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ABSTRACT: By making use of plastically adjusted linear elastic fracture mechanics
analysis and plastic limit load solutions, a method is developed for reasonable
approximation of Rice’s path independent J integral which is applicable for test
specimens or other configurations which exhibit considerable plasticity prior to
fracture. Employing this, J is expressed as a function of load point displacement.
Estimations of the J versus displacement relationships developed compared quite well
to those previously established experimentally at Westinghouse Research Labora-
tories for Ni-Cr-Mo-V and A533B steels. For these comparisons, the test specimen
configurations considered were three point bend, center notch, and compact tension
test specimen configurations, all of which exhibit significantly different plastic limit
load stip line flow fields, Thus, the method developed for approximating J is thought
to be widely applicable.
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Recent experiments by Begley and Landes [/] have demonstrated the

potential of Rice’s path independent integral, J [2], as an effective criterion for

the initiation of crack extension. The critical J fracture criterion was found to be
applicable for situations which sustain either small or large scale plasticity prior
fracture. Therefore, if such results continue to prevail, a significant extension

to
of

fracture toughness concepts into the plastic range has been discovered.
The J integral is defined for two dimensional problems and is given by [2]
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where W is the strain energy density as defined by

eij
W=Wey = /;) Tpq depq )

and as shown in Fig. 1, R is any contour surrounding the crack tip, T is a
traction vector defined by outward normal m along R, T; = o;m;, uis the
displacement vector, and s is arc length along R. For any elastic or elastic-plastic
material treated by deformation theory of plasticity, Rice [2] has proven path
independence of the J integral. Other recent studies [3, 4] using incremental
theory for finite element analysis also demonstrate an approximate path
independence within the plastic region, although it is not clear that this prevails
for contours immediately adjacent to the crack tip [5].

FIG. 1-Crack tip coordinate orientation and arbitrary line integral contour.

An alternate and equivalent interpretation [6] of J for elastic (linear or
non-linear) materials is that of a potential energy difference for identically
loaded configurations having neighboring crack sizes a and a + da. In particular
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where U/B is the potential energy normalized per unit thickness B. This is

defined by
U/B =ﬂ Wdxdy ——/ T u ds 4)
A ¢y

where W is the strain energy density and ¢, that portion of boundary contour on
which tractions T are prescribed. For elastic-plastic materials, we shall take Eq 3
as defining J, where it is to be understood that the pseudo-potential energy U[B
corresponding to any given crack length is defined by Eq 4 with W then being
the work of stress deformation as experienced during monotonic increase of the
boundary loads on a body which has that same crack length in an unloaded
reference state. This precision of definition is necessary in view of the
dependence of plastic response on prior deformation history. Within the context
of deformation plasticity theory, the above definition of J is equivalent to that
as given by the line integral Eq 1 although a similar equivalence cannot be
proven for actual incremental plastic materials. In analogy with the linear elastic
fracture mechanics interpretation of the energy release rate [7, 8}, the area
between two monotonic load deflection curves for neighboring crack sizes @ and
a + Aa is, from the adopted definition of J, BJAa to first order. This
interpretation is illustrated in Fig. 2; moreover, it allows rather simple
calculations of J as will be developed herein.

Noting the above interpretations, Begley and Landes [1] previously de-
veloped a procedure which permits J evaluation from a family of load-
displacement records experimentally determined from test specimens of varying
initial crack length, Their suggested procedure for this calculation is outlined in
Appendix 1 and amplified in Ref /.

Equations 1 and 3 may be physically regarded as characterizing the Applied J
and as providing methods of evaluating the J imposed by external sources. On
the other hand the J, so imposed, causes processes to occur in the vicinity of the
crack tip in such a way that J may be regarded as a measure of the resulting
crack tip field of deformation. Thus, the J integral characterizes the near tip
stress-strain environment of cracked elastic-plastic bodies, which offers the
distinct advantage that it is possible to characterize the local crack tip
phenomena by a single field parameter which does not focus attention directly
to specific crack tip features. This is again analogous to the linear elastic fracture
mechanics interpretation that the extent of the near tip process may be
evaluated in terms of the imposed crack tip stress field intensity, K, or its
_equivalent elastic strain energy release rate, G. It is noted that in fact J
approaches G in the limit of the purely elastic case. It remains, however, an open
question as to the suitability of a one-parameter characterization in the large
scale yielding range.

