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In heavily overwconsolidated clays there is a marked peak in the observed relation between 
shear stress and shear stra.in. As the strain increases, the stress falls from a peak to a much 
smaller residual stress. Slopes made from such a clay often fail progressively many years 
after construction. Sliding occurs on a concentrated slip surface, and it is found that the 
mean resolved shear stress on that surface is markedly less than the peak shear strength. 
Concepts from fracture mechanics, and in particular the J -integral,. are used to derive con
ditions for the propagation of a concentrated shear band of this kind. The results indicate the 
presence of a strong size effect, which has important implications for the use of models in soil 
m.echanics. An elastic analysis makes it possible to determine the size of the end zone in which 
the shear stress on the shear band fa.lls to its residual value. An attempt is made to assess the 
possible sources of the time-dependence governing propagation speed of the shear band. 
They include pore-water diffusion to the dilating tip of the ba.nd (which governs the rate at 
which local strength reductions can occur), viscoelastic deformation of the clay (which 
allows a. gradual build-up of stra.in concentration at the tip of the band), a.nd the wea.thering 
break-down of diagenetic bonds. 

INTRODUCTION 

A striking feature of landslides and foundation failures in over-consolidated clay 
soils is that most of the deformation is concentrated in narrow zones which lie 
between regions which appear hardly to deform at all. The concept of a concen
trated 'slip surface' or 'failure surface' appeared early in the history of soil mecha
nics, and much of soil mechanics theory is based on it. Characteristically, someone 
analysing a slope postulates a mode of failure in which one or more concentrated 
slip surfaces form, supposes a limiting shear strength to act across these surfaces, 
and considers the equilibrium. of the blocks into which the surfaces divide the slope. 
The theory of plasticity gives some support to this approach, and, indeed, it would 
be just as valid from that point of view if slip surfaces did not actually occur. 

Much less attention has been given to problems of the initiation and development 
of slip surfaces. In this paper we examine the consequences of a simple model for 
the growth of these surfaces, which we call 'shear bands'. Among other things, we 
hope to throw light on some apparent paradoxes of the conventional approach to 
slope failure, in particular the observation that 'progressive failure' (Bjerrum 
1967 a) can occur even though the mean shear stress on the observed failure surface is 
substantially less than the shear stress the clay can withstand. 

We take as our starting-point an observation of what happens when over
consolidated clay is tested in a shear box, as illustrated sohematically in figure 1 a. 
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It is the simplest apparatus that has been used to study shear in soils, and the oldest, 
having been used by Coulomb. The vertical load is kept constant. The observed 
relation between the relatiye horizontal displacement between the upper and lower 
halves of the box and the applied shear force is as shown in figure 1 b (see, for example, 
Skempton 1964.). A peak force is reached at quite a small displacement. After the 
peak has been passed the deformation is concentrated a relatively narrow shear 
band, less than 1 mm thick. The force required to produce further relative movement 
then falls continuously, and asymptotically approaches a value corresponding to a 
'residual' mean shear stress. 
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FIGURE 1. A test in a shear box. (a) Schematic diagram. (b) Relation between shear force and 
displacement. (0) Relation between shear stress T and relative displacement a. 

This observation prompts us to consider a model of soil deformation which 
relative shear displacements can occur in concentrated shear bands, the relation 
between relative displacement 0 and shear stress T across the band being like that 
shown in figure 1 c. Outside the shear band the soil deforms continuously, and 
obeys conventional stress-strain relations. The peak shear strength is Tp, and the 
residual shear strength Tr. They will both depend on the prevailing effective normal 
stress across the band. 

The assumed model of a shear band in soil has much in common with cohesive
force models of tensile cracks (Barenblatt 1962; Dugdale 1960; Bilby, Cottrell & 
Swinden 1963). In particular, we shall follow the development by Rice (1968 a, b) of a 
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unified approach to such models based on the J-integral. Skempton (1964) and 
Bishop (1968) have suggested that fracture mechanics concepts might throw light 
on progressive failure, and Bjerrum (1967a) has discussed a model of progressive 
failure in terms of stress concentrations at the tip of a slip surface. The microstruc
ture of shear bands has been investigated by Morgenstern & Tchalenko (I967a, b). 
In this paper we leave aside the question of the detailed structure of real shear hands, 
and that of the localization of deformation into shear bands. Instead we consider 
the shear hand simply as a surface of discontinuity on which there exists a definite 
relation between shear stress and relative displacement. 

A SIZE EFFECT 

An immediate consequence of our model is that size effects will occur. The assump
tion of a relation hetween shear stress and shear displacement introduces a charac
teristic length into the material description. This Jength will necessarily enter a 
prediction of final failure conditions in relation to some characteristic dimension 
descrihing the geometry of the soil system. Consider, for example, a natural slope 
and a small geometrically similar model of the slope, the model and the natural 
slope being made of the same material. Suppose that there are no shear bands in 
either. Then, if the model is loaded by an appropriately scaled gravity field, as in a 
centrifuge, the conditions for full similarity of stress and strain fields can be met. 
If, on the other hand, the model and the natural slope have geometrically similar 
shear bands, then the similarity conditions are no longer satisfied. If the strain 
fields were indeed similar, then, recalling that displacements are integrals of strain 
with respect to distance, we must conclude that at a point on a band the natural 
slope would have a relative displacement 8 greater than the relative displacement at 
the corresponding point on the small model. The displacements at similar points 
would be in the ratio of the scale of the model and the natural slope. However, T is a 
fixed decreasing function of 8, and this means that T at any point along the band in 
the natural slope would be less than T at the similar point in the model. 

