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ELASTIC POTENTIALS AND THE 

STRUCTURE OF INELASTIC CONSTITUTIVE LAWS* 


R.  H I L L t  AND J .  R .  RICE!: 

Abseact. The existence of a work potential. governing materlal response when elastic behav~or 
occurs. is shown to p rov~de  a concise framework for the structure of inelastic constitutive laws. The 
discussion includes the identification of differential invariants In conjugate stress and straln variables, 
an examination and reformulat~on of postulates leading to "normal~t) rules". and a study of the 
transmission of constitutive properties from subelements to overall behavior of heterogeneous sjstems. 
Also. internal variable representations of inelast~citj are examined uithin this framework. 

1. Introduction. We consider elastic/plastic materials of a general kind. 
either time-independent or time-dependent. which have the property that their 
purely rlastic response admits a work potential. We show how this property can 
form the basis of a concise framework for the structure of their inelastic constitutive 
laws. The formalism is well suited to discussing macroscopic properties of materials 
which are heterogeneous on the microscale. 

This approach is motivated by the work of Kestin and Rice [ I ]  and Rice [2] on 
internal state-variable models for plasticity. The postulated existence of thermo-
dynamic potrntials was there shown to lead to an explicit relation between inelastic 
strain-increments and changes in the variables. A class of kinetic rate laws for the 
variables was thereby identified which implies a normality structure in the macro- 
scopic constitutive equations. By contrast we proceed here without specific 
reference to internal variables, though we subsequently introduce them as one 
possible way to represent the history dependence of inelastic deformation. 

We show further how invariance theorems in the general class established by 
Hill [3] can be derived concisely in the event that elastic potentials exist. The 
invariance in question refers not only to the whole family of conjugate measures of 
stress and strain, but also to the transmissibility of constitutive properties between 
microscopic and macroscopic levels. 

2. Inelastic materials and elastic potentials. 
2.1. Basic notions. Let e denote any strain tensor. objective and symmetric. 

that measures deformation from an arbitrary reference state. Let t be the sym- 
metric conjugate stress such that t tle is the work per unit volume of the adopted 
reference state in any virtual deformation de. 

We consider inrlastic materials that exhibit, under certain loadings, a purrly 
elastic response at any stage of deformation. Such response may, for example. be 
elicited only by stress variations whose directions and magnitudes fall in a certain 
range, or perhaps.only as a limit when the variations are sufficiently rapid. By 
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elastic we mean, in the first instance. that the (t. e) relation is one-to-one, though it 
depends on the prior inelastic deformation. This same relation. when evaluated 
at the current strain. gives the current stress whether subsequent deformations are 
elastic or not. 

We can therefore write 

where the notation is intended to convey that t is a direct function of e and a 
functional of the prior history of inelastic deformation (denoted symbolically by H) .  
For each H the function is defined in some domain of strain space which necessarily 
includes the current state, though possibly as a boundary point. The variation of 
t(e. H )  over the domain at a particular H i s  then descriptive ofthe elastic response at 
that H .  

Our basic assumption is that the response is always of Green type, in the 
generalized sense that a work potential 

exists at each H and within the associated e domain. Then. for any such strain 
variation 6e at jxed H. which is to say during purely elastic deformation, 

Hence 

when 4 is symmetrized in the components of e. Subsequent developments follow 
directly from the validity of this equation throughout any program of inelastic 
deformation. It is to  be understood that 4 is taken at each stage as the potential 
appropriate to the accumulated history H of inelastic deformation. 

Dually, in terms of the complementary potential 

we have 

at fixed H and 

(7 )  

universally likewise 

2.2. Motivation. In the conventional time-independent formulation of 
elastic"p1astic behavior, a yield surface is assumed at each H.  This demarcates 
regions of e- o r  t-space within which the behavior is elastic and functions t(e. H )  
and e(t, H )  are defined. The current t or e always lies within or on its respective 
yield surface. In particular. during any program of uninterrupted plastic deforma- 
tion, e remains on the current yield surface. In that case the functions corresponding 
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to each H of the program describe what would I1at.e happened if the material had 
been elastically deformed at that H. 

