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2. Vehicles can be designed to provide crash protection to the occu 
little or no penalty to the weight and cost of the vehicle. 

3. Vehicle crashworthiness can be improved by providing the 
principles to designers and by emphasizing the importance of this 
design responsibility. Decisions and design choices can then be · 
and in cases where two or more comparable choices are possible, the 
in favor of improved crashworthiness can be made. 

4. Overall vehicle structural crashworthiness requires design 
loads with an objective of maintaining a protective envelope 
occupant and reducing the crash loads transmitted to him by 
deformation of surrounding structure. 

5. Seating and restraint systems should be designed to provide 
restraint in all loading directions and to minimize decelerative lo 
occupant. 

6. Seating and restraint systems should have the strength req 
remain in place until the surrounding structure collapses. 

7. Some analytical procedures are available and some are being 
which can be used to evaluate and optimize structures and 
occupant survival. Additional tools are needed to enable overall syst 
be optimized for both structural crashworthiness and mission 

8. Creative innovation is needed to develop structural design vV.lH~IVl! 
and concepts that can provide the stiffness and strength needed to 
. primary design function, but that will efficiently and progressively 
with fracture during crash loading. 
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Computational Fracture Mechanics 

J. R. Rice and D. M. Tracey 

BROWN UNIVERSITY 

PROVIDENCE, RHODE ISLAND 

areas of fracture mechanics which are being developed through 
utational stress analysis methods are surveyed. These include the 

•. lll'"·l'-·<>1 determination of elastic stress-intensity factors, the elastic-plastic 
of near crack deformation fields, three-dimensional analysis of 

bodies, and the description of fracture mechanisms on the micro-

addition, finite-element procedures are presented for the accurate 
determination of elastic-plastic fields in the immediatt:: vicinity of 

tip. These are based on asymptotic studies of crack tip singularities 
materials, the results of which are summarized here and further 

for the nonhardening case. A new finite-element is presented which 
the requisite crack tip opening and associated 1/r shear strain singu-

for this case, but with strictly nonsingular dilatation. This is employed 
elastic-perfectly-plastic solutions for small-scale plane strain yielding at 

tip, and for yielding from small scale to limit load conditions in a 
cracked round bar. Resulting numerical solutions are shown 

be in excellent accord with analytical predictions, and parameters of the 
tip field of interest in developing a fracture criterion are discussed. 

Current fracture mechanics research is focused in two principal directions : 
development of phenomenological explanations of crack extension 
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behaviors, and the description of micromechanical processes of 
separation on the microscale. Both have come to rely strongly on · 
putational methods of stress analysis. 

In the first, the goal is to correlate crack extension behavior in 
growth by fatigue or stress corrosion, or in critical growth due to an 
in terms of parameters from analytical solutions which characterize 
tip stress field. Elastic fracture mechanics is a case in point: When 
extension behavior of interest is accompanied by a small crack-tip 
zone, in comparison to crack depth and uncracked dimensions of a 
specimen or structure, the correlation is in terms of the elastic · 
factor. This is the coefficient of the inverse square root crack tip -'H'·"'u" ....... 

an elastic stress field. It serves to characterize the influence of applied 
and flaw geometry on the near tip field for such small scale yielding co 
even though the predicted elastic stress field is wrong in detail 
plastic region. 

Hence the analytical problem in elastic fracture mechanics is to 
the stress-intensity factor. Several numerical methods have been 
for this, including boundary collocation, numerical solution of 
equations, and finite elements. There is now a substantial literature 
shall review briefly here. 

Plasticity effects limit this approach, and there is much current 
attempting to define and make use of parameters from elastic-plastic sol · 
which might similarly characterize the near crack tip field. This regime 
be understood not only to deal with flawed structqres failing under large··· 
yielding conditions, but also to allow fracture test results on small (and 

"I 
often fully plastic) precracked laboratory specimens to be accurately 
preted for assessing the safety of a flawed structure under nominally 
conditions. Analysis in this elastic-plastic range is based principally 
finite-element methods. These must, however, reveal sufficient detail on · 
scale at the crack tip, and for this reason it is necessary to take special ·· 
cautions in the design of near tip finite elements. 

Our approach is based on using asymptotic studies of elastic-plastic 
tip singularities as a guide to the development of displacement 
within elements. Previous investigations of this type are reviewed, and 
finite-element is described which allows the 1/r shear-strain · 
appropriate to the nonhardening idealization. Application of this 
the plane-strain small-scale yielding problem and to the 
cracked round bar problem leads to highly accurate descriptions of the 
tip field, and these may be useful in a phenomenological a.""'"""'"'""' 
counterparts to the elastic stress-intensity factor in correlating 
behavior. 
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There is, however, no single parameter which can uniquely characterize the 
crack tip field in the large-scale yielding range, especially when prior 
crack advance under increasing load must be considered. Hence studies 

fracture on the microscale are of significance not only for basic under­
and as guides to alloy design, but also for suggesting suitable crack 

·Atvuo.~.vu criteria to employ in flaw stress analysis and test correlations at the 
rrr.~r,,..,n,,r.level. Very much remains to be done in clarifying the mechanics 
separation processes on the microscale, and in merging models at this 

with macroscopic crack stress analysis for fracture prediction. We 
the work to date in these areas and point out some of the challenging 

tauvu.:u problems of plastic deformation, finite strain, and instability 
appear at the microstructural level. 

Our paper is divided into sections on the numerical determination of 
· stress-intensity factors in two-dimensional problems; crack tip 

, singular finite-element formulations, and results; three-dimensional 
problems, especially surface flaws; and fracture mechanics problems 

the microscale. For a general background on analytical aspects of the 
· the reader may wish to consult the review papers by Paris and Sih 
Rice [2], and McClintock [3]. 

Numerical Determination of Elastic Stress Intensity Factors 
(Two-Dimensional Problems) 

The stress field at the tip of a sharp crack in an isotropic, linear, elastic 
under loading conditions symmetric about the crack surface (Mode 

contains a stress singularity ofthe form 

CJrr + CJee ~ 2K(2nr)- 112 cos(tJ/2) 

CJzz ~ 2vK(2nr)- 1
'
2 cos(8/2) 

CJee - CJrr + 2iCJre ~ iK(2nr)- 112 sin(tJ)eiB/2 

(1) 

(r, e, z) is a cylindrical polar system with origin lying at the point of 
along the crack front, with the z direction parallel to the crack tip, 

withe= ±non the crack surfaces (see Fig. 1). Here i is the unit imag­
number, and K is the stress-intensity factor. This same stress distribu-

with CJ zz = 0 applies to thickness averages in the simplest two-dimensional 
of generalized plane stress. The intensity factor is the parameter on 
elastic fracture mechanics is based, and hence there is considerable 
tin its numerical determination. We review some numerical methods 

determining K here for two-dimensional problems of plane strain and 
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Fig. 1. Coordinates for description of near tip stress states. 

generalized plane stress. Three-dimensional problems are discussed 
subsequent section. 

The numerical methods may be divided broadly into those based 
analytical representations of solutions (principally through analytic functi 
theory) and those based on finite-element methods. Some of the former. 
limited as to the class of problems which may be handled, whereas the 
accuracy problems near singularities arise with the latter, and must 
circumvented. 

2.1. BOUNDARY COLLOCATION 

Muskhelishvili's stress functions take the forn'l [2] 

¢'(() = c 1/2j(() + g(() 

1/1'(() = - ¢'(() - (¢"(() + c 1/2j(() - g(() 

for a single straight Mode I crack penetrating in from tlie boundary o~ abo 
where ( = rei8 = x + iy and where the functions f and g are analytic 
wh~/e within the body, including points along the crack line. For an · 
Mode I crack of length l, the same form applies with C 112j(() replaced 
C 1/2(( + 0-112 F((), where F(() is again analytic everywhen; within the b 
including the crack line. It is rigorously true that f (or F) and g have ""'1~-'a.''~"Ju~ 
of the form 

00 

f = LanC", 
0 

where a
0 

is expressible as (8n)- 112 K, which converge in a neigh~orhood of 
crack tip up to a radius equal at least to that of the nearest portiOn of 
boundary, or of some other singularity of the problem. 

The boundary collocation method as employed by Gross et al. [ 4-6] 
edge cracks, and in the modified form by Kobayashi et al. [~ f~r an· 
crack, in rectangular specimens adopts truncated power senes m ( for f_ 
g. These are assumed to apply everywhere wit~~ the bod~, and the ~oefficten 
are chosen to match imposed stress condttlons at dtscrete pomts of 
external boundary. Commonly an excess number of collocation points 
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so that an overdetermined system is obtained which is then solved 
the sense of obtaining a least square minimization of the total error over the 

nl<I'TPIIP' points. 
The method is attractive because it automatically satisfies traction-free 

conditions on the crack surfaces. There does remain, however, a 
uestion in need of resolution as to the limitations set by the limited radius of 

convergence of complete power series for f and g. 