This last result is of course inconsistent with the similarity of strains outside the 
hand. However, the conclusion is clear that the large slope will have larger b values 
and hence smaller T values than does the small model at similar points along the 
band. Thus, for example, it is possible that in a natural slope the shear stress could 
be near its residual value everywhere except for a localized zone near the tip of a 
band, whereas for a sufficiently small geometrically similar model the shear stress 
would have barely decreased from the peak value along the entire (but small) length 
of the band. 

Bishop (I971) has proposed that the Skempton residual factor, measuring the 
amount of fall from peak toward residual strength, should be considered a function 
of position along the band. This is consistent with our present model that the 
relative sliding 8 will generally be an increasing function, and hence T a decreasing 
function, of distance from the tip of the band. Bishop pointed out that a size effect 
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would result from the requirement of a certain displacement on a slip surface 
before the residual stress is reached. 

We shall attempt quantitative estimates of these size effects in the following 
sections, but only when the simplicity of the shear band geometry lends confidence 
to the accompanying analysis. Specifically, the examples to follow will all deal with 
straight shear bands propagating in their own plane. Further, the typically jointed 
structure of over-consolidated clays could of itself lead to a size effect as, for example, 
Marsland (1972) has proposed. We do not have a way of including this effect in the 
model, except to say that the stress-strain relations employed outside the shear 
band should be those appropriate to the actual jointed material. Thus the size 
effects under consideration here are solely those due to the progressive degradation, 
with increasing b, of the shear strength of material within the slip surface. 

THE J-INTEGR.AL 

In the following sections we derive conditions for the propagation of a shear band. 
Our most important analytic tool is the J -integral of crack mechanics (Rice 1968 a, b). 
Define Cartesian axes Xl and X 2 (figure 2) so that a straight shear band lies parallel 
to the xl-axis, and suppose plane-strain deformation to occur in the Xv x 2 plane. Let 
the stress-strain relation of the material outside the band be such that the stress 
work integral 

W(epq} = f~ CTijdeij (1) 

at any strain 6pq experienced by the soil is independent of the strain path. An elastic 
material clearly obeys this condition. The material properties, the body forces, and 
any prestress existing in the reference state, can depend on X2 but not on~xl' Let r be a 
curve in the Xl' x2 plane which starts at a point P- on lower surface of the shear 
band, goes round the tip of the band, and ends at a point P+ on the upper surface, 
where P+ and P- coincide in the unstrained reference state. Let the outward
pointing unit normal vector to r have components ni' let U i be the components of 
dlsplacement, and let 11, be the surface tractions across r, related to the stress 
components Uii by 

(2) 

Further, let Ii be the components of body force per unit volume. The J -integral 
is then defined by 

(3) 

where ds is an element of arc length of r. 
This integral is useful because its value is independent of the path of integration r, 

and depends only on the end-points P+ and P-. The dependence on the end-points 
follows only because stress is transmitted across the band, and would not occur for a 
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freely slipping band or for an open tensile crack. A proof of path independence has 
been given by Rice (I968a) in the case where there are no body forcesfi; the exten
sion to the proof to include body forces is trivial. 
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FIGURE 2. Integration path for the J -integral. 

Sometimes we shall want to apply the integral to inelastic materials for which 
the stress work integral W (epq) is not independent of strain path. It turns out that J 
is still independent of the path r, as long as the difference between the values of W 
at two points (xi,x~) and (xi,x~) on a line parallel to the xl-axis is defined by 

fXi 06·· 
, (J'if -.!1. dxl , 

Xl aXl 

the integral along the line between the two points. It is only this difference that 
contributes to the J -integral. 

We now let the path r have a particular form. Suppose it to follow the lower 
surface of the band from P- to the tip of the band, and to return to P+ along the 
upper surface. Then dx:2 is zero along the whole path, and so the :first terms of the 
integral vanish. Across the band u2 is continuous, and therefore aU2/OXI is continuous, 
whereas T2 at a point on the upper surface is equal and opposite to T2 at the corre
sponding point on the lower surface, and so the T2 aU2/axl term makes no contribu
tion to the integral. Hence, using (2), we have 

Jp = f (J'21~ldxl (4) 
. r vX1 

for this choice of r. Across the band 0'21 must be" continuous; if ut and'U:l are dis
placements on the upper and lower surfaces, and a is the relative displacement 
ut - U l , then, since the upper and lower surfaces are traversed in opposite directions, 
equation (4) gives 

f
p a fP M 

Jp = O'21~(ut- dX1 = T~dxl' 
T uXl T vX1 

(5) 

the integrals being taken from the band tip T to P, and T being the shear stress across 
the band. 

