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ABSTRACT 

A necessary criterion for brittle fro.oture in crystals is established in terms 
of tho spontaneous emission of dislocations from nn o.tomioally sho.rp cleavage 
oraok. Wf' have calculated the etability of o. sharp crack against emission 
of a. blunting dislocation for a number of orystale and cwysto.l typos in two 
dimensions and the energy to form a stable loop of dif!ls>~tiQU.ftom.the . .llr!lolc , . 
tip in tht•ee dimensioM. We find tlio.t co:rltrat•y to previous expeot.ations, an 
atomically sharp cleavage crack is sta.blo in n wide range of crystal typBs, 
but. that in tho face centred onbic moto.Je investigated, blunting reactions 
ocour 11ponteneously. Of the body centred metals invettigated, iron ie an 
intermediate case between tho bL•ittle a.n<l ductile cases, o.nd tho ionic and 
covalent crystals investigated aro 1111 stable 11ga.inet disloou.tion emission. 
Quo.lito.tivoly, we find that crystals whose dislocations have wide cores, and 
email values of tho parametar f!b/y (p.bjy;S7·5 to 10) are ductile while 
crystals with no.rrow ooros o.nd largo vo.luos of pb/y are brittle. 

§ 1. INTRODUCTION 

This paper is concerned with the problem of the ductile versus brittle 
response of crystals. There is in the literature of this subject a conventional 
understanding that a solid wiii either be ductile or truly brittle depending 
upon the ratio of theoretical shear strength to theoretical tensile strength 
(Kelly 1966). We believe that a conect description of this competition 
should include actual dislocation processes at cracks, since the ductile 
response of the solid must produce dislocations in order to yield. 

A truly ductile material like pure copper apparently cannot sustain a 
cleavage craolc, but may fail by plastic instability and necking on a gl'oss 
scale. Stronger materials apparently also exhibit the same essentially 
pla.stic necking phenomenon on a more microscopic scale through the 
proceaa of hole growth, although the macroscopic u.ppeu.rance of the failure 

t ThiR paper has been 1>repare<l nn<lel' initial 1mpport of tho ARPA MnterialB 
Research Council, with subsequont support; from AEC contracts at Brown 
University and SUNY/Stony Brook, and from the NBS. 



74 J. R. Rice and R. 'l'homaon on the 

is crack -like. On the opposite end of the scale, some materials like diamond 
and mica apparently ca.n undergo pure brittle cleavage with no discover
able plasticity associated with the process. In between these two extremes, 
the1·e apparently exists a class of materials where a cleavage crack in the 
true atomically sharp sense exists, but is surrounded o.nd a.esociated with 
an atmosphere of dislocations. (Burns and Webb 1970, Burns 1970}. 
This intermediate case exhibits many complexities, such as high effective 
surface energies, plastic zones surrounding the crack tip, etc., but there is 
no reason to suppose that, provided hole growth is not occurring, the crack 
tip is not sharp on the atomic leveL Of course, experimental proof of this 
statement in any given case will be indirect at best, but the theoretical 
descriptions of cleavage and of hole growth are sufficiently different 
as to make one wish to distinguish as clearly as possible bet,veen the 
sepa1·ate physical cases. 

Kelly, Tyson and Cottrell (1967) were the first to pose this problem 
of brittle versus ductile fractm·e in an essentially proper way when they 
attempted to tes~ t he self-consistency of t he proposition that a cleavage 
crack can exist ih a particular type of crystal. They, in effect, asked : 
" If a cleavage crack were created by some process in a crystal, would the 
tip spontaneously blunt as the result of sheat· by the atoms of the tip 
region 1" They then postulated that such would be the case if the highest 
shear stress in the vicinity of the crack exceeded the theoretical shear 
strength of the material. However, this criterion cannot be sufficient for 
the crack to blunt, because the shear stress near a crack is not everywhere 
constant on the shea.r plane as it would have to be to cause the atoms to 
shear past one another uniformly. Instead, the stress is highly localized in 
the vicinity of the crock tip. By geometrical necessity,localized shear on a 
plane intersecting the crack tip caused by the high shear stresses there, 
matched to a non -sheared region at greater distances on the same plane, 
where the stress is below the theoretical strength simply defines a dis
location. Hence, a blunting reaction at the crack tip requires the produc
tion (or annihilation) of dislocations. 

Of course it is recognized that a complete resolution of this problem 
must rely on a discrete lattice calculation involving realistic non-linear 
force fields. Calculations of this sort are extremely complex, and require 
accurate knowledge of atomic force fields over their entire range, but have 
been attempted for iron by Markworth, Kanninen and Gehlen (1973). 
These considerations enter the present work only indirectly insofar as they 
determine par1.1.meters sttch as dislocation core cut-off, surface energy, etc. 
With our method, however, it is possible to gain an overview of a wide 
class of materials. 

Kelly, Tyson, and Cottrell indeed discussed one kind of dislocation 
renction for NnCI. They calculated the approximate energy to form a 
full metastable loop of dislocation nen.r the crack in NaCl, and found 
the ene1·gy to be prohibitively high. Others luwe also discussed dislo
cation formation near the crack tip (Armstrong 1960, Kitu.jima 1906). 
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Armstrong has, in particular, estimated the formation energy of a dis
location dipole loop completely surrounding a circular crack in a crystal. 
However, this type of dislocation interaction does not correspond to a 
blunting reaction and does not directly addtess the question we pose. 

