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ABSTRACT

A neceasary criterion for brittle fraoture in erystals is established in terms
of tho spontaneous emission of disloeations from an atomically sharp clesvoge
orack. We have caleulated the stebility of o sharp crack against emission
of a blunting disloeation for o numher of orystals and erystal typos in two
dimensions and the energy to form a stable loop of disloggtiap from the graclk
tip in three dimensions. We find thiat corittery to previous expestations, an
atomieally sharp cleavage crack is stablo in n wide rongs of erystal types,
but that in tho face ventred cubic motnle investigated, blunting reamstions
ocour spontaneously. Of the body eentred metals investigated, iron is an
intermediate case beiween the brittle and ductile ecases, and the ionic and
govalent crystals investigoted are all steblo against dislocetion emission.
Qualitatively, we find that cryatals whose dislocations have wide cores, and
amall values of the parameter pbfy (ubjyS$75 to 10) are ductile while
crysbals with norrow coros and large values of ubfy are brittle.

§ 1. InTRODUCTION

This paper is concerned with the problem of the ductile versus brittle
response of crystals. Thereisin the literature of thissubject a conventional
understanding that a solid will either be ductile or truly brittle depending
upon the ratio of theoretical shear strength to theoretical tensile strength
{Kelly 1966). We believe that a correct deseription of this competition
shonld incinde actual dislocntion processes at cracks, since the ductile
responge of the solid must produce dislocetions in order to yield.

A truly ductile material like pure copper apparently oannot sustain o
cleavage crack, but may fail by plastic instability and necking on a gross
scale. Stronger materinls apparently also exhibit the same essentially
plastic necking phenomenon on a more microscopic acale through the
process of hole growth, although the macroscopic appenrance of the fajlure

1 This paper has been prepured under initial support of the ARPA. Materials
Rescarch Couneil, with subsequent support from ARC contracts at Brown
University and SUNY/Stony Brook, and from the NBS.
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iscrack-like. Onthe opposite end of the scale, some materials like diamond
and mica apparently can undergo pure brittle cleavage with no discover-
able plasticity associated with the process., Inbetween these two extremes,
there apparently exists a class of materials where a cleavage crack in the
true atomically sharp sense exists, but is surrounded and associated with
en atmosphere of dislocutions, (Burns and Webb 1970, Burns 1970).
This intermediate case exhibits many complexities, such as high effective
surface energies, plastic zones surrounding the crack tip, ete., but there is
no reason to suppose that, provided hole growth is not oceurring, the crack
tip is not sharp on the atomic level. Of course, experimental proof of this
statement in any given case will be indirect ot best, but the theoretical
descriptions of cleavage and of hole growth are sufficiently different
ag to make one wish to distinguish as clearly as possible between the
separate physical coges.

Kelly, Tyson and Cottrell (1967) were the firat to pose this problem
of brittle versus ductile fracture in an essentially proper way when they
attempted to test the self-consistency of the proposition that & cleavage
crack can exist ih a particular type of crystal. They, in effect, asked:
“If o cleavage crack were created by some process in a crystal, would the
tip spontaneously blunt as the result of shear by the atoms of the tip
region?” 'They then postulated that such would be the case if the higheat
shear astress in the vicinity of the crack exceeded the theoretical shenr
gtrength of the material. However, this criterion cannot be sufficient for
the erack to blunt, because the shear stress near a crack isnot everywhere
constant on the shear plane as it would have to be to cause the atoms to
shear paat one another uniformly. Instead, the stress is highly localized in
the vicinity of the crack tip. By geometrical neceseity, locelized shear on &
plane intersecting the crack tip caused by the high shear stresses there,
matohed to a non-sheared region ot greater distances on the same plane,
where the stress is below the theoretical strength simply defines a dis-
location. Hence, a blunting reaction at the crack tip requires the produc-
tion (or ennihilation) of dislocations.

Of course it is recognized that a complete resolution of this problem
must rely on a discrete lattice caleulation involving realistic non-linear
force fields. Caleculations of this sort are extremely complex, and require
accurate knowledge of atomie force fields over their entive range, but have
been attempted for iron by Markworth, Kanninen and Gehlen (1973).
These considerations enter the present work only indirectly insofar as they
determine parameters such as dislocotion core cut-off, surface energy, ete.
With our method, however, it is possible to gain an overview of o wide
class of materiala.

Kelly, Tyson, and Cottrell indeed disoussed one kind of dislocation
renction for NaCl. They caleulated the approximate energy to form a
full metastable loop of dislocation near the crack in NaCl, and found
the energy to be prohibitively high. Others have also discussed dislo-
cation formation near the crock tip (Armstrong 1966, Kitajima 1966).
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Armstrong has, in perticular, estimated the formation energy of a dis-
location dipole loop completely surrounding o circular crack in a crystal.
Howsver, this type of dislocation interaction does not correspond to a
blunting reaction and does not directly address the question we pose.