Hopefully, the J integral representation of fracture can be successful so long
as the stress strain environment within some “fracture process zone” is
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FIG. 2—Interpretation of J integral,

dominated by conditions local to the crack tip leading edge and is also
insensitive .to length factors such as crack size, net ligament, and thickness [9,
10]. Moreover, deformation theory of plasticity is meaningless when unloading
occurs and this implies that substantial subcritical crack extension (beyond that
associated with plastic blunting of the tip) is not permitted., Therefore, the J
fracture criterion must presently be restricted to crack initiation rather than
propagation, as indicated by Begley and Landes [/]. However, these restrictions
might not turn out to be any more restrictive than those caused by analogous
plasticity effects in linear elastic fracture mechanics, and local unloading would
then be admissable within some size of region which might -be analogously
described as proportional to J/oy s» Where 0y is the tensile yield stress. In spite
of these apparent “‘size” limitations [9, /0], the determination of which must be
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left largely to experiment, Begley and Landes have demonstrated with success
[/] that relatively small specimens which exhibit fracture at full limit load
conditions satisfy these dimensional requirements and provide valid interpreta-
tion of the J criterion. For both a low and intermediate strength steel, Begley
and Landes [/] were able to determine experimentally a critical plane strain J
value (Jp., which satisfied “degree of plastic restraint” requirements) at which
elastic-plastic and fully plastic fracture occurred for a variety of crack lengths
and specimen types. Their critical J;, determination was consistent with the
linear elastic fracture mechanics interpretation of G, That is, their critical
plane strain Ji, obtained from smaller fully plastic specimens agreed favorably
with critical Gy, obtained from fracture of large specimen configurations which
satisfied ASTM plane strain criterion [/7] 2

Objectives

Encouraged by the experimental success of Begley and Landes and their
development of a fracture criterion based on the J integral, an attempt is made
here to provide simple but effective approximate methods of calculating the
“applied” J utilizing a minimum amount of concomitant supporting experi-
mental effort,

The Begley and Landes procedure [/] (outlined in Appendix 1) used for the
establishment of a relationship between J and the load point displacement, &,
required both procurement and analysis of a large number of experimental
load-displacement records, which is both time consuming and costly. It would be
a great advantage and is an objective herein to be able to estimate the J versus &
- relationship for a given test specimen configuration and from this, supplemented

by one experimental load-displacement record (which determines a displacement
at fracture), establish a critical value of J.

For practical structural applications where more complex flaw and loading
geometries are apparent, a purely experimental evaluation of the J versus &
relationship may not always be conveniently possible. If, for these practical
component-flaw geometries, one could make meaningful J versus § approxima-
tions, derived using no more than linear elastic fracture mechanics and plastic

"limit analysis, then along with critical J (or G) values established from simpler
test configurations, one might effect reasonable predictions for loads and load
point displacements at fracture, and hence, for practical applications, establish
critical flaw sizes or design stress levels or both.

Towards the' achievement of the above goals, the primary purpose of this
work is to provide simple but effective methods for approximating the J versus §
relationship based on no more than linear elastic fracture mechanics and plastic

*For a valid fracture criterion, Ji. should equal G- Since for small scale yielding J is
identical to G, this implies thatJIc may be related to plane strain fracture toughness, K, as
Jie = (1P K 2 UE,
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limit analysis. The effectiveness of the approximating techniques will be
evaluated for three common test specimen configurations, the three point bend
bar, the center notch, and compact tension specimen, all of which exhibit
grossly different limit load slip line fields [72]. In order to judge the analytically
developed expressions for the J versus 8 relationship, they will be compared to
those experimentally established by Begley and Landes [/] for Ni-Cr-Mo-V and
AS533B steels.

Some Useful Observations

Following the J interpretation outlined earlier, and also discussed in
Appendix 1, that J, as given by Eq 3, may simply be evaluated from the area
between load-deflection curves of slightly different crack lengths, it becomes
relevant to examine one’s ability to generate reasonable estimates of load-
displacement behavior for cracked configurations and especially their variation
with crack size. The limiting cases of load-displacement character are those
exhibited by either purely elastic or rigid plastic behavior, Fig. 3a. For the pure
elastic case,J is identical to G, the energy release rate [/], and may be expressed
as [13]

>

P 3
2

|

J=G= (5)

da

o]

where P is the applied load, 04 represents an increment of crack extension, B is
the material thickness, and where load and displacement are related by

5=\P (6)

A is an inverse spring constant, or compliance which is a function of flaw size,
specimen geometry, and elastic material constants, namely, £, Young’s modulus,
and sometimes », Poisson’s ratio. Since Eq 6 J is proportional to 8%, J as a
function of 8, for pure elastic behavior, assumes the form of a parabola for a
given constant crack size, Fig. 3b.

