field of this kind has the form

A(avilaxj) - gi(xz)éjz . (2)

~where the 4 denotes diffcrences in value between the fleld within the
band and the uniform field outside it, and the functions g; of x, are
non-zero only within the band.

Let Aé;' be the corresponding differcnce in stress rates. It is
clear that this must also satisfy the continuing equilibrium equations
(1), and that it is a function of x, only, which vanishes outside the
band, Hence ‘ .

A&zj = 0 , 3=1,2,3 (3)
is nccessary and sufficient for maintenance of continued equilibrium at
the inception of bifurcation. The rate 6;; 1is not invariant to rigid
spins, and hense is awkward in constitutive relations. Introducing the
Jaumenn rate o;; , which is that computed by an observer who rotates
with the material at an angular velocity formed from the anti-symmetric
part of its velocity gradient field (Prager, 1961), (3) becomes

v

1 1
- B0y ® =g (op) = 03y)8) + 5 0158,

B0y ™ 0338) + 09383 , (@)

v 1 1
80y3 = =7 (0gp = 033)e3 + T T8y |
The analysis can be carried further only with specification of a
detailed constitutive law. This will relate 4J;; to the g's and, in
gencral, also to the uniform flow field outside the band, in a form for
which AE:; vanishas when the g's wvanish, If, however, the current
state is such that ecqs. (4) can be satisfied for some non-zero set of g's ,
then conditions for flow localization in & tand have been met. In the
gimplest casc3 these equations involvz an esigenvalue problem phrased in
terns of parameters of the constitutive rate law, and uncoupled to the
field outside the band., This is so for elastic materials, and also for
elastic-plastic materials having smooth yield surfaces and plastic strain
rate directions deternined by the current stress state, provided that the
material outside the band continues to lecad plastically as well., If it
unloads, or if tha yield surface contains a vertex so that incremental
linearity (vs. homogeneity of degree on2) does not result for plastic
loading, considerable complications result in that the 4&;:'s will de-
pend on the outside field and vary non-linearly with the g's .

For the rigid-plastic idealization, stress rates are not uniquely
expressible in terms of the deformation field and this procedure must be
modified, As noted above, a non-uniform flow field is possible only if
the strain rates allowable under the currcnt stress state have a surface
of zero deformation rate, If this cendition is mec, the g's can be
expressed in terms of the non-uniformity of stress rate and bifurcation
conditions are again obtained by requiring that (4) has non-zero sclutions.



PR MODEL FOR SHEAR BAND
In any event, once localized deformation has initiated, say by the
strain concentration induced by cutting or erosion at the base of a slope,
a different constitutive description must be developed for the material of
the band. TFor exanple, in the PR model the band is treated as a single
surface of discontinuity and the description relates the shear stress =
acting on it to the amount of relative sliding displacement § and pre-
vailing effective compressive stress o . UWhen viewed from the standpoint
of analysis of the surrounding continuum, this constitutive law for the
band enters as a coupled boundary condition involving the stress.and dis-
placement jump on the surface of discontinuity.
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Fig. 1 1-8 relation for shear band and effect of o .

Fig. 1 shows a representative 1-8 curve as would be inferred
from a shear box or triaxial test on overconsolidated c¢lay, on the assuap~
tion that localization has initiated at the peak load with post-peak de-
formation of the specimen resulting primarily from sliding on a single
band, Due to the loss in strength with increasing 6 , a shear band, once
initiated, can provide a crack-like stress concentration at its tip and
hence drive itself on. 1Indeed, tha condition adopted for continued growth
of the band is that the concentrated shear stress in material elements at
the tip ‘has just been brought up to 7T, , and this can occur for a suffi-
clently long band under average stresses only slightly above the residual
strength 1, . Further, since Tt 1s related to & as in fig. 1, the PR
model fulfills in a self-consistent manner the suggestion of Bishop (1971)
that strength levels along the band should be considered to vary from peak
toward residual with increasing distance from the growing end.

An important feature of the model is that it associates a charac-
teristic length with the material. This may, e.g., be identified as the
displacement & defined by -

(- 108 =[G -1)ds, ()

the integral being identified as the crossed area in fig., 1. Typically,
from the data of Skempron (1964) and Skempton and Petley (1968) on over-
consolidated clays, & 4s in the range of 3 to 8 rm. The result of
this length scale is that predictions of the model exhibit Griffith-like
size effect, with the larger soil masses, having lonser shear bands, meet-
ing the propagation criterion at a lower average stress level than would

a smaller but geometrically similar mass.

