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THIS PAPER is a study of the theoretical foundations of constitutive relations at finite strain for a 
class of solids exhibiting inelasticity as a consequence of specific structural rearrangements, on the 
microscale, of constituent elements of material. Metals deforming plastically through dislocation 
motion are of this class and form the primary application of the theory. The development is in 
terms of a general internal-variabIe thermodynamic formalism for description of the microstructural 
rearrangements, and it is shown how metal plasticity may be so characterized. 

The principal result is in the normality structure which is shown to arise in macroscopic 
constitutive laws when each of the local microstructural rearrangements proceeds at a rate governed 
by its associated thermodynamic force. This provides a theoretical framework for time-dependent 
inelastic behavior in terms of a “flow potential”, and reduces to statements on normality of strain 
increments to yield surfaces in the time-independent case. Conventional characterizations of the 
stress-state dependence of metallic slip are noted to be in accord with this concept of associated forces 
governing rates, so that the resulting normality structure may be considered directly applicable to 
metal plasticity. 

1. TNTRoDUCTI~N 

THE paper is concerned with the ‘essential structure’ (in the sense of HILL (1967)) of 
inelastic constitutive relations for a class of solid materials at finite strain. Both time- 
dependent and time-independent behavior are included. The limitation is to cases for 
which the inelastic behavior of interest arises as a consequence of specific structural 
rearrangements, on the microscale, of constituent elements of a material. The most 
notable case is perhaps that of the plastic behavior of metals arising as a consequence 
of slip rearrangements of crystallographic planes through dislocation motion. In- 
elastic behaviors arising from twinning in crystals, grain-boundary sliding and stress- 
induced phase transformations also fall within the classification. The intent is to 
provide a general theoretical framework for material behavior of this type, the emphasis 
being on determining those results which rely on features common to a wide class of 
inelastic behaviors rather than on specific and detailed features of any one particular 
case. 

Primary among results of this kind is the unifying normality structure which is 
demonstrated in macroscopic constitutive laws for a specific class of micro-structural 
deformation mechanisms and which depends only on the most essential feature of this 
cIass: Namely, that the rate of progression of any local micro-structurai rearrangement 
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within the material is dependent on the current stress state only through the thermo- 
dynamic force conjugate to the extent of that rearrangement. (When applied to metal 
plasticity this statement simply embodies the conventional notion that slip on a given 
system within a single-crystalline element is stress-state dependent only through the 
local resolved shear stress on that system or, at a more fundamental level of modeling, 
that the velocity of a given segment of dislocation line is stress-state dependent only 
through the glide force per unit length of that line.) When the kinetics of the structural 
rearrangements is thus characterized, it is shown that there exists a scalar potential 
function of the macroscopic stress-state at each instant in the history of deformation 
such that the inelastic part of the strain rate is given by its derivatives on correspond- 
ing stress components. This is for the general case of a time-dependent material; when 
the behavior may be adequately idealized as time-independent the theory reduces to a 
normality requirement of inelastic strain-increments with respect to a yield surface in 
stress space. These results are general in being completely independent of the micro- 
structural complexity or heterogeneity of a particular material, requiring only that 
local rates and associated thermodynamic forces be related in the manner postulated. 
Hence, in the case of metal plasticity, if slip is so characterized at the microstructural 
level, then the resulting macroscopic normality structure is applicable no matter how 
complex the structure of the polycrystal or composite material in which this mechanism 
takes place. 

It is most convenient to develop the theory in terms which are general enough to en- 
compass relevant material behaviors but at the same time so simple that the essential 
content is kept clear. Hence, the formalism is developed in Section 2 in terms of a 
finite number of discrete scalar internal-variables l 1, c2, , &,, each of which is assumed 
to characterize the extent of some local structural rearrangement which takes place at 
one of n difSerent sites within a given sample of material. No actual inelastic behavior is 
likely to be so simply characterized. However, this i.s sufJicient to lay bare the structure 
of the theory, and, as will be evident when the formalism is applied to metal plasticity 
in Section 3, it is a simple matter to adequately extend the work so that results apply to 
cases requiring afield-like internal-variable description of, say, the slipped state within a 
metal polycrystal. Indeed, all the basic results are derived in Section 2, with Section 3 
being concerned to show how the internal-variable description and the consequent results 
are adapted to the particular mechanism of metallic slip. 

The discrete internal-variable theory provides a generalization of the work of 
KESTIN and RICE (1970) to finite deformations. (Their work was in turn an extension of 
earlier studies on viscoelasticity by BIOT (1954) and MEIXNER (1954).) This approach 
views inelastic deformation of a given sample of material of the type considered under 
macroscopically homogeneous strain and temperature as a sequence of constrained 
equilibrium states: The state of the material sample at any given time in the deforma- 
tion history is taken to be fully characterized by corresponding values of the strain and 
temperature and the collection of internal variables which mark the extent of micro- 
structural rearrangement within the sample. Further, the relations between these and 
other state properties, such as the stresses, are taken to be the same as if an imaginary 
equilibrium state were created by fixing the internal variables at their current values 
through imposition of appropriate constraints. Hence, the formalism of equilibrium 
thermodynamics is adopted for processes, and using the point-function properties of 
thermodynamic potentials (especially reciprocity), we are able to relate changes in the 
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extent of any one local structural rearrangement to corresponding changes in the 

macroscopic stress or strain state. The result is embodied in (13) and (14) and this 

important relation allows an immediate demonstration of the unifying normality 
structure when rates and forces are related as discussed above. Section 2 also contains 
a discussion of thermodynamic restrictions on constitutive laws and of the relation 
of internal-variables of the local structural type considered here to the more usually 
intended internal-variable of an averaging type. 

Similar results on normality for constitutive laws in metal plasticity have been 
derived on mechanical grounds by MANDEL (1964) and HILL (1967) for the classical 
time-independent idealization and by RICE (1970) for time-dependent plasticity as in 

transient creep and rate-sensitive yielding. These studies similarly sought overall 

statements on the mechanics of polycrystal or composite elastic-plastic systems 
deforming by slip in each grain or sub-element on the assumption that associated 
shear stresses govern slip. They represent a progression from the early rigid-plastic 
study by BISHOP and HILL (1951) on polycrystal plasticity and incorporate elastic 
effects in a linearized fashion appropriate to infinitesimal strain. The present study, 
particularly in Section 3, provides a wider framework for these results and at the same 
time rigorously generalizes them to finite strain. In so doing, the relation of these 
studies to the present thermodynamic framework is made apparent, in that the 
mechanical model of an elastic body capable of internal rearrangement by slip is 
readily treated in a precisely analogous fashion based on point-function properties of 
its total strain energy. Indeed, the isothermal version of the present results may be 
interpreted in this way upon identification of the free energy of (9) as the strain energy 
of the mechanical model. (In this connection, I have learned from Dr. R. Hill that 
results on time-independent plasticity, apparently inclusive of those given here, have 
been obtained by him in a finite strain extension of studies in the spirit of HILL (1967).) 