For the rigid plastic load-displacement relationship, deformation or §
extension is unlimited at the limit load, P = P, , while for P <P, ,6 =0, Fig. 3a.
Interpreting Eq 3 for J in terms of the area between two successive load
displacement records, J as a function of § for the rigid plastic material is given as

Q)Iw
E~Y
=

(7

R
i
|
ol o

where the derivative 8P, /0a is evaluated for the crack length of interest. The
resulting rigid plastic expression for J is simply a linear function of §, and thus
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FIG. 3 —Idealized versus actual behavior for load versus displacement and
J versus displacement.

the J versus & relationship for constant crack size is a straight line emanating
from the origin, Fig. 3b.

In reality actual load versus displacement characteristics border the two
extremes exhibited by purely elastic and rigid plastic behavior, Fig. 3. For low
loads and associated small scale plasticity, a load-displacement behavior can
always be approximated by linear elastic analysis giving a slope (or compliance)
which is a function of crack size, specimen geometry, and elastic material
constants. As loading progresses, increased plasticity introduces nonlinearity,
and if fracture has not yet ensued prior to the attainment of limit load, a marked
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increase in deflection, which ultimately leads to separation will occur without
any substantial increase in load, Fig. 3a.

For a flawed configuration which sustains large scale yielding prior to
fracture, it seems logical to expect similarly that the J versus & relationship also
resembles the two extremes at low and high & (or J). For small &, and
consequently small scale plasticity, J can be represented simply by the linear
elastic solution, J = G, which is parabolic in & for constant crack length. For
large & where limit load. is attained prior to fracture, J as a function of 8
becomes a linear relationship with a slope parallel to the idealized rigid plastic
relationship, Fig. 3b. The offset between parallel segments of the rigid plastic
and actualJ versus 8 curves of Fig. 35 is governed in part by the nonlinearities in
the P versus & records which occur in the transition region. Hence, estimation of
the actual J versus § relationship rests on the ability to effectively approximate
the elastic to plastic transition, or more specifically, the variation with crack
length of the curved portion of the load displacement relationship up to limit
load, as well as the limit load itself.

Estimation Techniques

A logical first attempt at providing estimated load-displacement records for
successive crack sizes and hence, J versus § approximations would be to consider
a family of purely elastic and perfectly plastic load-displacement records. For
each particular crack size development of perfectly plastic behavior from the
original elastic slope would occur at limit load, ignoring the nonlinear portion of
the load-displacement relationships. Further, for fractures commencing after
large deformations at limit load even the elastic portion might be ignored,
proceeding in a manner consistant with Eq 7. However, it becomes evident that
these first approximations are not adequate except for special situations and a
more general approximation procedure would be advantageous.

A slightly more refined approximation can be made by amending the linear
elastic portion of the load-displacement relationship analysis by use of an r
plasticity adjustment factor [/4] which considers the leading edge of the crack
to be given a central location within the plastic zone [I5]. The plasticity
adjustment results in an equivalent elastic or effective crack size, agsp, given by

epg = a t 1, @)
2
1 K
where r, = =— (— (8a)
Yy o 2 <°ys>

for plane stress and

s e ({%) 8b)
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for plane strain. a is the actual crack size, K the stress intensity factor (based on
actual crack size), and Ops the yield point (or small strain plastic flow stress) for
the material in simple uniaxial tension. Utilization of the r, plasticity
adjustment appropriately introduces nonlinearity which is thought to be rather
accurate for small scale yielding and which is at least more realistic than pure
linear elastic analysis as yielding progresses. Employing the plasticity adjustment,
a family of load-displacement records can be provided by using the plastically
(ry) adjusted elastic analysis up to limit load and limit load analysis thereupon.
A simple procedure used to apply the 7, plasticity adjustment to linear elastic
load-displacement relations is discussed in Appendix 2.

Estimating schemes based on the observations cited above were tried and
compared to existing Westinghouse experimental data on Ni-Cr-Mo-V
(200-250 F) and A533 B(75 F) steels [1]. The three specimen configurations
considered were the center notch, the three point bend bar (single and double
thickness) for Ni-Cr-Mo-V steel, and the compact tension (H/W = 0.6) for A533
B steel. The test configurations are sketched in Figs. 4 through 6.