In this paper, we shall propose models for the production of a dislocation 
from the tip of the crack in such a way tha.t after the dislocation expands 
under the external stress field as concentrated by the presence of the 
crack, an atomically sharp crack will have been blunted by one atomic 
plane (fig. 1). This blunted crack will then be trapped at the original 
lattice position until the external stress is increased substantially (when 
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probably furthet· dislocation blunting may be possible). Crystals for which 
dislocation emission is spontaneous can be expected to be good candidates 
for essentially plastic opening of the crack. Crystals for which there 
exists a large energy barrier for this emission can be expected to be good 
candidates for brittle cleavage (but perhaps where the crack has associated 
with it clouds of dislocations which are formed or captured through other 
processes in the nearby lattice). In order for a dislocation to blunt a 
crack, it is necessary for the Burgers vector to have a component normal 
to the crack plane, and for the slip plane to intersect the crack line (or 
crack front) along its whole length, i.e. the crack line must be contained 
within the slip plane. 

It is, of course, possible to conceive of a process by which the crack 
may be blunted by dislocations which are formed from nearby sources 
and which are emitted on precisely the right plane to blunt the crack tip. 
In view of the fact that the stress field in a region surrounding a cleavage 
crack will be above the macroscopic plastic flow stress fm· the material, 
one might suppose this could be an effective blunting mechanism. How
ever, ma.croscopic yield is a property nssociated only with regions of the 
size of many microns, even for fairly ductile materials. Hence, for a 
mndom position of the crack tip, the probability of finding a source on 
the correct plane at a distance from the crack for which the source can 
operate is small. 

The plan of the paper is as follows. In the next section, we shall consider 
the va.rio·us forces operating between a crack and a dislocation in two 
dimensions. These forces are (1) the force on a dislocation due to the 
stress field surrounding the crack, (2) the surface tension force caused by 
creating more surface at the blunted crock, and (3) the image force of the 
dislocation in the free surface of the crack. The fit·st term repels the 
dislocation, and the latter two attract it toward the crack tip, giving 
rise to the possibility of a position of unstable equilibrium. In§ 3 we esti
mate the activation energy for formation of a dislocation half loop out of 
the crack under the action of these forces when an energy barrier exists. 
Finally, in§ 4 we discuss the physioa.l consequences of our calculations. 

§ 2. fORCES ON A DISLOCATION NEAR A CRACK TIP 

Let us suppose that the loads on the body considered n,ct symmetrically 
about the plane of a. straight crack, so that before emission of the dis
location, only the tensile opening mode of reln,tive crack surface displace
ment is present. If !( 1 is the ' elastic stress intensity factor ' (see, for 
example, Rice 1968) due to the loads, then in two dimensions the in-plane 
shear stress acting at distance p on the slip pln.ne of fig. 2 is 

a t>.J> = ]( r{ 8rrp )-1/2 sin if> cos if>/2. ( l) 

For this equation to be valid, p must be a small fraction of overall crack 
length. The anti-plane shear stt·ess component (i.e. in the direction of 
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b
8

) is zero. 'l'hc release of potential energy of the body and load system 
per unit of new c1·n.ck at•ea is 

(2) 

(E =Young's modulus, v =Poisson's ratio.) At the fl·acture load predicted 
on the Griffith theory, G = 2y where y is the true surface energy of the 
cmck plane. Thus, if the applied loa.d on the body is chosen as that 
which would cause fracture if no dislocations were emitted, then the force 
(shear stress times Burgers vector) on the dislocation segment shown in 
fig. 2 due to the applied load is 

[ 
Eyb ]112 

f a= (7~bc= ( 2.' sin if> cos ~/2 cos 1/J. 4711 - v) 
(3) 

Here~= pfb and b0 =b cos rp is the edge component. 'fhe screw component 
b

8 
does not appear since the applied load induces no shear ·stress in this 

direction. 

Fig.2 

ORAOJt LIMB 

Geometry of the dislocation, crack configuration in two dimensions. b0 and b, 
are perpendicula.r a.nd parallel components of the Burgers vector relative 
to the crack. 

There will be an ' image ' force which tends to pull the dislocation bacl{ 
into the crack. This may be inferred from direct solution of the corres
ponding ela.sticity problem, as presented in most general form by Atldnson 
(1966} fot· anisotropic materials. A rather different derivation is presented 
in the Appendix, for a straight dislocation parallel to the crack tip in an 
isotropic material. (The procedure of the Appendix is based on energy 
considerations and properties of point functions, rather than on direct 
solution of the elastic field equations for a. dislocation near a crack. The 
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a.ppron.ch is 1·endily genera.lizecl to other elnstic interaction problems, 
and may be of some interest in itself.) 1'he resulting image force (eqn. 
Al4) is 

(4) 

This is a remarkable result, because precisely the same expression for 
the image force is obtained in the case of a. dislocation in a. half spa.ce with 
its core lying parallel to, and at perpendicular distance p from, the free 
surface (see, for example, Hirth and Lathe 1968). Both of the above 
forces are calculated on the assumptions of 'infinitesimal ' elasticity, 
and actual geometry changes at the crack tip due to emission of the dis
location have been neglected. The image force term may be rewritten 
from fig. 2 as 

I I - - Eb ( 1 - v sin
2 tP) 

- 811(1- v2}e ' (5} 

f=pfb. 
In fig. I, as the dislocation is formed, a ledge is left behind, and as the 

core comes through the surface, forces due to the formation of the ledge 
must be included. As a function of the position, [=p/b, of the dislocation, 
the ledge energy is given by 

V 2 ,/, . ,1, -1 2[ 
l = - yb cos "f sm "f tan 312 t . 
~ e ~o 

(6) 

In deriving (6), we have used the misfit function for a Peierls model of 
the dislocation with a width 01' core cut off eo. which is consistent with the 
quantity r0fb where 1·0 is defined by Hirth a.nd Lothe (1968), p. 212. The 
sin q, dependence is taken t o approximately represent the modification 
of ledge energy from yb0 due to slip plane inclination. The force is con
sequently 

2 ycx cos .P sin rp 
/t = -- where ex= e3

'
2 t0f2. 