By standard thermodynamic arguments applied to states within the elastic 
domain for any given H, one can see that 4 is the free energy. Its additional canoni- 
cal variable is temperature, but this needs no explicit mention in the present iso- 
thermal treatment (cf. Rice [2]). From the standpoint of macroscopic experiment. 
4 is defined in each domain via (3) only to within an additive functional of H. 
However, this nonuniqueness is without consequence to our results, which follow 
from the variation of 4 withe at a given H or from the difference of this variation at 
neighboring H's. 

The framework applies as well to the time-dependent formulation of elastic/ 
plastic behavior, in which the material is imagined to be instantaneously elastic 
in response to sudden changes in e or t .  Constitutive laws are then such that the 
inelastic contribution to the rate of deformation is a function of the current stress 
which is, in general, dependent on the accumulated inelastic history H. Hence an 
instantaneous change in stress causes an instantaneous change in the inelastic 
contribution to the strain rate,  but not to the strain itself. As discussed by Rice [4], 
this behavior becomes time-independent in the limit of a strongly nonlinear varia- 
tion of inelastic strain-rate with stress when some history-dependent critical stress 
range is exceeded. Within such a time-dependent framework. all neighboring 
strain states are accessible elastically from the current state, at least approximately 
when the time of strain variation is short in comparison with time scales in the 
induced plastic flow rate. The elastic response properties to be associated with each 
state are then those governing this instantaneous elasticity, and 4 is the correspond- 
ing free energy. 

The formalism which we propose is applicable as well to a broad class of 
structural models for inelastic behavior, in which the inelasticity is considered to 
result from microstructural rearrangements of constituent elements of a macro- 
scopic material sample. The extents of these rearrangements are described by a 
collection of internal state variables; these may, for example, denote the positions 
of dislocation lines or, at a nonatomistic level of modeling, the pointwise distribu- 
tion of plastic shears on the different permissible slip systems in each grain of a 
polycrystal. Here one takes the viewpoint that an energy density may in principle 
be ascribed to every collection of internal variables and strain (and temperature), 
whether or not achievable as a corresponding set in an actual deformation. Hence 
stress may be defined by 24lde at constant values of the internal variables, and this 
relation o f t  to e at fixed internal variables defines the elastic response properties of 
the material. Indeed, within this framework, H is to be interpreted as symbolizing 
the current collection of values of the internal variables, and variations in state at 
fixed H mean variations at  fixed internal variables. Note that for this class of 
models, the H-dependent portion of 4 has a definite physical interpretation in terms 
of the contributions to 4 from the self- and interaction-energies of the internal 
variables. The corresponding inelastic constitutive laws may be either time- 
independent or time-dependent, according to the nature of the kinetic relations 
adopted to describe the evolution of the internal variables. 

2.3. Elastic and plastic increments. Variations in state at  fixed H have been 
denoted by he, 64, etc., and we shall always use the &operator in this sense. More 
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general variations that may involve a change dH will henceforth be written de,  d$,  
etc. Also dP will denote the "plastic" change in any constitutive function of e or t 
and H ; this is defined as the change in the function when H is changed to H + dH 
but e or t respectively is assigned the same value. For example, 

dP$ = $ ( e ,  H + d H )  - $ ( e ,  H ) ,  

dP$ = $ ( t , H  + d H )  - $ ( t , H ) .  

Here e need bear no relation to the strain at or from which the additional inelastic 
history d H  accumulates, but can take any value within the overlap of the domains 
of definition of $(e,  H + d H ) and $(e,  H ) .  A similar remark applies to t .  