33 Vol. 332. A. 
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Our model of shear bands asserts that there is a :fixed relationship between T and 8, 
at least so long as the band does not unload and become inactive; T is then a single
valued function 7(8) of 0, and we can write (5) as 

J
8P 

Jp = 0 7(0)d8. (6) 

Outside an end region close to the band tip, the relative displacement is large enough 
to reduce Tp to the residual stress 7r (figure 1e). It is then convenient to divide the 
integral in (6) into a corresponding to a residual stress and a remainder con
tributed by the difference between the shear stress and the residual stress at small 
displacements, so that if P lies outside the end zone 

Jp -Tr~p = J (T-Tr)d8 (7) 

and Jp -7rOp is independent of P. The integral in (7) denotes the cross-hatched area 
in figure 1 c. A characteristic displacement 8 can be defined by 

r (T--Tr) do = (Tp-Tr)8. (8) 
,.; 

Shear tests on over-consolidated clay reported by Skempton (1964) and Skempton & 
Petley (1968) are consistent with values of8 between 2 and 10mm. 

What we shall next do is to exploit the path-independence of the integral. Equa
tion (7) gives the of Jp-Tropfor an active shear band. Ifwe evaluate -TrOp 

along a different wider path with the same end-points, we find it to be an increasing 
function of the applied loads. When the loads become large enough for Jp -TrOp to 
reach its critical value, the band becomes active, and will propagate if the loads are 
increased any further. Equation (7) can be thought of as an energy balance of the 
Griffith type, if the end zone remains small or propagates unchanged (in the sense 
that an observer moving with the band tip always sees the same distribution of 
strain). The Jp-TrOp can be interpreted as the energy surplus made available per 
unit area of advance of the band, this surplus being the excess of the work input of 
the applied forces over the sum of the net energy absorbed in deforming material 
outside the band and the frictional dissipation against the residual part Tr of the 
slip resistance within band. Accordingly, equation (7) asserts that for propaga
tion to occur this net energy surplus must just balance the additional dissipation in 
the end region against shear strengths in excess of the residual. This interpretation 
is developed in the appendix. 

A SLIP SURFACE IN A LONG SHEAR APPARATUS 

Consider a long shear apparatus of the kind shown in figure 3. This contains a layer 
of over-consolidated soil of height h between two rigid boundaries. The lower boun
dary is fixed while the upper boundary is displaced horizontally by an amount 'Ub. 
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A shear band is initiated from the left boundary, possibly with the aid of a local 
stress concentration from a cut or notch, and has now extended into the interior of 
the specimen. We shall use the J -integral to find the criterion for continuing propa
gation, on the assumption that the apparatus is very long compared to its height and 
that 'bhe end region of the shear band is far from either the right or left boundary of 
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h 

1 
....... 
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2 

Xl 

FIGURE 3. A long shear apparatus. 

the specimen. Under these conditions h the only significant dimension, and the 
apparatus may be considered of infinite horizontal extent. The weight of the soil 
may be neglected. Note that the region far ahead of the tip of the band (but not 
too close to the right-hand boundary, where end effects may appear) the soil is in a 
state of homogeneous shear strain and stress 

(9) 

where TO is the shear stress cOlTesponding to the shear strain Yo, and we assume of 
course that To < Tp* Likewise, far to the left of the tip, but not too close to the left
hand boundary, there will also be a homogeneous state in the soil above and below 
the surface: 

(10) 

where Tr is the residual shear strength which is acting along the band in that region. 
Consider the choice of point P and path r illustrated in figure 3. The relative 

displacement at P is 
(11) 

where the first term is the imposed boundary displacement and the two subtracted 
terms !Yrn represent that portion of the imposed boundary displacement taken up 
by soil deformation in the regions above and below the band. The integrand of 
Jp (equation (3» will vanish all along the rigid boundaries, because dX2 and Qui/OXl 

vanish there. Likewise, oUi/OXl vanishes the homogeneously strained regions far 
to the left right of the tip, so that for the path r 

Jp = fr WdX2 = kW(yo)-kW(y,). (12) 
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Here we use the notation W (1') for the energy density in a region under homogeneous 
shear strain 1'- Thus we have obtained the 'driving force' term in the propagation 
criterion (equations (7)) as 

(13) 

This result reinforces the energetic interpretation of Jp -7r 8p given earlier. 
Consider the energy changes which result when the slip surface advances a distance 
ill while the boundary remains fixed. There is no work input from boundary forces. 
The loss deformation energy can be computed by noting that this slip surface 
advance essentially allows an area of material hill to reduce its energy density from 
W(Yo) to W(Yr), and is 

The work dissipated in the band against the residual part of the shear strength is 
the same as that dissipated in sliding a segm.e~t ill of the band a distance equal to 
the uniform slip displacement k(Yo-Yr) far from the tip, namely 

7rk(yo - Yr}ill. 

Thus the net energy surplus, available for work against that part of the strength in 
excess of the residual value, is just the sum of these two terms, which we see to be 
(Jp -Tr 8p )!l.l as expect-ed. 

To interpret the driving force in terms of the shear stress-strain curve T = 7(1') 
(figure 4a) note that 

JYO 
W(Yo)- W(yr) = T(y)dy, 

'Yr 
(14) 

so that (13) becomes 

J
'Y!) 