~ gs +a2 

Note that the g-• and g-2 attra~tion back toward crack, due to the 
image and ledge forces, outweighs the g-m force resulting from the applied 
load when e is small, whereas just the opposite happens when e is large. 
Hence, the equilibrium position of the dislocation is ·unstable, and the 
dislocation will be driven away indefinitely, until it reaches some obstacle, 
if it ever attains a distance from the crack tip greater than the equilibrium 
dista.nce. 

The critical distance, ec at which a. straight dislocation is in unstable 
equilibrium under these three forces is, from (3), (5), and (6), given by 
the solution of 

[ 
1 1 - v sin 2 if! 2 ex I ( 1 ) 1/2] 

ftot=P,b - 41Te 1-v - 1T'TJ'f3' es+ct2 + TJfJ 271(1-v)e ""
0

' (
7

) 
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We have uaed the following abbreviations, 

~ =cos t/J sin rp cos rp/2, 

~~ = cos rfo sin rp, 

7J2=p.bfy, 

79 

(8) 

where 1L is the shear modulus, If the value of eo is leas than the core cut-off, 
we presumably have a caae where the method does not apply, and spon
taneous generation is a good possibility. Equations (3) and (5) diverge 
for e-+o, but, of CO\trse, the forces they represent must actually in toto 
approach zero as ~-+0 because of non-linear core effects. 

We display in table 1 the relevant physical data with the values we 
have chosen. The values of y contain the greatest degree of uncertainty, 
and we discuss the problems associated with surface energy for ou1· cal
culation in§ 4. Table 2 displays the results of the solution of eqn (7) for 
the various solids, together with suggested values from Hirth and Lothe 
(1968) for the elastic cut-off for comparison. We also list some cruder 
estimates of the critical distance, ec' and eoN. In eo'' we neglect the effect 
of the ledge in eqn. (7), and then the condition is given by 

(9) 

In the second estimate, we average over the geometrical and crystallo
graphic effects still}Jresent in (9), giving an even cruder estimate, 

(: n"' p.b 
§.o -lOy · (10) 

It is interesting to enquire how splitting the dislocation will affect the 
calculations, since certainly in the face centred metals, splitting does ocout·. 
In this case, the Burgers vector will be lowered in magnitude, and the 
angle, t/J, will be changed. So far as the size of the Burgers vector is con
cerned, eqn. (7) is dimensionless, and is not affected. The size of the cut
off is sensitive to b, however, and in fact the value we have chosen is just 
that appropriate to the split dislocation in the face centred metals. Equa
tion (7) does contain the crystallography of the Burgers vector through 
the angle, t/J, however, in a rather complicated manner. For the whole 
dislocation, rfo = 30°, and there are two possibilities for the two partials, 
rfo=0° and~= 60°. For the first value, the ratio of the various terms in 
eqn. (7) is only chan~ about 5% from their values for t he whole dislocation, 
thuBlea.ving the results of table 2 unchanged. For the second case, where 
rfo=60°, the first term in eqn. (7) becomes about 50% larger than for the 
whole dislocation, thereby increasing the value of ec· We show a few 
values for this partial in table 2. 
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Crystal 

Pb 
Au 
Cu 
Ag 
AI 
Ni 

Na 
Fe 
w 
Fe• 

LiF 

NaCI 

MgO 
A120 3 

Si 
Ge 
c 

Be 
Zn 

Ductile ve1·sus b1'ittle behaviou?' of crystals 

Table 2. Two-dimen1:1ional results 

Core Critical Approximate 
cut-off distance values 

~0 e. 
'c' fen~ 

wfo ledge p.hflOy 

2 H 0·88 0·58 
2 0·8tl 0·65 0·48 
2 1·00 0·77 0·61 
2 1·09 0·85 0·65 
2 1·4 H 0·815 
2 1·7 1·3 1·08 

2/3 1·2 0·54 0·375 
2/3 1·9 1·3 0·87 
2/3 4·0 3·9 2·6 
2/3 2·7 I·9 0·87 

0·25 3·2 2·9 2·6 
{ 0·25} { 3·4} { 3·2} { 2·6} 

(0·25) {7·0) (7·0) (5·6) 
0·25 3·4 3·2 2·9 
0·25 2·3 2·1 1·8 

0·25 2·2 2·0 1·9 
0·25 3·7 3·3 3·3 
0·25 2-4 2·2 2·4 

2/3 4·5 4·1 3·4 
2/3 4·3 3·9 3·3 

Partial dislocations b = v~IZ) [2IT], .p =60° 

Cu 

I 
2 

I 
1·4 0·91 0·35 

Ni 2 2·3 1·6 0·62 

§ 3. ENERGY CONSIDERATIONS 

81 

If the equilibrium point, ~c• is larger than the core cut-off, then there 
is a.n energy hump for the dislocation to jump in order to be emitted from 
the crack. Clearly, in this ca.se, it will be impossible for a uniform straight 
line to be emitted from the crack, because for an infinite length of dis
location, the energy diverges. Instead, a. local fluctuation in the form of an 
irregular loop will be formed which, beyond the saddle point configuration, 
will expand under the external stress. The factors determining the saddle 
point configuration are the BEnne as before. Image and ledge forces will 
predominate for small loop sizes, while for larger ones the external st.ress 
is dominant. 
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In the elastic three-dimensionn.l!Jl'Oblem, even in the isotropic regime, 
the problem of determining the saddle point configuration and consequently 
its energy is intractable in part because the fo1·ce fields are variable, and 
in part because rigorous treatments of three-dimensional dislocation 
problems are not possible when the shape is complicated. In fact, al
though we know the image force for a straight dislocation parallel to the 
crack, image terms are known to be complex when the shape is more 
complicated, even without the additional complexity of the crack half 
surface. We shall thus proceed by developing some qualitative insights 
into the problem, and then make some simplifying assumptions about the 
saddle point configuration which allow us to make meaningful calculations. 