2.2. APPROXIMATE CONFORMAL MAPPING 

Another general method that has been used to obtain crack solutions is 
that of approximate conformal mapping, which may be applied to cracks 

ting from holes in infinite bodies or to edge cracks in simply connected 
. The technique involves finding accurate polynomial approximations 

to the mapping function which transforms the physical cracked domain into a 
circular region. The motivation to mapping is the fact that if a map of the 
form of a polynomial or ratio of polynomials is available, the stress functions 

,ex1oresse:o in terms of the auxiliary plane complex spatial variable can be 
exactly by solving a finite system of equations. Bowie [8-10] treated 

problem of an isolated circular hole with radial cracks and edge-notched 
using this method. Kaminskij [11] considered the case of isolated 

"m''""cu holes weakened by edge cracks. The stress-intensity factor may be 
defined if the approximate polynomial mapping is chosen 

keep the crack tip sharp (as may be done, whereas other types of corners 
be rounded by such an approximation). 

Bowie and Neal [12] have used a hybrid mapping, collocation technique 
treat the doubly connected circular disk with an internal crack. The 

vv-.-uu_,.., is to choose a simple function which maps a circle and its exterior 
the crack and its exterior. Truncated series for the stress functions in the 

.~-"" .. -.• " plane are chosen with the coefficients determined by collocating on 
mapped external boundary. Along with stress and displacement, force and 

wv.ulvJln boundary values are used in the collocation. 

A crack may be represented as a continuous distribution of dislocations. 
[2] has outlined a method whereby the solution for an isolated dis~ 

in a body may be used to generate a singular integral equation 
'"'''"'r'''nuthe crack problem, and has shown how the equation is reduced to 

regular Fredholm equation which may be solved numerically in a straight­
fashion. Related methods have been employed by Grief and Sanders 

3] for a stringer reinforcement on a cracked plate and by Bueckner [14] 
edge cracks. 



590 

More generally, solutions to plane elasticity problems may be given · 
form of integrals, taken around the boundary, of fundamental "'·,u5 u,au 

times unknown weighting functions, with the resulting singular 
equations being solved numerically. Cruse [15] and Cruse and Van Buren 
have made effective use of this method for the numerical solution of 
dimensional elastic-crack problems; no results seem yet to be available 
the application of the method to plane problems. Tirosh [17] has solved 
crack problems for Mode III (antiplane strain) deformation 
related technique, but with an important modification which assures 
tip accuracy: For the fundamental singularity he chooses the field 
isolated dislocation in an infinite body with a semi-infinite crack. 
automatically leaves the crack surfaces traction free, and one has to deal. · 
with an integral equation along the external portion of the boundary. 

2.4. FINITE-ELEMENT METHODS 

The usual failure of numerical methods near singularities such as a 
tip requires either the use of special crack-tip finite-elements which 
the inverse square root singularity or, if standard elements with 
interpolation functions are used, the use of indirect procedures such 
extrapolation to the tip or energy release methods. 

Chan et al. [18] discussed extrapolation methods of determining K 
constant stress triangular elements. The procedure is to plot the pr 
r112 with some stress component (say CJ99), as a function of distance along s 
ray emanating from the tip, and to extrapolate this as a smooth curve to< 
tip-so as to estimate K. The result is, of course, generally quite · 
the value which would be estimated based on stresses in the elements 
the tip. Alternatively, the exptrapolation may be based on a product of r 
with a displacement, making use of the known displacements · 
the stress singularity (e.g. Rice [2]) 

ux + iuy = K/2G(r/2n) 112
(K - cos B)ei9fZ 

Here G is the shear modulus, and K = 3 - 4v for plane strain, or (3 -
(1 + v) for plane stress, where v is Poisson's ratio. Chan et al. rep 
agreement within 4-5% of known solutions forK, when approximately 
degrees of freedom were used, by using extrapolations based on CJ99 · 

ahead of the tip or on uY along the crack surface. 
Alternatively, K can be determined from a calculation of the 

potential energy of a body due to an increase in crack length, with 
loads and displacement constraints remaining fixed. For plane 
relation between K and the energy release rate dP /dl is given by 

dP/dl = -(1 - v2)K2/E 
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[19] used this method in treating a variety of configurations with simple 
triangular elements to obtain about 5% accuracy when 1000 degrees of 
freedom were allowed. His program was written to change the crack length 
automatically after a solution, by successively canceling reaction forces on 

ahead of the crack. His use of an overrelaxation equation solver made 
this an efficient scheme, since the master stiffness matrix is only slightly 

· perturbed in the process. 
A related method discussed by Chan et al. [18] calculates the energy 

rate without the necessity of actually re-solving a new problem for a 
extended crack. This is done through Rice's J integral [20]: 

J. = f [(W- (Jxx ouxfox- (Jxy ouy/ox) dy + (CJyx ouxfox + (Jyy ouy/ox) dx] (6) 

W is the elastic strain-energy density ( =·kijsij for a linear material) 
and the path 1 on which the integral is taken is an arbitrarily chosen contour 
beginning at any point on the lower crack surface of Fig. 1, encircling the tip, 
and ending at any point on the upper crack surface. The integral has a value 
which is independent of the particular path chosen; there is no restriction 

the material be linear elastic, but instead only that its stress-strain 
v•u•.•v•w be consistent with the existence of a strain-energy function (i.e., 

daij = dW, an exact differential). The physical interpretation of J is as the 
release rate [2, 20], and hence in the case of a linear elastic material 

(7) 

et al. chose an integration path 1 for the integral lying far from the tip 
coinciding with the boundary of their edge-cracked specimen. Resulting 

:values of K, obtained through evaluating the integral from the triangular 
uw,...,-,_,...,,u,_,,,ll solution, were reported to have an accuracy essentially similar 

that of the extrapolation method. 
Other methods of solving for K have been discussed by Barone and 
obinson [21] and Rice [22]. These methods use elastic reciprocity properties 

formulate new boundary-value problems whose solution leads to a 
· · of K, but through calculations which do not require numerical 

in the near tip region. 
The alternative to the preceding methods is that of directly embedding the 

· singular term in the displacement assumption for the near tip finite 
e'"'""'""· Wilson [23] developed an axisymmetric ring element of circular 

section centered at the crack tip for investigation of the circum­
cracked round bar under torsion. The stiffness of the element was 

by integrating the strain-energy density of the dominant r -I/2 

over the circular cross section of the element. Conventional 
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triangular ring elements covered the remainder of th: mesh. The undeter­
mined parameters in the formulation were K and the displacements. of no~es 
not lying on the crack-tip element boundary. The same procedure IS app!Ic­
able to tension, and Hilton and Hutchinson [24] have followed a similar 
procedure in obtaining deformation plasticity solutions for crac~s under 
in-plane deformation. Tracey [25] used a mesh composed of Isosceles 
trapezoidal-shaped elements focused into the crack t~p. The e!ements n~arest 
to the tip had a r112 variation of displacement specified, while the adJaCe~t 
elements were treated as ordinary isoparametric elements. The near-tip 
interpolation function was designed to guarantee interele~ent displa.cement 
continuity. More details of this will be given in the sectiOn presentmg our 
elastic-plastic numerical results. 

3. Crack Tip Plasticity 

As we have noted, studies on crack-tip plasticity are important for extension 
of the phenomenological fracture mechanics ap~~oach to the large-~cale 
yielding range, and also for setting boundary conditions on models of mi~ro­
scale separation mechanisms at the crack ti~. In both cas~s, rather detailed 
descriptions of stress and deformation on a size seal~ that Is small compare~ 
to overall plastic region dimensions seem to be reqmred. Lee and Kobayashi 
[27], Marcal and King [28], S~edlow and co-_workers [?9, ~0], Wells [31], 
and others have presented finite-element solutiOns for yieldmg near cra~ks 
or sharp-tipped notches, and much has been learned. from these.concernmg 
the g~owth and shape of the plastic region and transitwnal behaviOr from the 
elastic to fully plastic ranges. . 

However we think it unrealistic to expect that standard fimte-element 
methods will give the detailed results desired in the nea~-tip region, as will 
be more apparent with the ensuing discussion. For this reason, our own 
computational work has relied heavily on a merging of c?m~uter m.e~ho~s 
with what is known from asymptotic studies of crack t1p smgulanties m 
plastic materials. Here we refer specifically to the papers of Cherepa~ov [32], 
Hutchinson [33, 34], Rice [2, 20, 35], and Rice and Rosengren [3.6], wh1~~ have 
elucidated the structure of plane-strain and plane-stress smgulantles at 
crack tips, both for mat:rials .idealized as nonha~d~ni.ng and for ~ower law 
strain hardening matenals [I.e., (stress) cc (stram) m the pla.stic range]. 
Indeed, approximate small-scale yielding solu:ions ha~e.been given.[20, 33, 
34, 36] for these cases on the basis of a deformatiOn plast~city formulatiOn and 
the J integral. Previous papers by Hilton and Hutchi~so~ [24]. and Levy 
et al. [37] have made similar use of the asymptotic studies m fimte~elem~nt 
analyses. The first of these introduced a circular near-tip element m which 
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the dominant power-law-hardening singularity strain and displacement 
distribution is assumed, but with an unknown amplitude. Levy et al. intro­
duced a different type of singular element, which we shall describe later; 
our work is a continuation and refinement of that method. 