J versus 6 Computation and Analyses

Families of load displacement records developed by analytical estimation and
by Westinghouse experiments, [/, 2], were curve fit by computer using an
orthogonal polynomial relationship. The computational process was carried out
in the manner prescribed in Appendix 1. That is, load displacement records were
used to obtain apparent or *“pseudo-potential energy” for constant displacement
as a function of crack length (that is, U/B versus a curves). The U/B versus a

Tlp

B = Thickness =:0.394" and 0.788"
W= 0.474"
S = 1.57"

+ = Load Point Displacement

FIG. 4 —Westinghouse Ni-Cr-Mo-V three point bend bar test configuration.
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FIG. 5—Westinghouse Ni-Cr-Mo-V center notch specimen configuration.

curves were best fit by a low order orthogonal polynomial and their slopes
evaluated to yield J as a function of displacement, &, and crack size, consistent
with Eq 3.5 -
Analytically estimated J versus 8 relationships for Ni-Cr-Mo-V steel specimens
were compared to those obtained using actual Westinghouse load-displacement

SSince for the center notch specimen, the area between load-displacement records of
neighboring crack sizes is representative of the total change in “pseudo-potential energy” for
two cracks, an appropriate adjustment by a factor of 1/2 was necessary to evaluate J for
each crack tip. :
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4

8 = 1.00"

W=2,00"

H=1,20"

w = Location of Gage from Load Line = 5/8"
§ = Displacement at Load Line

§'= Displacement at Gage Location

FIG. 6—Westinghouse A533B compact tension test specimen configuration.

records [/]. For the AS33 subsized compact tension test configuration,
analytical estimates of the J versus 8 relationship were compared to the critical
plane strain J (Jj;) and fracture displacement previously established by
Westinghouse experiment on identical test configurations.

ljevelopment of Load Displacement Records for Each Specimen Configuration

Pure Elastic

Load-displacement relationships for the three point bend bar and center
notch test configurations of Figs. 4 and 5 were analytically developed for pure
elastic loading and are given below for the three point bend bar of Fig. 4 where &
is measured at the point of load application.

0.24 PS®

S (104 + 328 (WIS (1 + )]

§ =
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where

B, S, W, a are defined in Fig. 4, and £ = Young’s modulus,
v = Poisson’s ratio, and

E’ = F for plane stress

E/(1 —v*) for plane strain.

For the center notch specimen of Fig. 5 where the gage is located a distance
D above and below the center line of the crack

2
P [D 4 na
S_B[bE+wE'{<2b)
4 6
1 {na 5 {[na
“‘4(21:)“%2(’2’15)’r }]

where B, D, b, a are defined in Fig. 5 and where E and E' have the same
interpretation as above, and where it is assumed that Dja>>1. The derivation of
Egs 9 and 10 are outlined in Appendix 2.

Earlier established boundary collocation results [/6, 17] were used to obtain
load-displacement (at the load line and gage location) relationships for the
compact tension specimen. A dimensionless plot of these results is given in Fig.
7.

For pure elastic loading, the J calculation could be simplified by ac-
knowledging that J = G. Consequently, for a single crack tip,J can be calculated
from

(10)

K2
J = i (1
where

E’ =F for plane stress
=E/ (1 —v?) for plane strain

and K is simply the appropriate test configuration stress intensity factor.
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FIG. 7—-Boundary collocation results for elastic loading of compact
tension specimen [16, 17].

A tabulation of K calibrations used for the test configurations considered are
. given below for three point bend bar as shown in Fig. 4 [10}®

PS

K= B

[2.9 G — 466 + 218 ()"
(12)

~-376 (%)7/2 + 38.7 (%)9/2]

For the center notch specimen, Fig. 5 [18]

SR P
K = 585 ma secs (13)

6Equation 12 was obtained for a bend beam with S/W =4 [10, 20]. However, by
extrapolation of results given in Ref 20, Eq 12 was found not to differ significantly from
the expression obtained for a bend bar of S/W = 3.31 (the actual S/W ratio for bend bar of
Fig. 4). :
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FIG. 9—Limit load per unit thickness as a function of total crack length for
Westinghouse Ni-Cr-Mo-V center notch test specimen configuration.
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solution was found to be quite sufficient when compared to actual Westinghouse
limit load data on A533 B steel (Uys ~ 70 ksi) 1TCT and 2TCT compact tension
specimens [/], Fig. 10.”