First, the stress field due to the applied load is straightfonvard, and yields 
a normal force, f a• on a dislocation element, dl, given by the local value 
of the stress, a. This force is 

f,=(a·b)xdl. (11) 

The ledge force is always a minor term, except possibly very near the 
oracle surface. It will have the primary effect of drawing togethe1· the 
two ends of the loop where they touch the crack surface. It will act 
just like a pure surface tension on these ends because of the surface energy 
required to expose the ledge as the loop expands. 

The image force, as mentioned above, is more complex. In pt·oblems 
of dislocations interacting with normal surfaces, it is a useful first approxi
mation to simply replace the image terms by the action of an image dis
location reflected in the surface. This replacement is not normally rigorous, 
but yields a fair approximation. Since in our case of the ora{}k, the straight 
dislocation yields the same result a·S for a normal surface, we shall adopt 
this simple stratagem for the crack. This means that in order to calculate 
the energy of a dislocation half loop configuration which ends at the crack 
surface, we need do no more than calculate the energy of aj1tll loop including 
the reflected image, and take half of the result. This energy will then 
include the image terms. 

One further very important result follows from the presence of the 
image term. The image term requires that when a dislocation approaches 
an open surface, it must out the surface at normal incidence. The pre
dominance of the image term in the immediate vicinity of the crack 
surface will require the same boundary condition on the dislocation at 
the crack surface. This condition, in conjunction with the magnitude of 
the stress in the region beyond ec are the crucial determinants of the 
total activation energy. 

We note one final qualitative ohat·acteristic of the two dimensional 
force field which is very suggestive for our three-dimensional treatment. 
Except for the ledge term in eqn. (7}, which is important only very near 
the crack tip, the net force is the difference between 1/e and 1/ve. a 
very broad function which we have plotted in fig. 3. The point at which 
this function reaches one half its maximum value is about 1·5 ec, and it 
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Fig. 3 

---- -------· 

The function f = -A{g+Bfv~ plotted to show its broad maximum. 
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d~.,.~s not fall below this value again till ~ becomes approximately 50 ~c· 
Thus, throughout this very broad range, the balance between these two 
major forces is nearly constant. Under a constant normal force, of course 
the equilibrium shape of the dislocation has constant curvature, and is 
circula.r. For values ·of e leas than ~e• the force becomes negative, and 
including the effect of the ledge, the curvature will also reverse. Hence 
the general shape of the saddle point confignra.tion will be a.s sketched in 
fig. 4. 

l?ig. 4 

l
0 

Slll•ll (
0 

btermedt•t• 1, Lar~re 

Schematic representations of saddle point dislocation configurations. At 
distances greater from the crack than e •. the curvature is positive , 
while at less tho.n g c• the curvature is negative. 'rhe dislocation always 
has normal incidence at the surface becGuse of the preponderance of 
the image term nea.r the surface. (a) f c is small and the region of negative 
ourvatul'c iii negligible. {b) Intermediate ~c· (c) Large ~ c· 
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In view of these qualitative background comments, we feel justified 
in proceeding with the assumption that the approximate equilibrium 
shape is the simple half circle depicted in fig. 4 (a). In view of the broad 
maximum in the effective force field, we believe the energy of the activated 
state thus computed is a reasonable estimate of the true energy, and our 
use of the circular shape probably introduces no major errors in the 
calculation. 

We thus calculate the total energy of the activated state of the system, 
which consists of three parts. (1) The self energy of the dislocation half 
loop. As mentioned before, this energy will automatically include the 
image term contribution. (2) The energy of the ledge. (3) The energy 
gained by the dislocation loop as it expands under the influence of the 
stress surrounding the crack. In order to determine the size of the loop 
of the activated state, we locate the maximum energy of the loop as a 
function of the loop radius. 

The self energy of a dislocation half loop as given by Hirth and Lothe 
(1968) is 

- 3. . 2- jl 81' 
Uscu-11-b 1 8(1- ")In e2.eo· (12) 

In this equation, i' and eo are respectively the radii of the half circle and 
radii of the core cut-off in units of the Burgers vector, b. so is the same 
quantity as used for the core cut-off in§ 2. 

To the self enet·gy must be added the energy of the ledge formed as 
the loop expands. We write this in the form 

(13) 

Equation (13) simplifies the expression for a ledge as we used it in § 2. 
Here we assume that when the radius ,. is gl'ea.ter than the cut-off radius, 
the ledge is fuHy formed, and that the energy is linear in the radius of the 
loop. 

Finally, we compute the energy gained by the half loop in the stress 
field of the crack tip. In terms of eqn. (3) and fig. 5, the energy to expand 
the loop from the initial radius, s0 • to 1' is 

[ 
Eyb ] 112 

•• ., 1· 
U,=- 4 (l 2) b2 cos!fsintfocostfo/2 Jd1· J. dB I( . 0 . 