Nearly all the results of the asymptotic studies and computational treat­
ments have been for stationary cracks, and one of the major unresolved 
problems of the field is in clarifying the elastic-plastic mechanics of quasi­
static crack advance. McClintock [3, 38] and Rice [2] have discussed this 
type of problem, for which the history-dependent nature of plastic stress­
strain relations and the feature of crack advance into previously deformed 
material lead to near-tip strain distributions which are very different from 
those for stationary cracks. For example, Rice [20] has shown that a 1/r shear 
strain singularity results in the regions above and below the tip of a stationary 
plane strain crack in a perfectly plastic material, whereas McClintock [38] 
showed that nonsingular strains result in the case of a continuously advancing 
crack in a rigid-perfectly-plastic material under increasing imposed dis­
placements !it its boundary, and Rice [2] showed that a logarithmic strain 
singularity resulted at the tip for conditions of steady-state crack advance in 
an elastic-perfectly~plastic material. This is an area in which much remains 
to be done toward developing computational accuracy paralleling that now 
attainable for the stationary crack case, and analyses of this type are of 
obvious importance for a correlation of fracture tests in which substantial 
stable crack extension precedes the running crack instability (e.g., cracks in 
thin, ductile sheets). On the other hand, the stationary crack model alone 
seems appropriate for the abruptly initiated fractures which frequently result 
under conditions of plane strain constraint at the crack tip. 

3.1. CRACK-TIP STRESS FIELD 

The numerical solutions that we report in the next section are for stationary 
cracks under plane strain (or nearly so) conditions at the tip, and the material 
is idealized as isotropic and elastic-perfectly-plastic (of the Mises type). 
Large geometry change effects on the form of governing equations are 
neglected, although we shall consider these in the section on micromechanics. 
For these cases, Rice [2, 20] has given approximate arguments for validity 
of the stress state of the Prandtl slip line field (Fig. 2) in providing the limiting 
stress state as r -+ 0 at the crack tip for cases of contained plastic yielding. 
Also, Hutchinson [34] and Rice and Rosengren [36] have noted that this 
field is the limit, as the hardening exponent N approaches zero, of their 
dominant singularity solutions for crack tip stresses. However, it cannot be 
expected that in this limit the "dominant singularity" does in fact dominate, 
as has been learned from the Mode III case, and indeed the Hutchinson-
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Fig.· 2. Prandtl field as the limiting stress distribution as r -> 0, for contained plain strain 

yielding of a non-hardening material. 

Rice-Rosengren equations have no unique solution for the strain distribution 

when N = 0. 
Thus we reexamine the nature of the near crack tip field here boih as 

motivation for our singular finite element formulation and as an extension 
of prior asymptotic studies of this type. In view of the boundedness of stresses 
in a nonhardening material it may be assumed that r oajor ~ 0 as r ~ 0, 
and hence the two stress equilibrium equations in polar coordinates take the 

form' 
(Jrr - aee + oarelo8 = 0, 

(8) 

for the angular variation of the stress state at r = 0. The Mises yield condition 

5 
.. 

5 
.. = 2-r 2 where s .. is the stress deviator and -r0 the yield stress in shear, 

lj l) 0 ' lj 

and may be rewritten as 

(arr- aeo)2/4 + a;e + (arr + aee- 2azz?/12 = 17o
2 

(9) 

This is satisfied in any angular sector at the tip which is in the plastic state, 
and after differentiation with respect toe and use of the equilibrium equations 
to simplify the result, we obtain (for r = 0) 

6[0CTref88] [o(CTrr + CTee)/08] = o[(urr + CTee - 2azz?J/o8 (10) 

By the flow rule for plastic strain increments, 
(11) 

Thus, if there is a strain singularity at the tip in the angular sector under 
consideration, we must have szz = 0 there because conditions of plane strain 
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prohibit a singularity in B~z. This means that 

(12) 

at r =. 0 in such a sector. We may also note that this last equation would be 
valid for a rigid-plastic material, and that it would be approached as a limit 
for an el~stic-plastic material subjected to monotonically increasing plastic 
deformatiOns. Hence Eq. (12) is strictly valid in an angular sector where there 
is a strain singularity, and it would seem essentially correct even in angular 
sectors for which the plastic strains are nonsingular, although the argument 
cannot in general be made rigorous in sectors of the latter type. 

With Eq. (12) the right side of Eq. (10) vanishes, and hence the stress state 
at r = 0 satisfies either 

or (b) o(CTrr + CTee)fo8 = 0. (13) 

In sectors for which (a) holds, the equilibrium equations and yield condition 
lead to stress .states of the form 

in (a) sectors (14) 

Stress fields of this type which apply over a finite range of r are known as 
"centered fans" in slip line theory, and these appear above and below the 
crack tip in the Prai1dtl field of Fig. 2. In those sectors where (b) holds, one 
finds, as a consequence of the equilibrium equations, that 

axx• axy• CTYY' CTzz areindependentof8in(b)sectors. (15) 

That is, the stress components when referred to cartesian coordinates are 
~ons.ta~t at the tip in (b) sectors. These are known as "constant state" regions 
m shp lme theory, and occur directly ahead of the tip and in regions adjacent 
to the crack surfaces for the Prandtl field. 

Hence, to the extent that Eq. (12) holds, the stress distribution surrounding 
the crack tip over all angular ranges for which there is plastic yielding must be 
made up of centered fan sectors of type (a) and constant stress sectors of 
type (b). This holds for stationary as well as advancing cracks. If the entire 
angular range surrounding the crack tip is yielding, then the only possible 
stress distribution of this type, corresponding to a continuous stress variation 
with 8 (as would be expected for problems of contained plastic yielding) and to 
symmetrical Mode I loading conditions, is that given by the Prandtl field of 
Fig. 2. Indeed, our computational results and those of Levy et al. [37] support 
this assertion of the Prandtl field as the limiting stress distribution as r ~ 0 at 
least for problems of small scale contained yielding. However, it cannot be 
asserted a priori that Eqs. (13)--(15) govern in nonsingular plastic sectors. 
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Also fully plastic flow fields oflimit analysis may involve a variety of near tip 
stres~ distributions [2, 3], depending on overall geometry_ of_ the_ cracked 

· and these may involve discontinuous stress distnbutwns and specimen, . . . 
nonyielding sectors, as well as discontinuous dclormatwn concentratiOn mto 
shear bands emanating from the tip. . . . 

In comparison, Rice's [20] approximate treatment was based on stmphfyu~g 
the yield condition to the statement that the maximum in-plane s_hear stress IS 
constant. This is the same as deleting the last term on the l~ft m Eq. (9), so 
that Eq. (10) has zero on the right and thus Eqs. (13) a~d ~herr _conseque?ces 
apply in all plastic sectors, whether singular or not. Wtthm thts approxima­
tion, all plastic sectors therefore consist either of centered fan ?r ~f constant 
stress regions. In the most general case, there ~ay ~lso. be nonyteldmg sectors 
at the tip, although if the entire angular range ts yteldmg and the stresses are 
continuous, then only the Prandtl field of Fig. 2 may r~sult at r =: 0. Note that 

hen the Prandtl field is present the maximum tensile stress dtrectly ahead 
:f the tip is approximately 3cr 0 , where cr 0 is the tensile yield stress. 

3.2. DISPLACEMENTS AND STRAIN SINGULARITY. 

we have remarked that near tip stress states, at least in singular regio~~i _are 
familiar from slip line theory and indeed, fo~ th_e app~ox~mation of the ~ie~d 
condition by the maximum in-plane shear cntenon, shp hne theory ap~he~ m 
all yielding regions. As Rice noted [20], a_ feature o~ a cen_tered fan shp-hne 
field at a stationary crack tip is that there ts a nonumque displacement at the 
tip in the sense that a different displacement vect?r ~ux, uy) results at r =. 0 
for each different ray of the fan along which the tip ts approach_ed. T_hat IS, 
the displacements at r = 0 vary with f) in the fan and ~ence t~ere IS a d:screte 
opening displacement of the crack sur~aces_ at the tlp. Radtal and Circum­
ferential lines are zero extension rate dtrectwns so that err and ~ee are non­
singular, the singular deformation consistin~ of~ pure shear Yre w~ch becomes 
infinite as r-1. Singularities result where shp hnes focus to a pomt and thus 
the strain components are, in general, nonsingular in the_ c?nstant stress 
sectors with a unique displacement resulting at r = 0 a_s ~~e tlp IS app~oach~d 
through these sectors. There is also, however,. a posstbtht~ of_ a shdmg dis­
placement discontinuity emanating from the ttp along a sh~ 

1
lme, ~nd ~hese 

frequently occur in limit flow fields [3].. The fea~ures of r s~ram ~m~u­
larities tip opening displacements, and hnes of displacement dtscontm~tty 
at limi~ load seem to be general features of crack tip fields in nonhardemng 
materials, in the sense that they are also familiar from the Mode III case [3] 
and from the two-dimensional plane stress case [33, 34]. . . 

To study the near tip field in plane strain without recourse to t~s appro~I­
mate representation in terms of slip lines, consider the p~lar coordmate stram 
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components 

err = cos f) oujor + sin f) ouy/or 

Bee= r- 1
( -sin fJ Ouji}f) +COS fJ ouy/i}fJ) (16) 

Yre = r-
1
(cos fJ ouxfofJ + sin fJ ouy/ofJ) - sin fJ ouxfor + cos f) ouy/or 

where it is convenient for this discussion to write the strain-displacement 
gradient relations as we have in terms of Cartesian displacements. We shall 
consider that the displacements may vary with f) at r = 0 and examine the 
restrictions placed on this variation by the flow rule. One does however 
expect bounded displacement components at the tip and thus it appears 
reasonable to assume that r oujor -+ 0 as r -+ 0. 