In this paper, we shall propose models for the production of a dislocation
from the tip of the crack in such a way that after the dislocation expands
under the external stress field as concentrated by the presence of the
crack, an atomioally sharp crack will have been blunted by one atomic
plane (fig. 1). This blunted crack will then be trapped at the original
lattice position until the external stress is increased substantially {(when

An atomically sharp ersek is blunted when a disloeation is emitbed from the
tip when the Burgers vector has & norinel component to the fracture
plane.
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probably further dislocation blunting may be possible). Crystals for which
dislocation emission is spontanecus can be expected to be good candidates
for essentially plastic opening of the crack, Crystals for which thers
exists a lnrge energy barrier for this emission can be expected to be good
candidates for brittle cleavage (but perhaps where the crack has associated
with it clouds of dislocations which ore formed or captured through other
proceases in the nearby lattice)., In order for a dislocation to biunt a
crack, it is necessary for the Burgers vector to have n component normal
to the crack plane, and for the slip plane to intersect the crack line (or
crack front) along its whole length, i.e. the crack line must be contained
within the slip plane.

It is, of course, possible to conceive of a process by which the crack
moy be blunted by dislocations which are formed from nearby sources
ond which are emitted on precisely the right plane to blunt the crack tip.
In view of the fact that the stress field in & region surrounding a cleavage
erack will be above the macroscopic plastic flow abress for the material,
one might suppose this could be an effective blunting mechanism. How-
ever, macroscopic yield is a property associated only with regions of the
gize of many microns, even for fairly ductile materials. Hencs, for a
random position of the crack tip, the probability of finding a source on
the correct plane at o distance from the crack for which the source con
operate is small.

The plan of the paper is ag follows. In the nextsection, we shall consider
the various forces operating between a crack and a dislocation in two
dimensions. These forces are {1) the force on a dislocation due to the
stress field surrounding the crack, (2) the surface tension force caused by
creating more surfoce at the blunted crack, and (3) the image force of the
dislocation in the free surface of the orack. The first term repels the
dislocation, and the lattor two attract it toward the crack tip, giving
rise to the possibility of a position of unstable equilibrium. In§ 3 we eati-
mate the activation energy for formation of & dislocation half loop out: of
the crack under the nction of these forces when an energy barrier exists,
Finally, in § 4 we discuss the physical consequences of our calculations.

§ 2. FORCES ON A DISLOCATION NEAR A ORACK TIP

Lot us suppose that the loeds on the body considered net symmetrically
abont the plane of a straight crack, so that before emission of the dis-
location, only the tensile opening mode of relntive crack surface displace-
ment is present. If K| is the ‘elastic stress intensity factor’ (see, for
example, Rice 1868) due to the loads, then in two dimensions the in-plane
shenr stress acting at distance p on the slip plane of fig. 2 is

o, =K ({87p)~12 sin ¢ cos $/2. (1)

For this equation to be valid, p must be a sinall fraction of overnll crack
length. The anti-plane shear stress component (i.e. in the direction of



Ductile versus brittle behaviour of crystals 77

b,) is zero, The release of potential energy of the body and load system
per unit of new crack area is
1—12

B

(E=Young's modulus, v=Poisson’s ratio.) At the fracture load predicted
on the Griffith theory, #=2y where y is the true surface energy of the
ernek plane. Thus, if the applied load on the body is chosen as that
which would cause fracbure if no dislocations were emitted, then the force
{shear stress times Burgers vector) on the dislocation segment shown in
fig. 2 due to the applied load is
12
Jfo=04b= [%)_éjl sin ¢ cos $/2 cos . (3)

¢-—" K, (2)

Here £ =p/b and b,=b cos ¢ is the edge component. The screw component
b, does not appear since the applied load induces no shear stress in this
direction,

TFig. 2

Dislogation Line

H Craok Slip Flane

\

CRACK LINE

Geometry of the dislosation, crack configuration in two dimensions. b, and b,
are perpendicular and parallel components of the Burgers vector relative
to the crack,

There will be an ‘ image * force which tends to pnll the dislocation back
into the erack. This may be inferred from direct solution of the corres-
ponding elasticity problem, as presented in most general form by Atkinson
(1066} for anisotropic materials. A rather different derivation is presented
in the Appendix, for a straight dislocation parallel to the crack 6ip in an
isotropic material. (The procedure of the Appendix is based on energy
eonsiderations nnd properties of peint functions, rather than on direct
solution of the elastic field equations for a dislocation near a crack. The
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approach is rendily generalized to other elasbic interaction problems,
and may be of some interest in itself.} The resulting image force (eqn.
Ald4) is
Eb2, Eb2, s
Br(l—»2)p  8m(l-+v)p’ @

fi=

This is & remorkable result, because precisely the same expression for
the image force is obtained in the case of a dislocation in a half space with
its eors lying paralle] to, and ot perpendicular distance p from, the free
surface (ses, for example, Hirth and Lothe 1968). Both of the above
forces are coalenlated on the assumptions of °infinitesimal ’ elasticity,
and actual geometry changes at the crack tip due to emission of the dis-
location have been neglected. The image force term may be rewritten
from fig. 2 ne
— y gin?
I §= _,Ebg(l—vs:n_np_), {5}
m{l— )¢

£=pfb.