1T - v f, o ·\. 1' Sill ) 

Noting that 

we then have 

j do = 1T112 r( u 
0 y(sin 8) r(t) 

(l4) 

(15) 
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Fig.5 

Configuration for calculating the work done under the crack stress by the 
expanding dislocation. The work integration has the lower limit 
shown when f =eo· 

The total energy change for a crack which has emitted a dislocation 
loop is then 

Uact. = f.J.b3 [ t·U0 In;~+ Ut(t·- eo)- iU a (,.st:L~0312) J , 
2-v u - .,..,...,....____,. 

o- 8(1- v)' 

U t = 2 :b cos 1/J sin 4> , 

2·092 J(y) . 
Us= y'(l-v) f.J.b sm4>cosi/Jcos4>/2, 

(8/e2 ~l). From {17), the condition for the activated state is 

(17) 

(18} 

Schematically, the three terms in (17) are sketched in fig. 6. The 
stress term eventually always dominates the other two for large 1·, but 
depending upon the parameters, the self energy plus the ledge term may be 
dominant for values nea.· f 0 . That is to say, depending upon the param
eters, there may be a spontaneous emission of a dislocation loop with no 
activation energy, or there may be a finite activation energy to form the 
loop whose radius is determined by eqn. {I 8). 

We have solved eqn. (18) for the critical loop size, and calculated the 
activation energy for the list of materials given in tltble l. The t•esnlts 
are listed in table 3. Furthet·, the functional val'in.tion of the activation 
energy with )'/f.J.b, ~0, and orientation parameters is shown in fig. 7. In 
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Fig. 6 

u 

Schematic variation of the three terms in cqn. ( 17) as a function of the radius. 

Table 3. Three-dimensional results 

Activation Radius of 
Crystal energy activated loop 

(electron volts) (in units of b) 

Ph 
Au 
Cu 
Ag 
AI 
Ni 

Spontaneous emission- No 
activated state for r > eo· 

Na. 0·02 1·5 
Fe 2·2 5·1 
w 329 50·7 
Fe* 19 17 

LiF 58 32 

NaCl { {2!~)} {(~~)} 
MgO 205 37 
AaO~ 852 20 

Si Ill 20 
Ge 260 4-2 
c 351 27 

Be 180 23 
Zn 107 21·2 
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this plot, the activation energy (eqn. ( 17}) is plotted after r is eliminated 
th1·ough eqn. (18). Here it is convenient to plot the dimensionless energy 

in terms of 

Uact 
1tact. = {2- v)2 f12 3 

8(1- v) {1' 1-1-b 

S = 16(1- v) .!. and 
5{:J'{2-v) fLb 

(19) 

(20) 

Indeed, these forms have been chosen because, for typical values of v and 
the orientation parameters, they reduce to 

(21) 

Fig. 7 

••• ,,~ 

0.4 

Dopendence of activation energy for dislocation nucleation on S (~ y/p.b), 
o.nd R0 ( ~ tol; exact definitiol1.8 of S and R0 , and normalization of energy 
o.re given in text. 
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It is seen that the behaviour divides mainly into two ldnds: If the orien
tation-dependent core parameter, R0 , is small, there is a substantial energy 
barrier to disloco.tion nucleation for all values of yfp.b (i.e., Uaot ~ 0· 1 p.b3). 

On the other hand, if R0 is large there will be an energy barrier only if the 
surface energy parameter, S, is smaller than that at which the curves 
cross the S axis; otherwise there is spontaneous nucleation. The curves 
for the larger values of R0 rise so steeply that there is essentially a critical 
value of S below which the energy barrier is substantial, and above which 
there is sponto.neous nucleation, although finer examination shows that 
there is a narrow range of R0 and S values fot· which Unct. is low enough 
that thermal activation could blunt the crack for sufficiently long time 
scales of load application. 

§ 4. PHYSICAL RESUL'l'S AND INTERPRETATION 

4.l. S·U1jace ene1·gy 

Among tho experimentally determined values listed in table 1, the 
values of yare the ones for which the only important uncertainties exist. 

For tungsten, Cordwell and Hull (1969) find that the surface energy 
varies from a low value of 1700 cgs at low temperature to 6000 cgs at 
higher temperature. The higher value apparently is due to plasticity 
induced in the vicinity of the moving crack. Other values have been 
measured by other workers intermediate to these extremes, but we believe 
the low value listed represents the bare crack. 

N aCl is claimed by Class { 1964) in his thesis to have a surface energy 
of 115 cgs, and this value is adopted by Kelly ( 1966). On the other hand, 
we believe the value 250 is mot·e likely. It is in the range of the experiments 
of Gilman (1960), Wiederhorn, Voses and Bean (1970), and Benson and 
Benson (1955), Benson, Schreiber and Va.n Zeggeren (1956) and Benson 
and Balk (1959), and is in reasonable agreement with the theoretical 
calculations, which for this crystal should not have a large error (Tosi 
(1964), MacMillan and Kelly (1972)). We list both values, and 1·esults 
for both, however. 

For A120 3, we have a range of values in the literature all the way from 
1000 cgs as given by Kingery (1954) for the basal plane to 6000 cgs as 
determined in cleavage experiments on the rhombohedml planes by 
Wiederhorn (1969). Wiederhorn also reports that cleavage is not possible 
on the basal planes, and in a private communication has noted that the 
cleavage surface energy for these planes must in consequence be in excess 
of 40 000 cgs! One wonders if the value reported by Kingery (not measured 
in cleavage) is not actually either that for a restructured surface or a 
composite value for a dimpled surface whose average orientation is [0001 ], 
but not the true basal pln.ne. Consequently, we nse 'Y = 0000 cgs in our 
work. 