Any plastic-strain singularity must conform to the incompressibility 
condition and since elastic strains are bounded we must therefore have 
(err + Bee) bounded at the tip. This means that r(err + Bee)-+ 0 as r-+ 0 and 
thus Eqs. (16) require that the displacements at r = 0 satisfy the co~straint 

sin f) aux 0 ;ae = cos e auy 0 /ofJ, (17) 
where we use the notation u/j(fJ) for u;(r, fJ) at r = 0. This same restriction 
applies also to displacement rates u; 0• We therefore have rerr and reee both 
going to zero at the tip. On the other hand, it is seen from Eq. (16) that as 
r-+0 

ryre-+ cos e aux 0 /dfJ + sin f) ou//ofJ = (cos e)- 1 au};ae 

=(sin e)- 1 auy0/i}f) (18) 

where the last two versions on the right follow from Eq. (17). Hence Yre 
(or y re) exhibits a singularity of strength r- 1 in any sector for which the 
crack tip displacements (or rates u; 0) vary with fJ. 

Recalling our previous study of the crack tip stress state, in which singular 
sectors were shown to be either of the centered fan [Eq. (14)] or constant stress 
[Eq. (15)] type, we see from the flow rule [Eq. (11)] that the stress state in a fan 
sector at a stationary crack tip is consistent with a singularity dominated by 
the polar shear rate y ,e, and the crack tip displacement rates may indeed vary 
with f) in such sectors. On the other hand, such a singularity violates the flow 
rule and hence is inadmissible in a constant stress sector. Crack tip displace­
ment rates therefore cannot vary with f) in such sectors, with one exception: 
If the constant stress state of the sector is such that for some angle fJ within it 
cr,e = ±-r0 , then it is possible to have a discontinuity in u;0 at that angle with 
oil/ ;ae vanishing elsewhere. In this case the jump version of Eq. (17) applies 
across the discontinuity. It is in fact possible to view such a discontinuity as 
a centered fan sector with a vanishing angular range, since cr,e = ± -r

0 
at this 

angle. · 
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It is of interest to note that while equilibrium considerations required 
singular sectors to be either of the fan or constant stress type, flow rule con- . 
siderations show that only the former can in fact exhibit the 1/r singularity. 
Neighboring sectors may be of the constant stress type but this is not 
necessarily so, except for the maximum in-plane shear approximation to the 
yield condition. 

Our finite-element formulation incorporates the preceding features of the 
near-tip field, in that we choose displacement assumptions which permit a 
variation with e at the tip subject to the constraint of Eq. (17). This allows a 
direct calculation of the crack tip opening displacement, of the angular strength ·. 
of the strain singularity, and of the tip stress state. Detail at this level is of·. 
course unattainable from conventional finite-element formulations. 

For reporting our results we shall use the standard notation [2, 20] for 
strain singularity, writing Eq. (18) in the form 

r 0 R(e) 
'Yro ----> G -r-

where r
0
/G is the initial yield strain in shear, and where the angular strength 

of the strain singularity is written so that R(e) .may be interpreted as 
approximate measure of the linear extent of the plastically strained region at 
angle e. From the preceding discussion, R (or more precisely, R) is nonzero 
only in fan sectors. The function R is related to the displacement components, 
for by comparing Eqs. (18) and (19) we see that 

aux 0 jae = (r 0 /G)R cos e, 8uy 0 ;ae = (r0 /G)R sine 

Also," by integrating the last of these, the opening displacement between 
upper and lower crack surfaces at the tip is 

b1 = 2(r0/G) s: R(e) sine de 

When the Prandtl field applies, the limits are the angular range n/4 to 
of the fan sector. 

If one adopts a deformation theory of plasticity, which models the material .•. 
as if it were nonlinear elastic, then the J integral remains path · . 
for contours r passing through the plastic region provided that the appro- •.. 
priate W is used. Taking the Prandtl field as the near tip stress state 
shrinking r to the tip, Rice [20] showed that J could be expressed as 

f
3n:/4 

J = (2r2 
0/G) R(e) [cos e + (1 + 3n/2 - 2e) sine] de. 

n:/4 

For small-scale yielding, J retains its linear elastic value of Eq. (7), and this. 
serves as the basis for some approximations. 
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4. Singular Finite-Element Formulation and Results 

. Finite-element incremental elastic-plastic solutions to the small-scale­
yielding plane-strain problem and the large-scale-yielding of a circumferen­
tially cracked tension bar are described in this section. As has been 
emphasized, the goal is to obtain reliable results at the crack tip singularity as 
well as globally. These nonlinear problems are linearized by specifying the 
load in small, finite steps and solving for the resulting deformation at each 
step by the tangent modulus approach. Within each increment an iterative 
scheme is aaopted which allows convergence to the best representative 
constitutive matrices of yielded elements for the increment. The scheme is 
outlined here for the isotropic, perfectly plastic Mises material idealization; 
it could also serve as the basis for treatment of more general cases. 

4.1. ITERATIVE PROCEDURE 

To illustrate the procedure consider s0 as the deviatoric stress vector of an 
element at the beginning of a particular load increment. To remain ge~eral 
let s0 lie inside the yield surface. Estimate that the strain increment due to the 
current load increment is parallel to that of the solution for the previous load 
increment, and scaled according to increment size. Considering this estimate 
to be entirely elastic, calculate the corresponding fictitious final stress 
s2 ( = s0 + 2Gileest, where G is the elastic shear modulus and Lleest is the 
deviatoric part of the strain increment estimate). Figure 3 is a n-plane 

MISES YIELD SURFACE 

Fig. 3. n-plane view of stress states of an element during a load increment. 
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projection of the stress vectors and the Mises yi~ld surface, :'hich a~pears as .a 
circle of radius j2-r;

0 
in this plane. ~he mat~nal wo~ld y~el~ at s: For this 

case of transition from elastic to elastic-plastic behaviOr withill an mcrement 
the partial-stiffness approach of Marcal and King [28] is f?llo~ed. T~e 
matrix D which relates deviatoric stress increment to deviato~Ic straill 
increment is divided into elastic and elastic-plastic portions accordmg to the 

ratio m = lsi - s0 1/ls2 
- S

0
1 : 

D = mDei + (1 - m)Dei-pl (21) 

nel is the diagonal matrix 2GI and nel-pl is equal to 2G(I - DDT), where D 
is the unit vector s/flTo normal to the yield surface at the st;ess sta~e ~·. 

Previous analyses [27, 28] have used the unit normal vector D at the ~mtlal 
ield state si to define nel-pl for the increment. This corresponds to a Sim~le 

~uler integration of the actual constitutive "rate" eq.uation .over the elastic­
plastic portion of the increment. The large-load step sizes which are necessary 
for computational economy for some problems m~ke this an unacceptable 
approximation due to the associated large stress .mcrement~ at each. step. 
Hayes [19] specified ne1-v1 for the increment by usmg .the umt vector ill the 
direction of the estimated average stress vector predicted by the Marcal-

King procedure, 
si + G(I - DiD1T)(1 - m) L1eest 

In the present scheme we use the unit vector n in the direction of the 

average of si and s2
, 

si + sz si + G(1 - m) L1eest 
0 = lsi + s2 1 = ls1 + G(1 - m) L1eestl 

(22) 

d. nel-pl t 
because this has the remarkable feature that. the correspon mg 

1 
ran.s-

forms (1 _ m) f1eest to a stress increment ~hich, :Vh~n added to s. , res.ults ill 
a final stress s* which precisely meets the yield cntenon. The straill estlmat~s 
are found to converge quite rapidly using this procedure so that the approxi­
mation within an increment is essentially the use of a s~cant b~tween the 
initial and final stress states to define the yield surface dunng the n~crement. 

To prove that the stress state s* lies on the yield surface when n IS used to 
determine the plastic flow during the increment, we must prove that 

s*Ts* - slTsl = 0, or (s* + sl)T(s* - si) = 0 (23) 

Equation (23) is proved by demonstratin_g the o~th~gonalit~ of the vector~ 
(s* + si) and (s* - si). The elastic-plastic constitutive relatiOn based on n 

sets (s* - s1
) normal to ii, 

(s* - si) = 2G(I - DDT)(1 - m) L1eest. (24) 
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Adding 2si to both sides of Eq. (24) and recognizing that 2si + 2G(1 - m) 
L1eest is parallel to n by definition, we see that (s* + si) is parallel to n, and 
hence Eq. (23) is satisfied. 

4.2. ELEMENT DESIGN 

Three typt;s of finite elements were used in the analysis. For elastic solutions 
the r-i/Z singular element [25] was used nearest the crack tip with arbitrary 
quadrilateral four-node isoparametric elements over the remainder of the 
configuration. To study plastic effects at the crack tip, a new singular element 
was designed, similar to that of Levy et al. [37], which has a 1/r shear strain 
singularity (with a bounded dilatational strain) and a uniform strain as 
admissible deformations. 