In fig. 1, as the disloeation is formed, a ledge is left behind, and ns the
core comes through the surface, forces due to the formation of the ledge
must be included. As a function of the position, £=p/b, of the dislocation,
the ledge energy is given by

Vi =§ yb ¢o8 ¢ gin ¢ tan-? Gaéff_o . (6)
In deriving (6), we hove used the misfit function for a Peierls model of
the disloention with a width or core cut off £;, which i consistent with the
quantity r,/b where # is defined by Hirth and Lothe (1968), p. 212. The
sin ¢ dependence is taken to approximately represent the modification
of ledge energy from yb, due to slip plane inclination. The force is con-
sequently

2 yo cos ¢ sin ¢
= e

Note that the £-! and £-2 attraction back toward crack, due to the
image and ledge forees, outweighs the {~3/2 force resulting from the applied
load when ¢ is small, whereas just the opposite happens when ¢ is large.
Hence, the equilibrium position of the dislocation is unstable, and the
dislocation will be driven away indefinitely, until it reaches some obstacle,
if it ever attains a distance from the crack tip greater than the equilibrium
distance.

The critical distance, £, at which a straight dislocation is in unstable
equilibrium under these three forces is, from (3}, (§), and (8), given by
the solution of

1 l—vysin®y 2  « 1 1\
f“":*“b[‘ﬁ? 1= f’+a"'+%ﬁ(2w_(l—v)f) ]“0' 7

where o=e¥2¢,[2,
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We have used the following abbreviations,

é = CO8 s 8in ¢ cos $/2,
%=cos Y 8in ¢, (8)
7t =pbly,

where u is the shear modulus, If the value of £, is less than the core cut-off,
we presumably have & case where the method does not apply, and spon-
taneous generation is a good possibility. Equations (3) and (5) diverge
for £¢-0, but, of course, the forces they represent must actually in loto
approach zero as {0 because of non-linear core effects.

We display in table 1 the relevant physical date with the values we
have chogen, The values of ¢ contain the greatest degree of uncertainty,
and we discuss the problems associated with surface energy for our cal-
culation in § 4. Table 2 digplays the results of the solution of eqn (7) for
the various solids, together with suggested values from Hirth and Lothe
{1068) for the elastic cut-off for comparison. We alao list some cruder
estimates of the critical distance, £,” and ¢,. In £, we neglect the effect
of the ledge in eqn. (7), and then the condition is given by

,_ (1—vain®y)? a!”'_b
&=y P ®

In the second estimate, we average over the geometricel and orystallo-
graphic effects still present in (9), giving an even cruder estimate,

—

£"=15, - (10)
It is interesting to enquire how splitting the dislocation will affect the
calculations, since certainly in the face centred metals, splitting does occur.
In this case, the Burgers vector will be lowered in magnitude, and the
angle, ¢, will be changed, So far as the size of the Burgers vector is con-
cerned, eqn. (7) is dimensionless, and is not affected. The size of the cut-
off is sensitive to b, however, and in fact the value we have chosen is just
that appropriate to the split dislocation in the face centred metals. Equa-
tion (7) does contain the crystallography of the Burgers vector through
the angle, ¢, however, in o rather complicated manner. For the whole
dislocation, 4+=30°, and there are two possibilities for the two partials,
#r=0° and ¢=60°, TFor the first volue, the ratio of the verious terms in
eqn. (7)is only changed about 5%, from their values for the whole dislocation,
thus leaving the results of teble 2 unchanged. TFor the second case, where
1= 80°, the firat term in egn. (7) becomes about 509, larger than for the
whole dislocation, thereby increasing the value of £, We show a few

values for this partial in table 2.
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Table 2. Two-dimensional results

Crystal Core Critical Approximate
cut-off distance values
fl} ‘Ec . "
¢ e =
wio ledge wh{10y
Pb 2 1-1 0-88 0-58
An 2 0-85 0-65 0-48
Cu 2 1-00 77 061
Ag 2 1-08 -85 0656
Al 2 14 1-1 085
Ni 2 17 1-3 1-08
Na 2/3 12 0-54 0-375
Fe 2/3 1-9 1-3 0-87
W 2/3 40 39 2-6
Fe* 2/3 2-7 [-9 0-87
LiF 0-25 3-2 2:0 2.8
0-25 34 3-2 2-6
ol | { ga) {&o) {eo} | {co
MgO 025 34 32 2:9
AlQ, 0-25 2-3 21 18
Si 0:25 2:2 2:0 19
Ge 025 37 33 33
C 026 2-4 2-2 24
Be 2/3 45 41 3-4
Zn 2/3 43 39 33
1
Partial dialoeations b= ——— [2T1], s =80°
g ¢
Cu 2 1-4 91 0-35
Ni 2 2.3 16 0-82

§ 3. ENERGY CONSIDERATIONS

If the equilibrium point, £,, i8 larger than the core cut-off, then there
is an energy hump for the dislocation to jump in order to be emitted from
the erack. Clearly, in this case, it will be impossible for o uniform straight
line to be emitted from the crack, because for an infinite length of dis-
location, the energy diverges. Instead, a local Auctuation in the form of an
irregular loop will be formed which, beyond the saddle point configuration,
will expand under the external stress. The factors determining the saddle
point configuration are the same as before. Image and ledge forces will
predominate for small loop sizes, while for larger ones the external stress
is dominant.
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In the elastic three-dimensional problem, even in the isotropic regime,
the problem of determining the saddle point configuration and consequently
its energy is intractable in part because the force fields are variable, and
in part beoause rigorous treatments of three-dimensional dislocation
problems are not possible when the shape is eomplicated. In foct, al-
though we know the image force for o straight dislocation parallel to the
crack, image terms are known to be complex when the shape is more
complicated, even without the additional complexity of the crack half
surfoce. We shall thus proceed by developing some qualitative insights
into the problem, and then make aome simplifying assumptions about the
saddle point configuration which allow us to make meaningful calenlations.