In Zn, :Maitland and Chadwick (1969) have measured a rn-nge of values 
from 100 cgs (confirmed by other previous authors), to 575 cgs, depending 
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upon the technique used for making the measurement. Because of 
weaknesses in the analysis as applied to the experiments yielding the lower 
value, they believe the value of 575 cgs is to be preferred. 

But experimental difficulties do not exhalJSt our problems with the 
surface energy. One must also be certain that the surface energy as 
measured experimentally and the surface energy as we use it are synony· 
mous. In our work, the con·ect y is derived as the energy necessary to 
break bonds at a crack tip. Even in a pure cleavage event where no 
dislocations are produced, this process may not correspond to the thermo· 
dynamic surface energy because of relaxation effects which are possible on 
some crystal surfaces, such as Si, where the surface is entirely restructured. 
For this reason, the value chosen for Si is del'ived in a cleavage expel'iment, 
and for diamond is calculated from the value of the ca.z·bon-carbon bond. 
Unfortunately no cleavage surface energies are available for Ge. We 
also note a fmther point of rigor. In crystals with high Peiel'is barriers 
where the discrete lattice force fields oon trap a crack (Hsieh and Thomson 
1973) they measured to grow a crack is different from they measured to 
heal a crack. 

4.2. Two-dimensional results 

The results in table 3 suggest tho.t the fo.ce-centred m·ystn.ls, with the 
possible exception ofNi which has a borderline ec, nre unstable to dislocation 
formation, since the critical distance, ec. is less than the core radius, eo· 
Since all the elastic forces become impossible to define inside the core radius, 
and since the repulsive forces o,re dominant for o,ll distances larger than the 
core, we believe a crack in these crystals cannot sustain the large shear 
forces at its tip without forming the dislocation spontaneously. Nn., of the 
body-centred crystals, probably also spontaneously emits the dislocation 
because of the small size of fc, and also because we believe that in this 
case eo is not so small as 2/3, as is assumed for the other body-centred 
cubics. In all other oases, fc is sensibly larger than the core size, and we 
believe this gives rise to an energy hump which the dislocation must 
negotiate as it is formed. 

We have listed in table 2 two other cruder estimates of gc· In the 
first, we neglect the ledge term and in the second average over the geome;try. 
Both are fair approximations to the more accurate values for the brittle 
materials in the lowe1' half of the ta.ble. The ledge term is seen to be 
important for the softer crystals, ~s one would expect. 

The dimensionless ratio, p.bjy, related to our ~0
11 has a.lready entered 

into Armstrong's (196G) discussion of the brittle versus ductile competition, 
and we see that it is indeed explicit in our own work. However, in o\lr 
theory, as one progresses down the list of crystnls in to,ble 2, it is the 
opposite tendency of the gt·owing value of p.bfy n.nd the decreasing vttluc 
of the core cut-off which ma]ces the difference between the ductile face
centred cubics and the more brittle body-centred cubics. 
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We note in table 2 the positions of iron and nickel between the obviously 
ductile and obviously brittle solids. We give two calculations for iron. 
In one, the cra.ck line runs along a cube direction, [100], and in the second, 
the crack line runs along [110]. The second is actually that observed 
by Tetelman and Robertson (1963) in silicon iron, but it is the former 
which has the interesting low value of fc· 

We have listed the results for a split dislocation for a noble metal and 
for nickel. (Aluminium has small or no splitting.) The results shown 
are for only one of the partials. In the case shown, the pa1·tial has un
favourable geometrical factors, since it is not oriented to cause the cra,ck 
to open effectively. In this unfavorable case, the critical radii are slightly 
increased, but not enough to change our general results. 

4.3. TJt,·ee-dimensional 1·es~tlts 

'fhe three-dimensional results fot· the estimated activation energy a.s 
given in table 3 confirm the two-dimensional findings. We find a negative 
activation energy for the face-centred cubics, which again means that 
since all energies are cut off at the core radius, by the time any dislocation 
is well formed, it is under the primary influence of the repulsive forces. 
Again, Na would seem to have an essentially spontaneous emission, not 
only because of the small value of the calculated activation energy, but 
also because we have probably underestimated the true dislocation core 
size of this very soft crystal. 

The main surprise when comparing the two- with the three -dimensional 
results is the very large values obtained fo1· the a.ctivation energy of the 
brittle crystals, even though ~c is usua,lly a smn.U number. One might 
suppose that it would take only a small energy to push a local segment of 
dislocation past gc, say in NaCI, over a small front of the crack tip, a,nd 
that the repulsive force would then be able to dominate the picture suffi
ciently to expand the fluctuation indefinitely. However, the reason this 
is not so is that the dislocation must meet the crack surface at normal 
incidence. Otherwise, the forces there will coHapse the fluctuation no 
matter what happens to that portion lying over the hump beyond ec· 
In order for the dislocation to meet the sm·face perpendicularly, a full half 
loop of dislocation must be formed in the region of 1•epulsive forces, which 
is costly in dislocation line energy. 

4. 4. Conoluaions 
We find a vet·y strong tendency for crystals to be either completely 

ductile, or completely bt•ittle, so far as dislocation emission is concerned. 
Iron and nickel are the only interesting cases where our calculations suggest 
that the activation energy ma,y be sufficiently low that thermal fluctuations 
could play a role. With the various uncertainties in our calculations, 
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we are unfortunately not able to pin down the vnluea in these cases suffi
ciently to make a. definite prediction. 