To compute the J versus & relationship for rigid plastic material behavior, one
could use the procedure outlined in Appendix 1 or more simply employ Eq 7.
Rewriting Eq 7 to consider the possibility of more than one crack tip:

0P
d(aa)

(18)

| o

where « = 1 for configurations with one crack tip
a = 2 for configurations with two crack tips

15¢-
Actual Westinghouse TP B
Experimental Data
o ITCT B=1" wW=2" 7
e ZICT B=2" W=4" a
10 - t._ W —
~e AS338
.é °ys =70 ksi
= dip /BW)
g LR o = 0.5
o d(B/W)
5. -
o~ Rice Solution
/
0 H
0.4 0.6 0.8 1.0

a/W

FIG. 10—Limit load divided by B W as a function of dimensionless crack size,
a/W for Westinghouse A533B compact tension specimen.

"in order to calculate limit load for the three configurations, uniaxial tensile strength was
employed in Eqs 16 and 17 for the bend bar and center notch configuration, whereas the Rice
.approximation for the compact tension configuration contains yield strength. The above selection
was based upon success demonstrated by Egs 16 and 17and the Rice procedure in predicting actual
limit load, refer to Figs, 8 through 10. For a mild steel alloy, subsequent unpublished results have
shown when final fracture occurs prior to the attainment of full limit load conditions, the critical J
estimation is rather insensitive to precise definition of a suitable plastic flow parameter for ex-
ample. 0y, 05, 1/2 (oy5 + 04), ete.). For the mild steel investigated (0,5 min = SO ksi 0y iy =
80 ksi) a 210 percent variation in averaged flow stress resulted in critical J estimates within £15
percent.
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Thus for the bend bar

J= 2912 om% W —a) (19)
and for the center notch specimen

J= j—fﬁia (20)
3

For the compact tension specimen 0P /9a could be determined graphically, Fig.
10, and substituted into Eq 18.

For the three chosen specimen configurations, Figs. 11 through 13 show
typical analytically generated load displacement records for three different crack
sizes for both the elastic (plane stress), perfectly plastic, and the elastic (plane

12 T T T T T T
a/W :0.4-—‘\ It}
10 b ‘/H:
8 a/Ww =0.5 5)
E —— — e — —;——‘—
E / — 2
s 6F 7 7 aw=0e )
alW =
2 /= N o
/
41 3)_
/
7
4
2 / _
7
] i ; ! | ]
L0408 012 06 020 0,24 028
b - At Load Point fin)
NiCrMoV

BendBar {S= 157" W=0474")
B =0,394" Single Size

B =0.788 " Double Size

£ =30 x 103 ksi

{1y, 12y, B) Elastic (ptane stress) perfectly plastic
14}, 15), 16) Elastic {plane stress with plane stress plasticity
adjustment)

VIG. 11-Typical estimated load displacement relationships for Westinghouse Ni-Cr-Mo-V
single and double thickness three point bend bars.
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plasticity adjustment)

., 4 23/ =0.4
2y, 5) 2a/2b =0.5
13y, (6} 2af2b =0.6

FIG. 12-Typical estimated load displacement relationships for Westinghouse Ni-Cr-Mo-V
center notch specimen.

stress) with plane stress plasticity adjustment assumptions. An even better
approximation of actual load-displacement records may be obtained by taking
the plastically adjusted elastic behavior for loads less than limit load with a
switch to perfectly plastic behavior at limit load.

Elastic load displacement relationships were chosen to be those for plane
stress which differs from that of plane strain ar most by a factor of (1 — )~
0.90. (This can be verified upon examination of Fig. 7 and Eqs 9 and 10). Use of
the plane stress plasticity adjustment, Eq 8a, is justified by having a specimen
thickness which gives plane stress conditions for most of the plastic zone (during
the ‘time the correction is used). Even so, it is the difference between
load-displacement curves for changes in crack length which seems best
approximated here by plane stress. However, thicker specimens (all other
dimensions remaining equal) might require use of a plane strain adjustment
factor, for example, Eq 8b.

Figure 14 presents a typical comparison between plane stress and plane strain
estimations of load displacement behavior for the A533 B compact tension
specimen considered. The area beneath both pure elastic (plane stress and plane
strain) and plane strain plastically adjusted curves are essentially similar. Thus, it
appears that pragmatic selection of a plane stress plasticity adjustment is
justified for the specimen configuration and size considered.
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IEIG‘ 13—Typical estimated load displacement relationships for Westinghouse A533B
1TCT compact tension specimen.