The singularity elements have the shape of isosceles triangles and are 
focused along radial lines into the crack tip. However, they are treated as 
degenerate isosceles trapezoids in the sense that four nodes are assigned to the 
elements, one at each vertex, even though two of the nodes coincide at the 
crack tip. Levy et al. [37] introduced this coincident node technique to study 
the crack tip displacement variation. Contrary to their procedure, however, 
the coincident nodes were here constrained to move as a single point in 
obtaining the elastic response of the cracked body, since the nonunique 
crack tip displacement is a plasticity effect. 

The variation of stress and hence constitutive relation in the plastic case 
within elements was accounted for in the following approximate manner. 
Each near-tip element was viewed as the composite of three subelements, 
each extending one-third of the height of the element. The area average strain 
of an individual sub-element was used in evaluating the stress state and 
constitutive matrix representative of the subelement. The three subelement 
stiffnesses were then formed and added to obtain the total element stiffness 
matrix. For the adjoining isoparametric elements the midpoint strain was 
judged adequate to calculate the stress representative of the entire element. 

To obtain elastic-plastic solutions the procedure was to specify the r-i/2 

element just up to the load necessary to yield one of the subelements. There­
upon the r-i element was used with its associated nonunique crack tip 
displacement capability. Clearly the elastic singularity implies yielding under 
infinitesimal load so that there is some error involved in the plastic solution 
by specifying the r-i/2 near tip strain distribution up to finite loads. Actually 
for the size element used at the tip this error should be very small. In the 
round bar problem the near tip element extended a distance 7

1
2 of the crack 

length, a distance at which the singularity is expected to dominate. Using 
the area average strain basis the first subelement yields when the strain at 
i36 x /z x crack length satisfies yield. The neglect of plasticity in the analysis 
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until this load level should have a minor effect on the solution away from 
tip at this load and as loading proceeds, the crack tip solution should 
little evidence of this numerical transition procedure. 

The interpolation functions used are most easily described in terms of 
natural coordinates of the elements. Taking the element edges as co · 
lines ~ = 0, 1 and 17 = 0, 1 with the nodes I, J, K, L at the intersections 
have the following correspondence with the physical coordinates: 

X = X1(1 - ~)IJ + XJ(1 - ~)(1 - IJ) + XK~(1 - IJ) + XL~IJ 

Equation (25) may be thought of as a mapping of the physical region onto 
unit square in the (~, IJ) plane. For instance Fig. 4 illustrates the map of 
near-tip element of angular extent 2a and height s0 . Notice that the 

Fig. 4. Typical near crack tip element. 

~ = 0 with two distinct nodes I and J maps onto one point-the crack 
in the(x, y)planesothatin thiscasex1 = x.r. Theinversemapofthis 
element in terms of the local Cartesian coordinates (s, t) and local 
coordinates (r, 1/1) is 

1J = (tan lj;/tan a+ 1)/2 

The elastic singularity element has the interpolation function 

u = uu(1 - A) + uK(1 - IJ)A + ULIJA 

The unique displacement of the crack tip nodes I and J is denoted by 
From Eq. (26) we see that this displacement distribution corresponds to 
expected form of Jr times a smooth function of angle. Along the 
1J = 0, 1 displacement is a two-parameter function of ~(a + bA) so 
there is displacement compatibility across them. Along the ~ = 1 edge 
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displacement is linearly interpolated between uK and uL so that there is com­
plete inter-element compatibility when four node isoparametric elements 
are joined there. When the nodes are denoted asK, L, M, N the latter element 
has the form 

U = UL(1- ~)IJ + UK(1- ~)(1 - IJ) + UM~(1- IJ) + UN~IJ (28) 

The plastic singularity element interpolation function was derived through 
consideration of displacement distributions which correspond to a 1/r 
shear-strain singularity and importantly also a bounded dilatational strain. 
Levy et al. [37], in treating the small-scale-yielding problem, used a bilinear 
polar coordinate interpolation function for near tip pie-shaped elements 
which allowed a 1/r singularity in Bee as well as Bre, leaving it to the numerical 
solution to choose a bounded Bee· However, it is impossible with their 
element to make the 1/r part of Bee vanish for all f). Here the dilatation 
boundedness condition Eq. (17) is precisely satisfied throughout the near 

. tip elements: In the notation of Fig. 4 the condition met by the displacement 
components u.(~, IJ) and u1(~, IJ) is · 

(29) 

1/r shear singularity results for any assumed displacement function 
which allows a crack tip displacement variation, as in the general discussion 
of the last section. 

Only the displacements (u/, u/) and (u/, u/) of the nodes at (0, 1) and 
(0, 0) enter in the displacement distribution along~ = 0 in the present formu­
lation. Hence these degrees of freedom completely determine the strength of 
the shear singularity within the element as seen from the first of Eqs. (20) 
rewritten in present notation, 

R(lj;) = G au.(O, IJ) d1J 
To COS lj; 81] dlj; 

(30) 

. rth no attempt to enforce continuity of R(lj;) at element boundaries u.(O, IJ) 
· was chosen linear in 17 so that, to first order in lj;, R(lj;) would be constant 

within an element, 

u.(O, 17) = u/ + (u/ - u/)IJ (31) 

uations (29) and (31) then establish u1(0, IJ) to within a constant which in 
turn is determined from the end conditions u1(0, 1) = u/ and u1(0, 0) = u/. 
We find the distribution 

(32) 

hich has the displacement components u/ and u/ equal to each other and 
commonly called u{J. This constraint u/ = u/ is consistent with the intuitive 
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feeling that the shear singularity is governed mostly by a U 5 displacemen 
variation. The exact expression for R(t/1) is 

G u I UJ 
R(t/1) = s - s 

1:0 cos3 t/1 2 tan rx 

This is recognized as a first-order finite difference approximation to 
expressed either as we have earlier or as [20] G/•0 [8ur(O, t/l)/8t/J - ulft(O, 
when the displacement u. is transformed to polar coordinates and the 
equation is linearized in its angular dependence. 

A bilinear displacement variation throughout the element due to dis" 
placement of nodes K and L was specified. Also the distributions (31) and 
(32) were weighted in the ~ direction by the factor (1 - ~)- The comp 
interpolation function for the shear singularity element is then given by 

u 1 +uJ u 1 -uJ 
u. = s 

2 
• (1 - ~) + [u/'7 + u.K(1 - 1J)]~ + s s (2'7 - 1)(1 - ~) 

2 
(34) 

U 1 = u{J(1 - ~) + [u1L11 + U 1K(1 - 17)]~ + tan rx(u/- u/)11(11 - 1)(1 - ~) 

If the two coincident nodes move as one, so that u/ = u/, the element 
nothing more than the conventional constant strain triangle. Hence the 
possibility of strain free rigid body motion of the element is present. 
interelement displacement compatibility condition is satisfied since u•~fH<Lvv·, 
ment varies linearly on all interelement edges. 

A 9-point numerical integration of the element stiffness matrices was. 
perfortned. The integration stations were at ~' 11 = -t, -hi and each sta 
was weighted by ~of the area of the element. In the fan regions expected at the 
crack tip there is no angular variation in d~viatoric stress state when 
is to a polar coordinate system. Thus to enhance the accuracy of using 
element area average strains to evaluate the st:r·ess of the subelement, 
stresses and strains of the near tip elements, which follow from Eq. (34), 
referred to polar coordinates. 

4.3. COMPUTING DETAILS 

A version of the general-purpose finite-element program MARC4 
used in this work. Calculations were done on the Brown University 
360/67 in double precision arithmetic. The master stiffness equations were 
solved by direct elimination. The shear singularity element 
required double precision; single precision calculations resulted in 
erratic strain distributions. Experience with other formulations in 
precision using isoparametric or polar elements (and the r- 112 

element in the elastic case) gave no similar direct hint of arithmetic 
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difficulties, establishing the shear singularity formulation as particularly 
sensitive to computational mode. 

4.4. SMALL SCALE YIELDING RESULTS 

The problem under consideration is the plane strain contained yielding 
of an elastic-plastic plane with a semi-infinite edge crack under the boundary 
condition that the singular field of the elastic solution, Eqs. (1) and (4), is 
asymptotically approached as r----)- oo. This boundary layer formulation was 
proposed by Rice [20] for the analysis of sharply cracked bodies with a crack 
tip plastic zone which is small compared to significant configuration di­
mensions. The finite-element model involved a finite region about the crack 
with a near-tip element dimension chosen small compared to region size 
so that the outer boundary could effectively be considered at infinity. The 
displacement field (4) was imposed at the nodes on the outer edge with K 
as the loading-parameter. Taking advantage of symmetry, only the upper half 
of the region (y ~ 0, using the coordinates of Fig. 1) was treated. Ahead of the 
crack on y = 0 the displacement component uy and the shear traction were 
zero. 

The mesh was composed of four rings of 7.5° focussed isosceles trape­
zoids followed by eight rings of 15° elements making a total of 192 elements 
and 229 nodes. The nodes described arcs of radius 

r = 0, 0.5, 1, 1.625, 1.52
, 22

, •.. , 5.52 

The nodes on r = 2.25 not common to the adjacent 7.5° and 15° elements 
were constrained to maintain interelement compatibility. 