Similarly, with regard to the functions t ( e ,  H )  and e( t ,  H ) ,  the plastic parts of 
the increments o f t  and e are 

Bt
dpt = dt - - d e =  dt - P d e ,

2e 
(9) 

Be
dPe= de - - d t  = d e  - . X d t ,  

a t  

where IP and . X are the fourth-rank tensors of elastic moduli and compliances. 
Evidently, 

(10) dPt = -9 dPe and dPe = - t?'dPt 

since 9a n d .  X are mutual inverses. 
Note that, for a time-independent material, dPe cat1 generally be effected 

physically only by a j n i t e  cycle of stressing: namely, along a path from a considered 
t within the domain for H to the boundary point at which d H  accumulates and 
then back t o t  by a path within the subsequent domain for H + d H . Exceptionally, 
when t is the point of accumulation itself, an infinitesimal cycle of loading followed 
by unloading is of course possible. For a time-dependent material, on the other 
hand, dPe is the difference between the strains when t is instantaneously applied 
after inelastic histories H and H + d H  respectively. 

The plastic variations dP$ and dP$ are themseves functions of e or t respectively 
in the overlap of domains for fixed H a n d  H + d H . Then, by differentiating (8) as it 
stands, 

d
- ( d p $ )  = e ( t ,  H + d H )  - e ( t ,  H ) .  
d t  

which can be written as 

Thus, the plastic variations in the potentials can be vir\t>rd as potentials for the 
plastic variations in the stress and strain. By virtue of 
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which are equivalents of ( 8 ) ,the connection 

( 13) dP4 + dP$ = 0 

follows at once from ( 5 ) .  
As for purely elastic increments of stress and strain, we need merely note that 

these are related by 

where, from ( 4 )and ( 7 ) ,  

with an obvious notation. Consequently, when arranged as 9 x 9 matrices, 9and 
,N have diagonal symmetry. 

2.4. Linear and bilinear differential invariants. I f  p is the mass density in the 
reference state, the work definition o f t  implies that 

(16) (1;p) t  de is invariant 

to the choices of reference state and strain measure (provided, of course, that every 
de corresponds to the same change in geometry). Similarly, 

(17) ( l l p )  6 4 ( e ,  H )  is invariant at any fixed H .  

We shall be especially concerned with two kinds of independent differentials 
emanating from any chosen set of values t ,  e ,  H. One involves purely elastic varia- 
tions 6t,  6e related by (14)at the given H. The other involves a variation dH in 
inelastic history, for which plastic variations dPt and dPeare defined as in ( 9 ) .We 
reiterate that dH is not necessarily accumulated at the chosen values o f t  and e .  

Consider the scalar products 6t dPe and 6e dPt. We refer to these as bilinear 
forms since they are constructed from a pair of independent differentials. When 
potentials exist, the forms reduce to 

by (1  1) .  Here, for example, 6(dP4)is simply the difference between the values of d P 4  
a t e  + 6e and at e, for the same H a n d  dH.  Because of (13)we now have the following 
equivalents : 

(19) ( l l p )  6(dP4)  = -( l l p )  6(dP$) = ( 1l p )  6e dPt = -( l l p )  6t  dPe . 

But 6(dP4)= dP(64) ,where the latter signifies the difference of 6 4  values at H and 
H + dH for the same neighboringgeometrirs (since 4 is a function ofe).Consequent-
ly dP(64)lpis an invariant by (17) .It can therefore be concluded that each mrmbrr 
of (19)is invariant to clzoicrs of strain measure and referrncr state. 

Substitution of formulas (9 )into the respective members of (19)yields 

( l l p )  6e (dt  -9de) and - ( l / p )  6t  (de - JLL dt)  
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Since 9and are here symmetric, these are the same as 

(20) ( l lp) (dt 6e - 6t de) . 

Thus (19) is but a special case of Hill's [3] bilinear invariant 

where d l  and d ,  are independent differentials and no material properties are 
involved. 

