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Introduction 

THE well-known J integral of fracture mechanics 
[1, 3, 5]1 has been related to potential-energy-release rates asso
ciated with moving or extending cracks in linear or nonlinear elas
tic materials. Some new path-independent integrals (or conser
vation laws) have recently been discovered by Knowles and 
Sternberg [2]. In this paper these new laws are related to energy 
release rates associated with cavity or crack rotation and expan
sion rates. In addition, the conservation laws are displayed in 
complex-variable form for the case of linear, isotropic, plane elas
ticity. Finally, an implication concerning plastic stress distribu
tions around cracks is discussed briefly. 

Conservation Laws 
Consider a two-dimensional deformation field for which the 

displacement vector u depends only on Xl and X2. The J integral 
is 

J = f c (W dX2 - T iUi,ldl) 

where C is a closed curve in the Xl, X2 plane, W is the energy 
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density, and T; is the stress vector acting on the outer side of C. 
The J integral is actually the first component of the vector 

J k = f c (Wnk - Tiui,k)dl (Ia) 

where n is the unit outward normal to C, lying in the same plane. 
Each component of J vanishes (trivially for J 3 ) for all closed paths 
bounding a region in which W depends only on the strain 'YJij = 

(Ui,j + uj,i)/2, and in which the stresses O"ij, related to T j on C by 
0" ijn" satisfy 

This implies that J a(ot = 1, 2) has the same value not necessarily 
zero, for all paths that enclose a hole or crack. 

The new Knowles-Sternberg integrals, in 2-D, are 

L = f E-Ji,·(Wx·n· + T·u· - TkUk ·x·)dl C J 1- " 3 ,1 J 
(2a) 

and 

M = f (Wx·n· - TkUk ·x·)dl a 1- " .i 1-
(3a) 

where Eijk is the alternating tensor. Under the same conditions 
specified for J, L vanishes if, in addition, W depends only on the 
scalar invariants of 'YJij' For M to vanish it is necessary that W 
be a quadratic function of the components of 'YJij' 

The results apply not only for any combination of plane and 
antiplane straining, but also for the 2-D theory of generalized 
plane stress in which u and d denote thickness averages. Also, 
with suitable redefinitions of the basic variables, J a and L vanish 
when geometrical nonlinearity is admitted [2, 3]; and if W is a 
homogeneous function of degree m in the strain components, 
M will still vanish if it is redefined by adding the quantity 
(m - 2)TiUi to its integrand. 

In three dimensions the integrals generalize to 
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J k = Is (Wnj, - T.Ui.,,)dS (lb) 

Lk = Is Ek,;(Wxin • + T,ui - T1ul •• x;)dS (2b) 

M = Is (WXini - T;U;.iX• - tT,oUi)dS (3b) 

where S is a closed surface with outer normal n, and analogous 
conservation theorems have been shown to hold by Knowles and 
Sternberg. 

Energy- Release Rates 
Eshelby"[3, 4] and Rice [5] have shown that J k can be inter

preted as the energy-release rate when a void or a crack tip is 
translated in position relative to a material body. We show that 
Lk and M have similar interpretation:;; here. 

Consider a 3-D elastostatic boundary-value problem associated 
with the material contained within the surface S + 8, for which 
the portion 8 of the boundary is traction-free, and external load
ing is imposed only by tractions on S. Without changing the 
boundary conditions of S, contemplate the continuously varying 
sequence of static solutions for the displacements u. generated as 
the spatial specification of 8 is varied with a timelike parameter t. 
The potential energy of the system at any time is 

II = f WdV - B[u] 
JV(t) 

where Vet) is the volume enclosed by S + 8(t) and B[u] is the po
tential of the loading specified on S. At each point in Vet), W is 
a function of the time-varying strains compatible with u. Then 

dII = Ii = f WdV - -dd {B[uJ} + J. Wv;m;ds 
dt J V(t) " t . 8(t) 

where Vi denotes the "velocity" of points OIl 8 and mi is the current 
outward normal to 8. (Note that only the normal component of 
Vi is determined uniquely by a given motion of the cavity bound
ary.) But by the principle of virtual work the first two terms in 
tr cancel (assuming that du/dt is an admissible function in Vet»~, 
so that 

Ii = J. Wv;m;ds 

This result has beeR derived, less concisely, by Rice and Drucker 
[6]. 

Next, suppose that 8 is the boundary of a cavity, and let v; = 
Ii;;; this corresponds to a conceptual translation of the cavity 
with a unit velocity in the i-direction. Let ni = -mi be the unit 
inward normal on the cavity surface; then ~. = - IT is the rate of 
energy release per unit of cavity translation in the i-direction, and 
is given by 

~i = J. Wnid8 

But by the first conservation law (lb), we have 

~i = J i (lc) 

wherein the integral in J i can be calculated on any closed surface 
surrounding the cavity. This last equation is Eshelby's [3] re
sult, and takes the same form as his equation for "forces" on 
point defects in solids [4]. 

N ext, consider a unit angular velocity about the i-axis of the 
specified cavity wall; then Vj = -Ei;kXk, and this leads to the 
result 
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~. = -Li (2e) 

for the rate of energy release per unit cavity rotation about the 
i-axis (with the usual right-hand rule sign convention for rota
tion.) 