The plastic solution was obtained by specifying successive increments in 
K equal to 25% of K 0-the stress intensity factor which causes the first 
subelement to yield. At each load increment the solution was the result of 
three iterations on the representative element constitutive matrices. Loading 
ceased when elements of the fifth ring yielded so that the extent of the plastic 
zone was always small compared to the outer radius. 

From the exact elastic distribution (1) we find that initial yield occurs at an 
angle of cos- 1[(1 - 2v? /3] ~ 87°, for v = 0.3. Furthermore, K 0 for yielding 

· a radius rY can be determined from K 0 /(J 0(2nry) 111 = 1.10 for this Poisson 
ratio. In this problem subelement yielding was based on the subelement 
midpoint stress so that.rY was l 2 . The element between 82.5° and 90o yielded 
first; the midpoint angle being 86.25° indicates excellent finite-element 
agreement with the theoretical value. The finite element yield load parameter 
K0/(J0(2nry) 112 was 1.07-less than 3% deviation from theory. The angular 

. near tip stress variation was also in excellent agreement. 
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The crack tip opening displacement [twice they component of 
ment of the node at (0, n)] made dimensionless by the similarity ..,u,cuu.""""' 

K 2 /ECJ 0 is plotted in Fig. 5 as a function of K/K0 . From dimensional 
siderations bj(K2 /ECJ 0 ) is constant but because of the numerical p vv'-•UuJ_\r 

the value varies with K/K 0 until the near tip plastic field is established. 

0.40 

0.30 

0.20 

0.10 

2.0 3.0 4.0 5.0 6.0 K 
Ko 

Fig. 5. Dimensionless crack tip opening displacement [JJ(K 1/Err0 ) versus loading ll'""'u""' 
K/K0 M small-scale-yielding problem. 

value of 0.493 was achieved at K/K0 = 4.75 and it did not change for 
remainder of the loading so that we conclude that for small-scale yielding 

111 = 0.493 K 2 /ECJ 0 

Levy et al. [37] found a factor of 0.425 from their incremental IJ"UU"'"'"' 

finite element results. The current estimate is thought more accurate 
their polar element involved a dilatational singularity along with 
expected shear singularity. With the physically less precise 
theory of plasticity the J integral can be used to estimate the factor:,,..,.,"'·"'"!'.· 
an R(8) symmetrical about e = 90° Rice [20] predicted a factor of 0 
Using R(8) from the nonhardening limit ofthe power law hardening ,,·.u5 .... m, 

ity Rice and Johnson [39] showed that the resulting value was 0.717. 
The crack tip stress field as represented by the stresses of the twen 

subelements nearest the crack tip approaches a distribution similar to 
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Prandtl field that was discussed in the last section. The progression of 
Cf (e)/CJ from the elastic distribution (K/K 0 = 1) to the fully developed 
di~trib;tion (K/K

0 
> 4.5) which is plotted inFig. 6 is typical of all the stress 

components. The most obvious connection between the solution and the 
Prandtl field is that both have distinct fans in the range 45o < 8 < 135°. 

0.60 /PRANDTL DISTRIBUTION 

t~ + + 
X + A A A A A 

EXACT ELASTIC 

( EO.I, K/0'0 .j2 7rr = 1.07) 

LEGEND 
SYMBOL K/Ko 

(!) 1.0 

"' 1.5 
+ 2.25 

+ 
X 

+ 

+ 

" .. 
• 
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+ 

o.ooL--+---+---+---+-~-+----::-:::+:-:-:---:=:+:::--~~~ 
0.00 

Fig. 6. Crack tip shear stress distribution at various load steps for the small scale yielding 

Also the stress (J of the subelement in the range 0 < e < 7.5° reaches the 
98 0 h h 

. value2.96CJo atK/Ko = 5.25 which certainlyisinexcellentagreer_nentwlt t. e 

. Prandtl value of 2.97 for CJ 98(0, 0). Two important assumptiOns used m 
deriving the Prandtl field were that yielding completely surrounds the crack 
tip and that the out-of-plane deviatoric stress Szz vani.shes at all values of 8. 
Neither condition was met in the finite element solutiOn. The two elements 
between 165° and 180° remain elastic throughout the loading and Szz = 0 
only in the fan. Hence it is not surprising that the stress distributions of the 

. Prandtl constant state region were not realized in detail. Yet from the fan 
results this problem does indeed show the value of using analytical work to 
guide in the design of numerical procedure. 
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SUB ELEMENTS 

SHADED ELEMENTS 
HAVE YIELDED 

Fig. 7. Strength R(O) of the 1/r shear singularity and plastic zone extent in terms of similarity 
coordinates (x, y)j(K/0"0 )

2
, for small scale yielding. 

Fig. 7 shows the near tip mesh, yielded elements and the strength R(B) 
of the shear strain singularity, from the solution at K/K 0 = 5.25, all referred 
to the similarity coordinates (x, y)/(Kjo-0 )1. The contour defined by the 
yielded elements does not precisely define the elastic-plastic boundary due to. 
stress 1variation within elements. By interpolation between load steps we 
find that rP,max' the maximum linear extent of the elastic-plastic boundary 
is 0.152(K/<T0 )

2 and this is at 8 = 71°. The boundary crosses the 8 = 0 line 
at a radius rP.o = 0.041(K/<T0f. The strength R(8) was determined from the 
crack tip nodal displacements in accord with Eq. (33) (with 1/J = 0). The 
function peaks in the range 90° -97S with a value 

Rmax = 0.177(K/<To)2 

In comparison, Levy et al. [37] found factors of 0.157, 0.036, and 0.155 fo 
rP,max' rp, 0 , and Rmax' respectively. The vanishingly small value of R 
of the angular range 45° < e < 135° clearly defines this range as the fan 
region active in the blunting of the c.rack tip. 

4.5. CIRCUMFERENTIALLY CRACKED ROUND BAR 

The axisymmetric round bar considered has a circumferential crack 
penetrating its outer surface to a depth oft the bar radius and a length of 4D, .· 
where Dis the bar diameter. The boundary condition was that the ends of the· 
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bar move uniformly in the axial direction with zero shear tractions. The 
length was sufficient to have a uniform axial stress state at the ends during the 
entire loading sequence. A mesh with 384 nodes and 340 axisymmetric ring 
elements was used to represent the upper half of the bar which is naturally_ 
described in terms of a (p, z, ¢) cylindrical coordinate system with the 
centerline.coinciding with the z axis and the crack along D/4 ~ p ~ D/2 in 
each meridional plane ¢ = const. Cross sections of the elements near the 
crack tip were focussed isosceles trapezoids, near the ends rectangles, and 
joining the two groups were arbitrary quadrilaterals. As viewed on a meri­
dional plane there were 13 rings of7.SO trapezoids encircling the crack tip, as 
for the previous small scale yielding solution. Introducing an (r, 8) polar 
coordinate system in this plane (with the crack along 8 = ±n) the nodes of 
the trapezoids describe arcs of radius 

r = (D/288)(0, 1, 1.52
, 22

, 2.5 2
, 32

, 42
, 52

, 62
, 48, 60, 72, 91, 120) 

The stress intensity factor for this geometry as a function of net section 
stress <T and diameter D was found by Bueckner [ 40] to be within one net 1 
percent of 0.240<TnetCnD)112

. The nodal displacements at r/D = 28 8 and <Tnet 
from the elastic solution were used in conjunction with the theoretical plane 
strain near tip field (4) to estimateK; however, nodes within 37.5° of the crack 
were not considered for, in this range, B<fuf> was of the same order of magnitude 
as the in-plane strains. A simple average ofthe discrete estimates of K 
results in a factor of 0.244 which is within 2% of Bueckner's solution. The 
stress O"zz ofthe subelement between 0 < e < 7.5° corresponds to 0.247 which 
is 3 % from Bueckner. 

The accuracy of the partial-stiffness treatment, Eq. (21 ), of elements making 
the elastic to elastic-plastic transition within a load increment and the rate 
of convergence of the mean yield surface normal technique are greatly 
affected by the size of the load increment. A successful procedure in terms of 
convergence rate involved regulating the load increment so that only elements 
within 10% of yield would yield during an increment, and also allowing 
three iterations for each increment. For small scale yield the sufficient load 
step sizes were prejudged by assuming that the elastic regions responded 
proportionally to load up to yield. The displacement of the end of the bar was 
increased to 38.2 times the end displacement (u:nd) 0 at first yield in 42 incre­
ments in the following manner 

2 steps of 0.1(u;nd)0 , 6 of 0.2, 3 of 0.3, 3 of 0.4, 2 of 0.5, 6 of 0.7, 

9 of 1.0, , 7 of 1.5, 4 of 2.25 

The load-deflection curve, O"neJ<To versus Eu~nd/<T0D, is presented in Fig. 8. 
The end displacement was increased until the limiting elastic-plastic zone 
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Fig. 8. Load deflection curve for round bar. 

was achieved. The corresponding limit stress for this Mises idealization 
(J net ~ 2.56CJ 0 . In comparison, Shield [ 41] found a limit pressure of 5.69' 0 

axisymmetric frictionless indentation of an elastically ·a·,,_.nf'rrf',r.r 

Tresca half-space. While the flow was confined to a radius of 1.58 times 
punch radius in Shield's problem, the present finite-element result is 
yielding spreads to include the outside surface of the bar at limit 
Figure 9 shows the yielded regions at different stages of loading. If 
plasticity had been confined to the bar interior Shielc;l's limit load could 
to establish bounds to the Mises limit load for the crack depth chosen 
invoking corollaries to the limit theorems of plasticity. 