By integrating each member of (19) between any two states A and B within an 
H-domain, considering dH fixed, one obtains 

These may be regarded as further linear invariants. 

3. Normality in conjugate variables. Here we examine some postulates that 
lead to "normality rules" in conjugate stress and strain variables for inelastic 
solids. By means of the invariants established previously, it will be shown that suclz 
rules apply for every clzoice of reference state and strain measure, or for none. We 
shall subsequently study their transmissibility to conjugate macrovariables for 
composite continua. Finally, we give a specification of incremental or rate constitu- 
tive laws for internal variable models which are sufficient to ensure normality. 

3.1. Normality rules for time-independent plasticity. In the time-independent 
idealization of elastic/plastic behavior, a yield surface is assumed to exist in 
t- (ore-) space at  each history H .  Let dPe be the plastic variation in strain associated 
with the stress t under which dH occurs; then dPe is the residual strain-increment 
in an infinitesimal load-unload cycle. Further, let 6t be any stress increment 
emanating from the same t and directed inside the yield surface. If 

(22) 6t dPe < 0 

for every such 6t, we shall say that the material complies with the normality rule. 
Well-known consequences are that dPe must be codirectional with the out\t>ard 
normal to a locally smooth yield surface in t-space, whereas at  a vertex it must lie 
within or on the cone of limiting outward normals. 

From (19) it is evident that (22) implies 

This expresses a dual normality requiring dPt to be codirectional with the in\t>ard 
normal to a yield surface in e-space, with a similar generalization at  a vertex. 

From (18) or (19), each of these inequalities is equivalent to either of 

Hence the normality rule amounts to the following local minimum property: 
dP4 when ecaluated at  the state ofJow is less than dP$ \then evaluated at any imme- 
diately neighboring state \tithin the yield surface. Since all members of (19) were 
proved to be invariants, each normality inequality applies to all conjugate measures 
or to none. 
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3.2. Cycle inequalities for time-independent materials. The Il'yushin [5] 
postulate is 

(25) 6t de 2 0, 

where the integral is taken around a strain cycle, and the strict inequality holds 
when inelastic deformation occurs at  some stage. Being based on work, the postu- 
late is automatically invariant to reference state and measure. Further, within the 
present context of finite strain, Hill [6] has shown that the normality rule (22) in 
conjugate variables results from the postulate when applied to certain limiting 
types of infinitesimal cycles. 

Here we consider the inequality for finite cycles, but only ones that involve a 
first order inelastic history dH.  This is accumulated at  a state e,, say, on a yield 
surface, whereas the path starts from some finitely distant state e, within the surface. 
A cycle consists of three segments : (a) e, + e, elastically at  history H ;  (b) e, + e, 
+ de, with an accumulation of history dH, followed by e, + de, + e, elastically 
at  H + d H ;  (c) e, + e, elastically at  H + dH, which is always possible for suffi- 
ciently small dH. 

Segment (b) contributes only a term of second order to the integral. Also, 
because of path-independence within an  elastic domain, segment (c) can be chosen 
to retrace (a). It is then apparent that. t o  first order. 

where the &notation signifies as usual that H and d H  are fixed during the integra- 
tion (so that dPt varies only with e) .  Thus. by (1 l ) .  

This incidentally supplies a work interpretation of the invariants in (19) and of the 
potentials in (1 1) and (13). 

Our  restricted version of the Il'yushin postulate thus leads to global forms of 
(24): 

It is recalled that ( to.  e,) is any state inside an  H-surface. while (t,. e,) is the yield- 
point state for d H .  