1.1. Notation and dejinitions 

We shall let bold-face lower and upper case letters denote, respectively, first- and 
second-order tensors having components referred to a fixed Cartesian system x1, x2, xg. 
Dots and double dots will denote matrix products having equivalents in indicial 
notation (with summation convention) given by the following typical examples: 

A*a = [Aijaj], A-B = [AijBjk], A : B = AijBji; 

also, 

The superscript T on a tensor denotes its transpose; the superscript - 1 its matrix 
inverse. I denotes the unit matrix; IAl is the determinant of A. 

To describe a finite deformation, let x denote position vectors of material points 
in some reference state, and let z = z(x, t) denote positions at some later time t. Let F 
be the deformation gradient, 

dz=F.dx, F = h/ax, (1) 
and define the Lagrange (or material) strain tensor as 

E = +(FT.F-I). (2) 
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T will denote the Cauchy (or true) stress, and the Kirchhoff stress S (symmetric) is 
defined as 

s= /F/F-l~~*~-lT. 

The rate of stress working per unit current volume is 

(3) 

T:(di/dz)=(F-'.T):$= IF/-'S:k. (4) 
To study constitutive behavior, we shall consider a macroscopic sample of material, 

presumed statistically homogeneous and sufficient in size so that its mechanical 
response is representative of similarly chosen samples. Boundary conditions will be 
set so as to simulate macroscopically homogeneous deformation (HILL, 1967, and RICE, 

1970). Hence, to the neglect of strain gradient and like effects, conclusions drawn on 
mechanical behavior of the sample represent constitutive relations for the material. 
Let V and A denote the volume and bounding surface of the sample, respectively, V” 
and A” denoting the same in some reference state at a temperature #,, for which no 
forces act on the sample boundary. ~acroscopically homogeneo~ls deforr?~ation is 
simulated by prescribing locations z of surfac:: points, originally having locations x, as 

z = F. x, for x on /l’, (5) 

where I? is spatially constant and obviously to be interpreted as the macroscopic 
deformation gradient. F is readily shown to be the average over V” of the (generally) in- 
homogeneous deformation gradient in the material sample. A macroscopic strain E is 
defined in terms of F by (2). In view of the interpretation (4) of S as the work con- 
jugate, on a reference volume basis, of E, we define a macroscopic Kirchhoff stress S 
as the symmetric tensor satisfying the work equality 

S:6F=~jt.8zdAl (6) 
A 

for arbitrary 6z = 6F. x, where t is the Cauchy surface stress vector (assumed to con- 
stitute a self-equilibrating load field on A: zero body-force and acceleration). This 
equation may be solved as 

s = IFIF-' ~(~,,,d.,).F-lT. 

It may be shown that bracketed quantity in (7) is the volume average of the Cauchy 
stress, so that in this volume average sense (3) is also satisfied by the macroscopic 
Kirchhoff stress. Nothing in the subsequent analysis will change if I3 is chosen as 
some other symmetric material strain tensor, provided that the associated stress S is 
chosen in the work sense of (4) and (6). 

2. INTERNAL VARIABLES 

2.1 Oiaracterization of constrained equilibrium states 

The macroscopic inelastic behaviors under study are considered a consequence of 
internal rearrangements of constituent parts of the material sample. Here, for sim- 
plicity in illustrating the structure of the theory, we assume that a discrete set of scalar 
internal variables c,, t2, . . . , 5, (collectively 5) characterizes the state of internal re- 
arrangement, leaving the physical identification of these variables (in a specific case) to 
Section 3. The total number II is left unspecified. However, since each variable charac- 
terizes a specific structural rearrangement at a site within the material sample, n will 
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increase or decrease in approximate proportion to the size V” of the sample con- 

sidered. 
In general, each internal variable will change with time in some manner determined 

by local conditions at its site within the sample. However, this kinetic aspect of the 
problem is not yet to be considered. Rather, we deal here with the characterization of 
constrained equilibrium states. That is, we adopt the point of view that in principle, if 
not in practice, the internal variables could be held at any definite set of values by 
imposition of appropriate constraints, with the material sample attaining an equili- 
brium state corresponding to a prescribed stress S or strain E and temperature 8. Thus, 
S or E and 0, together with 5, are thermodynamic state variables. 

If various equilibrium states are considered, each corresponding to the same set 
of values for the internal variables, then neighboring states are related by the usual 
laws of thermo-elasticity. Hence, since V‘S: 6E is the work increment of surface 
forces on the material sample, (6), we will have 

V’S : 6E+ Od(V”r~) = S(Vu) or S : 6E+86v] = 6u, 

where I+ and VU are, respectively, the entropy and internal energy of the material 
sample. More generally, if neighboring constrained equilibrium states corresponding 
to different sets of internal variables are considered, we must write 

I’S : 6E -f&, + flS( V=Y/) = 6( V%). (8) 

Equation (8) serves to define the thermodynamic forces fi, fi, . . . , f, (collectively f) 
acting on the internal variables. (In the case of metallic slip, Section 3, a mechanical 
interpretation will be established for the thermodynamic forces.) 

For our following considerations, it is convenient to introduce the specific free 

energy C#I and its Legendre transform $ with respect to strain: 

l)b = $(S, 8, <) = E : 2 -4. 

We shall refer to $ as the complementary energy. Thus, (8) becomes 

E : AS+ l,f,66,+$e = S$. (10) 

Note that since the number of necessary internal variables increases, on the average, in 
proportion to the volume of the material sample considered, the term f, S(,/ V” may be 
interpreted as the volume average of work increments on internal variables. 

Equation (10) leads to the usual thermo-elastic constitutive structure when the 
internal variables are viewed as fixed: 

and, from (9), 

In addition, the forces associated with the internal variables are 

(11) 

(12) 
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By equating cross-derivatives of $, these lead to the Maxwell relation 

(13) 

Equation (13) will serve as a central equation in the development of the inelastic con- 
stitutive theory in Sub-section 2.2. Its employment will be kinematical, in that it 
relates variations in the internal variables to corresponding variations in the macro- 
scopic strain. 

Let 6E be the difference in strain between neighboring constrained equilibrium 
states, differing by 6S, 66, St. An inelastic or plastic portion (c?E)~ of the strain dif- 
ference is defined as that part which would result from the change in internal variables 
if stress and temperature were held fixed: 

(14) 

Similarly, an elastic (or thermoelastic) portion (SE)’ is defined as that which would 
result from the change in stress and temperature, if the internal variables were held 
fixed. Thus, 

where from (1 l), 
6E = (6E)’ + (c?E)~, 

(6E)‘=&+?-S+~6N. 
1 

(15) 

It should be noted that the physical dimension change of the material sample, corres- 
ponding to the inelastic strain increment (c~E)~, is not independent of the particular strain 
measure represented by the symbol E. This is because the increment is taken at con- 
stant S, and the change (if any) in forces applied to the boundary of the material 
sample so as to keep S constant will, of course, depend on the stress measure, and this 
will bear different relations to the boundary forces according to the adopted strain 
measure. 