Jp -7r 8p = k [r(Y)-TrJdy. 
'Yr 

(15) 

The graphical interpretation of this driving force is as k times the shaded area in 
figure 4 a. If the material is linear elastic, or approximated by a linear relation of the 
form 

(16) 

in the strain range of interest, where G is a shear modulus, the driving force may be 
written as 

(17) 

In general, however, the soil will not be perfectly elastic and will unload along a 
different curve from that for loading, as in figure 4b. It is difficult to treat this in the 
same precise manner. But, by recalling the definition of W as an integral in the 3;1-

direction for inelastic materials, we see that an approximately correct answer can 
be obtained ifwe define W(l'o) - W(l'r) of equation (14) from the unloading stress
strain curve as in figure 4 b. This is because the integral in the Xl-direction essentially 
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traces deformation states encountered as the material outside the band transforms 
from the homogeneous stress state TO' existing far to the right of the tip, to the 
residual state existing far to the left. Hence it seems appropriate to adopt equations 
(15) and (17) for the driving force in this case, provided that the llllloading stress
strain curve is used to identify it as h times the shaded area in figure 4b, and that in 
the linear approximation the shear modulus G is that governing unloading. This 

7'r 

Yr 'Yo 
(a) 

Tr 

Yr 'Yo Y 
(b) 

FIGURE 4. Interpretation of the driving force term in the propagation condition. (a) Elastic 
material. (b) Inelastic ma.terial. 

same choice also seems appropriate from an energetic viewpoint, in that it is the 
energy made available upon unloading which can contribute to further advance of 
the band. Time effects due to creep or diffusion may also playa role in determining 
the stress-strain curve to be chosen, and we discuss this subsequently after an 
estimate of the end zone size is available. 

In any event, for some suitably chosen G in the linear approximation, the propa
gation criterion becomes 

(18) 
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or, if the additional end region energy absorption is written as in equation (8), 

7 0-7r J( 20 8) ~-= (19) 
7 p -7r Tp 7 r h' 

This reveals the size effect on the propagation stress level 70: the greater the height 
h of the layer the smaller the stress excess 7 0 - 7r required for propagation. In fact, 
there is also an abrupt cut-off because the left side of this equation cannot exceed 
unity. Thus if 

h 
20-

< 0, 
-Tr 

(20) 

the propagation condition cannot be met before the stress To induced in the layer 
reaches the peak strength and more-or-less simultaneous failure of the layer occurs. 
That is, for a sufficiently thin layer, the energy which may be stored by a stress as 
large as the peak value will still be insufficient to supply the required energy surplus 
in a unit advance of the shear band. 

Wroth (I972) has noted that for over-consolidated London clays G/Tp ~ 50. 
Thus the critical layer height, below which failure occurs at 70 = Tp, 

her = 2G 8 ~ 100 Tp 8. 
Tp-Tr 7p-Tr 

(21) 

If we take 2 for the stress ratio and 5 mm for 8, as typical values, the critical height 
turns out to be 1 m. This is catastrophic from the point of view of laboratory 
experimentation, for the height is unreasonably large as a lower limit to the required 
specimen size for studying slip surface extension. Of course, 1 m is not a large 
dimension in typical field failures. (It should be noted that Wroth's ratio is based on 
the G for loading; the preferred G governing unloading must be higher and this will 
increase the numerical factor in equation (21) in proportion.) 

SLIP SURFACE FROM A STEP IN A SLOPE 

Referring to figure 5 a, we now consider a long flat slope of inclination angle ex into 
which a step of height h has been cut. A shear band of length Z emanates from the 
base of the cut in a direction paralleling the ground surface. We wish to obtain 
expressions for the driving force on the band and, in particular, for the propagation 
criterion. It is clear that this case presents in elementary form some of the factors 
likely to be important in failur€ of a natural slope. Nevertheless, a precise analysis 
is difficult and we here present an approximation for the case in which the band 
length is large compared to the layer thickness and to the size of the end region. 
Under such conditions most of the energy transfer during shear band extension will 
be due to gravitational work on downslope movements of the layer and to deforma
tions of the layer from changes in the normal stress acting parallel to the slope 
surface. 

The stress state U~j existing before the cut is made is supposed to depend only on 
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depth from the slope surface. The corresponding infinite slope equations for the 
adopted coordinate system (figure 5a) are 

ug2 = - pgX2 cos a, 011 = pgX2 sin a, U~l = f(x2}, (22) 

where p is the average density for depth X'2 and where the last of these is intended to 
indicate that ~l is undetermined by equilibrium considerations alone. We shall be 
interested in the average value of U 11 over depth n, 

lJk U1l = h 0 U 11 dx2) (23) 

(b) 

FIGURE 5. Propa.gation of a. slip surface from a step in a slope. (a) Schematic diagram of 
slope. (b) Interpretation of the driving force term in the propagation condition. 

and shall write pO = - U~l for the average lateral earth pressure existing before the 
introduction of the cut; pO may reflect a normal lateral pressure effect, or possibly 
some augmented pressure due to the weathering breakdown of diagenetic bonds 
(Bjerrum 1967a). We shall write the gravitationally induced shear stress on the 
prospective failure plane as 

Tg = (ugt)z2=h = pgn sin a. (24) 

All displacements and strains will be measured from zero in the prestressed state 
existing before the cut is made. 