Finally, let the cavity boundary expand uniformly according 
to the rule Vi = Xi. This gives the energy-release rate 

~ = M (3e) 

Here the rate is with respect to relative scale change dl/l, where 1 
is any characteristic length of the cavity. 

The 2-D versions of these energy-release relations, for plane or 
antiplane conditions, are self-evident. 

Since the final results are expressible as integrals over surfaces 
or curves off the cavity boundary, there is no reason to doubt 
their validity when the cavity is a crack. 

In 2-D crack studies, the J( =J1 ) integral has been exploited 
for closed paths of the type shown in Fig. lea). Since the inte
grand vanishes on the crack edges, it follows that the J integral 
has the same value for all open paths connecting any points A, B 
on opposite sides of the crack, as shown in Fig. 1 (b). In this case, 
the integral provides the enegy-release rate per unit crack tip 
extension [1, 5]: 
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Complex Variable Forms 
In isotropic plane elasticity, the standard complex potentials 

q,(z) and I/I(z) are analytic functions of z = x + iy related to the 
stresses by: 

Un + U22 = 2(q,' + iP') 
U22 - Un + 2iu12 = 2(zq," + 1/1' ) 

The following results have been derived for plane stress: 

J 1 + iJI = -i[f C (q,')2dz - 2 f q, '1/1 'dz ] (ld) 

L = ~ Re f c zI/Iq,"dz 

(2d) 

! Re f I/I'(q, - zq,')dz E c 

M = i 1m f Zq,II/I'dz 
E c 

(3d) 

where E is Young's modulus. For plane strain E should be re
placed by EI(l - v2), where v is Poisson's ratio. In the deriva
tion of each formula, it was assumed that the region within C was 
free of any resultant forces, so that the potentials q, and 1/1 were 
single-valued. 

If the integration path in (la) is open, extending from A to B, 
the extra quantity 

2i [ (-/)]B -Zq,2 A 
E 

must be appended to (ld). Thus the J integral, when taken 
around a crack tip, is just 

J = i 1m { f: [(q,')2 + 2q,1I/I/] dz + [z(q,/)2]:f} 

Similarly, extra terms appear in (2d) and (3d) if the integration 
paths in (2a) and (3a) are open. 

In the case of antiplane shear, the relations 

U32 + iU31 = w'(z) 

1 _ 
Us = 2iG (w - w) 

provide the stresses and the displacement in terms of an analytic 
function w(z); G is the shear modulus. Then formulas (Ia), (2a), 
and (3a) can be written as 

and 

J 1 - iJ2 = - ~ f (W ' )2dz 
2G c 

L + iM = -~ f Z(W' )2dz 
2G C 

The same formulas also hold for open paths. 

Crack- Tip Stress~s in the Plastic Range 
In conjunction with the simple deformation theory of plasticity, 

the J 1 integral has been used to calculate asymptotic plastic re
sults [ii, 7-9] for so-called "small-scale yielding" near the tips of 
cracks loaded in Modes I, II, and III. (Mode I, in the jargon of 
fracture mechanics, means crack opening, and Mode II is shearing 
parallel to the crack; in each case, the loading and geometry is 
symmetrical about the crack. Mode III is antiplane shear.) In 
these solutions, the dominant part of the singular solution near 
the tip in the far plastic range is determined to within a scalar 

factor; the factor is then found from the invariance of J 1 evalu
ated for paths around the crack tip at small and large radii, where 
conditions are, respectively, purely plastic and purely elastic. 
But this method has been successful only for loadings that are 
purely in one of the three modes mentioned. Thus, for a mixture 
of Modes I and II, two scalar quantities are needed to establish 
the stress distribution near the crack: tip, and the J 1 integral does 
not supply enough information for their determination. 

Unfortunately, contrary to some initial hopes, use of the new L 
integral does not appear to supply the missing data in mixed
mode cases. It does, however, provide an unexpected result. 
The earlier pure-mode solutions indicated that W may be ex
pected to vary inversely with the distance r from the crack tip. 
Now consider the evaluation of L, for a mixed-mode situation, 
on the path shown in Fig. I(c). Since L has a bounded unique 
value for all paths enclosing the crack, and since the contributions 
to L due to the small circles remain bounded as their radii shrink 
to zero, it follows that 

/~/r x[W+ - W_]dx 
J crack 

must be bounded, where W + and W _ are evaluated on the top 
and bottom faces of the crack, respectively. This means, there
fore, that the singular (l/r) parts of W must be equal at opposing 
points on either side of the crack. This is surprising when one 
considers arbitrary mixtures of Modes I and II. On the crack, W 
depends only on 1u..1 in simple deformation theory. Hence, the 
equality of W + and W _ near the crack tip implies that the ratio 
of the dominant singularities in (u .. k and (u",)_ must, in all 
mixed-mode cases, be either 1 or -1. This ratio is + 1 for Mode 
I and -1 for Mode II. If, then, one imagines the loading mode 
to change continuously from I to II, this ratio will have to jump 
suddenly from 1 to -1 at some particular mode mixture. 

The equality of the (l/r) contributions to W on opposite sides 
of the crack must persist even if some Mode III, which has a 
T",. contribution to W, is also present. It may be noted, finally, 
that these conclusions could have been reached by a consideration 
of the J 2 integral. 
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