The actual concern of this study is, of course, not with equilibrium states but with 
time-dependent deformation processes imposed upon the material sample. In this 
regard the viewpoint of the classical theory of irreversible processes (e.g. DE GROOT and 
MAZUR (1962)) is adopted here. Specifically, it is assumed that macroscopically 
homogeneous deformation processes may be suitably approximated as sequences of 
constrained equilibrium states, each fully characterized by, say, values for E, 0, 5 at 
the corresponding instant. Equivalently, validity of all the preceding relations is 
assumed during processes. Thus, for example, during a process, 

where 
(16) 

from (14), with an analogous expression in terms of S and 4 for the elastic portion of 
the strain rate, it being understood that all coefficients of the rate terms are to be 
evaluated from equilibrium relations. 

It should be noted that effects of local inertia terms, temperature gradients, etc. 
within the material sample (say, as a consequence of local fields due to dislocation 
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motion in the case of metal plasticity) have not been considered. Their incorporation 
would lead to a fuller characterization of state during processes, but at the expense of 
great complications which are best neglected in this first treatment. 

Sub-sections 2.2 to 2.4 are concerned with a normality structure in macro- 
scopic inelastic constitutive relations. This results from the assumption of a specific 
but appealing class of kinetic relations between the internal variables and their asso- 
ciated forces. The general thermodynamic argument is taken up again later in this 
section. 

2.2 A flow* potential for the inelastic strain-rate 

A unifying normality structure emerges in macroscopic constitutive relations when 
the following class of kinetic relations is adopted: At any given temperature and pat- 
tern of internal rearrangement within the material sample, the rate at which any 
specific structural rearrangement occurs is fully determined by the thermodynamic 
force associated with that rearrangement. That is, 

e, is a function offa, 8, 5 (for p = 1,2, . . . , n). 07) 

Hence, the current temperature and pattern of internal rearrangement may enter the 
kinetic equations as parameters, but the influence of the macroscopic stress state on a 
given structural rearrangement appears only through the fact that the associated force 
is dependent on stress. This is clearly not the most general class of kinetic equations. 
However, as will be seen in Section 3, it does embody conventional notions in metal 
plasticity that the associated shear stress governs slip on a given crystallographic 
system or, at the discrete dislocation level, that the force on a given segment of dis- 
location line governs its motion. Note that the inelastic behavior considered here is 
time-dependent in that a finite rate of change of each internal variable, and hence a 
finite inelastic strain-rate (@p, is associated with each state of stress, temperature, and 
pattern of internal rearrangement. The time-independent idealization of inelasticity is 
considered separately in Sub-section 2.3. 

The kinetic equations may be recast in the form 

where the integral is carried out at fixed values of 0 and <, and defines a point function 
off since each term in the integrand is an exact differential. Now let us recognize that 
the thermodynamic forces may be viewed as functions of the macroscopic stress S, 8, 
and f, and define 

Q(S, 0, <) = + f(Sf ‘) [,(f, 0, 5) df,. (1% 
0 

The stress derivatives of $2 are 

aQ(S, 0, C) 1 * 
as 

= p <,(f, 8, 5) ay$ 0, 

and the right-hand side of this equation has been shown (see (14) and (16)) to equal the 
inelastic strain-rate. 
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Hence, we see that the general form of (17) for the kinetic relations implies a 
remarkable unifying feature for macroscopic constitutive relations, in that we have 
demonstrated the existence of a ‘flow potential’ a such that 

geometrically, the inelastic portion of the strain-rate vector lies normal to surfaces of 
constant flow potential in stress space. 

Adding the elastic portion of the strain rate, as given in terms of the complementary 
energy by (IQ the complete constitutive form is 

(21) 

where $I and 52 are functions of S, 0, and <. Alternatively, having established the 
primary result, we may suppress reference to internal variables. From (17), c is some 
functional over prior time of § and 8, so that $ and Q may be viewed as functions of 
the current stress and temperature and as functionals, over prior time, of stress and 
temperature history. With this viewpoint, the derivatives in (21) are to be taken with 
respect to current values of S and 8, regarding the prior history of both as fixed. 

The inverted form of the constitutive rate law is readily shown to be 

(22) 

where here the free energy 4 and the Aow potential f2 are viewed as fLlnctions of E, 8, 
and C (or alternatively as functions of current E and 0, and as functionals, over prior 
time, of their history). Of course, the first two terms of (22) represent the stress 
increment (actually, rate) associated with increments in strain and temperature at 
fixed values of the internal variables. 

2.3 ~~~e-~~ldepe~dent behavior and normality to yield surfaces 

Time-independent inelastic behavior (as in the classicat elastic-piastic ideali~tion 
for metals, neglecting creep and rate effects) may be formulated as a limiting case 
of the above time-dependent formulation. Following the discussion of RICE (1970) for 
small-strain metal plasticity, we consider materials for which there exists, at each 
instant in the course of deformation, a range of stress space over which the flow 
potential is nearly constant, and outside of which enormous gradients occur in the flow 
potential. The time-independent idealization results from representing the flow 
potential in a singular limit in which we replace, in the above wording, ‘nearly con- 
stant’ by ‘constant’ and ‘enormous gradients’ by ‘an unbounded gradient at the limit 
of the range’. The boundary of the corresponding range in stress space is what is 
commonly referred to as the current yield-surface. That is, the yield surface may be 
viewed as a singular clustering of surfaces of constant how potential. Normality of the 

inelastic strain-rate to flow potential surfaces results, in the singular limit, to normality 
of inelastic strain-increments to the current yield surface (at least at smooth points). 

The time-independent idealization of inelasticity may be discussed directly, rather 
than as a limiting case of the time-dependent theory, by adopting HILL’S (1967) 
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formulation to the present internal-variable model. The time-independent analog of 
(17) is that for p = 1, 2, . . . , n, viz. 

~~=Oif~~<f~<f~; f,=fFif&>O; f@=fiif ij,cO, (23) 

wherefi and fi are functions of 0 and 4 which mark the lower and upper limits to 
the range of forces which are incapable of inducing a corresponding structural re- 
arrangement. Here, each fa is regarded as a function of S, 8, and 5. A yield surface 
in stress space, corresponding to a temperature @ and pattern of internal rearrangement 
5, is defined as the locus of stress states which produce equality in at least one, and 
violate none, of the yt inequalities 

f ;<R 5) G fs(S, 4 5) G fs”(R 5). (24) 

That is, the yield surface is the envelope of the 2n surfaces in stress space corresponding 
to each of the limiting yield equalities for the internal forces. The stress state at any 
instant during the course of an inelastic deformation must, of course, lie on the yield 
surface. 

It is clear that @JdS, when evaluated for any stress state on the surface fa = fi, 
is a ‘vector’ lying in the outward normal direction to the surface at that stress state. 
Similarly, - afp/aS is an outward normal on the surfacef@ = fk. (Here, the ‘outward 
region of stress space is that for which the yield inequahty on fs is violated.) Since 
(see equations (14) and (16)) 

the inelastic strain-rate is resolvable into portions which may be represented as out- 
ward normal vectors to each of the surfaces representing limiting yield equalities for 
the active internal variables. 