It is perhaps worthy of note that the bend specimen and compact tension
specimen estimated deflection at limit load (both for perfectly elastic and -
plastically adjusted loading) is rather insensitive to crack length for the range of
a/W ratios plotted on Figs. 11 and 13. On the other hand, from Fig. 12,
estimated center notch specimen limit load deflection appears to be somewhat
sensitive to crack length. This sensitivity might suggest that the center notch
configuration is more difficult to develop approximations for J integral {
calculation than either of the other two configurations.
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FIG. 14 Typical estimated load displacement relationships for Westinghouse A533B -
1TCT compact tension specimen, a/W = 0.5.

Results

For the Ni-Cr-Mo-V single and double thickness, three point bend bars of
geometry prescribed in Fig. 4, Fig. 15 presents J as a function of & determined
from both analytically approximated and Westinghouse experimentally estab-
lished load displacement records. Results for a crack length to width ratio, a/W,
equal to 0.50 are shown; however, a/W ratios of 0.40 and 0.60 were also tried
and found to give essentially similar comparisons. The analytical model does not
involve thickness except for the “either-or” choice of plane stress or plane strain.
Hence, for in-plane specimen geometry of Fig. 4, analytically estimated results
(Fig. 15) were independent of thickness, while those results based on experiment
exhibited a slight change with thickness. However, it should be noted that the
specimen of smallest thickness (B = 0.394 in.) did not quite meet a “degree of
plane strain” requirement based on experimental observations of Begley and
Landes [/, 9]. Based on their observations for the specimen geometry
considered, an approximate thickness B = 0.42 in. would be required to satisfy
the “degree of plane strain” requirements. Greater than this thickness (namely,
B > 0.42 in.) experimental results should be essentially thickness insensitive.
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FIG. 15—1Jas a function of load point displacement, 8, for Westinghouse
Ni-Cr-Mo-V single and double thickness bend bars.

Experimental results of the thicker specimen (B = 0.788 in.) shown in Fig. 15
satisfy such a requirement.

Of the various analytical schemes tried, those results derived from load-
displacement behavior considered to be elastic plane stress, ry plasticity
adjusted, plus perfectly plastic (curve 4) agreed best with those results computed
from the Westinghouse experimental data. Analytical agreement with experi-
. mental data was best for the thick specimen,

For both the single and double thickness bend bars, Westinghouse experi-
mentally determined displacement, 8, at fracture ranged between 0.22 and 0.24
in. for a/W ratios of magnitude comparable to 0.5. Employing these experi-
mentally determined fracture displacements and the a/W = 0.5 J versus §
relationship approximated by plastically adjusted elastic plane stress plus
perfectly plastic loading (curve 4, Fig. 15), an estimated range of critical J would
be 900-1100 in.*lb/in2 This agrees very well with an average critical
plane strain J(J;.) of 1000 in. -lb/in?* experimentally established by
Begley and Landes [/] and is also within good agreement® with upper shelf

8Since Jic is determined for the beginning of crack extension and Gy for a 2 percent
crack extension, it follows that Gy, should be larger than Jy.




FRACTURE TOUGHNESS 61

(200F) G;, = 1200in.-1b/in.? established from Westinghouse K. fracture
toughness tests on thicker test specimens [I, 24].

For the Ni-Cr-Mo-V center notch specimen, a comparison of J versus &
relationships based upon analytical and experimental load displacement records
are presented, Fig. 16, for,22/2b = 0.5. Crack length to width ratios 22/2b = 0.4
and 0.6 were also tried and found to yield similar comparisons. Again,J versus §
agreement of actual experiment and assumed elastic-plastic adjusted (plane
stress) perfectly plastic loading (curve 4) are quite good. For comparable crack
lengths, a Westinghouse experimentally determined § at fracture was generally
found to be in the range of 0.016 and 0.018 in. which corresponds to an
estimated central J range, 800-900 in.-lb/in.> This is in excellent agreement
with previous Ni-Cr-Mo-V results and is well within the experimental bounds of
fracture toughness determination of rotor steels for which K, may vary as much
as 15 percent, and which corresponds to a J critical variation of as much as 30
percent [1].

