
NUCLEAR ENGINEERING AND DESIGN 17 (1971) 64.-75. NORTH-HOLLAND PUBLISHING COMPANY 

P R O G R E S S  IN T H R E E - D I M E N S I O N A L  E L A S T I C - P L A S T I C  S T R E S S  

A N A L Y S I S  F O R  F R A C T U R E  M E C H A N I C S  * 

N. LEVY, P.V. MARCAL and J.R. RICE 
Division of  Engineering, Brown University, 

Providence, Rhode Island, 02912, USA 

Received 14 April 1971 

This paper summarizes progress in the development of finite element methods for three-dimensional elastic- 
plastic stress analysis in fracture mechanics. The work is directed toward the study of stress states near flaws such as 
a part-through crack in a pressure vessel wall, and emphasis is placed on the large scale plastic yielding range The 
development of a computer program with large computing capabilities is described. Special near crack tip elements 
and general isoparametric elements are employed in problems with two crack configurations. Preliminary results are 
given for the elastic analysis of a through crack and for the elastic-plastic analysis of a part-through semi-elliptical 
crack in a plate. 

1. Introduct ion 

This paper summarizes progress in the develop- 
ment of  finite element methods for three-dimensional 
elastic-plastic stress analysis in fracture mechanics, as 
a part of the Heavy Section Steel Technology Program. 
The problems considered deal with crack-like flaws. 
The part through the thickness surface crack in a 
pressure vessel wall is typical of those toward which 
the work is aimed. Further, the materials are regarded 
as tough, in comparison to those for which linear 
fracture mechanics is applicable, and hence the em- 
phasis is on the large scale yielding range. 

Paris and Sih [ l ] have reviewed the elastic analysis 
of cracks, and Irwin [2] has studied the problem of 
the embedded elliptical crack in an unbounded elastic 
body as a basis for an approximate treatment of the 
semi-elliptical surface crack. More recently, Smith 
and Alavi [3] and Rice and Levy [4] have presented 
elastic treatments of the part through surface crack in 
a plate. The former is based on solutions of the 
three-dimensional elastic field equations with approx- 
imate meeting of boundary conditions, whereas the 
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latter employs compliance matching to the edge 
cracked strip in plane strain so as to reduce the part 
through crack problem to one in two-dimensional 
plate (or shell) theory. 

Elastic-plastic fields near cracks are not yet well 
understood. Rice [5] has summarized progress in 
analytical studies, which are limited for the most part 
to simple models and sometimes also to small scale 
yielding and to total (as opposed to the proper in- 
cremental) stress-strain relations. It is only recently 
that crack tip singularities have been understood in 
the two-dimensional plane strain and plane stress 
models for elastic-plastic materials [5 -9 ] .  At another 
extreme, plastic limit flow fields have been found for 
plane straining of non-hardening materials in several 
notched configurations, and McClintock [ 1 O] has 
recently discussed these results. Current work on 
elastic-plastic fracture includes both fundamental 
studies on the relation of microstructural separation 
mechanisms to crack tip toughness [11-13] ,  and also 
general stress analysis studies aimed at aiding the 
interpretation and extrapolation of fracture test re- 
suits in the large scale yielding range. 

The finite element method has been widely adopt- 
ed for this latter task, and results of two-dimensional 
elastic-plastic analyses have been reported by Marcal 
and King [14] and Swedlow et al. [15,16], among 
others. Fracture initiation from the tip of a pre-crack 
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is, however, a highly localized phenomenon, and it is 
not clear that simple finite elements (such as constant 
strain triangles) can accurately represent the near tip 
deformation field. This problem of attaining near tip 
accuracy has been addressed recently by Levy et al. 
[17] for plane strain and by Hilton and Hutchinson 
[ 18] for plane stress, both approaches being guided 
by the analytical studies of crack tip singularities 
noted above. In particular, Levy et al. employed 
singular finite elements adjacent to the crack, capable 
of reproducing the strain singularity and discrete 
crack tip opening of the non-hardening material 
model which they employed, but otherwise adopted 
the Marcal and King formulation and method of solu- 
tion. Very little previous work has been done on 
three-dimensional finite element analysis of cracks 
with or without refinements for near tip accuracy, 
although Ayres [19] has presented a finite difference 
procedure for these problems. 