Thus, if the yield surface is smooth (has a unique outward normal) at some stress 
state achieved in a program of inelastic deformation, the inelastic strain-rate takes the 
direction of the outward normal to the yield surface at that stress state. More 
generally, it must be expected (HILL, 1967) that the yield surface will contain a pointed 
vertex at the current stress point. This vertex corresponds to the envelope of surfaces 
of the form fa = j’i (or $) passing through the current stress point, there being one 
surface for each variable which is active or potentially active under the current stress 
state. The inelastic strain-rate must then take a direction within Hill’s cone of limiting 
outward normals. 

The rates < associated with stress and temperature rates s and 4 imposed on the 
material sample are obtained by consistency conditions. Suppose, for example, that 
for a particular variable we have &(S, 8, 4) = fF(t?, 5) when s and 8 are imposed. If 
the variable remains active (i.e. if ta # 0) the equality must remain and therefore 

(26) 

There is an analogous equation for each active variable and we assume that the equa- 
tions are, in generai, uniquely solvable, not only for e under the assumption of a given 
set of active variables, but also for the set of variables which are indeed active in accord 
with (23) and (24). The complete constitutive law between I?, $ and 4 is then as in 

30 
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(21), with the term &2/~% replaced by the expression for (@p in (25), and with the 
above consistency relations employed to express 4 as a homogeneous function of 
degree one in S and 8. 

2.4 Internal rearrangements not describable through explicit state-variables 

The principal results developed so far, pertaining to the flow potential and nor- 
mality structure of macroscopic constitutive relations, do not, in fact, require the 
existence of a set of explicit thermodynamic state variables 5. Rather, as will be shown 
here, we need only the notion that a specification of stress or strain, temperature, and 
the current pattern of internal rearrangement (including the path history by which it 
was achieved) of a material sample is sufficient to characterize the state, in that 
definite values can be assigned to the free energy, entropy, etc. for any such specifica- 
tion. For example, we may wish to assume that there exists an explicit set of variables 

51, 52, . “3 (,, which characterize the internal rearrangement, but that these are not 
state variables in the sense that thermodynamic state functions are not point functions 
of the l’s, but instead depend on their path history. That is, we may assume that 
f=Sg,, at fixed E and 0, is not an exact differential. More generally, we do not have to 
assume that any explicit set of variables is available to characterize the internal re- 
arrangement. Instead, we need only to assume that we can uniquely characterize any 
infinitesimal change in the pattern of internal rearrangement. (For example, anticipat- 
ing the studies of Section 3, the continuum slip-model for a crystal characterizes the 
state in terms of the plastic shear strains on each of the slip systems, but it would be 
naive to assume that the state achieved is independent of the path by which a given 
set of shears is attained. Indeed, not even the shape of a deformed crystal is, at finite 
strain, independent of the order in which the various plastic shears are applied. Also, 
for the discrete dislocation slip-model, it does not appear that any set of variables, even 
of a field type, can characterize the internal rearrangement due to dislocation motion, 
especially when dislocation generation and annihilation is considered. One can, 
however, uniquely characterize all possible infinitesimal changes in the position of 
each dislocation line.) 

These possibilities may be included, keeping within the simplicity of the present 
discrete variable description, by assuming that at any given pattern of internal re- 
arrangement of the material sample, a set of discrete scalar infinitesimals X1, X2, . . . , 
St& characterizes all possible infinitesimal variations in internal arrangement. It is not 
necessary to assume that any variable c, exists such that SC& represents an infinitesimal 
change in that variable, although the treatment may include this as a special case. 
Equation (8) is adopted, under this more general interpretation of the symbols 

851, X,, . . . , as defining the forces fi, f2, . . associated with each of the infinitesimals. 
We shall work with its transformed version in terms of the complementary energy $, 

where now Q!J is viewed as an explicit function of S and 8, which depends additionally 
on the pattern of internal rearrangement (denoted symbolically by the letters PIR, SO 

that we write II/ = $(S, 0, PIR)). This latter dependence is assumed to be such that S$ 
is linear in S<i, St2, . . ., which is the same as assuming that each of the forces is in- 

dependent of the 65’s: f = f(S, 8, PIR). 
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E MS, 0, PIR) = --. 
8s (27) 

Now let 6PIR denote symbolically the change in the pattern of internal rearrangement 
resulting from imposition of the St’s The associated change in strain, when S and 0 
are viewed as fixed, has previously been defined as the inelastic portion of a strain 
increment. Thus, 

(c~E)~ = E(S, 0, PIR + 6PIR) - E(S, 8, PIR) 

= $ [I@, 8, PIR+&PIR)-+(S, 8, PIR] 

This important result shows that (14) retains validity (with the simple replacement 
of c by PIR) even when there are no explicit thermodynamic state variables to charac- 
terize the internal rearrangement. Since (14) was the key element in demonstrating 
the flow potential representation for (l?)p for time-dependent behavior, and the 
normality structure in the time-independent case, it is seen that these results carry 
over at once to the present formulation. We need only replace 5 by PIR in the equa- 
tions of Sub-sections 2.2 and 2.3, and interpret <, as &&/St where 6t is an infinitesimal 
time increment during which variations S<r, 6c2, . . . occur. For example, if in the 
time-dependent case, we assume that each t,(= J<,/&) is dependent on the state of 
stress only through the associated force&, then 

Q(S, 8, PIR) = + s t,(f, 8, PIR) df, 
0 

(29 

(the integral on f being carried out at fixed 8 and PIR) is the flow potential in that we 
may demonstrate directly from (28) that XI/ZS = @I)“. 

2.5 Thermodynamic restrictions 

Let us suppose that our material sample is taken from one constrained equilibrium 
state to another, denoted by (1) and (2), by an irreversible process extending from 
times t(l) to t c2). Suppose heat is supplied to the surface of the sample at a rate q per 
unit area, positive inward, at temperature 0 during the process, and let t be the surface 
stress vector during the process. Then, the first and second laws of thermodynamics, 
in classical form dealing exclusively with the comparison of equilibrium states, are 

tic) {j A > t - idA + J qdA dt = V’[U(~)- u(l)], 

t(2) 
,h, {i (q/e) dA} dt s ~“C~(2’-r(1)1, 

where the time integrals follow the actual irreversible process. Define VOQ = J q dA 
A 

so that Q is the total heat supply rate per unit reference volume. Following the 
classical approach to irreversible processes for a (macroscopically) homogeneous 
system with internal variables (e.g. KESTIN and RICE (1970)), we view all actual 
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processes as sequences of constrained equilibrium states. The above equations then 
apply for any choice of times t(l) and t (” during a process. Also, the surface work- 
rate term may be written as V’S: 8, where S is the stress as defined by (11) for con- 
strained equilibrium states, and the temperature 0 is taken as spatially uniform in the 
material sample. Hence, the assumed generalization of the laws of equilibrium 
thermodynamics to actual homogeneous processes is 

S:ti+Q=li, Q I ori. (30) 

Let a( 2 0) be the entropy production rate, defined by Q + 00 = &j. Then, from 

(8) and (30), 

(31) 

Thus, the second-law requirement is that the kinetic relations (19) involve a non- 
negative work-rate of the associated forces on the internal variables. Alternatively, if 
(12) is taken forf,, we have 

g, W!!;” 5) < 0. (32) 
a 

That is, the rates of internal rearrangement actually occurring during a process must 
be such that the free energy would decrease if strain and temperature were held fixed 
at current values. 