Analytical J versus & estimations for an AS533 compact tension (CT)
specimen, a/W = 0.5, are presented in Fig. 17. For the 1-in.-thick CT specimen,
W equaled 2.00 in., and gage location was at the specimen outer edge, 5/8 in.
from the load line (corresponding to a total specimen width of 1.31 W). For the
l{in. CT specimen, a/W = 0.5, gage location deflection at fracture was

2000 T 1 t
2)
1500 | - -
L]
o~
c
S 10| =
£
500 [~ o Calculated From 7]
) Westinghouse
Experimental Data
] ! 1 ] i
0 .004 .008 .012 016 .018 024
b - At Gage Locations - {in)
o, = 120ksi ]
NICrMoV at 200°F ( 7° . E=30x10° ksi)
Oy = 135 ksi
Center Cracked Specimen (2a/2%: =0.5)
B=1" b=1"
{1} Pure elaslic (plane stress)
{2) Rigid Plastic

FIG.16 —Jas a function of gage point displacement, 8, for Westinghouse

3)
)

Elastic tplane stress with plane stress plasticity adjustment)
Elastic tplane stress with piane stress plasticity adjustment) +
perfectly plastic

Ni-Cr-Mo-V center notch test specimen.
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FIG.17-1] as a function of load line displacement, 8, for Westinghouse
A533B compact tension test specimen.

experimentally determined to be 0.07 in. [/]. Boundary collocation results on
the CT specimen in Fig. 7 indicate that a/W = 0.5 load line deflection is
approximately two-thirds of that deflection at the outer specimen edge. This
implies that a gage deflection of 0.07 in. corresponds to a load line deflection of
0.0467 in. For a load line fracture deflection of 0.0467 in. a critical value of J
estimated for elastic (plastically adjusted) plus perfectly plastic loading is found
to be 1025 in.-1b/in.?, Fig. 17. This is in extraordinary agreement with the
Westinghouse experimentally determined plane strain critical J value (J;, = 1030
in.:Ib/in.2) for the same material test configuration [/]. The estimated critical J
is also in very good agreement with plane strain (G, = 1100 in.lb/in.?) results
converted from fracture toughness measurements on specimens 12 inches thick
1.

Consequently, upon examination of Figs. 15 through 17, it appears that very
simple estimation of elastic perfectly plastic J versus § may be provided from
extension of a line paralle] to the rigid plastic solution at its point of tangency
with the plasticity adjusted elastic solution.

Summary

For the materials and test configurations considered, reasonable estimations
of the J versus § relationship were made utilizing generated load displacement
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records assumed to be plane stress, plastically adjusted linear elastic, plus
perfectly plastic.

Provided that suitable approximations of the J versus & relationship exist, it
appears that critical J estimations, for a particular material test configuration,
could be obtained given the additional experimental knowledge of the load point
deflection § at the inception of fracture. For a given flaw size, a minimum of
one (or possibly two) experimental load displacement record(s) would be
sufficient to establish this information, along with the analytical procedures
demonstrated herein.

Employing these procedures, and utilizing Westinghouse data [/], analytical
predictions of critical plane strain J (Jy.) were found to agree quite well with
Westinghouse J;, results [/]. Moreover, the estimated critical J was also found
to agree quite well with Gy as determined from state-of-the-art valid plane strain
(K|.) fracture toughness tests.

It also becomes apparent that the ability to effect reasonable approximations
of the J versus § relationship does not rest entirely on an ability to estimate load
displacement behavior with great precision. Instead, J versus § approximation
appears to be appropriately related to estimating characteristic changes in load
displacement behavior with changing flaw size.

The J versus & estimation technique considered herein, which utilizes no more
than elements of linear elastic fracture mechanics and plastic limit analysis,
appears to offer considerable promise in application related to elastic-plastic
failure analysis of complex engineering structures for which it might be difficult
to obtain exact solutions for the relationship.
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APPENDIX 1

Computation of J as a Function of § from a Family of Load-Displacement
Records [/}

Given a typical test specimen configuration, Fig. 184, load-displacement (P-8)
records are obtained for a number of constant crack lengths, Fig. 185, For given
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values of deflection, &, the area under each load-displacement record may be
interpreted as “pseudo potentlal energy” of the body at that displacement. This
can then be plotted, Fig. 18¢c, as pseudo-potential energy normalized per unit
thickness, U/B, versus crack length, a, for constant 8. Following Eq 3,/ may be
interpreted as the area between load-displacement curves of neighboring crack
size, or more simply as the negative slope of the U/B versus a curves, for given
constant 8. This permits evaluation of a J versus & relationship which is also a
function of crack size, Fig. 18d. Given the J versus & relationship for a given
crack size, an expenmentally determined fracture displacement which character-
izes onset of unstable fracture may be used to determine a critical /.
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APPENDIX 2

Calculation of Elastic and Plastically Adjusted Load-Displacement Relationships

Three Point Bend Bar

For the three point bend bar of Fig, 4 where § is the deflection of the load
point, an elastic compliance calibration may be derived as follows [14].

