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2. Vehicles can be designed to provide crash protection to the occuj
little or no penalty to the weight and cost of the vehicle. ~

3. Vehicle crashworthiness can be improved by providing the
principles to designers and by emphasizing the importance of this - as
design responsibility. Decisions and design choices can then be infl
and in cases where two or more comparable choices are possible, thi
in favor of improved crashworthiness can be made.

4. Overall vehicle structural crashworthiness requires design for,
loads with an objective of maintaining a protective eénvelope arou
occupant and reducing the crash loads transmitted to him by con
deformation of surrounding structure. .

5. Seating and restraint systems should be designed to provide adec
restraint in all loading directions and to minimize decelerative loading
occupant.

6. Seating and restraint systems should have the strength requi
remain in place until the surrounding structure collapses.

7. Some analytical procedures are available and some are being dev
which can be used to evaluate and optimize structures and subsystems
occupant survival. Additional tools are needed to enable overall syste
be optimized for both structural crashworthiness and mission perfor

8. Creative innovation is needed to develop structural design cormp
and concepts that can provide the stiffness and strength needed to perfon
primary design function, but that will efficiently and progressively: de
with fracture during crash loading.
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Some areas of fracture mechanics which are being developed through
mputational stress analysis methods are surveyed. These include the
merical determination of elastic stress—intensity factors, the elastic-plastic
alysis of mear crack deformation fields, three-dimensional analysis of
acked bodies, and the description of fracture mechanisms on the micro-
g
In addition, finite-element procedures are presented for the accurate
merical determination of elastic—plastic fields in the immediate vicinity of
rack tip. These are based on asymptotic studies of crack tip singularities
plastic materials, the results of which are summarized here and further
tended for the nonhardening case. A new finite-element is presented which
ows the requisite crack tip opening and associated 1/r shear strain singu-
ity for this case, but with strictly nonsingular dilatation. This is employed
the elastic—perfectly-plastic solutions for small-scale plane strain yielding at
rack tip, and for yielding from small scale to limit load conditions in a
cumferentially cracked round bar. Resulting numerical solutions are shown
be in excellent accord with analytical predictions, and parameters of the
ar tip field of interest in developing a fracture criterion are discussed.
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Introduction

Current fracture mechanics research is focused in two principal. directions:

* Now U.S. A Air Mobility Res. and Develop. Lab. . . .
™ Ty fur ey o5 and eve 0_p ab development of phenomenological explanations of crack extension
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- There is, however, no single parameter which can uniquely characterize the
ear crack tip field in the large-scale yielding range, especially when prior
table crack advance under increasing load must be considered. Hence studies
[ fracture on the microscale are of significance not only for basic under-
tanding and as guides to alloy design, but also for suggesting suitable crack
xtension criteria to employ in flaw stress analysis and test correlations at the
nacroscopic level. Very much remains to be done in clarifying the mechanics
f separation processes on the microscale, and in merging models at this
vel with macroscopic crack stress analysis for fracture prediction. We
iscuss the work to date in these areas and point out some of the challenging
omputational problems of plastic deformation, finite strain, and instability
hich appear at the microstructural level.

Our paper is divided into sections on the numerical determination of
lastic stress-intensity factors in two-dimensional problems; crack tip
asticity, singular finite-element formulations, and results ; three-dimensional
rack problems, especially surface flaws; and fracture mechanics problems
n the microscale. For a general background on analytical aspects of the
ubject, the reader may wish to consult the review papers by Paris and Sih
1], Rice [2], and McClintock [3].

behaviors, and the description of micromechanical processes of mia
separation on the microscale. Both have come to rely strongly on
putational methods of stress analysis.

In the first, the goal is to correlate crack extension behavior in sub
growth by fatigue or stress corrosion, or in critical growth due to an over
in terms of parameters from analytical solutions which characterize the
tip stress field. Elastic fracture mechanics is a case in point: When the:
extension behavior of interest is accompanied by a small crack-tip p
zone, in comparison to crack depth and uncracked dimensions of a-fi
specimen or structure, the correlation is in terms of the elastic stress—inte
factor. This is the coefficient of the inverse square root crack tip singular
an elastic stress field. It serves to characterize the influence of applied:
and flaw geometry on the near tip field for such small scale yielding condit
even though the predicted elastic stress field is wrong in detail within
plastic region.

Hence the analytical problem in elastic fracture mechanics is to deter
the stress—intensity factor. Several numerical methods have been devel
for this, including boundary collocation, numerical solution of int
equations, and finite elements. There is now a substantia] literature whi
shall review briefly here.

Plasticity effects limit this approach, and there is much current w
attempting to define and make use of parameters from elastic—plastic solu
which might similarly characterize the near crack tip field. This regim
be understood not only to deal with flawed structures failing under large's
yielgl{ing conditions, but also to allow fracture test results on small (and
often fully plastic) precracked laboratory specimens to be accurately i
preted for assessing the safety of a flawed structure under nominally ela
conditions. Analysis in this elastic—plastic range is based principall
finite-element methods. These must, however, reveal sufficient detail on
scale at the crack tip, and for this reason it is necessary to take specia
cautions in the design of near tip finite elements.

Our approach is based on using asymptotic studies of elastic—plastic’
tip singularities as a guide to the development of displacement assump
within elements. Previous investigations of this type are reviewed, and a
finite-element is described which allows the 1/r shear-strain singuld
appropriate to the nonhardening idealization. Application of this eleme
the plane-strain small-scale yielding problem and to the circumferenti;
cracked round bar problem leads to highly accurate descriptions of the
tip field, and these may be useful in a phenomenological assessmeh
counterparts to the elastic stress-intensity factor in correlating fract
behavior. ‘

—_

» Numerical Determination of Elastic Stress Intensity Factors
{Two-Dimensional Problems)

The stress field at the tip of a sharp crack in an isotropic, linear, elastic
aterial under loading conditions symmetric about the crack surface (Mode
contains a stress singularity of the form

0, + G — 2K(21r)™ V2 cos(6/2)
0,, — 2vK(2nr)~ Y2 cos(6/2) (1)
Gog — Oy + 2i0,q — iK(27r)” 12 sin(0)e?

here (r, 6, 2) is 2 cylindrical polar system with origin lying at the point of
iterest along the crack front, with the z direction parallel to the crack tip,
iid with 6 = 47 on the crack surfaces (see Fig. 1). Here i is the unit imag-
ary number, and K is the stress—intensity factor. This same stress distribu-
onwith o,, = 0 applies to thickness averages in the simplest two-dimensional
heory of generalized plane stress. The intensity factor is the parameter on
hich elastic fracture mechanics is based, and hence there is considerable
iterest in its numerical determination. We review some numerical methods
r determining K here for two-dimensional problems of plane strain and



588 o " J. R. RICE AND D. M. TRAGE COMPUTATIONAL FRACTURE MECHANICS 589

chosen so that an overdetermined system is obtained which is then solved
in the sense of obtaining a least square minimization of the total error over the
discrete points.

The method is attractive because it automatically satisfies traction-free
boundary conditions on the crack surfaces. There does remain, however, a
guestion in need of resolution as to the limitations set by the limited radius of
convergence of complete power series for f and g.

Fig. 1. Coordinates for description of near tip stress states.

generalized plane stress. Three-dimensional problems are discussed in 2.2. APPROXIMATE CONFORMAL MAPPING
subsequent section. ' .

The numerical methods may be divided broadly into those based on
analytical representations of solutions (principally through analytic function,
theory) and those based on finite-clement methods. Some of the former art
limited as to the class of problems which may be handled, whereas the usual
accuracy problems near singularities arise with the latter, and must. b

circumvented.

Another general method that has been used to obtain crack solutions is
that of approximate conformal mapping, which may be applied to cracks
emanating from holes in infinite bodies or to edge cracks in simply connected
bodies. The technique involves finding accurate polynomial approximations
to the mapping function which transforms the physical cracked domain into a
circular region. The motivation to mapping is the fact that if a map of the
form of a polynomial or ratio of polynomials is available, the stress functions
expressed in terms of the auxiliary plane complex spatial variable can be
obtained exactly by solving a finite system of equations. Bowie [8~10] treated
the problem of an isolated circular hole with radial cracks and edge-notched
strips using this method. Kaminskij [11] considered the case of isolated
elliptical holes weakened by edge cracks. The stress—intensity factor may be
unambiguously defined if the approximate polynomial mapping is chosen
to keep the crack tip sharp (as may be done, whereas other types of corners
must be rounded by such an approximation).

~ Bowie and Neal [12] have used a hybrid mapping, collocation technique
to treat the doubly connected circular disk with an internal crack. The
procedure is to choose a simple function which maps a circle and its exterior
onto the crack and its exterior. Truncated series for the stress functions in the
auxiliary plane are chosen with the coefficients determined by collocating on
ihe mapped external boundary. Along with stress and displacement, force and
moment boundary values are used in the collocation.