To evaluate the driving force we choose the point P and path r shown in figure 
5a. Further, from what has been said above, we will neglect any displacement or 
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straining in the base material below the slip surface (X2 > h) since the dominant 
deformations and energy transfers may be assumed to ocour in the sliding layer. 
Hence the J integrand may be assumed to vanish along that portion of r through 
the base materiaL It also vanishes far up the slope where there has been no displace
ment from the prestressed state. We are left only with the portions of r along the 
inclined ground surface and the surface of the cut. Since dxz and the surface traction 
vanish along the former, and the surface traction also vanishes along the latter, we 
are left with 

J p ~ - f: (W +pgsina~ -pgcosaua)""..odx2 • (25) 

Since the reference state for strains is that of the state under prestresses (1'~1' W is 
here to be interpreted as the energy recovered during deformation from the pre
stressed state to the state of zero transverse stress existing at the cut surface. 

When the layer is long in comparison to its ~eight we may assume that its defor
mation is essentially a one-dimensional displacement in the negative xl-direotion, 
and that at any point the magnitude of this displacement is the same as the relative 
sliding 8 at the same value of Xl:'Ul = - O(Xl)' Thus 

Jp = - Wh+{pghsina)8p = - Wh+Tg8p } (26) 

where W is the thiokness average energy density at the end of the slope. This is 
defined from the stress-strain ourve relating the thickness average stress (ill in the 
layer to the strain 611 : 

JO'l1=O 

W = _ U 11 (ell) dell' (27) 
0'11= -Po 

and is the negative of the hatched area identified in figure 5b. The driving force term 
is therefore 

(28) 

If we further recall the assumption that the end region is small, so that 0"21 = Tr 
along nearly the entire length of the shear band, then it is olear from overall equili
brium in the xl-direotion that (1'11 is given by 

(illh = (Tg-Tr)X1. 

Thus 

(29) 

and the corresponding area is also hatched in figure 5 b. 
From equation (2S) it is clear that the driving force is just h times the sum of the 

two hatched areas, and the final result is therefore 

f
(TS-7r)lIh 

Jp -Tr 8p ~ h en(Ull) dUll· 
_pO 

(30) 

From the energetic point of view, the lower hatched area represents the energy 
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which is recovered in a unit advance of the shear band due to relief of the transverse 
pressure pO, whereas the upper hatched area represents the excess of work 
input by the gravity forces over the dissipation against the residual shear strength. 

If the stress-strain curve for the layer is represented in the linear form 

- 0 E'-erll = -P + ell' (31) 

where H' is an overall elastic modulus for the layer under the assumed plane strain 
conditions, then the driving force e:xpression and propagation criterion take the 
form 

Jp -Tr8p = 2~'[(Tg-Tr)1Ik+1/]2 = J(T-Tr)d8. (32) 

Also, with the notation of equation (8), this may he put in the dimensionless form 

(33) 

I t is perhaps of special interest to note that even if the slope angle is such that the 
gravitationally induced shear stress equals the residual strength (i.e. Tg = Tr ), so 
that Skerripton's residual factor is zero, it is still possible that the energy recovered 
by relief of the initial pressure po could be adequate to drive the shear band. This was 
suggested by Bjerrum (1967) and the corresponding special case of the above formula 
gives a quantitative estimate of the required initial pressure. 

We shall consider this case a little further in the subsequent discussion of possible 
sources of time effects. It must be remembered, however, that there have been 
several approximations made in our treatment. They seem to be appropriate when 
the band is indeed long and when the end region occupies only a smaIl fraction of 
the total length. However, a more refined analysis, based perhaps on a finite element 
analysis of the soil outside the band, with the T, 0 relation as a boundary condition, 
will be necessary if the exact nature of the approximations is to be examined, and 
if the model is to be extended to other cases involving, say, non-planar slip surfaces. 

LINEAR ELASTIC ANALYSIS WITH SMALL END REGION 

Henceforth we consider the soil outside the shear band to be homogeneous, 
isotropic, and linear elastic, and we consider only cases for whlch the end region 
length (in which the shear stress falls to its residual value) is small in comparison to 
all geometric dimensions such as overall band length, layer height, etc. We shall, 
indeed, first examine the limiting casein which the end region is taken to be infinitely 
small, so that the shear band carries the residual strength along its entire length. 
In this idealization stresses predicted will become· infinite at the tip of the band. 
We shall identify the dominant terms in this singular stress distribution near the 
tip, and then proceed to take the view that an end region of small but finite size 
may be considered to be embedded in a local stress field for which the dominant 
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terms set the outer field boundary conditions. That is to say, the dominant stress 
terms as obtained from the simpler model with no end region incorporate the actual 
effect of applied loadings and overall geometry of the failing soil mass on thedeforma
tions in the end region. A similar approach much used in fracture mechanics and 
indeed provides the rationale for use of elastically computed crack tip stress fields in 
semi-ductile metals failing under conditions of a small plastic region at the crack 
tip. The intensity of the singularity is then expressed by a stress-intensity factor, 
calculated from a complete elastic solution which in turn depends on the applied 
loads and the crack geometry. This solution not valid,in the plastic region at the 

I--l 
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FIGURE 6 FIGURE 7 

FIGURE 6. The tip of a. shear band: definition of coordinate axes. 
FIGURE 7. A shear band in a body under pure shear at points remote from the band. 

crack tip. However, it is known that when the plastic region is small compared to 
, other pertinent geometric dimensions, proper characterization is obtained if the 
elastic singularity is seen as setting outer field boundary conditions. The applied 
loads and geometrical dimensions influence the stress state in the crack tip plastic 
region only insofar as they enter the expression for the elastically computed 
intensity factor. This is the' small scale yielding , formulation of crack tip plasticity 
as discussed by Rice (1968 a, b). 