“
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SOME PROPAGATION CRITERIA

Fig. 2 {llustrates a long slope, inclined at angle « to the hor-
izontal, into wvhich a step of height h has been cut. A shear band of
length & has progressed upward from the base of the cut, paralleling the
" ground surface, This was analyzed approximately in PR through use of the
J-Integral, with the assumption that h and « are small in comparison
to £ ., Here w 1is the size of rthe end zone near the tip, beyoand which
the shear stress 71 is essentially equal to T o

. 1
2 g

Fig. 2 Shear band emanating from step in long slope.

The principal approximation is in assuming that the overhanging
layer can be treated as a one dimensional element, whose downslope ex-
tensional strain & at any point along its length is given in terms of
. the average & of the tensile stress acting through the depth h at
that point: € = £€(0). The strain is measured from zero when T = -p ,
vhere p 1is the average compressive stress acting over the depth h at
points uphill from the perturbation caused by the shear band. Hence,
within the one-diuzensicnal approximaticn, ¢ = -p just before the end
zone reaches a material point, and G = (Tg-fr)ifh just after the end
zone passes by, where 1y = fgh sina is the dovnslope shear stress that
would be exerted at depth h by gravitational loadings, in the absence
of the step or shecar band.

The resulting criterion which must be met for the band to be just
able to propagate is, from PR, .
(t -tr)ﬁfh - - ‘
h I e(o)do = f(:—tt)ds , or (6)
—P .

(7)

1p -1, p "~ L

where in the latter form (5) is used and the stress-strain relation for
the layer in its transition from =-p to (1g-1.)%/h is linearized to
= -p+E'E. In (7) it may be noted that 1y + ph/Z is the average
shear stress which could be considered to act on the band, due to the
gravitational loading and to the side force of the initial lateral pres-
sure p . Thus we see the size effect: for small § , or for large over-
all dimensions of the slope, the propagation criterion can be met at an
average stress that_is well below 1p and only slightly above Ty .
Alternatively, if & and the physical dimensions are such that the right
side of (7) is near to or greater than unity, the srall end zone approxi-
- mation in the apalysis is untenable and propagation occurs under an aver-
age stress near Tp . We may note also that cven if the slope angle is
such that 1= 1, , a sufficiently iarge initial lateral stress p will
drive the band indefinitely.

T + p h/% - T, (2! B 1/2
T 2 ’
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The energy balance interpretation of the PR propagation criterion,
discussed in general terms in theiyr Appendix, is made evident after multi-
plying by d& in (6) , intcgratlng by parts on the left and rearranging
it to read
e
(igz)(?zdl) = hdg L o(e)de + (Trz)(gzam + ds [(r-t (a6 . (8)

Here Eﬁ is the strain at the point which has just been passed by the end
zone, and at which & = (tg=1,.)2/h . Thus if the band advances by d2

the overhanging layer beyond the end zone moves dowﬂslope uniformly by
€gd2 . From the definition of Ty Tgl is the net downslope gravita-
tional force on the overhang and hence the left side of (8) is the work
input during the movement. This should balance against the stress work

of deforming the material plus the frictional dissipation on the shear
band and, indeed, the right side of (8) has exactly this interpretation:
The first term is the stress work in bringing the element hdf of over-
hang to the strain €y , whereas the second term represents frictional dis-
sipation against the residual part of the shear strength and the final
term, involving the shaded area of fig. 1, represents dissipation against
strengths in excess of the residual level., This interpretation makes it

- ¢lear that the propagation criterion as given by (6,7) is, within tha one-
dimensional approximation, valid even if the overhang deforms inelasti-
cally, so long as the relation € = €(6) enmployed in the criterion re-
presents the actual strain evolution as the stress increases from +p

to (Tg-Tr)R/h over the end zone size w . Of course, the one-dizmensional
approximation itself is more justified in the elastic case because then
the stress work in non-~uniform deformations near the tip is fully re-
covered, : ’

A general analysis was also given in PR for the case in which the
_surrounding continuum is regarded as linear elastic and the end zone w
is taken to be small in comparison to the shear band length and other
dimensions of the soil mass. 1In that case the propagation criterion is
phrased in terms of the shear mode stress intensity factor K (see, e.8.,
Rice, 1968 a) as cozputed from the singularity of the slastic stress field
solution that results when a vanishingly small end zone is assumed, s0
that 1 is taken to be 7T, everywhere on the band, The result for an
isotropic material is :

RY/E' = 'f(r-tr)ds R ' y (95

where E' , as earlier, is the plane strain éension modulus and is re-~
lated to the shear modulus G and contraction ratio v by E' = 2G/(1-v).