3.3. Flow potential for time-dependent plasticity. Consider time-dependent 
materials exhibiting instantaneous elasticity. For  the plastic portion of the rate 
of strain, we assume the constitutive relation 

de dt dPe 
-- .&- = ( t .  H ) ,  
dQ dQ do 

where Q denotes time and the right-hand side is a function of the current stress and 
a functional of inelastic history. 
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Since instantaneous variations of stress induce only an elastic instantaneous 
response, it is meaningful to discuss the functional dependence of dPe/dB on t at 
any fixed H .  If this is such that 6t(dPe/dB)is a perfect differential at fixed H ,  then a 
scalar "flow potential" function o f t  exists at each H so that 

dPe
6 t -

dB 
= 6 Q ( t ,  H ) ;  

that is, 

(30)  

Since multiplication by dO/p converts ( 2 9 )into one of the bilinear invariants ( 1 9 ) ,  
the normality rule for the flow potential is also invariant to the choices of strain 
measure and reference state. Further, since 

we also have 

when B is expressed in terms of e and H .  
Rice [ 4 ] , [2] has commented on the manner in which the normality rule in 

time-independent plasticity might be considered as a singular limit of the rate 
equations ( 3 0 )and (31). 

4 .  Heterogeneous aggregates.  We consider heterogeneous media such as 
polycrystals or fiber composites or, for that matter, structural systems, and treat 
them as aggregates of continuous subelements in each of which the t - and e-fields 
comply with the constitutive framework in 2 .  A representative volume of the 
aggregate is subjected to surface loadings of a type for which conjugate generalized 
forces and displacements are definable; we denote these respectively by Qi, qi ,  
i = 1,2, . . . , n, or collectively by Q, q in state functions. Hill [ 7 ] ,  [ 3 ]  and Rice [ 2 ]  
have discussed how they can be set in correspondence with macroscopic conjugate 
stresses and strains, when these are defined appropriately for the aggregate. Our 
initial aim is to express plastic variations of the q's in terms of local dPe values 
within the subelements. ~ubse~uen t i y ,  we show how normality rules assumed for 
the subelement materials are necessarily transmitted to the macroscopic constitu- 
tive laws. 

4.1. Potentials for the aggregate. Suppose the aggregate exhibits elastic 
behavior such that the Q's are determined by the q's together with the inelastic 
history H .  By the virtual work principle, and with the summation convention, 

Qi dqi = j(t d e )  d V ,  

where the integral is taken over the volume V of the aggregate in a reference con- 
figuration relative to which each local e is reckoned. 
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In particular, when local potentials $(e, H )  exist and every subelement be- 
haves elastically, Qidqi = d@, where 

(32) @ ( q , H ) =S4(e ,H)dV.  

In these circumstances @ acts as a macropotential, in that 

(33) Qi = i:@/iiq,. 

Dually, when the Q's and H are the independent variables, 

where 

Y(Q, H) Qiqi - @(q,H )  

by the Legendre transformation. However, Y is generally not the volume integral 
of $. Exceptionally, for infinitesimal strains and under the usual linearizations, 

Qiqi= Ste dV and Y(Q, H) = S $(t. H) dV 

in the reference configuration. 
As in $2.3, plastic variations can be defined for the macropotentials and the 

generalized variables ; for example, 

dP@= @(q, H + dH) - @(q, H ) ,  
(35) 

dPqi = qi(Q, H + dH) - qi(Q, H).  

Then, by following the procedure leading to (11), 

where 

Now consider aggregate states (q, H)  and (q, H + dH), where the increment 
dH in inelastic history may accumulate at other generalized displacements. Let e 
and e + de be the local strains corresponding to (q, H )  and (q, H + dH) respectively. 
Of course, returning the q's to their pre-dH values does not generally restore the 
local strains, and in that event de is a nonzero field. Nevertheless, since it corre- 
sponds to zero dq's, 

by virtual work, where t is the stress field for the state (q, H) .  Now 

mailto:i:@/iiq,
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as in (12) and so, by (37) ,  

(38)  dP@= J dp4 d v .  

Further, from (13)and (36 ) ,  

(39) d p Y  = 1dp$ d V ,  

even though Y itself is not the volume integral of $. 
We have thereby proved that in a cycle of the q's (Q's) the plastic part dPQ, ( d P Y )  

is the volume integral of dP4 (dP$) ,  regardless of whether the local variables are 
simultaneously cycled. 