2.1. BOUNDARY COLLOCATION
Muskhelishvili’s stress functions take the form [2]
o) = O + 80
YO = —¢') — ("0 + TP — D)

for a single straight Mode I crack penetrating in from the boundary ofa bod:y
where { = re’® = x + iy and where the functions f and g are analytic every
where within the body, including points along the crack line. For an intern
Mode I crack of length I, the same form applies with {™'2f({) replaced b
(~12(¢ + )" Y2F((), where F({) is again analytic everywhere within the bot

including the crack line. It is rigorously true that f (or F)and g have expansion
of the form

. . , 2:3. INTEGRAL EQUATIONS
where a,, is expressible as (87) ~*/2K, which convergeina neighborhood of th

crack tip up to a radius equal at least to that of the nearest portion of extern
boundary, or of some other singularity of the problem. .

The boundary collocation method as employed by Gross et al. [4-6] fo
edge cracks, and in the modified form by Kobayashi et al. [7] for an intern
crack, in rectangular specimens adopts truncated power series in { for f an
g. These are assumed to apply everywhere within the body, and the coeﬁicieqt
are chosen to match imposed stress conditions at discrete points of th
external boundary. Commonly an excess number of collocation points ar

A crack may be represented as a continuous distribution of dislocations.
Rice [2] has outlined a method whereby the solution for an isolated dis-
ocation in a body may be used to generate a singular integral equation
governing the crack problem, and has shown how the equation is reduced to
a regular Fredholm equation which may be solved numerically in a straight-
fOrward fashion. Related methods have been employed by Grief and Sanders

[13] for a stringer reinforcement on a cracked plate and by Bueckner [14]
for edge cracks.
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Hayes [19] used this method in treating a variety of configurations with simple
riangular elements to obtain about 5% accuracy when 1000 degrees of
reedom were allowed. His program was written to change the crack length
utomatically after a solution, by successively canceling reaction forces on
odes ahead of the crack. His use of an overrelaxation equation solver made
his an efficient scheme, since the master stiffness matrix is only slightly

More generally, solutions to plane elasticity problems may be given in
form of integrals, taken around the boundary, of fundamental singular
times unknown weighting functions, with the resulting singular integr
equations being solved numerically. Cruse [15] and Cruse and Van Buren
have made effective use of this method for the numerical solution of thre:
dimensional elastic-crack problems; no results seem yet to be available
the application of the method to plane problems. Tirosh [17] has solved s
crack problems for Mode Il (antiplane strain) deformation throu
related technique, but with an important modification which assurescr
tip accuracy: For the fundamental singularity he chooses the field ol
isolated dislocation in an infinite body with a semi-infinite crack.
automatically leaves the crack surfaces traction free, and one has to dea
with an integral equation along the external portion of the boundary.

A related method discussed by Chan et al [18] calculates the energy
clease rate without the necessity of actually re- -solving a new problem for a
ightly extended crack. This is done through Rice’s J integral [20]:

e

= f (W — 0y, 0u,/Ox — 0, 0u,/0x)dy + (0, Ou,/0x + ¢, 0u,/dx)dx](6)
r

Here W is the elastic strain-energy density (=%aijsij for a linear material)
nd the path I" on which the integral is taken is an arbitrarily chosen contour
eginning at any point on the lower crack surface of Fig. 1, encircling the tip,
nd ending at any point on the upper crack surface. The integral has a value
which is independent of the particular path chosen; there is no restriction
hat the material be linear elastic, but instead only that its stress—strain
elations be consistent with the existence of a strain-energy function (ie.,
;jde;; = dW, an exact differential). The physical interpretation of J is as the
nergy release rate [2, 20], and hence in the case of a linear elastic material

2.4. FiviTe-ELEMENT METHODS

The usual failure of numerical methods near singularities such as a cté
tip requires either the use of special crack-tip finite-elements which et
the inverse square root singularity or, if standard elements with polyno:
interpolation functions are used, the use of indirect procedures such
extrapolation to the tip or energy release methods.

Chan et al. [18] discussed extrapolation methods of determining K
constant stress triangular elements. The procedure is to plot the produ
/2 with some stress component (say o), as a function of distance along so
ray emanating from the tip, and to extrapolate this as a smooth curve
tipso as to estimate K. The result is, of course, generally quite different
the value which would be estimated based on stresses in the elements nea
the tip. Alternatively, the exptrapolation may be based on a product of
with a displacement, making use of the known displacements assoc1ated‘
the stress singularity (e.g. Rice [2])

u, + iu, = K/2G(r/2m)**(x — cos )&’/

Here G is the shear modulus, and x = 3 — 4v for plane strain, or (3
(1 + v) for plane stress, where v is Poisson’s ratio. Chan et al. reporte
agreement within 4-5%; of known solutions for K, when approximately 20
degrees of freedom were used, by using extrapolations based on gy, dire
ahead of the tip or on u, along the crack surface. ‘
Alternatively, K can be determined from a calculation of the decre
potential energy of a body due to an increase in crack length, with app
loads and displacement constraints remaining fixed. For plane strai
relation between K and the energy release rate dP/dl is given by

dP/dl = —(1 — V)K*/E

=(1—WKYE ™)

Chan et al. chose an integration path I for the integral lying far from the tip
nd coinciding with the boundary of their edge-cracked specimen. Resulting
alues of K, obtained through evaluating the integral from the triangular
nite-element solution, were reported to have an accuracy essentially similar
o that of the extrapolation method.

:‘Other methods of solving for K have been discussed by Barone and
Robinson [21] and Rice [22]. These methods use elastic reciprocity properties
o formulate new boundary-value problems whose solution leads to a
etermination of K, but through calculations which do not require numerical
¢curacy in the near tip region.

- The alternative to the preceding methods is that of directly embedding the
lastic singular term in the displacement assumption for the near tip finite
lements. Wilson [23] developed an axisymmetric ring element of circular
ross section centered at the crack tip for investigation of the circum-
erentially cracked round bar under torsion. The stiffness of the element was
ormed by integrating the strain-energy density of the dominant r~ 1?2
mgularlty over the circular cross section of the element. Conventional
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triangular ring elements covered the remainder of th§ mesh. The undeter-
mined parameters in the formulation were K and the dlsplacements.of nod.es
not lying on the crack-tip element boundary. The same procedure 18 a.pp.hc-
able to tension, and Hilton and Hutchinson [24] have followed a similar
procedure in obtaining deformation plasticity solutions for crack's under
in-plane deformation. Tracey [25] used a mesh 'composed of isosceles
trapezoidal-shaped elements focused into the crack tip. The e}ements nearest
to the tip had a r*/* variation of displacement specified, while the adjacept
clements were treated as ordinary isoparametric elements. The near-tip
interpolation function was designed to guarantee intere]eplent displaf:ement
continuity. More details of this will be given in the section presentmg our
elastic—plastic numerical results.

3. Crack Tip Plasticity

As we have noted, studies on crack-tip plasticity are important for extension
of the phenomenological fracture mechanics appljoach to the 1arge-§cale
yielding range, and also for setting boundary conditions on models of micro-
scale separation mechanisms at the crack tip. In both cases, rather detailed
descriptions of stress and deformation on a size scale that is small compareq
to overall plastic region dimensions seem to be required. Lee and Kobayashi
[27], Marcal and King [28], Swedlow and co-workers [_29, ?0], Wells [31],
and others have presented finite-element solutions for yielding near crac;ks
or sharp-tipped notches, and much has been learned from these concerning

%

the grf)wth and shape of the plastic region and transitional behavior from the
elastic to fully plastic ranges. - ‘

However, we think it unrealistic to expect that standard ﬁmte-elemept
methods will give the detailed results desired in the nea}@tip region, as will
be more apparent with the ensuing discussion. For this reason, our own
computational work has relied heavily on a merging of cpmputer m.thoEis
with what is known from asymptotic studies of crack tip singularities in
plastic materials. Here we refer specifically to the papers of Cherepaqov [32],
Hutchinson [33, 34], Rice [2, 20, 35], and Rice and Rosengren [3.6], wh1gh_ have
elucidated the structure of plane-strain and plane-stress singularities at
crack tips, both for materials idealized as nonhardeni'ng and for power law
strain hardening materials [ie., (stress) o (strain)¥ in the pla'stlc range].
Indeed, approximate small-scale yielding solutions ha\fe'been given ‘[20, 33,
34, 36] for these cases on the basis of a deformation plast1.01ty formulation and
the J integral. Previous papers by Hilton and Hutchmsop [24]. and Levy
et al. [37) have made similar use of the asymptotic studps in ﬁmte.-elemsznt
analyses. The first of these introduced a circular near-tip element in which
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the dominant power-law-hardening singularity strain and displacement
distribution is assumed, but with an unknown amplitude. Levy et al. intro-
duced a different type of singular element, which we shall describe later;
our work is a continuation and refinement of that method.