The elastic singularity characterized by K 1s actually consider-
ed to be annulled, in the manner of Barenblatt (1962), by that of opposite
sign induced by resisting stresses in excess of 1, within the end zone.
Because of the assumed smallness of the end zone, this cun be conmputed
from the formula for surface loads on a semi-infinite shezar erack in an
infinite body, and the result is

k = (2/m% J B2 fi(r) - ©_Jar | (10)
*] .

.where T(R) is the stress>at distance R from the tip of the band.
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One may also compute the relative sliding displacement & near the tip

of the band from the same semi-infinite crack model. The result for ¢

at a distance S from the tip of the band is, when (10) is used to eli-
minate an explicit dependence on K ,

_8(s) = wnx')J {T(R)-rr]{Z(S/R)'/’”- log{1+(S/R)*] + log |1-(S/R)*|}dR ,
. o .

(11)
ag may, €.g8., be developed from methods of crack elasticity given by
Rice (1968 a). By assuming a linear variation of 1 with R , from
Tp to T, over the distance w , and requiring that the result of (10)
satisfy the propagation criterion (9), the end zone size was estimated
in PR as

@ = O G -5'
- 16(1-v) Tp‘Tr

(12)

With G taken as the loading modulus for London clays studied by Wroth,
this gave w = 250 § when 17, 1s half 1, , suggesting end zone sizes
from 3/4 to 2 m for the range of & noted earlier., Larger values
result if G 4is taken as the unloading modulus.

. The discussion of time effects is most easily organized around (6).
The rate factor listed as (i) on the opening page amounts to altering the
‘right side of (6) (i.e. the crossed area of fig. 1) beczuse 1 is ele-
vated locally by the induced suctions, Thus this term, representing the
energy which must be supplied to the band for dissipation against strengths
in excess of T, , will be an increasing function of the growth rate.
Those factors listed as (ii) affect only the left side of (6). In parti-
cular, viscoelastic and bulk diffusion effects alter the strain €&, pro-
duced by the given stress variation, and hence the energy that can be
made available to supply the required end zone dissipation. These effects
are such that the energy that can be supplied decreases with growth rate.
‘Bjerrum's notion of weathering would increase both the initial stress p
and the springiness with which it is released, and thus increase the
energy supply. To the extent that such a process will actually take place,
it is possible that it could be initiated or very much augmented by ex~
tensional straining of ground near the growing tip of the band, and hence
contribute to determining the rate of growth in a manner similar to that
of viscoelastic effects,

INDUCED SUCTIONS IN A DILATING END‘ZONE

The analysis of shear failure at the end of a band in saturated
soil, with local dilation and consolidation effects, poses a formidable
problem, especially because of the coupling between the induced effective -
compressive stress and the resistance to continued sliding in the band.
The approach taken here is very much simplified.

Let H denote the total volume of water that has been drawn to
a unit area of the shear band by dilation within the end region. For
convenience, the content is taken to rise linearly with distance over the
end region size w , as in fig. 3. Thus when the band is growing at a
steady speed V , fluid is being drawvm from scil on both sides of the
"band at an apparent velocity (H/2)V/w .
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Pig. 3 Water content from dilation and induced suction.

