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SUMMARY 

Recent finite-element results by S. Cl. Larsson and A. J. Carlsson suggest a limited range of validity 
to the ‘small scale yielding approximation’, whereby small crack tip plastic zones are correlated in 
terms of the elastic stress intensity factor, It is shown with the help of a model for plane strain yielding 
that their results may be explained by considering the non-singular stress, acting parallel to the crack 
at its tip, which accompanies the inverse square-root elastic singularity. Further implications of the 
non-singular stress term for crack tip deformations and fracturing are examined. It is suggested that 
its effect on crack tip parameters, such as the opening displacement and J-integral, is less pronounced 
than its effect on the yield zone size. 

1. INTRODUCTION 

RECENTLY, LARSSON and CARLSSON (1973) have shown that the range of validity of 
the ‘small scale yielding’ approximation for crack tip plastic zones is substantially 
more limited than previous analyses had suggested (see, for example, RICE [1967a, 
1968a]). To describe the approximation, let r, 6’ be polar coordinates centred at the 
tip of a crack in a body under plane strain deformations. The small-displacement- 
gradient linear elastic solution results in stresses of the form 

crij = Kr- “2fj(8)+non-singular terms (1.1) 

near the crack tip, where K is the stress intensity factor and where the set of universal 
functionsfij is normalized so that the singular part of the stress acting ahead of the 
tip, normal to the plane of the crack, is K(2m) -II2 . The small scale yielding approxi- 
mation then incorporates the notion that, even though (1.1) is inaccurate within and 
near a small crack tip yield zone, its dominant singular term should in some sense still 
govern the deformation state within that zone. Hence, the actual elastic-plastic 
problem is replaced by a problem formulated in boundary layer style, whereby a semi- 
infinite crack in an infinite body is considered and the actual conditions of boundary 
loading are replaced by the asymptotic boundary conditions that 

aij --, Kr-1’2fj(e) as r+co. (1.2) 

Hence, as is often said, the small yield zone is ‘surrounded’ by the dominant elastic 
singularity, and the applied loadings and geometric shape of the body influence 
conditions within the plastic region only insofar as they enter the formula for K, as 
computed elastically. 
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A consequence of this formulation is that the plastic zone dimension I’,, and the 
crack tip opening displacement a,, when definable, are given by formulae of the type 

PP 
= aK'/a;, 6, = pK'/Eo,,, (1.3) 

where E is elastic tensile modulus, go is yield strength, and M and p are dimensionless 
factors which may, for example, depend on Poisson’s ratio, strain-hardening exponent, 
etc., but are independent of the applied load and specimen geometry. Now, by com- 
paring equations such as (1.3), generated by the boundary layer formulation, to 
available complete elastic-plastic solutions, RICE (1967a, 1968a) found that the 
approximation was valid up to substantial fractions of the loads corresponding to 
general yielding. Of course, in the limit of very small load levels, the solutions 
coincide exactly. It turns out to be important that such complete solutions were, 
however, available only for the anti-plane strain case and for the Barrenblatt-Dugdale- 
BCS (Bilby-Cottrell-Swinden) yield model. 

By contrast, LARSSON and CARLSSON (1973) performed plane strain elastic-plastic 
calculations, by the finite element method, for a variety of specimen geometries, and 
found significant discrepancies with the boundary layer formulation, even within the 
rather small range of yield zone sizes allowed by the ASTM limits for fracture test 
correlation in terms of K-values. For example, by fitting their numerical results to 
(1.1) they found that at loads corresponding to the ASTM limit, CI would have to 
differ by a factor of two between the compact tension and center cracked specimens. 