Define Uyo¢ as the total amount of strain energy stored in a cracked bend bar.
The total strain energy may be divided into that which would exist if no crack
were present, plus that which is due to the introduction of a crack. That is,

U,

tot=U

no crack + Udue to crack 2n
The no crack contribution may simply be divided into bending and shear

contributions which can be calculated from well known strength of material
results {25]. That is,

U

no crack Ubending

+ U

shear
where
S M?%dx
Ubending = -/o SE
M = 1/2 Px
and
f w/2 s T2
U, = S~ Bdxdy
shear —wpa o 2G
where

w2
-
T = —
B / ydA
y

I = moment of inertia, E = elastic modulus, G = shear modulus, 7 = shear stress,
M = cross sectional bending moment, V is average shear force across a cross
sectional area, all other symbols are defined in Fig. 4,

To determine the strain energy contribution due to the crack, one may recall
from the Griffith approach [7, 8, 13, 26] that G, the energy available for crack
extension, is defined as

_ aUdue to crack

G= Ba (22
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a
Udue to crack = B / Gda
[}]

Converting G to K, the stress intensity factor

B a

— 2

Ugue to crack ~ g’ / K*da
0

from which

‘where
E' = E for plane stress
= E/(1 — v?) for plane strain
and
- _PS a
K = BW2 F(W)

is the form of the stress intensity expression for the three point bend bar, Eq 12.
The total deflection §,,, may be summed as a contribution without the crack
plus a contribution due to the crack. That is,

5tot = 6no crack + zsdue to crack (23)

Employing Castigliano’s theorem and Eqs 21-23

5 _ aUtot _ aUno crack + aUdueto crack
tot i g oP oP

which gives § as a linear function P
8 =Px F" (a/W,S,B,W,E, 1)
For the configuration of Fig. 4, this relationship is given by Eq 9.
Center Notch Svecimen
For the center notch specimen of Fig. 5, one may compute the compliance
relationship as follows, Two components of deflection may be considered as that

due to the crack and that which would exist if no crack were present. From
which,

Stot = 5no crack + Sdue to crack (29
6no crack 18 simply,
_P(2D)
6no crack (2bB)E (25)
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where all specimen dimensional symbols are given in Fig. 5. To find the
contribution of the crack, the total energy release rate for the two crack tips
may be written as

P
~ 2(2Bda)

but G = K*/E* +K?*JE’ (since there are two cracks) and,

g kK _ 4B ‘
\ = due to crack  _ K2da (26)
P PE

employing the appropriate stress intensity factor, Eq 13, ad contribution due to
the crack may be computed. Summing the deflection contributions given by Eqs
25 and 26 results in a final compliance relationship given by Eq 10 where higher
order terms are neglected.

ry Plasticity Adjustment

A simple technique for applying an ry plasticity adjustment to a linear elastic
load displacement relationship can be illistrated as follows.

Consider that by linear elastic fracture mechanics techniques a purely elastic
compliance relationship has been developed. A typical relationship for a
compact tension specimen is graphically represented in Fig. 192 where
compliance is dimensionlessly plotted as a function of dimensionless crack size.
Employing the plasticity adjustment suggested by Eqs 8 and 8a

2
deff 1 1 1 K
w oW [ao * ry] T w [ao Y <Uys)] 27

where a_, is the actual original crack size. Typically, substituting the stress inten-
sity expression for a compact tension specimen, Eq 27 becomes

22 J0
Qorf P (W) (28)

a4y

= —

W 2002 . 2
27rBW0ys

W
. detf :
foragivenload P, an ) may be computed from Eq 28 as
1

2,2 f0
et =_a_0_ PO (W)
W W oamBwie, > }

from which an adjusted (E8B/P); may be determined from Fig. 192, Having P,
and (£8B/P), known, as adjusted deflection, 8 |, can be computed as

s = (E8B) It
! P J, Eb
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FIG. 19--Sample calculation of -ry plasticity adjusted load displacement records.

Hence, P, and 8§, are known and can be plotted as a point on a load
displacement record, Fig. 195, The same procedure may be followed to generate
a series of points (P, 6,) ... (P,,8,) which will produce a plastically adjusted
elastic load displacement record for a given initial crack size.
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