First, the stress field due to the applied lond is straightforward, and yields

a normal force, f,, on a dislocation element, di, given by the local value
of the stress, o. This force is

f,=lo-b)yxadl (11)

The ledge force is always o minor term, except possibly very near the
crack surfaee, It will have the primary effect of drawing together the
two ends of the loop where they touch the crack surface. It will act
just like o pure surface tension on these ends because of the surface energy
required to expose the ledge as the loop expands.

The image force, as mentioned above, is more complex. In problems
of dislocations interacting with normal surfaces, it is a useful first approxi-
mation to simply replace the image terms by the action of an image dis-
locationreflected in the surface. Thisreplacementis not normally rigorous,
but yields a fair approximation. Since in our case of the crack, the stroight
dislocation yields the same result as for a normal surface, we shall adopt
this simple stratagem for the crack. This means thatin order to calculate
the energy of a dislocation half loop configuration which ends at the crack
surface, we need do no more than calculate the energy of a full loop including
the reflected image, and take half of the resunlt. This energy will then
include the image terms.

One further very important result follows from the presence of the
image term. The image term requires that when a dislocation approaches
an open surface, it must out the surface at normal incidence. The pre-
dominance of the image term in the immediate vicinity of the crack
surface will require the seme boundaery condition on the dislocation at
the crack surface. This condition, in eonjunction with the magnitude of
the stress in the region beyond £, are the erucial determinants of the
total activation energy.

We note one final qualitative eharacteristie of the two dimensional
force field which is very suggestive for our three-dimensional treatment.
Except for the ledge term in eqn. (7}, which ia important only very near
the crack tip, the net force is the difference between 1/€ and 1/+/¢, o
very broad function which we have plotted in fig. 3. The point at which
this funotion reaches one half it maximum voelue is about 1-5 ¢, and it
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TFig. 3
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The {unction f= —Afé+ Bf+/¢ plotted to show its broad maximum.

dus not fall below this value again till ¢ becomes approximately 50 £..
Thus, throughout this very broad range, the balance between these two
major forces is nearly constant. Under o constant normal foree, of course
the equilibrium shape of the dislocation hos constant enrvature, and is
ciceular. For values-of £ less than £, the force becomes negative, and
including the effect of the ledge, the curvature will also reverse. Hence

the general shape of the saddle point configuration will be asg shetched in
fig. 4.

Fig. 4

Craonk
QP m
{a} (o)
" Bmall & Intermediats [, Largse

Schematic representations of saddle point dislooation configurations. At
distances grester from the craclt than £, the curvature is positive,
while at less than £, the curvature is negative. The dislocation nlways
has normal incidence at the surlfece becouse of the preponderance of
the image term near the surfuce. (@) £, is emall and the region of negntive
curvaturc is negligible. (b) Intermediate £.. (c) Large £..
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In view of these qualitative background comments, we feel justified
in proceeding with the assumption that the npproximate equilibrium
shape is the simple half circle depicted in fig. 4 (&). In view of the broad
maximum in the effective force field, we believe the energy of the activated
state thus computed is a reasonable estimate of the trne energy, and our
use of the cireular shape probably introduces no major errors in the
calculation.

‘We thus calculate the total energy of the activated state of the system,
which consists of three parts. (1) The self energy of the dislocation half
loop. As mentioned before, this energy will antomatically include the
image term contribution. (2) The energy of the ledge. (3) The energy
gained by the dislocation loop as it expands under the influence of the
stress surrounding the crack. In order to determine the size of the loop
of the activated state, we locate the maximum energy of the loop as a
function of the loop radius.

The self energy of a dislocation half loop as given by Hirth and Lothe
(1968} is

2—v 8
Uaelfz P'ba?' 8

51=%) n T (12)

In this equation, » and £; are respectively the radii of the half circle and
radii of the core cut-off in units of the Burgera vector, b. £, is the same
quantity as used for the core cut-off in § 2.

To the self energy must be added the energy of the ledge formed ns
the loop expands. We write this in the form

U 1oage = 2yb? cos  sin ¢ {r —&). (13)

Equation (13) simplifies the expression for a ledge as we used it in § 2.
Here we nssume that when the radius r is greater than the cut-off radius,
the ledge is fully formed, and that the energy is linear in the radius of the
loop.

Finally, we compute the energy gained by the hualf loop in the stress
field of the crack tip. In terms of eqn. (3) and fig. 5, the energy to expand
the loop from the initial radius, £, to ¢ is

U, = ——Eyb " b® cos i sin ¢ cos $/2 j' dr }dﬂ . (14
o | {1 b cos $/2 & o V(reind) )

Noting that

v L0

= 4
af\/(sin 6" T@E (15)

we then have

2
U, = —0-9862 \/ (1 - ;,) P \/ (ﬁ) Sin ¢ cos  cos $/2 (r32— £,32).  (16)
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Fig. b5

Craak Tip

Configuration for calculating the work done under the crack stress by the

expanding dislocation. The work integration has the lower limit
shown when r=¢,.