Larsson and Carlsson were able to explain their results in terms of a suggestion by 
the present writer that differences from specimen to specimen in the ‘non-singular 
terms’ of (1.1) could be responsible for the discrepancies. Indeed, from the analyses 
of WILLIAMS (1957) and IRWIN (1960), a more detailed form than (1.1) for the in-plane 
stress components is 

[:;I :;j = :. [;I;;; ;-$;j + [; :j + terms which vanish at crack tip. (I .4) 

Here, (x,y) is the plane of straining and the crack coincides with the x-axis, so it is 
seen that the portion of the non-singular stress field which does not vanish at the tip 
amounts to a uniform stress 6,, = T acting parallel to the crack plane. Thus, by first 
determining Tin terms of the applied load for each of their specimens, LARSSON and 
CARLSSON (1973) were able to verify that a two-parameter boundary layer formulation, 
in which (1.2) is replaced by the requirement of an asymptotic approach to the field 
given by the two leading terms of (1.4) could closely match their results for the 
different specimens. 

The aim in the present paper is to study further this T-effect, and to clarify the 
manner in which it results in deviations from (1.3) at such substantially lower levels of 
applied load than had been expected from earlier studies. Much of this discussion is 
given in terms of a simple model for plane strain yielding, consisting of two slip bands 
emanating symmetrically from the crack tip. It is also shown that there is no similarly 
strong T-effect on formulae for the value of the J-Integral. This and related implica- 
tions of the T-effect for fracture are discussed. 

2. A MODEL FOR PLANE STRAIN YIELDING 

The model for plane strain yielding is illustrated in Fig. 1. Plastic relaxation occurs 
by sliding on two bands at angles +(I, with the crack plane. These bands sustain a 
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FIG. 1. Crack tip yield model. 
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yield stress r0 in shear, and their length rp is determined by the following approximate 
argument (RICE, 1967a).t Consider first a mode II shear crack under stress intensity 
factor K’“‘, so that the elastic field analogous to (1.1) results in 

(2.1) 

for the shear stress exerted directly ahead of the crack, in its own plane. If this is 
relaxed through sliding in the crack plane under a yield stress to, the small scale 
yielding estimates of the extent of the plastic zone and the crack tip sliding displace- 
ment are 

rg’ = (TC/~)[K’“‘/T,]~, Bjs) = (1 - v~)[K~~)]~/Ez,. (2.2) 

Now, for the mode I tensile case, the elastic field (1.1) results in a shear stress 

Qq5l = 
sin q5 cos (+cj)K + 

2(2nr)‘j2 ’ ’ ’ 
(2.3) 

along the planes at angles f 4 where sliding is presumed to take place. By comparing 
this to (2. l), we can identify ZP as 

Kc”’ = ) sin 4 cos (#J)K (2.4) 

and, as an approximation, estimate the extent of the plastically relaxed zones and 
crack tip sliding displacement in each from (2.2). Hence, for small scale yielding, 

rP Z rp w = (n/64) sin* 4 (1 +cos c$)K”/z$, 

6 f z 26,‘“) sin 4 = a(1 - v2) sin3 4 (1 +cos 4) K’/Ez, ) 
(2.5) 

where a trigometric identity is used and where 6, is the total opening at the tip between 
upper and lower crack surfaces. In fact, this expression for 6, differs from that given 
originally (RICE, 1967a) in that the sin q5 multiplying a@), and giving its projection 
onto the y-direction, had been omitted. 

If we choose the value of 4 as that which maximizes the extent of the yielded zone, 
then cos 4 = f, so that 4 = 70.6”, and (2.5) become 

5=&$0.17(&J 

I 

(2.6) 