We wish to obtain the form of the stress distribution near the tip of a shear band 
which assumed to carry a constant or smoothly varying residual strength Tr along 
its length. The form is already known for a straight slit under plane strain 
IoadIDgs relative to the crackline. As it happens, loadings induce no opening 
separations of the crack surfaces so that the same model describes a freely slipping 
shear band. 'Ve have only to adjust these known results by adding on terms to 
represent the shear and normal stresses transmitted across the band. Upon adapting 
the crack formulae (see, for example, Rice 1968b) in this way, we therefore find that 
the stress distribution at the tip of a shear band takes the characteristic form 
(referred to polar coordinates R, 0 of figure 6) 

er12 = (21tR)--!K cos!O[l-siniOsinj-O] +Tr+ .... , ) 

er22 = (21tR)--!K sin to cos to cos -10 + ern + ... , 
er11 = -(21tR)-iKsintO[2+costO +O"t+ .... 
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The dots represent other terms, all of which vanishatR = 0, ina complete expansion 
of the stress field in powers of R; Un is the normal stress transmitted across the band 
and Ut is the transverse stress acting along the line directly ahead of the band. In 
addition to these constant stress terms, however, there is a singular part of the stress 
field which becomes infinite as R-! and which has a characteristic angular dis
tribution. The strength of the singular term is given by the' stress intensity factor' 
K, which will be a function of the loadings and geometrical dimensions of the soil 
mass containing the shear band. For example, the K factor for a shear band of 
length l in a body under the remote shear stress 7 co (> 7r) as in figure 7 is (see, for 
example, Rice 1968b) 

Likewise, for the shear band in the long shear apparatus of figure 3 

where v the Poisson ratio, and for the shear band emanating from 
slope (figure 5 a), 

(35) 

(36) 

the 

(37) 

These assume that the residual stress is indeed activated all along the shear band. 
The field associated with the above stress state results in a slip 

displacement 

8= ut-Ul" = 4(1~)K(!t + .... 

The J-integral can be evaluated directly, by making use of the corresponding 
placement field, and is 

i-v 
Jp -7r8p = 2G K2, 

which is the well-known Irwin formula for the energy release rate. It 

(38) 

(39) 

through this formula and the earlier direct evaluations of Jp-Tr8p that equations 
(36, 37) are obtained. The result needs no detailed proof here, for it has already been 
remarked that Jp -Tr8p is independent of the location of point P. Further it is 
clear that if point P and the path r are taken very near the tip, only singular 
terms can contribute, and in that instance the calculation is the same as that of the 
J ·integral in crack theory for which equation (39) is the known result. Remember
ing, however, that the dominant stress terms of this analysis give the outer field 
boundary conditions for the case of a small end zone, we may again assert that the 
propagation criterion is given in terms of the T,8 curve by equation (7), with the 
driving force expressed as in equation (39). Hence the propagation criterion is 

(40) 

where K is determined from an analysis which neglects the end zone in the manner 
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discussed above. This is a quite general procedure for dealing with small end zones, 
although the proper modifications to account for inelasticity outside the band 
cannot be stated with any generality. 

In particular, on the assumption of a small end zone compared to band length, the 
propagation criterion becomes 

(41) 

for the case shown in figure 7, where equations (35) and .(8) are used. 

ESTIMATE OF SIZE OF END REGION 

The J -integral has led to calculations of the driving force and propagation 
criterion. It is, however, not possible to obtain further information such as the size 
of the end region at failure without fairly elaborate calculations. This is due in part 
to the nonlinear 7,8 relation which must be imposed as a boundary condition. We 
will therefore estimate the size of the end region approximately by Q,88uming a 
distribution of T with distance from the tip of the shear band, a distribution which 
contains the end-region length (J) as a parameter, and calculating from elasticity 
theory the implied T,8 curve. If the curve is of a reasonable shape the size (J) may 
then be determined as that which gives the proper value of f (T -7r) d8. Fortunately, 
an assumed linear variation of stress within the end zone (figure Sa) leads to a 
reasonable curve for our purposes. We assume that the stress intensity factor 
induced by the applied loadings would be K if the residual stress Tr alone acted along 
the band. The restraint of the band surfaces by stresses in excess of Tr has the effect of 
inducing a K factor of opposite sign, and the end zone extent w is to be chosen so 
that there is no net stress singularity at the tip_ The magnitude of the stress intensity 
factor induced by the excess shear stresses is (Rice I968b) 

J~f07(R)-TrdR 1t 0 ~R ' 

where we use the formula for the effect of surface loadings on a semi-infinite shear 
band or crack. Writing 

T-Tr = (Tp-Tr) ( 1-!) (0 < R < Cd), (42) 

from the linear variation, we therefore wish to choose w so that 

J2 f0(1-R/W) 4, J(2W) K = ~ (Tp-Tr) 0 ~R dB = a{Tp-Tr) -;- (43) 

Hence 
91t( K )2 

(J) = 32 Tp-Tr • (44) 
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But we already know from equation (40) how K2 must relate to the area under 
whatever T, B curve is implied. Thus the estimated size of the end zone is 

91t G-
w = o. 