The total enerpy ehange for a crack which has emitted n distocation
loop ia thon

I

Us=? | U0 ln L4+ Uir = 69-10, =g .

¢
2—v
Vo=gay
Ui=2 lcos:,bsinqb s
ub
U“=\/2+32ﬂ (ﬁ) sin ¢ cos | cos ¢/2, (17)

(8/¢2=1). Trom {17), the condition for the activated state is

a4,
dr

=0=U,lnerfé,+ U+ U, 512 (18)

Schematically, the three terms in (17) are sketched in fig. 6. The
stress term eventually always dominates the other two for large r, but
depending upon the parameters, the self energy plus the ledge term may be
dominant for values near £,. That is to say, depending upon the param-
eters, there may be a spontaneous emission of a dislocation loop with no
activation energy, or there mey be o finite activation energy to form the
loop whose radius is determined by eqn. {18).

We have solved eqn. (18) for the critical loop size, and calculated the
activation energy for the list of materials given in table 1. ‘The results
are listed in table 3. Further, the funetional variation of the activation
energy with y/ub, £, and orientation parameters is shown in fig. 7. In
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Fig. 6

Schematic varietion of the three terms in eqn. (17) os & function of the redius.

Btraas Term

Table 3. Three-dimensional results
Activation Redius of
Crystal energy activated loop
(electron volta) {in units of b)

Pb

Au

Cu

Ag Spontaneous emission—No

Al activated state for > £,.

Ni

Ne 0-02 16

Te 22 51

W 320 50-7

Fe* 19 17

LiF 58 32
62 33

NoCl { (240) { (95)

MgO 205 37

A0 852 20

8i 111 20

Ge 260 42

C 361 27

Be 180 23

Zn 107 21-2

Belf Ensrgy
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this plot, the activation energy (eqn. (17)) is plotted after r is eliminated
through eqn. (18). Here it is convenient to plot the dimensionless energy

_ cht.
Uaet. = BoEE (19)
Bi-w g "
in terms of
_ 16{1=vy 9 _ 18p
Scgrw M AT spmt =0

Indeed, these forms have been chosen because, for typical values of v and
the orientation parameters, they reduce to

Vact 7
L) m-—, R, =€, 21
uaCt [-Lbs ’ S P-b 0 EU ( )

Fig. 7

Uoot ( ~ U“‘/,ba)

2 1

W 12 s 1A U7 1y +—R,
0.6 |-
0.4 __
0.2 -_
° I \ nL ) 0.2

[
o ] v3
8 (: W/»b)
Dopendence of activation energy for dislocation nueclestion on S (= yfub),

and R, (= &); exact definitions of § and R, end normalization of energy
are given in text,
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It is seen that the behaviour divides mainly into two kinds: If the orien-
tation-dependent core parameter, Ry, is small, there is a substantial energy
barrier to dislocation nucleation for all values of yfub fi.e., Uy, = 01 pbd).
On the other hand, if R, is large there will be an energy barrier only if the
surface energy paranmeter, 8, is smaller than thot at which the curves
cross the S axis; otherwise there ig spontaneous nucleation, The curves
for the larger values of &, rise so ateeply that there is essentiolly a critical
value of S below which the enevgy barrier is substantial, and above which
there is spontaneous nucleation, although finer examination shows that
there is a narrow range of R, and § values for which U, is low enough
that thermal activation could blunt the crack for sufficiently long time
scales of load application,

§ 4. PHYBICAL RESULTS AND INTERPRETATION
4.1, Surface enerqy

Among the experimentally determined values listed in table 1, the
values of  are the ones for which the only important uncertainties exist.

For tungsten, Cordwell and Hull (1969) find that the surface energy
varies from o low value of 1700 cgs nt low temperature to 6000 cgs at
higher temperature. The higher value apparently is due to plasticity
induced in the vicinity of the moving crack. Other values have been
measured by other workers intermediate to these extremes, but we believe
the low value listed represents the bare crack.

NaCl is claimed by Class (1964) in his thesis to have a surfoce energy
of 115 cgs, and thie value is ndopted by Kelly (1866}, On the other hand,
we believe the value 260 is morelikely. Itisin the ronge of the experiments
of Gilman {1960), Wiederhorn, Voses and Bean (1970}, and Benson and
Benson (1955), Benson, Schreiber and Van Zeggeren (1956) and Benson
and Balk (1959), and is in reasonable agreement with the theoretical
caleulations, which for this crystal should not have a large error (Tosi
(1964), MaooMillan and Kelly (1972)). We list both valunes, and results
for both, however,

For Al,O,, we have a range of values in the literature all the way from
1000 cgs as given by Kingery (1954) for the basal plane to 6000 cgs as
determined in cleavage experiments on the rhombohedral planes by
Wiederhorn (1968). Wiederhorn also reports that cleavage is not possible
on the basal planes, and in a private communication has noted that the
clenvage surface energy for these planes must in consequence be in excess
of 40 000 cga! One wondersif the valuereported by Kingery (not measured
in cleavage) is not actually either that for a restructured surface or a
composite value for a dimpled surface whose average orientation is {0001],
but not the true basal plane. Consequently, we use y = 6000 cgs in our
work.