(for v = 0.3), 

-t A numerical solution of this model for q5 = 45” has been reported by BILBY and SWINDEN (19651, 
who modelled the crack and yield bands by a finite set of discrete dislocations, having fixed positions 
but variable Burgers vectors. 
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where the results are given in terms of the equivalent tensile strength (TV = , 3 T,, 
for purposes of comparison with (1.3) and with numerical finite-element solutions to 
the full elastic-plastic equations for a non-hardening von Mises material. The most 
accurate of such solutions for the small scale yielding formulation is probably that of 
RICE and TRACEY (1973), employing singular elements. They reported a maximum 
plastic zone extent at 7 1 -) with numerical coefficients of 0.152 for I’~ and 0.493 for 6,. 
Similar results were obtained by LARSSON and CARLSSON (1973) and also by LEVY, 
MARCAL, OSTERGREN and RICE (1971), in an earlier implementation of singular 

elements, except that the latter obtained a numerical coefficient about 14 per cent 
lower for 6,. Thus, the simple model seems to be in fair agreement with more accurate 
solutions. Indeed, if we thought of the yield zone as not being confined to discrete 
bands, but rather as a diffuse zone, and used (2.5,) to predict the distance to the 
elastic-plastic boundary, then a yield zone shape in good agreement with that of the 
numerical solutions results over the ‘centred fan’ range of 4 from 45” to 135’. 

Now let us consider the effect of the T-term on this model. Evidently, a uniform 
stress field cJX = Tcreates a uniform shear stress 

a@ = - T sin 4 cos 4 (2.7) 

along a plane at angle 4 with the crack plane. Since it is uniform, a solution to the 
yield model for the case of T = 0 also provides the solution when T # 0 if we make 

the replacement 

?0 + r. + T sin 4 cos +. i2.8) 

Hence, the solution for the modified boundary layer formulation, in which T is 
accounted for as discussed earlier, is given directly from (2.5) as 

“P = (x/64) sin” 4 (1 scos 4) K*/(r, + 7’ sin 4 cos ~b)~, 1 

6, = &( 1 - v2) sin3 4 (1 +cos 4) K',/[ E(T,+ T sin 4 cos 4)l.J 
(2.9) 

To see the real significance of these results, let us keep in mind that K and Tare 
directly proportional to the applied loadings. For example, 

K = a$(?#“, T = a.;;-~;; (2.10 

for the Inglis-Kolosov configuration of a crack of length 2a under remotely uniform 
biaxial stressing (Fig. 2). Now, if (2.9) is expanded in a series about T = 0, using the 
value of 4 = 70.6” which maximizes rp in that case, then 

where by comparison with (2.6), the bracketed terms represent the deviation from the 
small scale yielding approximation. Thus, 

(2.13) 

for the configuration of Fig. 2. 
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FIG. 2. Crack under biaxial tension. 

There is a fundamental difference between these expansions and similar expansions 
as carried out from the available complete elastic-plastic solutions for anti-plane 
strain or for the Barrenblatt-Dugdale-BCS model. Namely, for every such solution 
the corresponding series for rP and 6, are of the form 

r* = ~(W,)ZCl +G&&%)2 +. * .I, (2.13 

where CI and ,l are constants and where crap,,, is some nominal applied stress. A typical 
example for the latter type of model, wherein yield is supposed to be confined to 
plastic zones sustaining the tensile yield strength c0 and lying in the plane of the crack, 
is 

rp = a{[cos (7ra$/2o,)]-‘-- l} = (7?/8) a(a,“,/oO)‘[l +(5rc2/48)(a~/~,J2+. . .] (2.14) 

for the configuration of Fig. 2. The feature of interest for all such solutions is that the 
deviation from the small scale yielding approximation is quadratic in the applied load, 
whereas for the present inclined shear band model (and, by implication, for the exact 
elastic-plastic plane strain solution) the deviation is linear in the applied load. Indeed, 
this difference would seem to be at the root of the Larsson-Carlsson observation of a 
substantially more limited range of validity to the small scale yielding approximation 
than had been evident from the earlier solutions. 