4.2. Plastic increments of generalized force and displacement. The connections 
(38)and (39)apply in any state within the overlap of elastic domains for the aggre- 
gate after histories H and H + dH.  Hence taking 6 variations in this overlap. 

Consequently, by (36 ) ,  

since ( 1  1 )  holds at  every point of the aggregate. Thus the bilinear incariaizts in the 
generalized rariables are just volume integrals of the corresponding micro-invariants. 

Equivalent to (41)are 

These are explicit expressions for the plastic parts of increments in the generalized 
cariables. In the partial derivatives H is kept k e d ,  the two "influence tensor func- 
tions" being well-defined in principle as solutions of elastic boundary value prob-
lems for the aggregate. This standpoint has been developed systematically by 
Hill [8]in the linear case. 

These results could be derived alternatively as special cases of Hill's [3]general 
theorem that the integral of the bilinear invariant (20)over a representative volume 
is equal to the same invariant in the macroscopic variables. That is, in the present 
notation, 

When potentials exist, the integrands in (41)and (43)are related in the way detailed 
in $2.4.  Correspondingly, the left-hand side of (43)reduces to either of 

6 ( d Y  - d P Y )- d ( 6 Y )  = - (5(d"Y) 
and in (40) .  
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4.3. Transmission of normality rules. Each normality rule in $ 3 is now easily 
seen to hold for the aggregate if it is asserted for all subelement materials. 

Taking first the time-independent case, it follows from (40) that the equivalent 
inequalities (22) and (23) imply that 

These can be stated as normality rules for yield surfaces in the Q- and q-spaces. 
Likewise, variational versions of the rule follow from (24) and (40): 

The above inequalities apply when some part of the aggregate is currently at 
yield and a &increment causes that part to unload. 

Suppose, next, that the aggregate is taken through a cycle of the q's, consist- 
ing of q, + q ,  elastically at history H, q, + q, + dq, inelastically, q ,  + dq, + q, 
elastically at history H + dH. Then, by steps analogous to those leading to (26), 

But, by (38), even though the e-field may not be restored in the cycle, (46) can be 
put as 

(47) fQi dqi = J [dp$l:o ' V ,  

where the integral extends only over those parts of the aggregate that contribute 
to d H .  If, now. (27)holds for all subelement materials, then (47) implies that 

(48) fQ i  4 i > 0 

for q-cycles of the specified kind. Thus the restricted Il'yushin postulate is trans- 
mitted to the generalized cariables. 

It is perhaps worth remarking that. at either level, the restricted postulate 
implies an expenditure of work in certain cycles with jinite H accumulation, 
namely, via states from which the initial configuration can be regained elastically. 
For, clearly, any such path is both geometrically and energetically equivalent to a 
simple sum of infinitesimal cycles of the above kind. 

For time-dependent materials with instantaneous elasticity, the rate version 
of (42) is 

where the notation emphasizes that the t-fleld is in principle determined by the 
Q's at any H .  Hence, if a flow potential exists for the material of every subelement, 
so that (30) applies, then 
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This shows that a j lo~ ,po t en t i a lexists for theaggregate and is just the colume integral 
of the localjlow potentials. 

5. Internal variables. 
5.1. Internal variable representations of H. Our approach is motivated by 

earlier internal variable formulations of inelasticity, and here we draw the con- 
nection between the two. Rice [2,$2.61has distinguished between internal variables 
of the "specific structural" type and "averaging" type. The former are introduced 
within a framework paralleling that of the last section, in which a single, representa- 
tive, macroscopic sample of material is considered. The variables characterize 
specific structural rearrangements (e.g., crystalline slip) taking place at  individual 
sites within the sample. The required number of variables is thereby proportional 
to the mass of the sample, since the number of operative sites increases propor- 
tionally. By contrast, the latter type of variable refers to averaged characterizations 
of the rearrangements taken over all the operative sites. We may consider the 
replacement of the essentially infinite number of specific structural variables by 
averaging variables to have been accomplished a priori, or instead to be later 
accomplished once the complete constitutive framework is formulated in terms 
of the specific variables. In either event, the development of meaningful averages 
may be considered as a separate problem from that addressed here, and the follow- 
ing discussion applies to a formulation based on either type of internal variable. 