In Zn, Maitland and Chadwick {1969) have measured a range of values
from 100 egs (confirmed by other previous authors), to 575 cgs, depending



Ductile versus brittle behaviowr of crystals 89

upon the technique used for making the measurement. Because of
weaknesses in the analysis as applied to the experiments yielding the lower
value, thay believe the value of 575 cgs is to be preferred.

But experimental difficulties do not exhaust our probiems with the
surface energy. One must also be certain that the surface energy ns
measured experimentally and the surface energy as we use it nre synony-
mous, In our work, the correct y is derived as the energy necessary to
break bonds at a crack tip. Even in a pure cleavage event where no
dislocations are produced, this process may not correspond to the thermo-
dynamic surface energy becanse of relaxation effects which are possible on
some crystal surfaces, such as Si, where the surface is entirely restructured.
For this rsason, the value chosen for Siis derived in a cleavage experiment,
and for diamond ig calculated from the value of the carbon-carbon bond,
Unfortunately no cleavage surface energies are available for Ge. We
also note a further point of rigor. In crystals with high Peierls barriers
where the discrete lattice force fields can trap a crack (Hsich and Thomson
1973} the y measured to grow a crack is different from the y measured to
heal a orack.

4.2. Two-dimensional results

The results in table 3 suggest that the face-centred erystals, with the
possible exception of Ni which has a borderline £,, are unstable to dislocation
formation, gince the critical distance, £, is less than the core radius, £,
Sinee all the elastic forces become impossible to define inside the core radius,
and since the repulsive forees nre dominant for all distances larger than the
core, we believe a crack in these crystals cannot sustain the lorge shear
forces at its tip without forming the dislocation spontaneously. Na, of the
body -centred erystals, probably also spontaneously emits the dislocation
because of the small size of £,, and also because we believe that in this
case £; is not so small as 2{3, as is nssumed for the other body-centred
cubics. In all other cases, £, is sensibly larger thon the core size, and we
believe this gives rise to an energy hump which the dislocation must
negotiate as it iz formed.

We have ligted in table 2 two other cruder estimates of £, In the
first, we neglect the ledge term and in the second average over the geometry.
Both are fair approximations to the more nccurate values for the brittle
materials in the lower half of the table. The ledge term is seen to be
important for the softer crystals, as one would expect.

The dimensionless ratio, pbfy, related to our £, has already entered
into Armstrong’s (1966) discussion of the brittle versus ductile competition,
and we see that it is indeed explicit in our own work. However, in our
theory, ns one progresses down the list of crystals in tahle 2, it is the
opposite tendency of the growing value of pbfy and the decrensing value
of the core cut-off which makes the difference between the ductile foce-
centred cubics and the more brittle body-centred cubics.
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We note in table 2 the positions of iron and nickel between the obviousty
ductile and obviously brittle solids. We give two calculations for iron.
In one, the crack line runs along a cube direction, [100], and in the second,
the crack line rune along [110]. The second is actually that observed
by Tetelman and Robertson (1963) in silicon iron, but it is the former
which has the interesting low value of £,.

We have listed the results for a split dislocation for a noble metal and
for nickel. (Aluminium has small or no splitting.} The results shown
are for only one of the partinls. In the case shown, the partial has un-
favourable geometrical factors, since it is not oriented to canse the crack
to open effectively. In this unfavorable ease, the critical radii are slightly
increased, but not enough to change our general results.

4.3. Three-dimensional resulls

The three-dimensional results for the estimated activation energy as
given in table 3 confirmn the two-dimensional findings. We find o negative
activation energy for the face-centred cubics, which again means that
since all energies are cut off at the core radiug, by the time any dislocation
is well formed, it is under the primary influence of the repulsive forces.
Apnin, No would seem to have an essentially spontaneous emission, not
only because of the small value of the culculated activation energy, but
also because we have probably underestimated the true dislocation core
size of this very soft crystal.

The main surprise when comparing the two- with the three-dimensional
resnlts is the very large valnes obtained for the activation energy of the
brittle crystals, even though £, is usually & small number. One might
suppose that it would take only a small energy to push a local segment of
dislocation past £, say in NaCl, over a small front of the crack tip, and
that the repulsive force would then be able to dominate the picture suffi-
ciently to expand the fluctuation indefinitely. However, the reason this
is not so Is that the dislocation must meet the crack surface at normal
incidence. Otherwise, the forces there will collapse the fluctuation no
matter what happens to that portion lying over the hump beyond £,
In order for the dislocation to meet the surface perpendicularly, a full half
loop of dislocation muet be formed in the region of repulsive forees, which
is costly in dislocation line energy.

4.4. Conclusions

We find a very strong tendency for crystals to be either completely
ductile, or completely brittle, so far as dislocation emission is concerned.
Tron and nickel are the only interesting cases where our caloulations suggest
that the activation energy moy be sufficiently low that thermal Auctnations
could play a role, With the various uncertainties in our ecaleulations,
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we are unfortunately not able to pin down the volues in these cases suffi-
ciently to make a definite prediction.