In retrospect, it is easy to see how this distinction comes about: the non-vanishing 
but non-singular T-terms are the source of the linear deviation in (2.11) and (2.12). 
This term is completely without effect on the Barrenblatt-Dugdale-BCS model. For 
example, changing T by changing a,“, in Fig. 2, or by alterations of boundary conditions 
in other cases which would induce a uniform cXX if the response were elastic, has no 
effect on the solutions for this model. Of course, the same is not true for the plane 
strain model of Fig. 1, as (2.7) to (2.9) show. In anti-plane strain, there is a similar 
possibility of a non-vanishing but non-singular term amounting to a uniform shear 
stress cX,,, and this would presumably result also in a linear deviation. But this term 
exists only when loadings are unsymmetrical relative to the crack line, and its effect 
has been undetected simply because solutions have been done only for symmetrical 
loadings. 

It is interesting to examine further the predictions of the simple model as given by 
(2.9). The apparent cc-value, in the notation of (1.3), will be called R, and is given by 

R, = r,/(K/&J2 = (3rc/64) sin2 4 (1 + cos 4)/[ 1 + (T/z,) sin $J cos 41”. (2.15) 
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F#;. 3. Eircct of T on yield zone size for a given K. 
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FIG. 4. Angle d, at which yield zone size is maximunl. 

Figures 3 and 4 show the variation, with T/T,, of the value R,, ,_ resulting when this 
is at a maximum, and the corresponding values, &,,,,, of 4. Now consider the results 
summarized in Table 1 for four specimens analyzed by LARSON and CARLSSON (1973). 
The first column shows T in ratio to K for each specimen, with a being crack depth. 
The data are taken from solutions for loadings at the ASTM limit, K = 0.6 o,,,‘;, 
and corresponding ratios of T,izO are listed. Next is shown R,, max from the numerical 

solution and from (2.15). Finally &,,, is shown from the same sources. It is given as a 

TABLE 1. T-&&t 011 l+eld zones for,fracture specimens. 

R 0. max (6 mBy (deg.1 

Specimen T&?{K T/r,, 
LARSSON and Equations LARSON and Equations 
C,~RL~~ON (2.9) and CARL~SON (2.9) and 

(1973) (2.15) (1973) (2.15) 
-- ~~ -. --- ------ _ ____-._. .-~ ~~~. _..- ~_ _~~~~~~. ---. - 

Center cracked - O-59 - 0.57 O-23 0.29 58-63-69 58 
Doubled edge 
cracked - 0.14 - 0.13 0.20 0.19 64-67-73 67 
Bend 0.03 0.03 0.15 0.17 63-71-78 71 
Compact tension o-29 O-28 0.11 0.15 G-83-105 81 
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range for the numerical solution because of the typically broad and not precisely defined 
maximum for R,, and the angles such as 58”-63”-69” for the center cracked specimen 
correspond to those for which the yield zone extent is 0.98 R,, _-R,,, ,,,-098 R,, max, 

respectively. The agreement is remarkably good. Also, as remarked earlier with 
T = 0, a reasonable indication of the shape of the plastic zone is given by regarding 
(2.9) as being the distance to the elastic-plastic boundary at any angle 4. The writer 
is pleased to acknowledge the assistance of Professor A. J. Carlsson in providing the 
numerical evaluation of the formula (2.9) and the comparison with his finite-element 
data as discussed here. 

It is also worthy of note that the variation of crack tip opening displacement 
between specimens at the same K is considerably less than that in plastic zone size. 
For example, if the values of T/z, and &,,, at the ASTM limits are taken from the 
Table, then (2.9) with v = 0.3 gives apparent p-values, in the notation of (1.3), which 
range from 0.49 for the center cracked to 0.41 for the compact tension specimen. By 
comparison, 0.44 is the actual p-value, from (2.6) for T = 0. The numerical solutions 
of LARSON and CARLSSON (1973) showed a similarly small variation in apparent 
j&values. 