If fluid diffusion in the soil in directions parallel to the band
is ignored and if the total normal stress on the band is assumed 'to re~
main constant, the fluid suctions u dinduced by this withdrawal can te
calculated approximately from the one-dimensional conselidation/swelling'
equation. Under well known assumptions, this is ‘

u/oy? = (n/K)3u/3t 3)

where y 1s measured perpendicular to the band, M is compressibility,
¥ the weight density of the fluid, and k the permeability or apparent
- wveleocity per unit gradient in pressure head. From standard diffusion
solutions, the suction on the plane of withdrawal that is required to
maintain the above constant rate, starting at t =0 , is

B/ (4 k t\/* | ‘
k/y (n Y m) : (14)

Identifying t = R/V from fig. 3, and noting that the cessation
of withdrawal at R = w 13 describable by superposition of the negative
of the above solution with a shifted time origin, the induced suction
distribution along the shear band is '

U =

U=y (R}mf’l for 0 <R<wg; us= vy [(R/wfhh(R/w-lf“} for R>w ,
' ' (15)
as shown in fig. 3, where the maximum suction is
w = H V/mem)r 16)

For example, taking H = 2 mm, k = 10°% m/sec , M = ,02/bar as méy be
appropriate for elastic swelling.of stiff clay, w = 1.5 m as representa-
tive of the above estimates, and y for water,

u, = 20 bars (V/n/sec)’ =~ .07 bar (V/m/day)'™* - Qn
Thus speeds in the neighborhood of 1 m/day or larger might induce suc-
tions that could have discernible effects on shear resistance.

To estimate the resulting effect in the propagation criterion for
the hand, tho linesr olastic meodel with a smzll end zoune is considered.,
We sinplify the <T~§ relation of fig. 1l to a step form by assuming
that, in the absence of induced suctions, a constant 7t develops for §
less than a certain critical value and chat t drops abruptly to T,
beyoud this value:

3

; TeT, for §> =3 . (18)

b¢hn
[

I=T, +-§ (1 -7 ) for & <



-

. )
This choice of stress level and critical & preserves the value of the
shaded area in fig. 1, which is the most important parameter in the pro-
pagation criterion for the small end zone case; the factor 2/3 of
(1P~1 ) 1s chosen as this ensures that the end zone size w computed
for this 1-& relation agrees exac:ly with (12).

" The induced suction u increases the effective compressive stress
on the band by u , and this increases T as shown on the right in fig. 1.
The amount of increase is yuyu , where u 1s the coefficient of friction
(= tan ¢)., We take a constant value u, for the near-peak range
8 < 3§/2 , and another constant value u, for the residual range
8 > 35/2 . Thus, adding the terms pu to T as given by (18), we have
T as a function of u and ¢ . The unknown of the problem is the dis-
tance «w from the tip of the band at which & reaches the eritical value,
but we can write the stresses acting in terms of w from (18) and (15):

2 (e o Vi e
=T, =3 (tp tr) + upul (R/w) for 0 <R <w , .
_ (19)
=T, Ry [(R/m)vz- (Rfm-lfh] for R>w .

" . Thus, by seeing that the & as calculated from this stress distribution

by (11) agrees with the critical value at a distance S=wu from the tip,
we obtain the following equation to determine w ¢ )

- 2(1- 4 -
%-6 = -55532- {Eﬁrp-rr)w + upulm {(1-log 2) - R log 2} (20)

Recognizing that Uy is itself dependent on w , this can be solved to give
u (1-log 2)-u_ log 2
o= ® (1482581 , where 8 =-§- P W), (D)

T ~T
P T

where ©° is the value of w given by (12), when there are no suction
effects, and where u$ is the value of the maximum suction that would be
computed from (16) when w® 4is inserted for w . Since B8 vanishes when
Uy = J4b pp and since B is still very small for typical u's even when
the velocity is so great that the augmented shear resistance upuz has
become comparable in value to Tp » we can conclude that the size w .of
the end zone will be virtually unaffected by the induced suction.

What is affected, however, is the stress intensity factor K nec-
essary to drive the band. This 1s computed from (1l0) in terms of the shear
stresses of (19). The integral is formally divergent, in a logarithmic
fashion, and thus we cut off the assumed suction distribution at some dis-
tance £ from the tip, where £ c¢an be identified as the length of the
band or, better, the increase in length that has taken place while the
band has been growing at velocities comparable to the curremt V . Thus °
one obtains

e 2ty + e (8 i S 87 1 [ 1]

(22)

The terms in {...} approach log (ﬁilem}'z when %&/w 1s large, and dif-
fer from this by only a few percent even when &£ = 2w ; hence the latter
form will be used subsequently.
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0f more fundamental interest is the augmentation of the resistance
term S(t-tr)dé which arises from the local suctions, since this enters
the general propagation criterion in PR. The term can be computed from

the above K through (9) and, given the earlier remarks, we can use (12)
for w to simplify the expression. The result is