2.6 Transformation from specific structural variables to averaging variables 

The restrictions on kinetic equations implied in (3 1) and (32) parallel those in other 
internal-variable treatments of inelasticity (e.g. DE GROOT and MAZUR (1962), COLE- 
MAN and GURTIN (1967)), at least when these are specialized to homogeneous deforma- 
tion. The primary difference is in the interpretation of the internal variables. Here, 
we have thought of each variable as describing a specific structural rearrangement 
occurring at a local site within the material sample. Since the number of sites which 
must be characterized increases in proportion to the size of the material sample con- 
sidered, so also does the number of necessary variables. In contrast, the more usual 
viewpoint would have the internal variables represent averaged measures of the 
structural rearrangements taking place at the many operative sites within the material 
sample. The number of such averaging variables required for a suitable characteriza- 
tion bears no relation, of course, to the size of the material sample. 

The utility of the specific structural-variables considered here is in the general 
normality structure of constitutive laws which can be uncovered when our under- 
standing of the structural rearrangements permits us to assume that the rate at which 
each takes place is governed solely by its associated thermodynamic force. Such an 
assumption does seem warranted, for example, in the case of plastic deformation 
through slip in metals (Section 3). However, once this normality structure is estab- 
lished, we no longer need to consider the dependence of the flow potential (or yield- 
surface location, in the time-independent case) on all the specific structural-variables 
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5 1, .**> 5,. Instead, as suggested after (21), we may regard the r-dependence of D as 
equivalent to a memory functional dependence of 52 on prior stress and temperature 
history. Alternatively, the specific structural-variables may be replaced by internal 
variables of the averaging type. 

An illustration of the difSerent viewpoints. Consider a metal which deforms 

plastically as a consequence of dislocation motion. The description of state in terms 
of specific structural-variables is then equivalent to a description in terms of the 
location of all the discrete dislocation lines in a macroscopic sample of the metal. 
Such a description obviously cannot be pursued in detail. It is useful, however, if 
conclusions of a general nature (such as the existence of a flow potential) can be drawn 
from it. Once this is done, further specialization of the form of the constitutive laws 
must follow simpler lines: PIPKIN and RIVLIN (1964), for example, suggest memory 
functional representations in metal plasticity. Alternatively, KR~~NER (1963) suggests 
that various statistical moments of the dislocation distribution may serve as internal 
variables. Krijner’s suggestion is, of course, that of a description in terms of averaging 
variables. 

Let us assume, then, that a certain set of averaging variables cl, cz, . . . , & (col- 
lectively 5) may be found such that, to a suitable approximation, we may consider 
these as internal state variables which, together with S or E and 8, fully determine the 
energy and entropy densities (u, 4, I/, q) of the material. We consider these variables 
to be given by expressions of the type 

where the inclusion of V” is meant to indicate that these are volume average expres- 
sions of a type whose value may be assumed to be independent of n and V” when both 
are sufficiently large. Naturally, we shall wish to assume that the number of averag- 
ing variables, k, necessary for an accurate description is small, whereas the number 
of specific structural-variables, n! is to be considered enormous for any macroscopic 
volume V”. 

A set of generalized forces g,, . . . , g, conjugate to the averaging variables may be 
defined through writing, in analogy to (S), 

S : 6E-glc8&,+8Sr] = 6u (34) 

for all neighboring states of constrained equilibrium. Thus, proceeding in parallel 
to the discussion in terms of the specific structural variables, one may write, for 
example, 

E = MS, 0, WS, s/r = @(S, 0, WX,, 

(6EY’ = X,,WS, &5)/X, = X,&JS, 0, WS. 
(35) 

Also, on treating processes as sequences of constrained equilibrium states, the entropy 
production inequality reads 

and so restricts kinetic equations for the averaging variables, 
Let us now consider what is implied, at the level of a description in terms of 

averaging variables, when the kinetic equations in terms of the specific structural- 
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variables have the form of (17). Comparing (34) with (8), it is seen that 

gr S& replaces &XC 

We interpret our assumption that the state is characterized to sufficient accuracy by 
the chosen set of averaging variables as implying that f, may be written to sufficient 
accuracy by requiring equality of these two work-terms for all St. Hence, 

f, = f,(g, 5) = v”s,K,(SP vVX.Z, (37) 
and one may write the rate of change of the averaging variables as 

(38) 

This implies that < is derivable from a potential of g, for [,df= (at fixed 8 and 5) is an 
exact differential. Indeed, the potential is simply the flow potential of (19) written as a 
function of g, 8, and 5, 

(39) 

(the integral again being carried out at fixid 8 and c), for then we have 

(40) 

Given the interpretation of the averaging variables, we may wish to assume that the {- 
dependence of D may be expressed to sufficient accuracy by writing Q(g, %,5), although 
the most general case would have the {-dependence replaced by a memory functional 
of prior g and % history. 

From (35) and (40) we have 

(QP = [ -* 
P 

&,(S, %, C) = a2g, %, 5) @,(S, Q, 0 _ aQ(S, %, 5) 
f3S @iI as as ’ 

(41) 

which shows how the flow potential representation arises within the present formalism. 
Also, as may be expected from (40), the corresponding time-independent treatment 
leads (cf. (38) and (25)) to the conclusion that 4 lies in the outward normal direction 
to the yield surface in g-space at a smooth point, and within the limiting normal direc- 
tions at a vertex. Hence, we see that %, g and (I!Qp, S have precisely parallel relations in 

terms of the normality structure of constitutive laws. No essential changes result when 
the dependence on c is replaced by one on PIR. 

Last, it is worthy of note that in the simplest linear theory, 52 may be taken as a 
quadratic function of the g’s so that (40) results in 

t, = L&I,, where LaA = L,,,. (42) 
But g and 4 are the conjugate forces and fluxes in the entropy-production expression 
(36), and if the various ass~ptions underlying Onsager’s theory (see DE GROOT and 
MAZUR (1962)) are to be considered applicable here, the symmetry of &A would be 
expected on different grounds. The detailed relation between these points of view is 
unclear. We can, however, see that reciprocity will be a general consequence when the 
dissipation during a macroscopic process is describable, at the specific structural- 
variable level, as being due to a collection of linear dissipators, each characterized by 
a scalar rate which is dependent only on the associated force. 
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3. APPLICAYION TO METAL PLASTICITY 

3.1 Background 

The results of Section 2 on the flow potential and associated normaIity structure 
of constitutive laws are applicable to metal plasticity if the plastic behavior of interest 
may be suitably represented through internal structural variables, and if the rate at 
which each structural rearrangement proceeds is governed by the corresponding 
thermodynamic force. Taking crystalline slip to be the mechanism of plastic deforma- 
tion, we shall see in this section that an internal variable-description is possible. This 
involves a generalization of the discrete variable formulation to field-like descriptions 
of slip, but no change of substance, and is pursued for two slip-models: a continuum 
s~ip-~~ade~ and a discrete dislocation shop-model. 