Nearly all the results of the asymptotic studies and computational treat-
ments have been for stationary cracks, and one of the major unresolved
problems of the field is in clarifying the elastic—plastic mechanics of quasi-
static crack advance. McClintock [3, 38] and Rice [2] have discussed this
type of problem, for which the history-dependent nature of plastic stress—
strain relations and the feature of crack advance into previously deformed
material lead to near-tip strain distributions which are very different from
those for stationary cracks. For example, Rice [20] has shown that a 1/r shear
strain singularity results in the regions above and below the tip of a stationary
plane strain crack in a perfectly plastic material, whereas McClintock [38]
showed that nonsingular strains result in the case of a continuously advancing
crack in a rigid—perfectly-plastic material under increasing imposed dis-
placements at its boundary, and Rice [2] showed that a logarithmic strain
singularity resulted at the tip for conditions of steady-state crack advance in
an elastic—perfectly-plastic material. This is an area in which much remains
to be done toward developing computational accuracy paralleling that now
attainable for the stationary crack case, and analyses of this type are of
obvious importance for a correlation of fracture tests in which substantial
stable crack extension precedes the running crack instability (e.g. cracks in
thin, ductile sheets). On the other hand, the stationary crack model alone
seets appropriate for the abruptly initiated fractures which frequently result
under conditions of plane strain constraint at the crack tip.

3.1. Crack-Tip STRESS FIELD

The numerical solutions that we report in the next section are for stationary
cracks under plane strain (or nearly so) conditions at the tip, and the material
is idealized as isotropic and elastic—perfectly-plastic (of the Mises type).
Large geometry change effects on the form of governing equations are
neglected, although we shall consider these in the section on micromechanics.
For these cases, Rice [2,20] has given approximate arguments for validity
of the stress state of the Prandtl slip line field (Fig. 2) in providing the limiting
stress state as r — 0 at the crack tip for cases of contained plastic yielding.
Also, Hutchinson [34] and Rice and Rosengren [36] have noted that this
field is the limit, as the hardening exponent N approaches zero, of their
dominant singularity solutions for crack tip stresses. However, it cannot be
expected that in this limit the “dominant singularity” does in fact dominate,
as has been learned from the Mode III case, and indeed the Hutchinson—
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Fig. 2. Prandtl field as the limiting stress distribution as r — 0, for contained plain strain
yielding of a non-hardening material.

Rice—Rosengren equations have no unique solution for the strain distribution

when N = 0. .
Thus we reexamine the nature of the near crack tip field here both as

motivation for our singular finite element formulation and as an extension
of prior asymptotic studies of this type. In view of the boundedness of stresses
in a nonhardening material it may be assumed that aaij/ﬁr‘q Qasr—0,
and hence the two stress equilibrium equations in polar coordinates take the

form’ )

O = Ogpo + 00,9/59 = O, 20',.9 + 6096/69 = () (8)
for the angular variation of the stress state atr = 0. The M?ses yield cgndltlon
5.8 = 27,%, where s;; is the stress deviator and T, the yield stress in shear,

i~y > . ¥
and may be rewritten as

(Jrr - C;-60)2/4' + 636 + (arr + Ogg — 2622)2/12 = TOZ (9)

This is satisfied in any angular sector at the tip which is ig.th{e plastic s‘fate,
and after differentiation with respect to 6 and use of the equilibrium equations
to simplify the result, we obtain (for r = 0)

6[00,4/90] [0(0,, + 000)/00] = OL(0,, + Tog — 202:)°]/00 (10)
By the flow rule for plastic strain increments, .
& = (€0ER/2) 25170 (11)

Thus, if there is a strain singularity at the tip in the apgular sector undfzr
consideration, we must have s,, = 0 there because conditions of plane strain
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prohibit a singularity in ¢2,. This means that

Oz = (arr + 006)/2 (12)

at r =.0 in such a sector. We may also note that this last equation would be
valid for a rigid—plastic material, and that it would be approached as a limit
for an elastic-plastic material subjected to monotonically increasing plastic
deformations. Hence Eq. (12) is strictly valid in an angular sector where there
is a strain singularity, and it would seem essentially correct even in angular
sectors for which the plastic strains are nonsingular, although the argument
cannot in general be made rigorous in sectors of the latter type.

With Eq. (12) the right side of Eq. (10) vanishes, and hence the stress state
at r = 0 satisfies either '

(a) 00,4/00 = 0, or {b) (o, + 0g4)/08 = 0. (13)

In sectors for which (a) holds, the equilibrium equations and yield condition
lead to stress.states of the form

O = +T9, G, = 0gg = 0,, = const + 21,8  in(a)sectors (14)

Stress fields of this type which apply over a finite range of r are known as
“centered fans” in slip line theory, and these appear above and below the
crack tip in the Prandtl field of Fig 2. In those sectors where (b) holds, one
finds, as a consequence of the equilibrium equations, that

Cxxs Oxps Oy, 0, areindependent of § in (b) sectors. (15)

That is, the stress components when referred to cartesian coordinates are
constant at the tip in (b) sectors. These are known as “constant state” regions
in slip line theory, and occur directly ahead of the tip and in regions adjacent
to the crack surfaces for the Prandtl field.

Hence, to the extent that Eq. (12) holds, the stress distribution surrounding
the crack tip over all angular ranges for which there is plastic yielding must be
made up of centered fan sectors of type (a) and constant stress sectors of
type (b). This holds for stationary as well as advancing cracks. If the entire
angular range surrounding the crack tip is yielding, then the only possible
stress distribution of this type, corresponding to a continuous stress variation
with 8 (as would be expected for problems of contained plastic yielding) and to
symmetrical Mode I loading conditions, is that given by the Prandtl field of
Fig. 2. Indeed, our computational results and those of Levy et al. [37] support
this assertion of the Prandtl field as the limiting stress distribution as » — 0 at
least for problems of small scale contained yielding. However, it cannot be
asserted a priori that Eqgs. (13)H15) govern in nonsingular plastic sectors.
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Also, fully plastic flow fields of limit analysis may involve a variety of near tip
stress distributions [2, 3], depending on overall geometry of the cracked
specimen, and these may involve discontinuous stress distributions and
nonyielding sectors, as well as discontinuous deformation concentration into
shear bands emanating from the tip.

In comparison, Rice’s [20] approximate treatment was based on simplifying
the yield condition to the statement that the maximum in-plane shear stress is
constant. This is the same as deleting the last term on the left in Eq. (9), so
that Eq. (10) has zero on the right and thus Eqgs. (13} and their consequences
apply in all plastic sectors, whether singular or not. Within this approxima-
tion, all plastic sectors therefore consist either of centered fan or of constant
stress regions. In the most general case, there may also be nonyielding sectors
at the tip, although if the entire angular range is yielding and the stresses are
continuous, then only the Prandtl field of Fig. 2 may result at r = 0. Note that
when the Prandtl field is present the maximum tensile stress directly ahead
of the tip is approximately 30,, where o, is the tensile yield stress.

3.2. DISPLACEMENTS AND STRAIN SINGULARITY .

We have remarked that near tip stress states, at least in singular regions, are
familiar from slip line theory and indeed, for the approximation of the yield
‘condition by the maximum in-plane shear criterion, slip line theory applies in
all yielding regions. As Rice noted [20], a feature of a centered fan slip-line
field at a stationary crack tip is that there is a nonunique displacement at the
tip iy the sense that a different displacement vector (u,, u,) results at r = 0
for each different ray of the fan along which the tip is approached. That is,
the displacements at r = 0 vary with 0 in the fan and hence there is a discrete
opening displacement of the crack surfaces at the tip. Radial and circum-
ferential lines are zero extension rate directions so that ¢, and gy are non-
singular, the singular deformation consisting of a pure shear y,, which becomes
infinite as »~ 1. Singularities result where slip lines focus to a point and thus
the strain components are, in general, nonsinguldr in the constant stress
sectors with a unique displacement resulting at » = 0 as the tip is approached
through these sectors. There is also, however, a possibility of a sliding dis-
placement discontinuity emanating from the tip along a slip line, and these
frequently occur in limit flow fields [3]. The features of r™! strain singu-

larities, tip opening displacements, and lines of displacement discontinuity-

at limit load seem to be general features of crack tip fields in nonhardening

materials, in the sense that they are also familiar from the Mode III case [3]

and from the two-dimensional plane stress case [33, 34].
To study the near tip field in plane strain without recourse to its approxi-
mate representation in terms of slip lines, consider the polar coordinate strain
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components
&, = COs 6 Ju,/dr + sin 0 du,/or
€gg = 1~ *(—sin 0 0, /00 + cos 0 0u,/00) (16)

Pro = 77 }(c05 0 6u,/80 + sin 6 6u,/0) — sin 0 du,/dr + cos 0 du,/or

wher.e it is convenient for this discussion to write the strain-displacement
gradfent relations as we have in terms of Cartesian displacements. We shall
cons%de'r ’that the displacements may vary with @ at = 0 and examine the
restrictions placed on this variation by the flow rule. One does however
expect bounded displacement components at the tip and thus it appears
reasonable to assume that r 8u,/dr — 0 as r — 0,

An'y. plastic-strain singularity must conform to the incompressibility
condition and since elastic strains are bounded we must therefore have
(&, + &99) bounded at the tip. This means that (&, + gg9) > 0 as ¥ —» O and
thus Eqgs. (16) require that the displacements at r = 0 satisfy the constraint

sin 6 6u,%/00 = cos 6 ou,°/6, 17

Wher‘e we use th§ notation ,%(6) for ur, 0) at r = 0. This same restriction

apphes also to displacement rates #%°. We therefore have e, and Fgge both

going to zero at the tip. it i E

gon g e tip. On the other hand, it is seen from Eg. (16) that as
TYrg — COs 0 du,°/d6 + sin 0 0u,°/00 = (cos 0) ! 4u,°/a0

= (sin 6) ' 9u,°/30

where the last two versions on the right follow from Eq. (17). Hence
(or 9,¢) exhibits a singularity of strength r~! in any sector for which t)lllree
crack tip displacements (or rates 4,%) vary with 6.