2
- 3pu u Lo \Y™ )
I(r-tr)dﬁ = ‘(rp—tr)é {1 +~Z—zg;%;;7 {} + == log (‘“) ] (23)

The dependence on £ is not very strong: e.g. if wu, = (2{3);:P , which
is a typical ratio, the values of [...] for &/w = 4, 20, 100, and 500
are, respectively, 1.6, 2.1, 2.7, and 3.2 . Thus we see that the energy
which must be supplied to the end region, for dissipation against strength
levels in excess of T, , could be approximately doubled if there were
sufficient suction u, induced to make the augmented shear stress U u,
equal to about 20 to 257 of Tt,-1, . For example, using the numerical
values leading to (17) and taking u, = tan (25°) , Tp=Ty = 0.3 bar ,

this doubling of the dissipation would occur at a growth rate of approxi-
mately &4 m/day. ' .

There is, of course, considerable latitude in choosing numericil

. walues in these formulae, But the conclusion would seem to be that dila-
~ tionally induced suctions could govern the rate of progressive failure

of a slope only during the terminal stages of shear band growth, involv-
ing a time scale on the order of one to several days.

EFFECTS OF BULK TIME DEPENDENCE

Effects on longer time scales are, instead, probably explainable
in terms of time~dependence in bulk material behavier, although there is
also the possibility of creep~like effects in the 71-8 relation for the
band itself, With reference to the slope of fig. 2 and the corresponding
propagation criterion (6,7), it is evident that 1f the band grows with
speed V , then the constitutive properties (i.e., E' in the linear case)
used in the criterion should be those appropriate to a time scale of order
w/V , over which the main stress alterations take place.

A similar choice of material properties, based on w/V , is sug-
gested by solutions to cohesive zone models for steady speed tensile crack
growth in isotropic, linear viscoelastic materials (e.g., Barenblatt
et al. 1970; Wnuk and Knauss, 1970), When these are adapted to the shear
mode, in the context of a small end zone model paralleling the elastic
results (9-11), and when the t-8 relation is simplified to that in (18),
the propagation criterion has the same form as (9), namely ’

R2/E' (u/V) = (=108 (24)

where now 1/E'(w/V) denotes the creep cgmpliance function for plane-
strain tension, evaluated at a time which is a materially~dependent frac-
tion of w/V . This time is w/3V for the Maxwell model. The K which
appears is the stress intensity factor of the singular viscoelastic stress
field, computed as if there were no end zone; it correspvonds with that

of the elastic solution in certdin traction boundary value problems. The
distance w at which the ecritical & is reached is now no longer a
material constant, but it is related to K by (10) which remains valid
in the viscoelastic case. Thus



W om o (91/32) K3/ (r -1 )° » (25)
, pr c
and this together with (24) enables the calculation of the K necessary
to drive the band at any given velocity V .

Bishop (1968) has summarized some creep data of Lovenbury on
London clay, suggesting strain increases of approximately 7% and 25%
over the 3 day value in 30 days and 300 days, respectively. These same
percentages may be taken as the approximate amounts by which E' should
be regarded to have decreased from its 3 day value for end zone processes
on the two longer time scales. Hence (7) would predict that the required
excess of the average shear stress over T necessary to drive the band
is about 3% and 127 less, respectively, for the two longer time scales
than for the 3 day scale, Given that end zone sizes of order 1l m are
expected, and equating the time scales to w/V , this data suggests that
creep effects would require a 10-15%7 increase in average shear stress
excess to bring V from speeds of order 1 m/year to those of order
1 m/day.

Finally, to briefly consider effects of bulk diffusion, suppose
that the slope overhang of fig. 2 is regarded as a porous, linear elastic
material with shear modulus G . Then the plane-strain tension modulus
E' would decrease from 4G under completely undrained, short-time con-
ditions to 2G/(l-v) for completely drained, long-time conditions, where
v 1is the drained contraction ratio., If v = ,2 this would be a 37%
drop and would account in (7) for a 21%Z drop in the excess of the
average shear stress over 71, that is needed to propagate the band. The
amount of this drop that could actually be realized in propagation at
epeed V would, of course, depend approximately on the dimensionless
combination of diffusivity multiplied by the characteristic straining
time w/V , divided by the square of the shorter of the two diffusion

~ path-lengths, w and h ,
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