The assumption that each slip rearrangement is governed by its associated thermo- 
dynamic force is shown, for the most common circumstances of small elastic dimension 
changes, to agree with the Schmid-law characterization of the stress dependence of 
slip (in terms of the resolved shear stress on a slip system). Hence, within the accuracy 
of the Schmid characterization in such cases, the flow potential and associated 
normality structure developed in Section 2 are applicable to metal plasticity. Indeed, this 
structure was first developed on the direct assumption of either negligible or small and 
linear elastic effects by BISHOP and HILL (19X), MANDEL (1964), HILL (1967) and RICE 
(1970). For those circumstances in which elastic dimension changes are not small, the 
assumption of the governance of slip processes by the associated thermodynamic 
forces provides one possible and appealing generalization of the Schmid law. How- 
ever, the proper characterization of the stress dependence of slip in such cases is un- 
resolved at present. 

3.2 Continuum slip-model 

This model ignores the discrete dislocation substructure in a metal crystal, con- 
sidering instead that plastic deformation occurs in the form of smooth (in the usual 
continuum sense) shearing deformations on certain planes of a crystal and in certain 
permissible directions on each such plane. The allowed planes and directions constitute 
the ‘slip systems’ of the crystal. This continuum slip-model was employed in a rigid- 
plastic context by BISHOP and HILL (1951). HILL (1966, 1967) has discussed the corres- 
ponding characterization of slip in the elastic-plastic case on the assumption of small 
elastic effects. Here, a description of slip is developed for cases of finite elastic as well 
as plastic effects. The procedure employs a kinematical decomposition of deforma- 
tions analogous to that employed by LEE (1969). 

We consider a homogeneous single crystal which is free of stress and at a reference 
temperature Be, Let CL be an index denoting its slip systems. Orthogonal unit vectors 
n(@ and sfa) will denote the normal to the slip plane and slip direction of a given system. 
We are interested in characterizing the structural rearrangement of the crystal into 
other stress-free states at t3e as a consequence of homogeneous simpIe shears of 
amounts y@) on the various slip-systems. These are assumed to leave the volume of 
the crystal and the relative orientation of crystallographic directions unaltered. It is 
well to keep a clear distinction between the kinematics and kinetics of the problem. In 
particular, it is inconsequential at present that stresses would have to be applied to the 
crystal to actually produce such shears. Nor does it matter that after a given set of 
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shears is produced, an actual unloading of the crystal to the stress-free state might 
result in further slip deformation of a Bauschinger or time-dependent strain recovery 
type. The point of view is that one may consider the structural rearrangements and 
the applied stress or strains as independently prescribable quantities (to be reiated only 
when the kinetic relations are considered). 

Let x denote initial coordinates of material points and y their coordinates after 
structural rearrangement of the crystal by the shears. FP will denote the transforma- 
tion in this rearrangement so that, apart from a rigid translation, 

y=FP.x. (43) 

We choose the rotational part of FP so that all crystallographic directions remain 
fixed in space. If the crystal is rearranged by simple shears of amount Sy(‘), we have 

& = c @+(“)[“(a) * y], and thus 6FP = c ~~(a)s(a)~(*) -FP. 
t 1 (44 a a 

Note that FP is not generally a point function of the shears, but depends instead on 
their sequence of application. 

As remarked, to effect changes in the shears it will be necessary to apply stresses 
to the crystal and this may occur at a temperature other than 8,. Presuming homo- 
geneous deformation, coordinates z of material points in a stressed state at temperature 
0 may be written 

z=F*x, where F=Ei*FP and z=I?*y, (45) 

so that 8 is the deformation gradient from the structurally rearranged state of the 
crystal to its current state. @ includes the effects of rigid rotations of crystallographic 
directions, elastic stressing from an unstressed state at the same shears, and tempera- 
ture change from 0,. We shall call it the tlzermoelastic deformation gradient. Also, in 
LEE’S (1969) terminology, FP characterizes the ~nter~7ed~~te reference state resulting 
if the crystal is returned to an unstressed state at temperature 0, with the shears y(‘) 
held fixed at their current values. 

More generally, if the crystal is inhomogeneously deformed so that the magnitudes 
of the shears y(” vary from point to point, we may define FP at each point of the crystal 
through the integration of (44) at that point. FP then need not be compatible. Rather, 
it is the total displacement gradient @ -FP, appearing as 

dz = E.FP.dx, (46) 

which must be derivable from a displacement field. Of course, if an element of small 
size (compared to characteristic lengths in the gradients of the shears) is cut from the 
crystal, freed of stress, and returned to its reference temperature and orientation, all 
while the shears are held fixed, then FP as so defined will be its deformation gradient. 
This idea will form the point of departure for the discrete dislocation model of slip, FP 
then having a Dirac delta-function form with singularity on the portion of slip plane 
swept over by a dislocation Iine. 

Now let us follow the internal-variable formulation of Section 2: We consider a 
macroscopic sample of polycrystalline or other composite material having volume I’” 
in a load-free reference state at 8,. Each grain or sub-element is assumed to have a 
single-crystal structure capable of slip in the sense described above. The sample is 
subjected to boundary conditions simulating macroscopically homogeneous deforma- 
tion, and S and E are the macroscopic stress and strain as in (5), (2) and (6). Our 
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viewpoint is that for the characterization of constrained equilibrium states, we may 
independently prescribe the strain E, temperature 8, and shears yfa) (the latter point-by- 
point in each grain or sub-element, for a collection of slip systems appropriate to that 
sub-element). The shears play the role of variables describing the pattern of internal 
rearrangement of the material sample. It is not necessary to consider them as internal 
state variables (nor could we, for not even FP of (44) is fully determined until their 
sequence of application is given). Rather, the viewpoint is as in Sub-section 2.4. A set 
of thermodynamic shear stresses z(‘) are defined for each operative slip system at 
each point of the material sample by writing, in analogy to (S), 

V”S : iiE- LO T z%y(a) dV”+ M(V’q) = 6(V”u) (47) 

for neighboring constrained equilibrium states. Later, we shall see the mechanical 
interpretation of these stresses. 

Results may now be read directIy from Section 2: The inelastic portion of any 
general strain increment is (see equations (14) and (28)) 

(48) 

where y is meant to indicate a dependence on the current slipped-state throughout the 
material sample, it being understood that z(‘) and other thermodynamic variables are 
not simple point-functions of the shears. Hence, if for each operative slip-system at 
each point of the sample we have 

j@) is a function of zCa), 8, y, (49) 

then a ffow potential Q exists such that @lp = aQ/ZS with (cf. (29)) 

t-V% 0, y) = ;; 
s c (‘““7 8, y) 

j(a)(+), 0, y)dz’“’ 
1 

dV”. (50) 
v0 a 0 

In like fashion, the results of Section 2 on complete constitutive rate laws, the time- 
independent case, thermodynamic restrictions, and the use of averaging variables are 
all directly applicable here. For the normality structure, the key assumption is 
expressed in (49): slip at a point on a given system is influenced by the local state of 
stress only through the thermodynamic shear stress for that system. 