Except for iron, sodium, and the face-centred cubics we feel confident 
in predicting that no spontaneous or thermally assisted blunting of a crack 
tip can occur in the other crystals investigated. Even with the uncer
tainties in the y and the other approximations made, crystals like Li]_{, 
and NaCl (to say nothing of the hexagonal metals) seem immune enough 
to this process. This conclusion means that if blunting does occur it 
must be because of dislocations produced outside the tip region, and which 
are then attracted toward, and collide with it. 

Our conclusions are at vat·iance with the often quoted claim that cl'aclts 
cu.nnot remain sharp (and the crystals thus be brittle} if the shear stress 
at the crack tip is larger than thG theoretical shear stress of the homo
geneous crystal. As we stated in the introduction, a. shear stress at the 
value of the the01·etica.J shear strength will cause the crystal to break down 
only if the stress is homogeneously applied across an entire plane running 
through the crystal. If the stress is only appled locally on that plane, 
then atoms where the stress has dropped below the maximum value will 
not be displaced from their lattice positions, and atoms where the force is 
maximum will not necessarily be displaced even though the stress is 
o.bove the theoretical shear strength because of the resistance offered by 
atoms in the undeformed region of the plane. 

Our conclusions suggest that so far as spontaneous emission is concerned, 
atomically sharp cleavage cracks are by no means a minority occurrence 
in materials. When the condition p.bfy > 7·5-1 0 is approximately satisfied, 
we have reason to expect the crack to remain sharp, th01.1gh geometrical 
factors and variations in core size make this condition only approximate. 
This condition, in the cases investigated, is satisfied for all but the face
centred cubic metals, and certain borderline body-centred metals. 

Our conclusions leave the precise morphology of cleavage cracks ulti 
mately undetermined, however, because they do not address blunting 
rea.ctions due to dislocations which might be attracted to the crack tip 
from the surrounding crystal. Processes which lower the cleavability 
by increasing the effective cleavage surface energy through the action of 
dislocation atmospherea trapped by the stress field of the crack are also 
not addressed here. On the other hand, our work does allow an evaluatiOJ;t 
of environment11l effects which can be understood in terms of a lowering 
of y. By increasing the ratio p.b/y, these could presumably make possible 
atomically sharp cracking, even in solids such n.s f.c.c. crystals which 
normally show ductile response. Then the ' cleavage ' is not necessarily 
fast-running, but can proceed only 116 fast as reactions take place to bring 
about the requisite lowering of y at the tip. It is possible that some 
environmentally assisted crack growth can be understood in this way. 
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APPENDIX 

I mage force o1~ dislocation near a c~·ack tip 
To compute the image force, consider fig. 8 in which astl·aight dislocation 

line lies parallel to a crack front, with the slip plane intersecting the ft·acture 
plane at distance a: ahead of the tip. We are ultimately interested in 
the case a:= 0, but by considering a: as variable we can use energy methods 
to compute the force. 

Fig.8 

L ~ 
I 

I 
I 

x r~ 
~8~/_p-~-

Configuration of crack and <lislocation fol' computation of the imo.gc force. 

Suppose that the body containing the crack is subjected to three genera
lized boundary forces Qr. Q1h and Q1111 each of which if exerted singly 
upon a dislocation free body would cause only a Mode I, II, or III crack 
tip singularity, respectively. Let qi> q1I> and qrn be the associated genera
lized displacements. These are defined so that 

I QJdqJ 
J 

is the work of boundary loadings per unit thickness into the plane of the 
figure. The S\lm on J extends from I to III. Hence, if we let U be the 
strain energy of the body per the same unit thickness, 

dU = 2 QJdqJ+Gda:-jdp, (AI) 
J 

where the respective contributions to energy changes come from load-point 
displacements dqJ, crack advance - da:, and dislocation glide dp; G ie the 
crack extension force (or energy release rate} and f is the force on the dis
location. 

The last equation may be rewritten as 

d(U- f QJqJ) = - t qJdQJ + Gda:-fdp. 

Fm'ther, since the terms on the right constitute t\n exact differential, 
we may write the Maxwell relation 

(oG) (~') op ~.Q = - oa: p.Q 
{A2) 

• 
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This is a fundamental relation for it allows us to compute the force on 
the dislocation solely from a knowledge of elastic fields induced by each 
of the forces QJ. To see this, recall that the crack energy release rate is 
given by (e.g., Rice 1968) 

(A3) 

where the JCs are stress intensity factors for the three modes. These 
are due both to the boundary forces QJ and to the interaction of the 
dislocation stress field with the crack, and ta.ke the forms 

J =I, II, III. (A4) 

Here each lcJ is the Mode J stress intensity fa.otor induced per unit of 
the corresponding boundary force. Each is assumed to be known for all 
crack lengths and hence can be considered as given function of o:. The 
unknown functions LJ a.re the stress intensity factors induced by the 
dislocation. The force on the dislocation is given by 

Here b0 is the edge and b8 the screw Burgers vector component; t1 and 
tu are the shear stresses induced on the glide plane, at the dislocation posi
tion, in the edge direction per unit boundary force Q1 and QII, respectively ; 
tm is the shear stress in the screw direction induced per unit force Qm. 
These shear stresses are to be considered as known functions of crack length 
and dislocation position, and hence of o: and p. The unknown force term 
g is that due to the dislocation itself, i.e. , the image force, and our object 
is to compute it. 