Except for iron, sedium, and the face-centred cubics we feel confident
in predicting that no spontaneous or thermally assisted blunting of a eracl
tip can occur in the other crystals investigated. Even with the uncer-
teinties in the  and the other approximations made, crystals like LiF
and Na(Cl (to say nothing of the hexngonal metals) seem immune enough
to this process. This conclusion means that if blunting does oceur it
must be because of dislocations produced outside the tip region, and which
are then attracted townrd, and collide with it.

Our conclusions are at variance with the often quoted claim that cracks
cunnob remain sharp (and the crystels thus be brittle) if the shear stress
ut the crack tip is larger than the theoretical shear stress of the homo-
geneous crystal. As we stated in the introduction, a shear stress at the
value of the theoretical shear strength will cause the crystal to break down
only if the stress is homogeneously applied across an entire plane running
through the crystal. If the stress is only appled locally on that plane,
then atoma where the stress has dropped below the maximum value will
not be displaced from their lattice positions, and atoms where the force is
maximum will not necessarily be displaced even though the stress is
above the theoretical shear strength because of the resistance offered by
atoms in the undeformed region of the plane.

Our conclusions suggest that so far as spontaneous emission is concerned,
atomically sharp cleavage cracks nre by no means & minority oceurrence
in moterials. When the condition ub/y > 7-6—10 is approximately satisfied,
we have reason to expect the crack to remnin sharp, though geometrical
factors and variations in core size make this condition only approximate.
This condition, in the cases investigated, is satisfied for all but the fnce-
centred cubic metals, and certain borderline body -centred metals.

Qur conclusions leave the precise morphology of cleavage cracks ulti-
mately undetermined, however, because they do not address blunting
reactions due to dislocations which might be attracted to the crack tip
from the surrounding crystal. Processes which lower the cleavability
by increasing the effeotive cleavage surface energy through the action of
dislocation atmospheres trapped by the stress field of the crack are also
not addressed here. On the other hand, our work does allow an evaluation
of environmental effects which can be understood in terms of a lowering
of y. By increasing the ratio ub/y, these could presuinahly muke possible
atomically sharp cracking, even in sclids such as f.c.c. crystals which
normally show ductile response. Then the  cleavage ’ is not necessarily
fast-running, but ean proceed only na fast as reactiona take place to bring
about the requisite lowering of y at the tip. It is possible thut some
environinentally assisted crack growth can be understood in this way.
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APPENDIX

Image force on dislocation near a crack tip

To compute the image force, consider fig. 8 in which a straight dislocation
line lies parallel to a crack front, with the slip plane intersecting the {racture
plane at distance « ahead of the tip. We are ultimately interested in
the case a =0, but by considering « as variable we can use energy methods
to compute the force,

Fig. 8
/
/

/
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r
/ie /P ¢
—(] — —— = —

Configuration of crack and dislocation for computation of the image force.

Suppose that the body containing the crack is subjected to three genera-
lized boundary forces @, @, and @y, each of which if exerted singly
upon o dislocation free body would cause onty & Mode I, II, or III crack
tip singularity, respectively. Let ¢y, ¢y;, and g;y; be the associated genera-
lized displacements. These are defined so that

2 Qydyg,
J

is the work of boundary loadings per unit thickness into the plane of the
figure. The sum on J extends {rom I to III. Hence, if we let U be the
strain energy of the body per the same unit thickness,

dU =3 Qydq, +Gdx~fdp, (A1)
5

where the respective contributions to energy changes come from load-point
displacements dq,, crack advance —de, and dislocation glide dp; ¢ is the
crack extension force {or energy release rate} and f is the force on the dis-
location, '

The last equation may be rewritten as
d(U -2 QJQJ) = — 3 ¢4, + Gda—fdp.
7 s

Further, since the terms on the right constitute an exact differential,
we may write the Maxwell relation

o6 of
— =—[ = A2
(aP )u,o (a“)p.e )
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This is & fundamental relation for it aliows us to compute the force on
the dislocation solely from a knowledge of elastic fields induced by each
of the forces ¢;. To see this, recall that the crack energy release rate is
given by {e.g., Rice 1968)

G_._

P+ Ky

(A3)

where the I’s nre stress intensibty factors for the three modes. These
are due both to the boundary forces ¢; and to the interaotion of the
dislocation stress field with the crack, and take the forms

Ey=ks) Qy+Lyle p),  J=T1,1L1IL (Ad)

Here each k; is the Mode J stress intensity factor induced per unit of
the corresponding boundary force. Each is assumed to be known for all
ernck lengths and hence can be considered as given function of . The
unknown funections L, are the stress intensity factors induced by the
dislocation. The force on the dislocation is given by

f=be[£l(ms P) QI+"'I[(“; P) QII] + bﬂ t;n(ﬁf. P) QI‘II +g(a’ P) [Aﬁ)

Here b, is the edge and b, the screw Burgers vector component; ¢ and
trr ave the shear stresses induced on the glide plane, at the dislocation posi-
tion, in the edge direction per unit boundary force @, and @, respectively ;
trp is the shear stress in the serew direction induced per unit foree ¢y
These shear stresses are to be considered as known functions of crack length
and diglocation position, and hence of o« and p. The unknown force term
g is that due to the dislocation itself, i.e., the image force, and our object
is to compute it.