Recalling our previous study of the crack tip stress state, in which singular
sectors were shown to be either of the centered fan [Eq. (14)] or constant stress
[Eq. (15)] type, we see from the flow rule (Eq. (11)] that the stress state in a fan
sector at a stationary crack tip is consistent with a singularity dominated by
thg pol'alr shear rate §,,, and the crack tip displacement rates may indeed va
with @ in such sectors. On the other hand, such a singularity violates the ﬂorvz
rule and hence is inadmissible in a constant stress sector. Crack tip displace-
ment rates therefore cannot vary with 6 in such sectors, with one exception:
Ifthe constant stress state of the sector is such that for some angle 0 within it.
a,.,,0= i‘co,‘thgn 1t 1s possible to have a discontinuity in 4.° at that angle with
0u,° /00 vamghmg elsewhere. In this case the jump versiOI; of Eq. (17) applies
across the dlscontinuity. It is in fact possible to view such a discontinuity as
: r::;}l;j[ered fan sector with a vanishing apgular range, since g, = +1, at this

(18)
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It is of interest to note that while equilibrium considerations required 4. Singular Finite-Element Formulation and Results
singular sectors to be either of the fan or constant stress type, flow rule con
siderations show that only the former can in fact exhibit the 1/r singularit
Neighboring sectors may be of the constant stress type but this is no
necessarily so, except for the maximum in-plane shear approximation to the
yield condition.

Our finite-element formulation incorporates the preceding features of the
near-tip field, in that we choose displacement assumptions which permit a
variation with  at the tip subject to the constraint of Eq. (17). This allows a
direct calculation of the crack tip opening displacement, of the angular strengt
of the strain singularity, and of the tip stress state. Detail at this level is
course unattainable from conventional finite-element formulations.

For reporting our results we shall use the standard notation [2, 20] for the

strain singularity, writing Eq. (18) in the form

_ % RO)
’yrG G

where 7,/G is the initial yield strain in shear, and where the angular strength
of the strain singularity is written so that R(f) may be interpreted as an
approximate measure of the linear extent of the plastically strained region at
angle 0. From the preceding discussion, R (or more precisely, R) is nonzero
only in fan sectors. The function R is related to the displacement components,
for by comparing Egs. (18) and (19) we see that

0u,’/00 = (1o/G)R cos 6, 0u,°/08 = (7o/G)R sin 0 (20)

Also:l{)y integrating the last of these, the opening displacement between the
upper and lower crack surfaces at the tip is

. Finite-element incremental elastic-plastic solutions to the small-scale-
yielding plane-strain problem and the large-scale-yielding of a circumferen-
tially cracked tensiori bar are described in this section. As has been
.emphasized, the goal is to obtain reliable results at the crack tip singularity as
well as globally. These nonlinear problems are linearized by specifying the
load in small, finite steps and solving for the resulting deformation at each
step by the tangent modulus approach. Within each increment an iterative
scheme is adopted which allows convergence to the best representatwe
constitutive matrices of ylelded elements for the increment. The scheme is
outlined here for the isotropic, perfectly plastic Mises material idealization ;
t could also serve as the basis for treatment of more general cases.

‘ 4.1.' ITERATIVE PROCEDURE

19 . . ‘ L
( : ) To illustrate the procedure consider s° as the deviatoric stress vector of an

_element at the beginning of a particular load increment. To remain general
let s° lie inside the yield surface. Estimate that the strain increment due to the
- current load increment is parallel to that of the solution for the previous load
increment, and scaled according to increment size. Considering this estimate
to be entirely elastic, calculate the corresponding fictitious final stress
8" (=s° + 2GAe*™, where G is the elastic shear modulus and Ae*™ is the
“deviatoric part of the strain increment estimate). Figure 3 is a n-plane

O —

,, 26(1-m)ag®!
o, = Z(TO/G)j R(8)sin 6dO
0

When the Prandtl field applies, the limits are the angular range n/4 to 3n/4 2gmag®s!
of the fan sector.
If one adopts a deformation theory of plasticity, whlch models the materia
as if it were nonlinear elastic, then the J integral remains path independen
for contours I passing through the plastic region provided that the appro-
priate W is used. Taking the Prandtl field as the near tip stress state and
shrinking I" to the tip, Rice [20] showed that J could be expressed as ‘

3n/d
J = (Z’CZO/G)J- R(®)[cos O + (1 + 3n/2 — 20) sin 0] d6. (22
/4
For small-scale yielding, J retains its linear elastic value of Eq. (7), and thi MISES Y(ELD SURFACE

serves as the basis for some approximations. Fig. 3. n-plane view of stress states of an element during a load increment.
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projection of the stress vectors and the Mises yic':ld surface, ?vhich agpears asa
circle of radius ﬁto in this plane. The material wogld y1.eld‘ ats’. For this
case of transition from elastic to elastic—plastic beh.av1or Wlthm an increment
the partial-stiffiness approach of Marcal and King [28] is followed. The

matrix D which relates deviatoric stress increment to deviatoric strain
increment is divided into elastic and clastic—plastic portions according to the

ratio m = |s* — s%/]s* — s°I:
D = mD + (1 — mDe-! 1)

D¢ is the diagonal matrix 2GI and De* is equal to 2G(I — nn”), where n
is the unit vector s/\/zro normal to the yield surface at the strless state s.
Previous analyses [27, 28] have used the unit nor'mal vector n* at the 1‘mtlal
yield state s* to define D~ for the increment. This corr.esponds to a simple
Euler integration of the actual constitutive “rate” eq}latlon over the elastic—-
plastic portion of the increment. The large-load step sizes \yhlch are necessiliy
for computational economy for some problems mgke this an unacceptable
approximation due to the associated large stress .mcrement.s at each' ste};l).
Hayes [19] specified D*"?' for the increment by using _the unit vector in the
direction of the estimated average stress vector predicted by the Marcal-

King procedure,
s' + GO — n'n'T)(1 — m) Ae*!
In the present scheme we use the unit vector B in the direction of the
average of s! and %, :
1 est
“r . st + s? _s —i—G(l—m)Aeest @)
st + 87 |s! + G(1 — m)Ae™|

because this has the remarkable feature that the corresponding Dl"l“pl trans-
forms (1 — m) Ae™ to a stress increment which, Whe?n added to s, res.ults n
a final stress s* which precisely meets the yield criterion. The strain estlmatgs
are found to converge quite rapidly using this procedure so that the approxi-
mation within an increment is essentially the use of a s§cant be?tween the
initial and final stress states to define the yield surface during the Jr}crement.
To prove that the stress state s* lies on the yield surface when fi is used to
determine the plastic flow during the increment, we must prove that

¢Ts* —siTsl =0,  or (5% +s)s* —s) =0 (23)

Equation (23) is proved by demonstrating the orthogonality' of the vectoyf
(s* + s') and (s* — s!). The elastic-plastic constitutive relation based on #

sets (s* — s') normal to fi,
(s* — s') = 2G@ — m")(1 — m) Ae™™. 24
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Adding 2s' to both sides of Eq. (24) and recognizing that 2s' + 2G(1 — m)
Ae** is parallel to fi by definition, we see that (s* + s?) is parallel to i, and
hence Eq. (23) is satisfied.

4.2. ELEMENT DESIGN

Three types of finite elements were used in the analysis. For elastic solutions
the r~ '/ singular element [25] was used nearest the crack tip with arbitrary
quadrilateral four-node isoparametric elements over the remainder of the
configuration. To study plastic effects at the crack tip, a new singular element
was designed, similar to that of Levy et al [37], which has a 1/r shear strain
singularity (with a bounded dilatational strain) and a uniform strain as
admissible deformations.
~ The singularity elements have the shape of isosceles triangles and are
focused along radial lines into the crack tip. However, they are treated as
degenerate isosceles trapezoids in the sense that four nodes are assigned to the
elements, one at each vertex, even though two of the nodes coincide at the
crack tip. Levy et al. [37] introduced this coincident node technique to study
the crack tip displacement variation. Contrary to their procedure, however,
the coincident nodes were here constrained to move as a single point in
obtaining the elastic response of the cracked body, since the nonunique
crack tip displacement is a plasticity effect.