3.3 ~ec~a~ica~ i~t~r~re~a~ian of ~~er~~~~y~a~i& shear stresses 

To interpret the stresses Pf in mechanical terms, let us begin by rewriting (47) in 
the form 

j t.6~ dA- Jo T P’Gy’“‘dV”+O if0 61 dV” = j 6u dl/“, (51) 
A if" 

where (6) has been employed and where g and u have been re-defined as the entropy 
and internal energy densities per unit volume of the material sample as measured in its 
macroscopically stress-free reference state at temperature B,, (and hence reffect the 
heterogeneity of the polycrystal or composite). If we assume that an equation of type 
(51) holds for all sub-regions of the sample, then 

/F/T : @F-F-‘)- c ~(=)~y(~)+~~~ = au, (52) 
a 

where F is the deformation gradient at the point of the material sample for which the 
equation is written and T is the local Cauchy stress tensor. It must be noted that while 
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the macroscopic stress is zero, there may be a residual stress field within the grains 
or sub-elements of the sample in its initial reference state. Hence, the thermoelasti~ 
deformation gradient I? is initially different from the unit tensor. If we denote its 
value by p at the point under consideration, then 

F = @.FP.(@j-‘, (53) 

where E and FP are defined as in Sub-section 3.2, the latter being based on an in- 
tegration of (44) for any fixed orientation of the crystal directions in a stress-free 
crystal at 0,. (Note that a point of the macroscopic material sample is a point of one 
of the single crystal grains or sub-elements of the sample.) 

With (44) and (53) the increment of stress working may be written as 

fF[T : @F-F-‘) = [I?l-i 
( 

/@/(I?-r*T) : 68-k C ~“‘~[/PI(~-“~T)]~(~~s~‘))~~(~‘~. (54) 
a 

But IPI@-’ *T) is the nominal stress tensor based on the intermediate reference-state 
(that is, on the state characterized by the rearrangement matrix FP, obtainable by 
relief of local stresses and return of temperature to 0, while the shears are held fixed). 
Hence, n’“’ dotted with this stress tensor is the force acting on slip plane E per unit of 
area as measured in that intermediate reference-state. Also, I? + da1 is a vector which 
coincides with the direction taken by the crystallographic vector sfaf in the current 
deformed state of the crystal, and which is of length A(@), where $a> is the stretch ratio 
for the a slip-direction in deformation from the intermediate reference-state to the 
current state. Thus, the stress work increment may be written as 

IF~T:(~F.F-l)= 1Pol-1 JP~(P-"*T):&+ C eca)X(%+=) 
-I CiZ > 

, (55) 

where f2(‘) is the nominal shear stress acting on system a (i.e. shear force in the slip 
direction per unit of area in the intermediate reference state). 

We may therefore rewrite (52) as 

l@“l-‘ii;‘[@-” ‘T): SP+ 2 (I~“l-‘R(a)~(“‘-z’“‘)6y’“‘-~68 = 64, (56) 
(x 

where 4 = u - Oq is the free-energy density. Let us consider 6, as a function of @, 8, and 
the y’s, it being understood that 4 need not be a point function of the latter, but only 
that its increments take the form 

wherep(“) is the change in free energy per unit of shear rearrangement y@), when 0 and 
the thermoelastic deformation gradient are held fixed. Hence, 

T = I@“] ~~&%&.~~, and ,(a) = I@/ - 1 ficqw _ p’“‘(@, 0, y)* (58) 

(It is clear that @‘I arises here only because z@), q and u were taken on a unit volume 
basis in the initial reference-state of the material sample. It would not appear if 
instead these quantities were based on a unit voIume in the incompatible stress-free 
reference state defined at each point of the sample.) 

The simplest interpretation of the thermodynamic shear stresses arises when we 
assume that the thermoelastic properties of a crystal are unaffected by the shear 
rearrangements: That is, T is determined solely by fi and 8, independently of the y’s. 
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Thus, Q/a@ is independent of y and we may write 
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4 = 4*(@, 0) + 4**(& r), and therefore p@‘) = p’“‘(8, y). (59) 

If 4*&e,) is chosen to be zero, then 4** may be interpreted as the residual free-energy 
density in the intermediate reference-state. Hence, in this case the thermodynamic 

stresses are 
,(a) = [@“I- $$(~)~(a) - #“‘((J, y), (60) 

and the assumption that the thermodynamic stresses govern slip is, in mechanical 
terms, an assumption that the stress state in a crystal influences slip only through the 
product of the nominal shear stress on the slip system and the elastic stretch ratio in 
the slip direction. Of course, when elastic deformations are small, 2 z 1 and a nominal 
shear stress differs little from a true shear stress or some other kind, so that this agrees 
with the (imprecise) Schmid law that the resolved shear stress governs slip. 

It is of interest to note that the entropy-production inequality takes the form 
T *(a$+) > 0, or [PO/ - 1 ; @)~(.)j(a) > ; $+“‘j’“‘, (61) 

so that thermodynamic considerations do not require that the shear stress on a slip 
system and the shear rate on that system be of like sign (i.e. Bauschinger and strain 
recovery effects are not ruled out by the model). For isothermal deformation at 
temperature 0,, in a crystal with elastic properties unaffected by slip, this reads that the 
work rate involving the nominal shear stresses must exceed the rate of storage of the 
residual free-energy $**(&, y). 

3.4 Discrete dislocation slip-model 

This model considers plasticity to be due to the motion of discrete dislocation lines 
on planes belonging to the permissible slip systems of a crystal. The dislocations are 
viewed as singular curves in an elastic continuum which bound planar regions trans- 
lated one side relative to the other by characteristic lattice spacings. As such, the 
model takes no explicit account of the atomistically discrete structure of the lattice 
and its effects on the detailed kinematics of dislocation motion. RICE (1970) has dis- 
cussed some difficulties of the model, having to do primarily with the closeness of the 
‘sequence of constrained equilibrium states’ approximation for actual processes of 
dislocation motion, and these remarks apply here as well. 

Since finite deformations are to be considered, it is necessary to characterize the 
position of a dislocation line and dislocation motion in terms which reflect position 
relative to the lattice, and which are invariant to distortions of the lattice by elastic 
stressing or temperature change. Let us consider a single crystal which is, in some 
initial reference-state, free of dislocations, free of applied stresses, and at a temperature 
0,. We let b’“’ denote the Burger’s vectors as measured from lattice spacings in this 
unstressed reference-state and n (‘I the unit normals to slip planes for the various slip- 
systems of the crystal, the vectors being defined for some arbitrary but fixed orientation 
of the crystal. Suppose a dislocation is introduced by cutting and translating along a 
certain region of one of the planes belonging to system ~1. We shall let S denote the 
area of the cut and L its bounding curve, where both are measured-off in the initial 
reference-state of the crystal existing before the cut and translation (hence, S is a flat 
planar region which has II(‘) as a normal and contains the direction of b’“‘). After 
introducing the dislocation, and possibly applying external stresses and changing the 
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temperature, locations z of material points having positions x in the initial reference- 
state are related as in (46) with 

FP = I+ b(“)n(“)b,(n(“) * x)H,[x - n(‘)(n(‘) . x)1. (62) 
Here, we have imagined the origin of coordinates to be located so that x = 0 is a 
point of S, 6, is the Dirac delta function, and Hs is unity or zero according to whether 
its argument is or is not a point of S. Note that if x- and xf denote lower and upper 
limits (according to the direction of n’“‘) to a point on S, then this results in 

Xf 

j FP. dx = b@). 
x- 

This is consistent with the interpretation of FP given after (46), for if portions of the 
dislocated crystal are cut out in such a way as to be free of stress, and are returned to 
the temperature 8, and to the standard orientation, then material points will have 
locations y where dy = FP * dx. 