By substituting for & and f as above in the Maxwell relation {A2),
we obtain

2(1 —v?)

oL
T [(kIQI'l'LI) +(k!IQII+LII) =

oL
+ — (kam + L) ;U:]

dg
a_"au

at“

ol ot
= b1 Qb Qn-bs—li‘lQm—

This must hold for all volues of the ’s. Hence by equating coefficients
of ench ¢,

Ly —Bb, ¥, Ly =B, Ay
=t = — AG

And by equating sides when each @, =0,

1-p2

] 1
-7 % (L12+L112+1——_—; Lma) . (A7)

&
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The calculation of the image foree now involves simple integrations:
(i) First, we note that the right sides in (AG) involve known funetions
of @ and p; each L; is determined by integrating these at fixed & from
the p of interest to a large value of p, say to co or to the specimen boundary,
at which the L’s may be taken as zero. (ii) Thus the right side of (A7)
is determined, and g is obtained by integration from the a value of interest
(zero in our ¢ase) to a large value of o ot which ¢ may be taken as zero.
Now, since we are interested In a dislocation rathey near to the crack
tip, it will suffice to consider o semi-infinite crack in an infinite body.
Also, the solution for the L’s nnd ¢ cannot depend on the particular nature
of the load systems denoted by the @'s. Indeed, the right sides of (AB)
are universal functions, the same for all load systems inducing a given
crack tip mode {see Rice 1972). Henece, for simplicity, we can choose load
systems which act so for from the erack tip that the characteristic inverse-
square-root elastic stress distribution gives the entire atress field, and that
the &’s are virtually constant, for all erack distances o of interest. Let
(oy)s denote the stress field for a given loading mode, J ; this will be of the

form

ksQy
'\/ [
Here the F's are functions of 8, particular to ench mode, that are tabulated

e.g. by Rice 1968, pp. 216-217. TI'rom these the shear stresses on the
dislocation, per unit boundary londs, are identified from

(ofj)J’ = [Fij(ﬂ)].h 1,i=2,9, 2. (A8)

@ty = Ol —(Oag)s ; aals gin 20+ (0,,); c08 29,
for J=1,11, and
Qr1ttirr = {oys)mr €08 ¢ —(o.)11r BN &,
Upon substitution from (AB), these give
ty="ky (8} V2 sin ¢ Re [el (£-12. of—312)],

trp=pp (8712 Re [2¢%¢ £-12] 4 sin ¢ Im [e®(E12—of-32)],  (AD)
trpy=kypp (20)712 Re [ei® £-17],

where i is the unit imaginary number, Re and Im denote renl and imaginary
parts, and where
E=r e‘“’:a-l-p ei®,

Hence the first of {A6) becomes

0Ly _ Eb, 172 g 0 6({ £=M2 _ g f-3l2
% ~ ST, {kl(&r) 8in ¢ pm Re[eM{£12 — of312))
38, sin ¢

= Wm Re{ew- (5—312_a£;_5m)]l
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Multiplying by dp and recognizing that e*dp=df, so that integration on
p becomes integration on £ inside the brackets, we have

b, sin ¢ s —_
LI:WRE[ 267124 § of 0]

—Bb

L3

. & . 30
P Tipeyy e [3 gin ¢ cos 5 — sin (¢ —8) cos ?J, (Al0)

where the constant of integration is chosen so that L; vanishes at p= co.
In o similar way we find

_Eb, 6 .0 38
L“=mm_-)l}_2 [2 COB ¢ cos§ - smqbsmE + gin {($—8) sm—g»]

— Eb, g
LIII:WWCDSE. (A}'l)

Now that the L’s are known, we have determined the effect of the
dislocation on the stress intensity factors K, (A4) and, further, we can
substitute into (A7) to determine the image force. Since each of the
L’sis proportional to 7~12, (A7) is of the form

9 _ @8, 4)
da ap r |’

where
12 1
b, §) = —— "(le"'LnE'l‘ ‘—'—L1112) : (Al2)
E 1—y
But by using the relations
a g s8nfa 0 d sin(d—8) 0
ol T ey g ——

between partial derivatives, one may readily derive the identify

@G, 4)) _ 9 [sin{$—6) 96, ¢)]
ap ¥ T %| “snd 7

This lets us integrate {A12) immediately. We must, however, append a
* constant * of integration, which may depend on p (=7 sin 8/sin ¢}, and
which assures that g—»0 as a—»ow. This means that g>0 as r>c0, 850
in sech o way that r8in # remains finite. Integration of (A12) subject
to this condition gives the image force

_sin($=0) Q. 4) — 6in 4Q(0, )
7 gin

where ¢} is defined from (A10, 11) via (A12).

(A13)
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In the text of the paper we were concerned with the ¢nse a=0, 50 that
6=dandr=p. Inthatcase

__R0.¢)_ B Bb,?

h o Sm(1—®)p  Bx(l4v)p’
where the latter form comes from identifying @(0, ¢), which is found to
be independent of ¢. Remarkably, this is the same image force as for
o dislocation line at distance p along its slip plane from the boundary
of a half-space. In fact, the result for this latter case is also obtainable
from (A13) by letting the crack tip pass far beyond the site of the dislocation,
a-+—c0. This means that we let 8-x, r—co while keeping » sin # finite
(il eguals p sin ¢). By direct eveluntion one finds that @(m, $)=0, so
that the imnge force from the half-space boundary is also given by [Al4).

(Al4)
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