3. ABSENCE of T-EFFECT ON THE J-INTEGRAL 

Recently BROBERG (1971) and BEGLEY and LANDES (1972) have suggested that 
failure criteria could be based on the J-Integral, in the sense of its use by RICE (1968a, b) 
as a measure of the intensity of crack tip deformations in non-linear materials. By its 
compliance interpretation, it is known that 

J = (l-v’) f (3.1) 

for small scale yielding. It is of interest to know if there is a linear deviation of J 
from this formula, due to a T-effect, as is the case with plastic zone size (equations 
(2.11) and (2.12)). In fact, it is shown here that there is no T-effect on J, so that 

J =(l4)g [I+c(yr+...], (3.2) 

i.e. the deviation is quadratic in applied load. 
To see this, consider the modified boundary layer formulation for a semi-infinite 

crack in an infinite body, with boundary conditions of asymptotic approach to the 
first two terms of (1.4). There will be a yield zone at the crack tip, but we focus on the 
nature of the solution in elastically deformed material outside of a circle of radius 
greater than the greatest extent of the non-linear zone. By doing a ‘WILLIAMS (1957) 

expansion’ of the stress field for this outer region we arrive at the representation 

Qij = T~i~~j~+Kr-1’2fij(8)+r-1Aij(~)+r-3’2Bij(e)+r-2Cij(e)+. . . . (3.3) 

Of course, the terms of exponent more negative than -3 are customarily deleted 
because if this were written for the inner region, they would result in unbounded 
energy. 

By seeking the most general r -I stress field corresponding to symmetrical loadings 
about the x-axis, one easily shows from the equilibrium equations and compatibility 
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equation V2(olr + oee) = 0, for an isotropic material, that 

A,, = 4 cos 8, A,, = Pj cos 0, A,, = ye sin 0, (3.4) 

where < and 11 are constants and where V = +n are the crack surfaces. In fact, these 
expressions when multiplied by r -’ correspond to the stress field due to an edge 
dislocation with Burgers vector in the y-direction plus a concentrated line force 
pointing in the x-direction. If the Aij-terms are to satisfy traction-free boundary 
conditions on the crack surfaces, q = 0, and if there is to be no net force transmitted 
across a circuit surrounding the crack tip, 5 = 0. Hence, there is no r-l term in (3.3): 

Aij = 0. (3.5) 

Choosing the path IY in the definition ofJ to be a large circle of radius I’ surrounding 
the tip, 

J = if [ W dq’- ~(au,/ax) L/S] 

= r 7 &ii cij cos O- ai.,(Zui/6.u) cos 0 -cr,,(&,~?x) sin U] c/U. (3.6) 
--li 

The displacement derivatives and strains will have expansions in powers of r identical 
to those for the stresses. Further, since J is path-independent, i’ may be chosen as 
large as we wish. By considering the different powers of r which remain in (3.3) when 

the r-l term is deleted, one sees that in the limit I --f a, only the first two terms of (3.3) 
will contribute to J. But this means that J takes on the same value which it would 
have if there were no plastic zone and the material responded elastically everywhere, 
and this value is well-known to be that given by (3.1) independently of T. Hence there 
is no T-effect on the J-integral. 

The significance of this is made evident by the work of CHEREPANOV (1967), 
HUTCHINSON (1968) and RICE and ROSEWREN (1968) on crack tip singularities in 
‘power-law’ strain hardening materials. The strength of their leading singular term, 
which dominates the deformation field near the crack tip, well within the plastic zone, 
is expressed solely in terms of J. From this we conclude that there is no T-effect on the 
dominant singularity, although there will of course be an effect on the overall shape 
of the plastic zone. But this needs two qualifications. First, as remarked by RICE and 
ROSENG~EN (1965) and MCCLINTOCK (1971), and as is also evident from an earlier 
anti-plane strain analysis by RICE (1967b), the question as to whether the ‘dominant’ 
singularity really governs over physically significant size scales for fracturing depends 
on how strongly the material strain-hardens. Indeed, with the non-hardening idealiza- 
tion there is no such one-parameter characterization and different specimens may have 
different near tip fields, at the same J-value, when load magnitudes are beyond the 
range of validity of the unmodified boundary layer formulation (1.2). For example, 
the T-effect leads to slight differences in a crack tip parameter such as the opening 
displacement in non-hardening calculations, as remarked earlier. The second point is 
that the dominant singularity, when present, is parameterized in terms of the value, 
J,i,, of J on a contour of vanishing radius about the tip. This will equal the value (3.1) 
as computed on contours in the elastic region only to the extent that a ‘total strain’ 
formulation of plasticity if appropriate. It is likely that the development of pointed 
vertices on small-offset yield surfaces makes this a good approximation to actual 
behavior for cases without substantially non-radial loading. However, some approxi- 
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mation is involved and Jtip may therefore differ from (3.1) by an amount which depends 
on conditions in plastically deformed regions away from the tip, where there is a 
T-effect. For example, the incremental, small scale yielding, non-hardening solutions 
by LEVY et al. (1971) and RICE and TRACEY (1973), which take no account of vertex 
formation, result in a Jtip value about 20 per cent less than that of (3.1). This per- 
centage reduction could be affected linearly by T, although the net effect on Jti, would 