16(1 V)Tp-Tr 
(45) 

R (a) 

T 

Tp 

7'r 

(b) 
FIGURE 8. Estimate of size of end region. (a) Assumed distribution of shear stress on band 

within end zone. (b) Implied relation between shear stress and relative displacement 
across band. 

Further, by standard calculations of crack elasticity under the loading depicted in 
figure Sa, one finds that the slip displacements implied by equation (42) for T-Tr 

(46) 

This may be plotted as a function of (T-Tr)/{Tp-Tr) after elimination of Rlw with 
equation (42). The resulting T,8 curve is plotted in figure 8b. It has the expected 
form, and is not inconsistent with the model. 

If we accept this estimate and put v = t and Glr p ~ 50 as earlier, then 

w ~ 125 rp 8. 
Tp-Tr 

(47) 

If the stress ratio is taken as 2, then the estimated size of the end region ranges from 
0.5 to 2.5 mas "8 ranges from 2 to 10 mm. Hence it seems quite conceivable that the 
assumption of a small end zone in comparison to pertinent geometric dimensions 
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may frequently be valid in natural soil failures, although the condition seems almost 
impossible to attain in laboratory experiments. Again we see the implication of a size 
effect in soil mass failures, for the size of the end region w at failure is set by the 
material parameter "8 more or less independently of the actual size of the mass. 

TIME EFFECTS 

In the preceding analyses we have imagined that a shear band of a certain length 
already exists, and have determined a propagation criterion which tells us how large 
the applied loads have to be if a shear band of that length is to propagate. In the 
problems which typically arise in soil mechanics, such as slope analysis, the external 
loads are gravitational and remain more or less constant, though sometimes geo
metry changes occur, as when the toe of a slope is cut or progressively eroded. We 
can conjecture that what happens is that a sh~ar band initiated at a stress con
centration, grows slowly until it reaches a critical length, and then propagates 
rapidly. Our analysis has not explained how the band can grow slowly, or what time 
effects control how fast this happens. 

The simplest and most obvious time effects in soil mechanics are those controlled 
by the diffusion of pore water within the soil, which allows change of water content 
and effective stress. In this paper we have examined the consequences of a relation 
between 7 and 8 on a shear band, and of simple stress-strain relations for the soil 
outside the band, such as the equation relating (j 11 to £11 in the slope analysis case. 
What these relations are must naturally depend on the drainage conditions, and on 
whether or not there is time for water content and pore pressure changes to diffuse. 
Three cases can be distinguished; the model we have studied can be applied to all 
of them, but the relations between T and 0 and between (j 11 and £11 will be different. 
The discussion is restricted to the case of a shear band parallel to a uniform slope 
(figure 5); closely similar conclusions apply to other cases. 

Consider as the first case that the shear band advances rapidly in comparison to 
the time scales for diffusion. The soil deformation is 'undrained'. Under such con
ditions the shearing of heavily over-consolidated clay creates negative pressure or 
suction in the pore fluid. This increases the effective compressive stress transmitted 
to the soil particles, and would have the effect of increasing the resistance against 
sliding at the tip of a shear band. In addition, the soil in the overhanging layer above 
the band responds as a stiffer material than it would be under drained conditions. 
Hence, from the point of view of the propagation criterion 

(32) bis 

the shorter the time available for diffusion, the more the resistance term on the 
right is increased and the more the driving force term is decreased. 

However, there would seem to be two time scales for diffusion, and as a second 
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case we consider that the speed of propagation is still too rapid to allow drained 
behaviour of the overhanging layer, but is nevertheless sufficiently slow that 
negligible excess suctions are generated in the heavily sheared material near the tip 
of the band. In this case E' is the same as for the first case, but now the resistance 
term has settled to a fixed lower value appropriate to drained behaviour on the 
small size scale of the band thickness. Indeed, it is possible to make estimates of the 
elevation of the T,O curve induced by a given speed of advance, and hence to 
determine from (32) a propagation speed governed by pore water diffusion. We 
intend to describe this in a subsequent paper. 

In the third case the deformation is wholly drained, and' the relation between 
Un and ell is that for a drained material, so that E' is reduced below its value for 
the first and second cases, while the value of f(T-Tr) do is the same as the second 
case. This corresponds to much slower propagation: pore-pressure changes in clay 
diffuse so slowly over distances of the order of several meters (a typical depth to a 
shear band) that they may require time of the order of 102 years. 

We may consider this time scale for bulk drainage in relation to the propagation 
speed by noting that the stress U 11 in the layer changes from to (T g - T r) lIn over 
a distance of the order of the end zone size CtJ. Hence the time scale over which the 
material responds is CtJ divided by the speed of advance, and material properties 
such as E', which appear in the propagation criterion, should be chosen as appro
priate to this time scale. This becomes clear when we note that for inelastic be
haviour it is the integral of (J'ijoeij/ox1 over the deforming region which enters the 
J -integral as a difference in W. 