When the Mises and Tresca materials are assigned identical shear 
the ratio of the finite-element limit stress to Shield's is 4.43/5.69 = 0.78; 
matched in tension the ratio is 2.56/2.85 = 0.90. Figure 10 is a plot of 
two net section stress distributions, CJzzho versus 4p/D at z = 0, at limit 
The larger Tresca stresses over most of the section can be explained in 
of the factor of 0.9 between the Mises and Tresca limit loads. The 
curve monotonically decreases from a centerline value of 3.60CJ0 to 2. 
while the Mises curve increases from 2.10CJ 0 to 3.05CJ 0 at the crack tip 
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Fig. 9. Round bar yield zones at various load levels. 
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Fig. 10. Round bar net section stress distribution at limit load. 
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punch surface in Shield's context) when averaging the near tip ~>UlJtat:uJt:JI 
values of 2.94, 2.98, and 3.23. 

The crack tip small scale yielding solution was essentially that of 
previous asymptotic problem. As explained, the normalized crack tip 
displacement btf(K2 /EG 0) increases from value zero to a characteristic 
scale yielding value over a small initial load range due to numerical 
Also, once the plastic zone extends to an appreciable fraction of crack 
btf(K2 /EG 0 ) dramatically increases with K signaling the beginning of 
scale" yielding. The value of btf(K2 /EG0 ) increased to within 10% of 
asymptotic solution value 0.493 at the eighth load increment r-nrra~;.,~-:.,.",:..~'"'" 
to G ne/G 0 = 0.37 and the plasticity was confined to the first ring of 
about the crack tip. The value was 10% higher than the asymptotic 
at Gne/G0 = 0.85 and at this state plasticity was confined to a radius of 
This plastic zone size could be used to set a rough upper limit to the 
lity of linear fracture mechanics treatment of crack tip plasticity. 

The function R(8) in the small-scale yielding range differed slightly from 
distribution for the asymptotic problem in that the function peaked 
82.5° and 90o; in the former solution Rmax was in the range 90° to 97.SO. 

0.96 

0.60 

0.64 

0.48 

0.32 

e ( degs) 

Fig. ll. Strength R(O) of 1/r shear singularity for round bar at different stages of loading. 
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. is most likely the influence of the centerline which is felt due to the relatively 
coarse mesh of the present problem. In Fig. 11 R(8)/D is plotted for various 
load states in the large scale yielding range. In conjunction with the elastic­
plastic zones of Fig. 9, one can see that R serves as a reasonable estimate to 
the extent of the plastic zone at angles which are within the 1/r shear fan 
while the plastic zone at the angle remains interior to the specimen boundaries. 
As loading progresses the fan region extends from the Prandtl range of 45° < 
8 < 135° to the larger range of 15° < 8 < 157.5°. This may, however, reflect 
a failure of the numerical solution to accurately meet the stress-free crack 
surface boundary condition in the innermost element as fully plastic con­
ditions are reached. 

0.13 0.25 0.38 0.50 

p-D/4 

~ 

TION 

0.63 0.75 

Fig. 12. Round bar crack profile at various load levels. 
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1.16 
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0.465 
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Figure 12 is a plot of the opening displacement D of the neighboring points 
on the crack surfaces, as a function of distance from the crack tip, for various 
net stress levels. It is clear from these curves that, throughout the huge-seale­
yielding range, the crack tip opening displacement, 01 ( = D at p = D/4) is 
very significant even when compared to the flank opening D at p = D/2. 



614 

These results may be helpful in correlating large scale yield fractures of 
geometry since if fracture is controlled by a critical crack tip state, it is q 
likely reflected in the attainment of a critical crack opening displacement, at·. 
least for cases such as the present for which the stress triaxiality does not 
appreciably from small scale to general yielding conditions. 

5. Three-Dimensional Problems 

Both structural applications of fracture mechanics and the interpretation 
of experimental results require advances in three-dimensional stress 
Work to date has been limited, and has focused on the stress analysis of 
through-the-thickness surface cracks in the walls of plate or shell structures., 
as representative of flaw types in applications, and on the transition 
plane strain to plane stress like constraint near the tip of a straight 
the-thickness crack in a plate. This last problem is, of course, important to 
the interpretation of fracture test results which are typically obtained 
plate specimens precracked in this way. It is also of interest for the informa­
tion it sheds on the actual three-dimensional aspects of what is commonly 
treated as a two-dimensional problem. 

5.1. THROUGH CRACK IN A PLATE 

The straight, through-the-thickness crack in a plate has been studied 
Aryes [42] using finite difference methods, by Cruse [15] and Cruse and 
Buren [16] using a numerical solution of singular integral equations over the.· 
speciwen boundary, and by Levy et al. [43] using finite-element 
Only Ayres gave results for this problem in the plastic range, but he made 
special provisions beyond mesh refinement for attaining near tip accuracy; · 
Levy et al. employed a singular element similar to that of their earlier 
strain study [37] and to that of the last section, with layers of polar arrays 
the elements being stacked through the plate thickness. 

Figure 13 is replotted from Cruse's [15] results on a compact (2h x 2h x 
where h is plate thickness) fracture test specimen containing an edge 
of length h which is wedged open by end forces. Lines of constant value 
the parameter ex [ =a-zzlv(a-xx + fYyy)] are shown for half the plane of 
directly ahead of the crack. The parameter is called the "degree of plan 
strain" since such conditions correspond to ex = 1. One sees that plane strai 
conditions are indeed approached at the crack tip, although the fall off to 
ward a plane stress state (cx = 0) is quite rapid. Similar results were found 
Levy et al. [ 43], who studied a circular plate of six thicknesses in radius with 
through crack having its tip at the plate center. For boundary vvJ.H.ULlVJ.Jo 

they imposed the stresses a-rr and cYro of the charactristic r- 112 
• .au5 u.,uu 

appropriate to the two-dimensional-plane stress theory. Figure 14 shows 
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Fig. 13. Results showing the transition from plane strain to plane stress behavior near the 
tip of a through-the-thickness crack in an elastic plate, from Cruse [15]. 
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2 

Fig. 14. Results demonstrating the rapid transition to a plane stress condition away from the 
·crack tip in a through-the-thickness cracked elastic plate, from Levy eta/. [43]. 
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results for CJ YY and CJ zz on the line in the plate middle surface directly ahead of 
the crack. The dashed line shows the two-dimensional plane stress result for 
CTyy- Again, the rapid approach to a plane stress state may be noted; CTzz is 
negligible even in the middle surface beyond a distance of about a half­
thickness. The last two figures tend to make plausible the rather large ra6o 
of plate thickness to plastic zone size found necessary to assure plane strain 
conditions within the plastic region at fracture [ 44]. 

5.2. SURFACE CRACKS 

Several different computational approaches have also been taken for 
problems of part-through-the-thickness surface cracks. For example, 
Kobayashi and Moss [45] and Smith and Alavi [46] have employed "-"'"'ll•i­
ting methods in three-dimensional elasticity, based on the Boussinesq 
solution for a half space and on that for removal of tractions from an em­
bedded circular or elliptical shaped crack in an infinite body, to estimate K 
for circular arc and semielliptical surface cracks in plates. The papers by 
Ayres [42] and Levy et al. [43] employing finite difference and isoparametric 
finite-element formulations, respectively, have 9-iscussed the elastic and 
elastic-plastic fields near a semielliptical surface crack in a plate. 

Also, Rice and Levy [47] have developed a model for problems of long 
surface cracks (in comparison to plate thickness) which reduces these to · 
problems in the two-dimensional theory of plane stress and bending for a . 
plate containing a line spring which represents the part-cracked section. 
Their original work reduced the problem to two coupled integral equationsl 
solvetJI numerically, for the force and moment transmitted across the line 
spring. However [ 48], the model has been extended to cracks in shells, and a 
finite-element formulation has been developed for incorporation in existing 
two-dimensional plate and shell programs. Results forK have been given for 
surface cracks of various shapes in plates, and for axial and circumferential 
semielliptical cracks in the wall of a cylindrical tube. Their model shows 
promise of extension to the plastic range, and to £!.pplication within shell 
analysis programs to a variety of surface crack locations in pressure vessels. 

6. Micromechanics and Development of Fracture Criteria 

Here we discuss the use of computational methods in the description o · 
fracture processes on the microscale, and in the merging of such studies with 
elastic-plastic analyses at the continuum level so as to develop rational 
fracture criteria. The area is not yet very much studied, and hence our em­
phasis will be in part on pointing out what we consider to be opportunities for 
productive use of computational stress analysis methods for problems of this 

COMPUTATIONAL FRACTURE MECHANICS 617 

type. These include the effects of plastic flow, finite strains, and deformation 
instabilities. 