To characterize neighboring dislocation positions on the same slip plane, suppose 
the slipped area is changed to S ‘, having bounding curve L’, where each point of L’ 

is obtained by proceeding an infinitesimal perpendicular distance 6s from a point of L. 
Here, Ss, like L, L’, S, and S’, is measured-off in the initial reference-state and is hence 
invariant to thermoelastic deformations. Forces q per unit invariant length of disloca- 
tion line are now defined so that - j q6s dL is the change in free energy of the crystal 

for arbitrary variations 6s in the dislocation position, when the temperature and 
position of the boundary of the crystal are held fixed. 

These ideas are extended at once to a crystal, polycrystal, or composite material 
sample containing many dislocation lines on the several slip-systems within the in- 
dividual sub-elements. In particular, we define a force per unit length of dislocation 
line by writing in analogy to (8) and (47) 

V’S : 6E- j 96s dL -I- M( V’q) = 6( Vu) 
L 

(63) 

for all neighboring constrained equilibrium states. Here, the integral is understood 
to be taken over all dislocation lines in the material sample, dL is a thermoelastically 
invariant measure of arc length along the dislocations, and 6s an invariant measure of 
perpendicular advance of the dislocation lines in their slip planes. These measures are 
defined by the following conceptual operations: For dL, we scribe a line in the slip 
plane at a fixed small perpendicular distance E from the dislocation line, cut out a small 
surrounding tube about this line (of radius smaller than E) such that the material of the 
tube is stress-free, reduce the temperature to (IO, and take dL as the corresponding arc 
length along the scribe line when E -+ 0. Similarly, for 6s we cut out elements of 

material so as to include the portion of slip plane traversed by the dislocation but take 
care not to enclose the dislocation core, so that an invariant advance relative to the 
lattice may be defined when the elements are freed of stress and reduced in temperature 
to 0,. Of course, these definitions are in accord with the meanings of dL and 6s 
established above for the single crystal containing a single dislocation. 

Let us consider q as a function of S, 0, and various thermoelastically invariant 
features of the slipped state, which we need not enumerate here but denote collectively 
by y. Then, the inelastic portion of a general strain increment, or equivalently the 
strain increment due to changing dislocation positions at fixed stress and temperature, 
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is (see (14) and (28)) 

(64) 

Thus, if we assume that for any given pattern of dislocation lines the invariant lattice 
velocity v z 6s/& at a point along a dislocation is dependent on stress only through the 
associated force per unit length at that point, or 

v is a function of 4, 0, y, (65) 

then a flow potential Q exists such that (l?)p = LXI/aS. Here, by (29), the flow potential 
is 

Q(S, 0, r) = $ i { 
4(% 8, Y) 

j v(q, 0, Y)&} dL. (66) 
0 

It is, of course, common to assume that the force on a dislocation line governs its 
motion. As with the continuum slip-model, the statement is imprecise in that it 
tacitly assumes negligible elastic effects. Our present considerations again provide a 
precise statement and a possible generalization to cases when elastic effects are not 
small. 

4. CONCLUSION 

Here, our concern has been exclusively with the theoretical foundations of in- 
elastic constitutive laws for solids. This includes the general internal-variable thermo- 
dynamical framework which has been developed, and also the unifying normality 
structure which has been shown to result when each microstructural rearrangement 
proceeds at a rate governed by its associated force. Section 3 has shown how metal 
plasticity is treated within this framework, and it has been noted that conventional 
characterizations of metallic slip are such that the normality structure may be con- 
sidered applicable to this case. That section has thus provided a new and wider frame- 
work, together with a rigorous extension to finite strain, of previous work on con- 
stitutive laws in metal plasticity by BISHOP and HILL (1951), MANDEL (1964), HILL 
(1967), and RICE (1970). 

The crux of the argument leading to normality lies with (14) in the general formu- 
lation of Section 2, and with the corresponding relations (48) and (64) for the two 
metallic slip-models of Section 3. These directly relate microstructural rearrangements 
at sites within the material to inelastic variations in its macroscopic strain. When 
rates and associated forces are related as above, the existence of a flow potential for 
time-dependent behavior, or of yield surface normality in the time-independent case, 
is an immediate consequence. 

There is, of course, much related work done and to be done toward obtaining 
specific functional representations of memory effects, and toward developing tractable 
models incorporating slip mechanisms on the microscale. The effort is far too large 
to summarize here, although specific note may be made of the promising results from 
numerical analysis of ‘self-consistent’ models by HUTCHINSON (1964, 1970) for time- 
independent behavior and by BROWN (1970) for elevated temperature creep. It would 
be of interest to develop the relation of such models to the use of averaging internal 
variables as discussed at the end of Section 2, and also to seek their extension to the 
discrete dislocation slip-model. 
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Last, we note the relation of the present theory to a quite distinct and entirely 
macroscopic approach to metal plasticity, based on studies by DRUCKER (1951) and 
IL’YUSHIN (1961), in which cyclic-work inequalities of various types are employed to 
characterize material response in the time-independent case. HILL (1968) has examined 
such inequalities with special reference to their suitability at finite strain. He concludes 
that Il’yushin’s postulate of non-negative stress work in a strain cycle leads, when 
stated in our present notation, to normality of (6E)P to the yield surface in S-space 
at smooth points. We have concluded the same, and it is interesting to see the relation 
between the two approaches: This is most simply done by reverting to the discrete 
internal variable notation of Section 2. Consider isothermal deformation at a tem- 
perature 8, and let d(E, <) = u- OOyl be the free-energy density so that (8) may be 
written as 

S : dE = d@, Cl+ $f,(E, WL, (67) 

Now let us assume that the material is taken through a strain cycle, beginning at 
E”, go and ending at E”, cf. By (12), 

Thus, the work during the cycle from E” to E” may be expressed as 

7 S : dE = 6 i [fa(E, 5)-_fW, 81 @a, (68) 
ED D 

where it is to be understood that each integral follows the actual path of deformation. 
If the strain cycle involves only infinitesimal changes in 5 and hence also in plastic 
portions of the strains, and if increments in each internal variable are related to the 
associated forces as in (23), then it is clear that the right-hand side of (68) is non- 
negative at least to first order in cf - 5“. Thus, for strain cycles of this type, we see that 
the Il’yushin postulate is implied by the internal-variable theory developed in Section 2. 
(It should be noted that the proof of normality based on Il’yushin’s postulate (e.g. 
HILL (1968)) requires its validity only for cycles of this type.) 
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