The variation of stress and hence constitutive relation in the plastic case
within elements was accounted for in the following approximate manner.
Each near-tip element was viewed as the composite of three subelements,
each extending one-third of the height of the element. The area average strain
of an individual sub-element was used in evaluating the stress state and
constitutive matrix representative of the subelement. The three subelement
stiffnesses were then formed and added to obtain the total element stiffness
matrix. For the adjoining isoparametric elements the midpoint strain was
judged adequate to calculate the stress representative of the entire element.

To obtain elastic—plastic solutions the procedure was to specify the r~/2
element just up to the load necessary to yield one of the subelements. There-
upon the r~! element was used with its associated nonunique crack tip
displacement capability. Clearly the elastic singularity implies yielding under
infinitesimal load so that there is some error involved in the plastic solution
by specifying the » ~*/? near tip strain distribution up to finite loads. Actually
for the size element used at the tip this error should be very small. In the
round bar problem the near tip element extended a distance - of the crack
length, a distance at which the singularity is expected to dominate. Using
the area average strain basis the first subelement yields when the strain at

% x 5 x crack length satisfies yield. The neglect of plasticity in the analysis
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displacement is linearly interpolated between u® and u” so that there is com-
plete inter-element compatibility when four node isoparametric elements
~arejoined there. When the nodes are denoted as K, L, M, N the latter element
“has the form

u=u(l~ &+ u'(l — O — n) + w1 —n) + u"ey (28)

The plastic singularity element interpolation function was derived through
consideration of displacement distributions which correspond to a 1/r
shear-strain singularity and importantly also a bounded dilatational strain.
‘Levy et al. [37], in {reating the small-scale-yielding problem, used a bilinear
polar coordinate interpolation function for near tip pie-shaped elements
_ which allowed a 1/r singularity in &4, as well as ¢, leaving it to the numerical
-solution to choose a bounded ¢y,. However, it is impossible with their
element to make the 1/r part of &, vanish for all §. Here the dilatation

until this load level should have a minor effect on the solution away from th
tip at this load and as loading proceeds, the crack tip solution should sho
little evidence of this numerical transition procedure.

The interpolation functions used are most easily described in terms of th
natural coordinates of the elements. Taking the element edges as coordinate
lines & = 0, 1 and # = 0, 1 with the nodes I, J, K, L at the intersections we
have the following correspondence with the physical coordinates:

x=x(1— &+ x (L= —m + XL =) + x4 (2

Equation (25) may be thought of as a mapping of the physical region ontod
unit square in the (,7) plane. For instance Fig. 4 illustrates the map of a
near-tip element of angular extent 2« and height s,. Notice that the ed

n
y boundedness condition Eq. (17) is precisely satisfied throughout the near
e tip elements: In the notation of Fig. 4 the condition met by the displacement
components uy&, #) and w(&, n) is
J__ K
95 3 du0, n)/0n = tanyy 6u,(0, m)/0n (29)

~The 1/r shear singularity results for any assumed displacement function
which allows a crack tip displacement variation, as in the general discussion
of the last section.

Only the displacements (1, ") and (v, u”) of the nodes at (0, 1) and
0,0) enter in the displacement distribution along £ = 0 in the present formu-
ation. Hence these degrees of freedom completely determine the strength of
the shear singularity within the element as seen from the first of Egs. (20)
rewritten in present notation,

1,J
bt Z—CRACK !

Fig. 4. Typical near crack tip element.

G 0uf0,n) dy
RY)= — 21— 30
W) Tpcosy Oy dy 30)
With no attempt to enforce continuity of R(i) at element boundaries u (0, )
was chosen linear in # so that, to first order in i, R(}) would be constant
within an element,

¢ = Qwith two distinct nodes I and J maps onto one point—the crack tip
inthe(x, y)planesothatinthiscasex” = x”. Theinversemap of this particula
element in terms of the local Cartesian coordinates (s, t) and local pola:
coordinates (r, ) is ’

& = s/sq, n = (tan y/tan o + 1)/2
° US(O, 17) = usJ + (usI - usj)rl (31)
Equations (29) and (31) then establish u,(0, #) to within a constant which in

urn is determined from the end conditions 1,0, 1) = u,f and ©,(0,0) = u, .
We find the distribution

w(0,n) = u’ + tan o, — uyln — 1) (32)

The elastic singularity element has the interpolation function

w=u(l — /&) + u(1 — i/ + /e

The unique displacement of the crack tip nodes I and J is denoted by u?
From Eq. (26) we see that this displacement distribution corresponds to the
expected form of ./r times a smooth function of angle. Along the edge:
n = 0,1 displacement is a two-parameter function of {(a + b\/E) so tha
there is displacement compatibility across them. Along the { = 1 edge th

which has the displacement components u,' and u,” equal to each other and
commonly called u!’. This constraint u,' = u,” is consistent with the intuitive
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feeling that the shear singularity is governed mostly by a u, dlsplacemen
variation. The exact expression for R({) is
G ul—u’

Toc0s® Y 2tana

Ry =

3

This is recognized as a first-order finite difference approximation to R(J
expressed either as we have earlier or as [20] G/7,[0u,(0, )/ — u,(0, ¥

when the displacement u, is transformed to polar coordinates and th

equation is linearized in its angular dependence.
A bilinear displacement variation throughout the element due to dis
placement of nodes K and L was specified. Also the distributions (31) an
(32) were weighted in the ¢ direction by the factor (1 — &). The complet
interpolation function for the shear singularity element is then given by
ut + u’ ult

uy = = (L= )+ [+ S — e+ —5——-~(2n —Hd =9

ul(1 — &) + [ufn + uf1 — )¢ + tan a(u,” — u M — D(1 — &

If the two coincident nodes move as one, so that u,f = 4., the element i
nothing more than the conventional constant strain triangle. Hence th
possibility of strain free rigid body motion of the element is present.Th
interelement displacement compatibility condition is satisfied since displace
ment varies linearly on all interelement edges.

A 9-point numerical integration of the element stlffness matrices wa
performed. The integration stations were at &1 = <, 1, 2 and each statio
was weighted by 5 of the area of the element. In the fan regions expected at th
crack tip thereis no angular variation in deviatoric stress state when refereric
is to a polar coordinate system. Thus to enhance the accuracy of using sub
element area average strains to evaluate the stress of the subelement, th
stresses and strains of the near tip elements, which follow from Eq. (34), we!
referred to polar coordinates.

Il

Uy

4.3. COMPUTING DETAILS

A version of the general-purpose finite-element program MARC4 wa

used in this work. Calculations were done on the Brown University IBM

360/67 in double precision arithmetic. The master stiffness equations wer
solved by direct elimination. The shear singularity element formulatio
required double precision; single precision calculations resulted in ver
erratic strain distributions. Experience with other formulations in singl
precision using isoparametric or polar elements (and the r~ %2 singula
element in the elastic case) gave no similar direct hint of arithmetic precisior

4
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difficulties, establishing the shear singularity formulation as particularly
sensitive to computational mode.

4.4. SMALL SCALE YIELDING RESULTS

The problem under consideration is the plane strain contained yielding
ofan elastic-plastic plane with a semi-infinite edge crack under the boundary
condition that the singular field of the elastic solution, Egs. (1) and (4), is
asymptotically approached as r — oo. This boundary layer formulation was
proposed by Rice [20] for the analysis of sharply cracked bodies with a crack
tip plastic zone which is small compared to significant configuration di-
mensions. The finite-element model involved a finite region about the crack
with a near-tip element dimension chosen small compared to region size
5o that the outer boundary could effectively be considered at infinity. The
displacement field (4) was imposed at the nodes on the outer edge with K
as the loading parameter. Taking advantage of symmetry, only the upper half

oftheregion (y = 0, using the coordinates of Fig. 1) was treated. Ahead of the

crack on y = 0 the displacement component u, and the shear traction were
Ze10.
The mesh was composed of four rings of 7.5° focussed isosceles trape-

-zoids followed by eight rings of 15° elements making a total of 192 elements

and 229 nodes. The nodes described arcs of radius
r=20,05,1,1.625 1.5%2%,...,5.5%

The nodes on r = 2.25 not common to the adjacent 7.5° and 15° elements

‘were constrained to maintain interelement compatibility.

The plastic solution was obtained by specifying successive increments in
K equal to 25% of K,—the stress intensity factor which causes the first
subelement to yield. At each load increment the solution was the result of
three iterations on the representative element constitutive matrices. Loading
ceased when elements of the fifth ring yielded so that the extent of the plastic
zone was always small compared to the outer radius.