seem small. 

4. DISCUSSION AND SUMMARY 

The model discussed here shows deviations from the small scale yielding solution 
at relatively low levels of applied load, in agreement with the results of LARSSON and 
CARLSSON (1973). Their cause is evidently due to the non-singular stress term T acting 
parallel to the crack plane. The effect on the plastic zone size is quite pronounced at 
load levels corresponding to the ASTM limit, although there seems to be less effect 
on near-tip parameters such as the crack tip opening displacement and J-integral. 
As regards the near-tip stress state, recall that the Prandtl field, which is thought to 
give the stress state as r + 0 for a non-hardening material (RICE, 1967a, 1968a, b), 
involves a positive oxX both ahead and behind the tip. This suggests that specimens 
with a negative value of T would tend to show a more rapid fall-off, with increasing r, 

from the hydrostatically elevated stresses of the Prandtl field than would be the case 
for those with positive T. Indeed, this agrees with the numerical results of LARSSON 
and CARLSSON (1973) who find, for example, that the center-cracked specimen exhibits 
a considerably more rapid stress fall-off than do the other specimens listed in 
Table 1. 

This latter kind of T-effect is likely to be important for stress induced fracture 
mechanisms, such as cleavage micro-cracking, whereas the T-effect on crack tip 
deformation parameters would seem more relevant to cases of ductile void-growth. 
Effects of both kinds could be involved when high stress levels are important to void 
nucleation by the cracking or de-cohesion of second-phase particles (RICE and JOHNSON, 
1970). As for experimental studies which might reveal a T-effect on critical K-values for 
fracture, HALL (1971) has compared four crack test specimen designs for 2219-T87 
aluminum and 5Al-2.5Sn ELI titanium alloys. Two of his specimens, namely the 
bend and compact tension, coincide with those of Table 1. With aluminum, Hall 
finds a critical K-value for the compact tension specimen which is typically about 
25 per cent lower than that for the bend specimen, when comparison is made at the 
maximum load allowed in the ASTM procedures. This, incidentally, corresponds to a 
plastic zone extent which is only 6 to 7 per cent of the crack depth a. On the other 
hand, with titanium Hall finds a less definitive effect, and the bend specimen results 
instead in the lower critical K-value, by about 10 per cent. 

The inclusion of T as a second crack tip parameter was shown to characterize 
suitably small plane strain yield zones, when K alone becomes inadequate. More 
generally, for actual three-dimensional tensile mode crack tip stress states, it would 
seem necessary to supplement K with two parameters, say S and T. Here, T is the 
non-singular cr,, introduced earlier whereas S represents a similar non-singular aZZ, 
acting perpendicular to the principal plane of deformation. For plane strain, S = VT, 

but this will not be so in general. Just as T influences yielding in the plane, S would 
seem to influence the transition to a non-plane-strain yielding mode involving through- 
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thickness deformation as observed, for example, in thin notched sheets with ‘plane 
stress’ yielding. 
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