By substituting for G and j a.s above in the Maxwell relation (A2), 
we obtain 

This must hold for all vn.Iues of the Q's. Hence by equating coefficients 
of each QJ, 

oLJ - Ebc otJ for J =I II; oLm = - Eb!; otm. (A6) 
Op = 2( I - v~)lcJ Qcx I I op 2( l + v)ks ll Oa 

And by equating sides when each QJ = 0, 

- = --- - LI2+Lll2+-- Lm2 . 'Gg I-v
2 0 ( l ) 

ocx E op 1- v 
(A7} 
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'l'he cnlculation of the irmtge force now involves simple integrations: 
(i) First, we note thttt the l'ight sides in (AO) involve !mown functions 
of IX and p ; each LJ is determined by integrating these at fixed IX from 
the p of interest to a large value of p, say to co or to the specimen boundary, 
n.t which the L's may be tal(en as zero. (ii) Thus the right side of (A 7) 
is determined, and g is obtained by integration from the a value of interest 
(zero in our cnse) to a la.r·ge value of a n.t which g may be taken as zero. 

Now, since we are interested in n. dislocation rather neo.r to the crack 
tip, it will liuffice to consider a semi-infinite crack in an infinite body. 
Also, the solution for the L'a and y cannot depend on the particular nature 
of the load systems denoted by the Q's. Indeed, the rigllt sides of (A6) 
are universal functions, the same for all load systems inducing a given 
crack tip mode (see Rice 1972). Hence, for simplicity, we can choose load 
systems which act so far from the crack tip that the characteristic inverse
square-root elastic stress distribution gives the entire stress field, and that 
the k's are virtually constant, for all cra.clt distances a of interest. Let 
(a11)J denote the stress field for a given loading mode, J; this will be of the 
form 

(a11)J= kJ!QJ [F11(0)1J, i,j=x, y, z. 
'\ 1' 

(A8) 

Here the F's are functions of 8, particular to each mode, that are tabulated 
e.g. by Rice 1968, pp. 216-217. From these the shear stresses on the 
dislocation, per unit boundary loads, are identified from 

Q t = (am,lJ-(axxlJ sin 2.J.+( ) cos QJ. 
J J 2 "t' (]XII J "'#"> 

for J =I, II, and 

Qmtm = (a11.chn cos 4>- (a :c.hn sin rp. 

Upon substitution from (AS), these give 

t1=k1 (87T)-112sin rp Re [el'~~ (f-11~-af-312)], 

tu"" k11 (811)-1/2 Re [2e2 •'~~ e-112] + sin rp Im [el"'(t-112- cxe-312)], (A9) 

tm = km (271)-I/2 Re [el<~> e-lla], 

where i is the unit imaginai·y number, Re and Im denote reu.l and imaginary 
parts, and where 

e = 1' eto = (X+ p el4>. 

Hence the first of {A6} becomes 

.. 
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Multiplying by dp a.ncl recognizing that c1'~'clp=~. so tho.t integration on 
p becomes integration on ~ inside the bmckets, we have 

L = 3Ebc sin if> Re[- 2i:-l/2 2 cxl:-3/2] 
I 8(21T)ll2(1-v2) S +!!" s 

- Ebe [ . -~., B . -~., 8) 30] = 4( l _ 112) ( 21T,·)l/2 3 Sill 'I' COS 2 - Sill ('I'- COS 2 , (AIO) 

where the constant of integration is chosen so that L 1 vanishes at p = oo. 
In a similar way we find 

L - Ebc [ -~., B . -~., . 8 . (-1.. 8 . 38] 
11 = 4(1 _ 112)( 2m·)ll2 2 cos 'I' cos 2 - am 'I' sm 2 + sm "'- ) am 2 

-Eb 8 
Lm = 2{ I + v) (2~,.)at2 cos 2 . (All} 

Now that the L's are lmown, we have determined the effect of the 
dislocation on the stress intensity factors J(J (A4) and, further, we can 
substitute into (A 7) to determine the image force. Since each of the 
L's is proportional to ?·-112 , (A 7) is of the form 

(}g = - ~ [Q(8, rp)J 
Ocx dp t' ' 

where 

But by using the relations 

!_ =cos(}!_ _ sin 8 !_ !_ = cos (if>_ 8) !_ _ sin (t/>- 8) !_ 
&ex &t· 1· ao ' op o1· 1· ao 

between partial derivatives, one may readily derive the identify 

_ !_ [Q(8, if>~]=!_ [sin .(r/>-0) Q(8, cp)J· 
op 1' 001. am (} 1' 

(Al2) 

This lets us integrate (Al2) immediately. We must, however, append a 
'constant' of integration, which may depend on p ( =1· sin 9fsin rp), and 
which assures tho.t g--+0 as tX--+00. This means that g--+0 as ?'--+<X>, 0--+0 
in snch a way that ,. sin (J remains finite. Integration of (A 12) subject 
to this condition gives the imo.ge force 

sin (if>- 8) Q(O, cp} - sin tf>Q(O, cp) 
g= . () ' 

?'Sin 
(Al3} 

where Q is defined from (A l 0, 11) via (A l2). 
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In the text of the paper we were concerned with the cnse {)( = 0, so that 
8 = rp and 1' = p. In that case 

Q(O, rp) Eb
0

2 Eb11
2 

y= --p-=- 81r(l-v2)p- 81r(l+v)p' (A14) 

whet·e the lattet· form comes from identifying Q(O, rp), which is found to 
be independent of rp. Remarkably, this is the same imo.ge force as for 
a dislocation line at distance p along its slip plane from the boundary 
of a half-space. In fact, the result for this latter case is also obtainable 
from (A 13) by letting the c1·ack tip pass far beyond the site of the dislocation, 
et--~- oo. This means that we let e~. r--Ht) while keeping r sin 9 finite 
(iL equals p sin ,P). By direct evaluation one finds that Q(1r, cp) = 0, so 
thE~t lihe image force from the half-space boundary is also given by (Al4). 
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