From the exact elastic distribution (1) we find that initial yield occursat an

angle of cos ™ (1 — 2v)?/3] = 87°, for v = 0.3. Furthermore, K, for yielding

a radius r, can be determined from Ko/oo(2nr,)"/? = 1.10 for thlS Poisson
ratio. In thls problem subelement yielding was based on the subelement
midpoint stress so thatr, was 5. The element between 82.5° and 90° yielded
first; the midpoint angle being 86.25° indicates excellent finite-element

‘agreement with the theoretical value. The finite element yield load parameter

Ko/oo(2nr,)!/* was 1.07—less than 3 % deviation from theory. The angular
near tip stress variation was also in excellent agreement.
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The crack tip opening displacement [twice the y component of displa¢
ment of the node at (0, )] made dimensionless by the similarity .paramet
K?/Eg is plotted in Fig. 5 as a function of K/K,. From dimensional co
siderations 8,/(K?/Eg,) is constant but because of the numerical procedur
the value varies with K/K, until the near tip plastic field is established

Prandtl field that was discussed in the last section. The progression of
6,40)/o from the elastic distribution (K/K, = 1) to the fully developed
distribution (K/K, > 4.5) which is plotted inFig. 6 is typical of all the stress
components. The most obvious connection between the solution and the
Prandt] field is that both have distinct fans in the range 45° < 0 < 135°.

8 4 j
(EKZ ) 2 0.60+ PRANDTL DISTRIBUTION
o 3y = 0493 =— ) ( §—B—F—R— - "W
Eo LI 3
0.50 fm ya D TP RN oMt
- x X X x - a + N >
x 0504 s 3 - + °
0.40 | x ¥ . x 3
x - * °
LS a
® o ¢ o
x i * X
030 |- 040+ o > 2 - * *
x N a ®
. a + x
0.20 — 0.30+4 %
x 3 . EXACT ELASTIC M
(EQ.1,K/ 0~/ 2T 1=1.07) - .
0.0 — LEGEND x
0.201 SYMBOL K/Kg o
R © 1.0 . ¥
e
o ! { ! 1 i I a 1.5
0 100 20 30 40 50 60 XK . 2.25 .
Ko 0.10¢ x 3.00 Lt
Fig. 5. Di i i ine di ® 3.75
ig. 5. Dimensionless crack tip opening displacement 6,/(K?/Es,) versus loading paramet 4 4.50 -
K/K, lot small-scale-yielding problem. ; x 5.25 ® *
0.00 ' - ; - . + =
] . : ' 0.00 2250 4500 67.50  90.00 112.50 135.00 1567.50 180.00
value of 0.493 was achieved at K/K, = 4.75 and it did not change for the 6 {deg)

Fig. 6. Crack tip shear stress distribution at various load steps for the small scale yielding

remainder of the loading so that we conclude that for small-scale yielding
’ roblem.

8, = 0493 K*/Eg, (35) 7
Also the stress a4, of the subelement in the range 0 < § < 7.5° reaches the
alue2.960,at K/K, = 5.25which certainly isin excellent agreement with the
Prandtl value of 2.97 for ¢4(0,0). Two important assumptions used in
deriving the Prandtl field were that yielding completely surrounds the crack
ip and that the out-of-plane deviatoric stress s,, vanishes at all values of 6.
Neither condition was met in the finite element solution. The two elements
between 165° and 180° remain elastic throughout the loading and s,, = 0
only in the fan. Hence it is not surprising that the stress distributions of the
Prandtl constant state region were not realized in detail. Yet from the fan
results this problem does indeed show the value of using analytical work to
guide in the design of numerical procedure.

Levy et al. [37] found a factor of 0.425 from their incremental plasticity
finite element results. The current estimate is thought more accurate since
their polar element involved a dilatational singularity along with the
expected shear singularity. With the physically less precise deformatio
theory of plasticity the J integral can be used to estimate the factor : Assuming
an R(0) symmetrical about 8 = 90° Rice [20] predicted a factor of 0.61
Using R(#) from the nonhardening limit of the power law hardening singula
ity Rice and Johnson [39] showed that the resulting value was 0.717.
The crack tip stress field as represented by the stresses of the twenty-fo
subelements nearest the crack tip approaches a distribution similar to the
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bar move uniformly in the axial direction with zero shear tractions. The
length was sufficient to have a uniform axial stress state at the ends during the
entire loading sequence. A mesh with 384 nodes and 340 axisymmetric ring
elements was used to represent the upper half of the bar which is naturally
described in terms of a (p, z, ¢) cylindrical coordinate system with the
centerline.coinciding with the z axis and the crack along D/4 < p < D/2 in
each meridional plane ¢ = const. Cross sections of the elements near the
crack tip were focussed isosceles trapezoids, near the ends rectangles, and
joining the two groups were arbitrary quadrilaterals. As viewed on a meri-
_dional plane there were 13 rings of 7.5° trapezoids encircling the crack tip, as
for the previous small scale yielding solution. Introducing an (r, ) polar
coordinate system in this plane (with the crack along 8 = =+ =) the nodes of
the trapezoids describe arcs of radius

r = (D/288)(0, 1, 1.5%, 2%, 2.52, 32, 42, 52,62, 48, 60, 72, 91, 120)
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The stress intensity factor for this geometry as a function of net section
stress o, and diameter D was found by Bueckner [40] to be within one
percent of 0.240¢,,.(nD)*?. The nodal displacements at r/D = =iz and o,
from the elastic solution were used in conjunction with the theoretical plane
strain near tip field (4) to estimate K ; however, nodes within 37.5° of the crack
-were not considered for, in this range, &4, Was of the same order of magnitude
as the in-plane strains. A simple average of the discrete estimates of K
results in a factor of 0.244 which is within 2 % of Bueckner’s solution. The
stress o, of the subelement between 0 < 6 < 7.5° corresponds to 0.247 which
18 3% from Bueckner.

The accuracy of the partial-stiffness treatment, Eq. (21), of elements making
_the elastic to elastic—plastic transition within a load increment and the rate
of convergence of the mean yield surface normal technique are greatly
affected by the size of the load increment. A successful procedure in terms of
convergence rate involved regulating the load increment so that only elements
within 10 % of yield would yield during an increment, and also allowing
Row = 0.177(K /o> - (36 three iterations for each increment. For small scale yiffld the' sufficient load
step sizes were prejudged by assuming that the elastic regions responded
proportionally to load up to yield. The displacement of the end of the bar was
increased to 38.2 times the end displacement (u"?), at first yield in 42 incre-
ments in the following manner

0.0 0.05 0.10 0.5
SUBELEMENTS x/{K/a)?

Fig. 7. Strength R(0) of the 1/r shear singularity and plastic zone extent in terms of similari
coordinates (x, y)/(K/o,)?, for small scale yielding. .

Fig. 7 shows the near tip mesh, yielded elements and the strength R(§
of the shear strain singularity, from the solution at K/K, = 5.25, all referre
to the similarity coordinates (x, y)/(K/o,)*. The contour defined by th
yielded elements does not precisely define the elastic—plastic boundary due t
stres$ ~variation within elements. By interpolation between load steps wi
find that rp ,,,, the maximum linear extent of the elastic-plastic boundary
is 0.152(K/0,)* and this is at § = 71°. The boundary crosses the 8 = 0 lin
at a radius rp o = 0.041(K/oo)*. The strength R(f) was determined from th
crack tip nodal displacements in accord with Eq. (33) (with ¥ = 0). Th
function peaks in the range 90°-97.5° with a value

In comparison, Levy et al. [37] found factors of 0.157, 0.036, and 0.155 fo
¥pmaxs Tp,0> a0d R, , respectively. The vanishingly small value of R outsid
of the angular range 45° < § < 135° clearly defines this range as the fan
region active in the blunting of the crack tip. ‘
2 steps of 0.1(us™Y,, 60f0.2, 30f03, 30f04, 20f0.5 60f07,

4.5. CIRCUMFERENTIALLY CRACKED ROUND BAR 90f 1.0, 7of15, 4 of225

The axisymmetric round bar considered has a circumferential crack
penetrating its outer surface to a depth of £ the bar radius and a length of 4D
where D is the bar diameter. The boundary condition was that the ends of the

The load-deflection curve, o,,.,/0, versus Eut"/o,D, is presented in Fig. 8.
The end displacement was increased until the limiting elastic—plastic zone
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Fig. 8. Load deflection curve for round bar.

was achieved. The corresponding limit stress for this Mises idealization 1
Onet = 2.560. In comparison, Shield [41] found a limit pressure of 5.69t fo
axisymmetric frictionless indentation of an elastically rigid—perfectly-plasti
Tresca half-space. While the flow was confined to a radius of 1.58 times th
punch radius in Shield’s problem, the present finite-clement result is tha
yielding spreads to include the outside surface of the bar at limit load
Figure 9 shows the yielded regions at different stages of loading. If th
plasticity had been confined to the bar interior Shield’s limit load could serv
to establish bounds to the Mises limit load for the crack depth chosen b;
invoking corollaries to the limit theorems of plasticity.