Referring to 5 2.2, behavior at fixed H is now understood to mean behavior at 
a fixed set of internal variables; dH is understood to correspond to increments 
d t , ,  d t , ,  . . .  , dt ,  of a possibly infinite number of internal variables which are, in 
general, nonholonomic. Hence if energetic "forces" Fi = Fi(e,H) are defined as the 
negative change in 4 induced per unit d t i ,  at  fixed e and other internal variables, 
then 

with the summation convention. Dually, by (13), 

where now the F's are expressed in terms o f t .  (In the case of specific structural 
variables, F, is more conveniently written as a conjugate forcef, divided by the 
reference state volume of the sample. F, = f ,  V.)  

From (11) applied to the above representations of dP4, dP$, we have 

These are Rice's [2] equations relating increments of the internal variables to 
plastic portions of stress and strain increments. 

Alternatively, it is possible to begin the formulation with equations of the 
kind 

where pi is the dPe induced per unit d t i .  Then, in view of (11),  

(55) dP$ = dPe 6t = d t i  pi(t, H)  dt, S' S' 
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where the integration is on t a t  fixed H and dH (or d y s ) .  But dP$ is a direct function 
of t ,  and this must be the case for any combination of dys .  Hence, the integral of 
each p, is path-independent, and thus potentials which we shall denote by Fi(t, H) 
must exist so that 

It is then evident that (55) leads to an expression of the form (52) for dP$. A similar 
result could, of course have been obtained beginning with an equation analogous 
to (54) for dPt. Rice [2] and Hill and Rice [9] have shown the physical identifica- 
tion of the F's and p's in the case of crystalline slip models for metal plasticity. 

5.2. Differential invariants and normality rules. The families (19) and (21) of 
invariants have representations in terms of the internal variables and their conju- 
gate forces. Starting from any of (51), (521, or (531, the family (19) includes 

and the family (21) includes 

From these it is clear that the validity of the normality rules of $ 3  will hinge 
on properties of the constitutive laws for evolution of the internal variables. 
Thermodynamics restricts the relations only by Fi dt,/dO 2 0.The simplest assump- 
tion, which reduces, as Rice [2] has shown, to conventional notions concerning the 
stress dependence of crystalline slip, is that at any given H, the rate of change dci/d0 
is a function o f t  or e only via the associated force Fi. The corresponding statement 
in the time-independent case is that the yield criterion for the ith variable is phrased 
solely in terms of F i  : Ff < F i  < Fy, where the limits Ff ,  Fy depend on H and yield 
emanating from Ff involves dci < 0, whereas that emanating from Fy involves 
d t i  > 0. 

For such constitutive laws, it is evident from the last version of (57) that each 
of the normality inequalities of 5 3.1 for the time-dependent case is valid because, 
for example, 

where the inequality applies since it is trivially true for each separate bilinear 
term in the sun. Also, by using the last version of (58) and (26), the Il'yushin integral 
of 5 3.2 becomes 

where again the inequality applies because it is true for each separate term in the 
sum. 



ELASTIC POTENTIALS 

In the time-dependent case of $3.3, we may write 

.. dPe  d t i  
bt- = 6F,-

d o  ' d o  

from (57). Now, for the class of constitutive laws under consideration, each term 
of the sum on the right is a perfect differential because each dt,;dO depends only on 
the associated F, and H. Hence the term on the left is also a perfect differential and 
this means that a flow potential exists as in (29) and (30). 
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