6.1. DUCTILE FRACTURE MECHANISMS 

Fracture mechanisms in structural metals, apart from low-temperature 
cleavage in steels, generally involve substantial plastic flow on the microscale. 
This arises through the formation of small voids, typically by the decohesion 
or cracking of hard inclusion particles, which undergo large ductile expansion 
until final separation results from coalescence of arrays of these voids. That is, 
fracture arises as a kinematic result oflarge plastic flow. This is so even for 
materials such as the high-strength steels and aluminum alloys which may, 
under plane strain conditions, show macroscopically brittle crack advance 
with plastic zone sizes in the millimeter range. On a scale of, say, 5 to 100 pm 
the resulting fracture surfaces show evidence of great ductility with local . 
strains on the order of unity. McClintock [3, 38, 49] has discussed this 
fracture mechanism in detail. He and Rice and Tracey [50] have applied 
continuum plasticity solutions for cavity expansion as models for hole 
growth. 

In general, however, the modeling of void growth should include a treat­
ment of finite shape changes, interactions between neighboring voids, and the 
possibly unstable coalescence of neighboring voids or void arrays. This 
necessarily involves numerical formulations for large deformations, of the 
type presented, for example, by Hibbit et al. [51] and Needleman [52]. In fact, 
Needleman's paper contains a finite-element solution for the large ductile 
expansion of a periodic array of initially cylindrical holes in a power law 
hardening material. His procedure was based on a form for the incremental 
constitutive law at finite strain proposed by Budiansky [53]. This is consistent 
with a variational principle for the rate problem, as in the small distortion 
theory, and the finite-element method was based directly on it. In contrast, 
Hibbitt et al. propose a constitutive law in which the Jaumann stress rate is 
employed, rather than Budiansky's time derivative of a stress measure 
referred to convected coordinates, and no variational principle is then applic­
able. The formulation begins instead directly from the principle of virtual 
work and the resulting statement of equilibrium is differentiated to derive the 
governing finite-element equations of the rate problem. 

Computations of the type done by Needleman also serve to predict the 
slight dilatation which should appear in macroscopic plastic constitutive 
laws as a consequence of void growth. Berg [54] has suggested that such 
dilatational constitutive laws could be used as a basis for stress analysis 
procedures which include ductile fracture initiation as a consequence of a 
proper stress analysis, rather than as an ad hoc supplement to such an analysis. 
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Here the idea is that such constitutive laws, which already include the vol 
change due to void growth, may also ultimately permit localization in 
band as representative of unstable void coalescence on the microscale. 
rna y occur when the hardening in an increment of deformation is just uaJ<au~.-.... u 

by the softening due to the increased porosity through void growth, p 
also that the kinematic condition is met of existence of a plane of zero 
sion rates. The types of problems for which such an approach may 
valuable (e.g., metal-forming processes) typically involve extensive 
flow and will require a numerical formulation appropriate to finite 
Very little has been done to date. Indeed, even the classic problem of d 
fracture initiation in the necked region of a round tensile bar is unsolved 

present. 
The mechanics of void initiation from inclusions has also received 

attention, although the problem of determining the stress state in and near · 
nonyielding inclusion in a ductile matrix is certainly within the 
of existing analysis methods. Huang [55] has presented such a study for. 
circular cylindrical inclusion in a Ramberg-Osgood power · 
material through a method of Fourier expansion and finite differen 
which, unfortunately, does not seem to offer. the possibility of 

application. 

6.2. FRACTURE MECHANISMS AT A CRACK TIP 

The elastic-plastic crack stress analyses discussed elsewhere in this pap 
were based on conventional small strain-analysis procedures, in that 
of g"e'ometry changes on the governing equations were neglected. This 
obviously incorrect within a distance from the tip comparable in size to 
predicted opening displacement. Analysis at such a scale is important · 
ductile fracture mechanisms are operative in this very near tip region 
large strains occur. 

Rice and Johnson [39] have shown how the solutions based on neglect 
geometry changes may be employed to set boundary conditions on 
localized analysis of the large crack tip deformations for the · 
model. In this case it is important that the distribution R(fJ) of the strength 
the strain singularity be known (as, for example, in Figs. 7 and 11), for 
it the crack tip velocity field is computed and this is the boundary 
for the local large-strain analysis. The analysis is based on the application 
slip line theory to the near tip region, and McClintock [3, 56] has · 
discussed large geometry changes at the tip. 

When the tip is drawn as progessively blunted by increasing load as · 
Fig. 15, the constant stress regions A and B as in the Prandtl field of Fig ... 
remain, but they are separated by a fan of straight slip lines C which is · 
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(a) (b) 

Fig. 15. Two possible solutions to the slip line analysis of the blunting of an initially sharp­
tipped crack. 

longer centered. Instead it feeds into a spiral region D ahead of the tip of a 
size roughly comparable to the crack opening. We have seen that 1:5 1 is of the 

. order of an initial yield strain times the maximum linear dimension o'f the 
plastic zone. Representative numerical values for a wide range of low and 
high strength structural metals are between 0.003 and 0.03 times the zone 
size. Hence, in Fig. 15 we see a minute fraction of the total plastic region and, 
indeed, the blunted tip would appear essentially as a point when viewed on 
the size scale ofthe plastic zone. For this reason, Rice and Johnson suggested 
that crack tip blunting could be studied for the contained plastic yielding 
range by applying rigid-plastic theory locally to region D, using the fact that 
straight slip lines of the fan transmit a uniform velocity along their length 
and hence that radial velocity, as a function of angle, should differ negligibly 
from the result for the solution which neglects geometry change effects. That 
is, the radial displacement rate u, 0 (fJ) from solutions of the type discussed 
earlier is taken as the normal velocity, as a function of slip line angle, imposed 
from the fan region along the boundary between C and D. From this it is 
straightforward to numerically calculate, in order, the velocity field in terms 
of slip line coordinates, the movement of the crack tip, the resulting physical 
coordinates of points of the slip line field in D, and hence the entire local 
strain and displacement solution for crack tip blunting. Rice and Johnson 

. describe a computational scheme for doing this and give some representative 
results. 

The greatest difficulty with such solutions is illustrated in Fig. 15: As 
McClintock [3] has emphasized, solutions for an initially sharp crack are 

.nonunique. It is possible to find a solution involving smooth blunting as in 
(a); it is also possible to find solutions in which the crack tip retains sharp 
corners of singular strain rate as in (b). Indeed, there appears to be nothing 
in continuum plasticity to enable a choice. McClintock suggests from 
observations of fracture surfaces that the latter is the more realistic picture. 
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Strain-,hardening effects cannot be properly included in the slip line 
analysis of blunting. Nor can the interactive effects of growing voids. Hence, 
it would seem desirable to apply some of the numerical methods for finite 
strain to the crack tip blunting case. The problem is not straightforward, 
however, due to the extremely small size of the large strain region in com­
parison to plastic zone dimensions (or, equivalently, to the great strain 
gradients involved), and to the nonuniqueness as illustrated by Fig. 15. 

As we have noted earlier, very little work has been done on cracks which 
advance in a quasi-static fashion under increasing load. Of course, near tip 
accuracy is paramount in this case as always when fracture prediction is a 
goal of the numerical solution. Perhaps a finite-element treatment could be 
based on a focused mesh which moves relative to the material in each incre­
ment. Also, it would seem necessary that some plausible model of crack 
advance at the microstructural level be analyzed in parallel with the con­
tinuum calculations in this case, for otherwise the increment in crack length 
accompanying a given increment in load is not determined. McClintock 
[3, 38] has suggested that a decohering layer ahead of the crack may provide 
a proper model. The layer is imagined to represent a region of material in 
which void growth is already in its unstable stages, so that a falling stress 
versus separation-distance relation applies as a boundary condition on the 
continuum plasticity problem. The amount of crack advance due to_a load 
increment in this formulation would correspond to that length ahead of the 
current crack tip across which zero load is transmitt~d. 

Additional computational problems arise with subcritical crack growth 
by stress corrosion and fatigue. For the first of these, the mechanical features 
oflhe near tip state could be determined through any program suitable for 
quasi-static crack advance. In the case of fatigue, important computational 
problems include the determination of the cyclic deformation states near the 
tip, its progressive blunting and sharpening, and the role of interference of 
previously deformed material with crack closure at its tip. 

7. Conclusion 

Numerical procedures for accurate determination of elastic stress intensity 
factors for the general two-dimensional crack problem were reviewed. The 
elastic-perfectly-plastic crack tip deformation state was investigated through 
a finite element treatment which was designed to allow the 1/r shear singu­
larity and associated crack tip opening displacement predicted from a 
detailed asymptotic study. The importance of basing crack tip numerical 
procedure on analytical results was emphasized when accuracy sufficient to 
develop fracture criteria is required. 
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ti The s~all s~ale yielding problem was modelled and expressions for crack 
p openmg displacement, shear singularity amplitude and pia t. 

extent were presented. , s 1c zone 

cr~!n~t;~~~~~~~:~;~t~on to the large scale yielding of the circumfer~ntially 
throu h h . . . ~r was presented. The global solution as reflected 

d g t e resultmg hmlt load, net section stress distribution yield zo 

:: fr~~~~~e ~:~~~eg a:u~ t~;:~~~:o~.ack tip solution were discussed as relev:~; 
The three-dimensional aspects of flawed structur . 

numeri~al treatments of the subject were reviewed. ~~~;ed dist~rs~ed and 

::~~~~~~s ,and specifically crack tip fracture on the ~i~;o:~al:a~~;: 
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