When the Mises and Tresca materials are assigned identical shear limit
the ratio of the finite-element limit stress to Shield’s is 4.43/5.69 = (.78 ; wher
matched in tension the ratio is 2.56/2.85 = 0.90. Figure 10 is a plot of th
two net section stress distributions, o,,/0, versus 4p/D at z = 0, at limit load
The larger Tresca stresses over most of the section can be explained in term
of the factor of 0.9 between the Mises and Tresca limit loads. The Tresc
curve monotonically decreases from a centerline value of 3.60c, to 2.57¢
while the Mises curve increases from 2.100, to 3.050, at the crack tip (o
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Fig. 9. Round bar yield zones at various load levels.
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Fig. 10. Round bar net section stress distribution at limit load.
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punch surface in Shield’s context) when averaging the near tip subelem
values of 2.94, 2.98, and 3.23.

The crack tip small scale yielding solution was essentially that of th
previous asymptotic problem. As explained, the normalized crack tip opet
displacement 6,/(K?/Ea,) increases from value zero to a characteristic sma
scaleyielding value over a smallinitial load range due to numerical procedur,
Also, once the plastic zone extends to an appreciable fraction of crack lengt
8/(K*/Eq,) dramatically increases with K signaling the beginning of “larg
scale’” yielding. The value of §/(K*/Ec,) increased to within 10% of th
asymptotic solution value 0.493 at the eighth load increment correspondin
t0 0,e/0¢ = 0.37 and the plasticity was confined to the first ring of element
about the crack tip. The value was 10 % higher than the asymptotic solutio
at 0,./0, = 0.85 and at this state plasticity was confined to a radius of D/3

" is most likely the influence of the centerline which is felt due to the relatively
-coarse mesh of the present problem. In Fig. 11 R(6)/D is plotted for various
load states in the large scale yielding range. In conjunction with the elastic-
-plastic zones of Fig. 9, one can see that R serves as a reasonable estimate to
the extent of the plastic zone at angles which are within the 1/r shear fan
whilethe plasticzoneattheangle remainsinterior to the specimen boundaries.
Asloading progresses the fan region extends from the Prandtl range of 45° <
§ < 135° to the larger range of 15° < 6 < 157.5°. This may, however, reflect
a failure of the numerical solution to accurately meet the stress-free crack
surface boundary condition in the innermost element as fully plastic con-
~ditions are reached.

Oyer/ 0p=2.48

This plastic zone size could be used to seta rough upper limit to the applicabi = =
lity of linear fracture mechanics treatment of crack tip plasticity.
The function R{)in the small-scale yielding range differed slightly from th
distribution for the asymptotic problem in that the function peaked betwee
82.5° and 90°; in the former solution R ., was in the range 90° to 97.5°. Thi
Oper/To=2.56 2.28 _
0.96¢
wlo
0.604 w e 1'803' 2 00
A4
0.644 2ot
1.57
g 0.60+ 1.16
& 0.487 ////f 0 772‘
= W 0.4%:
3 — ELASTIC SOLUTION - 0.155 _
0324 0.00 L= = +- — ¥ —+ +
- 00.0 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00
p-D/4
Yz
0.164
Fig. 12. Round bar crack profile at various load levels.
= s I et SR By N N e Figure 12 is a plot of the opening displacement é of the neighboring points

67.50 5000 11250 13500 157.50  180.0) on the crack surfaces, as a function of distance from the crack tip, for various

0 (degs) net stress levels. It is clear from these curves that, throughout the large-scale-
‘yielding range, the crack tip opening displacement, §, (=4 at p = D/4) is
very significant even when compared to the flank opening ¢ at p = D/2.

00.0 22.50  45.00

Fig. 11. Strength R(9) of 1 /r‘shear singularity for round bar at different stages of loading,.
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These results may be helpful in correlating large scale yield fractures of th
geometry since if fracture is controlled by a critical crack tip state, it is qui
likely reflected in the attainment of a critical crack opening displacement, at
least for cases such as the present for which the stress triaxiality does not var
appreciably from small scale to general yielding conditions.

o
¢ . .

vk + oyy)

5. Three-Dimensional Problems

Both structural applications of fracture mechanics and the interpretatio
of experimental results require advances in three-dimensional stress analysi
Work to date has been limited, and has focused on the stress analysis of par
through-the-thickness surface cracks in the walls of plate or shell structures,
as representative of flaw types in applications, and on the transition from
plane strain to plane stresslike constraint near the tip of a straight through:
the-thickness crack in a plate. This last problem is, of course, important to
the interpretation of fracture test results which are typically obtained o
plate specimens precracked in this way. It is also of interest for the inform
tion it sheds on the actual three-dimensional aspects of what is commonly
treated as a two-dimensional problem.

0.7

b——os\

X—CRACK TIP 05 Z/h

CRACK SURFACE

Fig. 13. Results showing the transition from plane strain to plane stress behavior near the

5.1. THROUGH CRACK IN A PLATE tip of a through-the-thickness crack in an elastic plate, from Cruse {15].

The straight, through-the-thickness crack in a plate has been studied by
Aryes [42] using finite difference methods, by Cruse [15] and Cruse and Va;
Buren [16] using a numerical solution of singular integral equations over the
specimgen boundary, and by Levy et al. [43] using finite-element methods.
Only Ayres gave results for this problem in the plastic range, but he made no
special provisions beyond mesh refinement for attaining near tip accuracy;
Levy et al. employed a singular element similar to that of their earlier plane
strain study [37] and to that of the last section, with layers of polar arrays of
the elements being stacked through the plate thickness.

Figure 13 is replotted from Cruse’s [15] results on a compact (2h x 2h x h
where h is plate thickness) fracture test specimen containing an edge crack
of length h which is wedged open by end forces. Lines of constant value for
the parameter o [=0,,/V(0,, + 07,,)] are shown for half the plane of material
directly ahead of the crack. The parameter is called the “degree of plane
strain”’ since such conditions correspond to « = 1. One sees that plane strain
conditions are indeed approached at the crack tip, although the fall off to-
ward a plane stress state (@ = 0) is quite rapid. Similar results were found by
Levy et al. [43], who studied a circular plate of six thicknesses in radius witha
through crack having its tip at the plate center. For boundary conditions
they imposed the stresses o,, and ¢, of the charactristic r~1/? singularity
appropriate to the two-dimensional-plane stress theory. Figure 14 shows their

§ Oij+/ h
K

\
(0vy) - K
L Ve

Fig. 14. Results demonstrating the rapid transition to a plane stress condition away from the
crack tip in a through-the-thickness cracked elastic plate, from Levy et al. [43].
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type. These include the effects of plastic flow, finite strains, and deformation

results for o,, and ¢, on the line in the plate middle surface directly ahead o :
instabilities.

the crack. The dashed line shows the two-dimensional plane stress result fo
o,,- Again, the rapid approach to a plane stress state may be noted; o, i
negligible even in the middle surface beyond a distance of about a half-
thickness. The last two figures tend to make plausible the rather large ratio.
of plate thickness to plastic zone size found necessary to assure plane strai
conditions within the plastic region at fracture [44].

6.1. DUCTILE FRACTURE MECHANISMS

Fracture mechanisms in structural metals, apart from low-temperature
cleavage in steels, generally involve substantial plastic flow on the microscale.
This arises through the formation of small voids, typically by the decohesion
or cracking of hard inclusion particles, which undergo large ductile expansion

) : ) ' until final separation results from coalescence of arrays of these voids. That s,
Several different computational approaches have also been taken fo fracture arises as a kinematic result of large plastic flow. This is so even for
problems of part-through-the-thickness surface cracks. For example, materials such as the high-strength steels and aluminum alloys which may,
Kobayashi and Moss [45] and Smith and Alavi [46] have employed alterna- under plane strain conditions, show macroscopically brittle crack advance
ting methods in three-dimensional elasticity, based on the Boussines with plastic zone sizes in the millimeter range. On a scale of, say, 5 to 100 um
solution for a half space and on that for removal of tractions from an em the resulting fracture surfaces show evidence of great ductility with local .
bedded circular or elliptical shaped crack in an infinite body, to estimate strains on the order of unity. McClintock [3, 38, 49] has discussed this
for circular arc and semielliptical surface cracks in plates. The papers by fracture mechanism in detail. He and Rice and Tracey [50] have applied
Ayres [42] and Levy et al. [43] employing finite difference and isoparametric continuum plasticity solutions for cavity expansion as models for hole
finite-element formulations, respectively, have discussed the elastic an growth.
elastic—plastic fields near a semielliptical surface crack in a plate. _ In general, however, the modeling of void growth should include a treat-