As well as time effects associated with water diffusion, there can be expected to be 
viscoelastic deformations, especially creep, which occur even if there are no pore 
pressure changes (Bjerrum 1967b; Bishop 1968b). In this event the material proper
ties are again to be chosen as those appropriate to the time scale CtJ/(propagation 
speed) so that, for example, E' can be approximately regarded as the viscoelastic 
modulus at this deformation time. The modulus reduces with increasing time, 
ultimately to zero for a Maxwell model, and this means that the effective driving 
force term will be increased. It is possible that creep-like effects could affect the 
resistance term as well by progressive degradation of the strength at a given O. 
There is also the possibility of ageing effects, such as the weathering breakdown of 
soil bonds (Bjerrum 1967a), which may be considered to increase the energy made 
available by release of lateral pressure. 

This work was initiated at Brown University under support of the Materials 
Science Program, then funded by the Advanced Research Projects Agency of the 
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dation Senior Postdoctoral Fellowship and by a Fellowship at Churchill College. 
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ApPENDIX. ENERGY RATE INTERPRETATION 

This section follows the lines of Rice's (1968 b) proof that J is the energy release 
rate for crack extension in elastic bodies, an interpretation which relates closely to 
Eshelby's (1956) earlier use of the integral in the computation of energetic 'forces) 
on point or line defects in solids. 

We assume for the present that the material outside the shear band is elastic. 
Let l be the shear band length in figure 2, as measured from the origin of the Xl-axis. 
Define G' as the energy surplus made available per unit of quasi-static band advance, 
this being defined as the excess of the vtork of external forces over the energy stored 
in deformation and the dissipation against the residual part shear strength 
in the band. Hence if point P lies outside the end region, 

(A1) 

Here A is the area enclosed by r. The choice of P and r is arbitrary, for the virtual 
work theorem assures cancellation of the contributions from the annular region 
between any two r choices both lying outside the end zone. By the same theorem it is 
obvious that for a quasi-static advance of the band 

fT da 
G' = p (T-Tr) dl dx1, (A2) 

the latter being the dissipation against shear resistance in excess of the resi¢l.ual 
strength. 

Now any field variable! = !(x1, X 2, l) can equally well be written in the form 
j(xi, x2, l), with xi = Xl -l, as seen by a moving observer. Hence 

df of of 
dl = - oX

l 
+ al' (A 3) 

the notation a/al being the derivative computed by the moving observer. In this 
notation 

:zL. WdA=-fr Wdx2+ LOW dA, 

f./i~~;;dA = - f/i'Uidx2+ f./i~idA, 
ds, 

fT d8 IT 08 
p Tr dl dx1 = Tr<tp+ p Tral dx1, 

(A4) 

where it is assumed that the material properties and body forces are independent of 
$1' Thus upon recalling (A 1 ) 

G' = Jp -Tr8p+ fr Ti~idS+ f./i~idA-L. 0: dA- f: Tr~: dx1- (A5) 
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All of the terms containing %l vanish when the deformation as viewed by the 
moving observer are fixed and henoe G' = Jp - Tr8p in that case. 

The same result is also true in the model appropriate to a small end zone, for which 
it is assumed that T = Tr all along the shear band, with a singularity resulting in the 
elastic field at its tip. In that case the virtual work theorem (which could not be 
applied to the virtual displacement dui/dl, because the integral of d W /dl is then 
divergent) requires that all the terms involving a/ol sum to zero, so that again 

G' = Jp -Tr 8p • 

More generally, with a finite end zone, the a/al terms would sum to zero if T rather 
than Tr appeared in the last. Hence 

JT 08 
0' = Jp-Tr!lp+ p (T-Tr)ol dxl > (A6) 

On the other hand, the formalism of (A 3) changes (A 2) to 

J JT a8 
0' = (T-Tr)d8+ p (T-Tr)aZ dxl > (A 7) 

We thus see from the first of these that Jp-TrB; is not always equal to the energy 
surplus. 13ut the second makes it clear that in the same circumstances the required 
energy surplus is not just simply f (T - Tr) dS. The identical additional term appearing 
in each equation means that 

(AS) 

always, regardless of the validity or not of the energy interpretations for the separate 
terms. Indeed, this result was derived in the text independently of these inter
pretations. 

When the material outside the shear band is inelastic, the rate of change of strain 
energy in (A 1) may be replaced by 

which is the net rate of energy storage and/or dissipation by deformation, and the 
same interpretation of Gt as an energy surplus remains, Then the first member of 
(A 1) becomes 

(A 9) 

provided that W is defined by integrating aW/oxl = CFijoeij/ox1, This leads directly 
to (AS) with W as here defined in the formula for J, and with oW/oZ replaced by 
CFijoeij/oZ. Hence, whenever the end-region deformations appear unchanged to the 
moving observer, Jp - Trap is the energy surplus for dissipation against strengths in 
excess of the residual value even if the material behaviour is inelastic outside the 

34 Vol. 332. A. 
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band. It is difficult to pursue this interpretation for the model in which T = Tr all 
along the band and a singularity appears in the continuum field at the tip. Then the 
necessary term 

for an inelastic material, in contrast to 

(d/dl)L WdA 

for an elastic material, involves an integral which may be at least formally divergent 
at the shear band tip . .An analogous difficulty in interpretation would arise for an 
inelastic tensile crack model which included no cohesive zone at the tip. 
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