Also, Rice and Levy [47] have developed a model for problems of Jan ment of finite shape changes, interactions between neighboring voids, and the
surface cracks (in comparison to plate thickness) which reduces .these t possibly unstable coalescence of neighboring voids or void arrays. This
problems in the two-dimensional theory of plane stress and bending for necessarily involves numerical formulations for large deformations, of the
plate containing a line spring which represents the paft-cracked segtion type presented, for example, by Hibbit et al. [51] and Needleman [52]. In fact,
Their original work reduced the problem to two COUPlefi integral equation Needleman’s paper contains a finite-element solution for the large ductile
solvetl numerically, for the force and moment transmitted across the lme: expansion of a periodic array of initially cylindrical holes in a power law
spring. However [48], the model has been extended to cracks in shells, and hardening material. His procedure was based on a form for the incremental
finite-clement formulation has been developed for incorporation in existin comstitutive law at finite strain proposed by Budiansky [53]. This is consistent
two-dimensional plate and shell programs. Results for K have been given fo with a variational principle for the rate problem, as in the small distortion
surface cracks of various shapes in plates, and for axial and circumferentia theory, and the finite-element method was based directly on it. In contrast,
semielliptical cracks in the wall of a cylindrical tube. Their modell shows Hibbitt et al. propose a constitutive law in which the Jaumann stress rate is
promise of extension to the plastic range, and to a%pplic;ation within shel employed, rather than Budiansky’s time derivative of a stress measure
analysis programs to a variety of surface crack locations in pressure vessels referred to convected coordinates, and no variational principle is then applic-
able. The formulation begins instead directly from the principle of virtual
work and the resulting statement of equilibrium is differentiated to derive the
governing finite-element equations of the rate problem.

Computations of the type done by Needleman also serve to predict the
slight dilatation which should appear in macroscopic plastic constitutive
laws as a consequence of void growth. Berg [54] has suggested that such
dilatational constitutive laws could be used as a basis for stress analysis
procedures which include ductile fracture initiation as a consequence of a
proper stress analysis, rather than asan ad hoc supplement to such an analysis.

5.2. SURFACE CRACKS

6. Micromechanics and Development of Fracture Criteria

Here we discuss the use of computational methods in the description o
fracture processes on the microscale, and in the merging of such studies wit
elastic—plastic analyses at the continuum level so as to develop rationa
fracture criteria. The area is not yet very much studied, and hence our em
phasis will be in part on pointing out what we consider to be opportunities fo
productive use of computational stress analysis methods for problems of thi
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Here the idea is that such constitutive laws, which already include the volum
change due to void growth, may also ultimately permit localization in.
band as representative of unstable void coalescence on the microscale. Thi
may occur when the hardening inanincrement ofdeformationisjustbalance
by the softening due to the increased porosity through void growth, provided
also that the kinematic condition is met of existence of a plane of zero exte
sion rates. The types of problems for which such an approach may
valuable (e.g., metal-forming processes) typically involve extensive plast
flow and will require a numerical formulation appropriate to finite strai
Very little has been done to date. Indeed, even the classic problem of duct
fracture initiation in the necked region of a round tensile bar is unsolved a
present. -
The mechanics of void initiation from inclusions has also received litt!
attention, although the problem of determining the stress state in and near
nonyielding inclusion in a ductile matrix is certainly within the capabilit
of existing analysis methods. Huang [55] has presented such a study fo
circular cylindrical inclusion in a Ramberg-Osgood power hardenin
material through a method of Fourier expansion and finite differences
which, unfortunately, does not seem to offer. the possibility of genera
application. '

(o) (b}

. Fig. 15. Two possible solutions to the slip line analysis of the blunting of an initially sharp-
tipped crack.

Ignger centered. Instead it feeds into a spiral region D ahead of the tip of a
size roughly comparable to the crack opening. We have seen that §, is of the
order of an initial yield strain times the maximum linear dimension of the
p}astic zone. Representative numerical values for a wide range of low and
hlgh strength structural metals are between 0.003 and 0.03 times the zone
size. Hence, in Fig. 15 we see a minute fraction of the total plastic region and,
.indeed, the blunted tip would appear essentially as a point when viewed on
the size scale of the plastic zone. For this reason, Rice and Johnson suggested
that crack tip blunting could be studied for the contained plastic yielding
range by applying rigid-plastic theory locally to region D, using the fact that
straight slip lines of the fan transmit a uniform velocity along their length
and hence that radial velocity, as a function of angle, should differ negligibly
from the result for the solution which neglects geometry change effects. That
1s, tbe radial displacement rate #,°(f) from solutions of the type discussed
earlier is taken as the normal velocity, as a function of slip line angle, imposed
from the fan region along the boundary between C and D. From this it is
straightforward to numerically calculate, in order, the velocity field in terms
of slip line coordinates, the movement of the crack tip, the resulting physical
_coordinates of points of the slip line field in D, and hence the entire local
istraig and displacement solution for crack tip blunting. Rice and Johnson

desclrlbe a computational scheme for doing this and give some representative
results. '

The greatest difficulty with such solutions is illustrated in Fig. 15: As

-McClintock [3] has emphasized, solutions for an initially sharp crack are

, om‘m.ique. It is possible to find a solution involving smooth blunting as in

‘(a); it is also possible to find solutions in which the crack tip retains sharp

corners of singular strain rate as in (b). Indeed, there appears to be nothing

n continuum plasticity to enable a choice. McClintock suggests from

_observations of fracture surfaces that the latter is the more realistic picture.

6.2. FRACTURE MECHANISMS AT A CRACK Tip

The elastic—plastic crack stress analyses discussed elsewhere in this pape
were based on conventional small strain-analysis procedures, in that effect
of gebmetry changes on the governing equations were neglected. This
obviously incorrect within a distance from the tip comparable in size to th
predicted opening displacement. Analysis at such a scale is important sinc
ductile fracture mechanisms are operative in this very near tip region whet
large strains occur.

Rice and Johnson [39] have shown how the solutions based on neglect
geometry changes may be employed to set boundary conditions on
Jocalized analysis of the large crack tip deformations for the nonhardenin
model. In this case it is important that the distribution R() of the strength.
the strain singularity be known (as, for example, in Figs. 7 and 11), for fro
it the crack tip velocity field is computed and this is the boundary conditio
for the local large-strain analysis. The analysis is based on the application
slip line theory to the near tip region, and McClintock [3, 56] has similar
discussed large geometry changes at the tip. .

When the tip is drawn as progessively blunted by increasing load as:
Fig. 15, the constant stress regions 4 and B as in the Prandtl field of Fig:
remain, but they are separated by a fan of straight slip lines C which isn
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Strain-hardening effects cannot be properly included in the slip line
analysis of blunting. Nor can the interactive effects of growing voids. Hence,
it would seem desirable to apply some of the numerical methods for finite
strain to the crack tip blunting case. The problem is not straightforward,
however, due to the extremely small size of the large strain region in com-
parison to plastic zone dimensions (or, equivalently, to the great strain
gradients involved), and to the nonuniqueness as illustrated by Fig. 15.

As we have noted earlier, very little work has been done on cracks which
advance in a quasi-static fashion under increasing load. Of course, near tipv
accuracy is paramount in this case as always when fracture prediction is a
goal of the numerical solution. Perhaps a finite-element treatment could be
based on a focused mesh which moves relative to the material in each incre-
ment. Also, it would seem necessary that some plausible model of crack
advance at the microstructural level be analyzed in parallel with the con-
tinuum calculations in this case, for otherwise the increment in crack length
accompanying a given increment in load is not determined. McClintock
[3, 38] has suggested that a decohering layer ahead of the crack may provide

a proper model. The layer is imagined to represent a region of material in
which void growth is already in its unstable stages, so that a falling stress
versus separation-distance relation applies as a boundary condition on the
continuum plasticity problem. The amount of crack advance due to_a load
increment in this formulation would correspond to that length ahead of the
current crack tip across which zero load is transmitted.

Additional computational problems arise with subcritical crack growth
by stress corrosion and fatigue. For the first of these, the mechanical features
of the near tip state could be determined through any program suitable for
quasi-static crack advance. In the case of fatigue, important computational
problems include the determination of the cyclic deformation states near the

tip, its progressive blunting and sharpening, and the role of interference of
previously deformed material with crack closure at its tip.

7. Conclusion

Numerical procedures for accurate determination of elastic stress intensity
factors for the general two-dimensional crack problem were reviewed. The
elastic—perfectly-plastic crack tip deformation state was investigated through
a finite element treatment which was designed to allow the 1/r shear singu-
larity and associated crack tip opening displacement predicted from a
detailed asymptotic study. The importance of basing crack tip numerical
procedure on analytical results was emphasized when accuracy sufficient to
develop fracture criteria is required.

COMPUTATIONAL FRACTURE MECHANICS 621

The small scale yielding problem was modelled and expressions for crack

1 g

. ::; liiégte-element sglution to the large scale yielding of the circumferéntially
round tension bar was presented. The global solution as reflected

to fracture testing and prediction.
nu;l:; 'thlree-dlmensional aspect's of flawed structures were discussed and
ical treatments of the subject were reviewed. Finally, ductile fracture
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