The overall aims of the three-dimensional work 
under discussion are outlined in the next section. 
Meaningful problems require enormous numbers of 
degrees of freedom (10 000 is estimated for the part 
through semi-elliptical crack in a plate), and this re- 
quires modifications of the general purpose program 
developed by Marcal and co-workers [14,20] which 
are discussed in the following section. Finally, some 
numerical results are presented. These are prelim. 
inary in nature, most of the work to date having 
been in the areas of program development, element 
design, and mesh generation. 
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Fig. 1. Dimensions of the cross-section and of the part- 
through semi-elliptical crack of a flawed tension specimen. 

cubic elements) requires many steps in the optimiza- 
tion of the computing procedures which are discussed 
in the next section. The general finite element which 
has been employed is the three-dimensional isopa- 
rametric element [21 ]. This is illustrated in fig. 2, 
and is obtained by arbitrarily positioning in (x,y,z,) 
(or physical) space the points corresponding to the 
corners of a unit cube in (~,~7~') space. The mapping is 
given by equations of the form 

x =XA(1 -- ~) (1 -- r/) ~" +XB ~j(l -- 7/) ~" + . . . .  (1) 

where x A,x B .... are x coordinates of the nodes 
A,B ..... The rectangular parallelepiped element is the 

2. Aims of three-dimensional finite element studies 

The immediate goal is to develop an elastic-plastic 
analysis for a plate under tensile loading containing a 
semi-elliptic surface crack (see fig. 1). The work to- 
ward this goal has proceeded in two principal direc- 
tions: 

The first of these is in developing general finite 
elements and computing procedures for large three- 
dimensional problems. Clearly, in a configuration 
such as that of fig. 1 a large number of elements is 
necessary, especially in view of the strong gradients 
anticipated along the crack front. This, coupled with 
the fact that the master stiffness matrix has a large 
bandwidth (typically 500 degress of freedom for 
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Fig. 2. The distorted cubic element in the physical space 
x,y,z and its map in the (~,rl,~') space. 



66 ~r Levy et al., Three-dimensional elastic.plastic stress analysis 

simplest special case and is used extensively, for ex- 
ample, at distances far from the crack surface distur- 
bance in fig. 1. The element is versatile by virtue of 
its possible distortions, as in fig. 2. Assumption of a 
similar form for displacements, e.g. 

u = u A ( l  - ~ )  (1 - n )  ~ + u B ~ ( l  - 7~) ~" + . . . .  ( 2 )  

where u A,u B .... are nodal point displacements, as- 
sures continuity across element boundaries. This 
element has been employed in preliminary studies of 
the semi-eliptical surface crack specimen, to be dis- 
cussed subsequently. 

As has been noted earlier, routine finite element 
solutions will not necessarily give sufficient accuracy 
very near the crack tip where continued fracturing is 
imminent. Thus, a second direction in the three- 
dimensional studies has been on developing special 
finite elements and procedures for accurate reproduc- 
tion of near tip singular behavior. It was necessary to 
employ a simpler configuration than the surface crack 
for this purpose, and therefore the through crack in a 
plate of finite thickness was examined (fig. 3). This 
problem is also of substantial interest in itself, and it 
contains, in simpler form, many of the features pres- 
ent for the semi-ellipse. For example, point A on the 
semi.ellipse in fig. 1 and the middle region of the 
through crack in fig. 3 both will be under conditions 
approximating plane strain constraint, whereas point 
B on the semi-ellipse and the similar point on the 
through crack both lie on surfaces for which the nor- 
mal and shear stresses are zero. The near tip analysis 
for this case is being pursued under small scale yield- 
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Fig. 3. Cylindrical cut-out used to analyse the three-dimen- 
sional throughcrack in a plate, with a typical finite element; 
h is the thickness of the plate; and x-y  is the mid-plane. 

ing boundary conditions [5,6,17]. That is, a set of 
surface stresses given by the characteristic two- 
dimensional elastic singularity is applied to the outer 
radial surface. The elements employed are bounded 
by coordinate surfaces of a cylindrical polar system as 
in fig. 3. The corresponding two-dimensional version 
is, in fact, the same element which Levy et al. [17] 
found suitable for an accurate near tip treatment of 
the plane strain problem for a non-hardening elastic- 
plastic material. 

The ultimate plans call for combining special near 
tip elements, designed for accurate reproduction of 
singularities and large stress gradients, with the gener- 
al purpose three-dimensional elements of the isopa- 
rametric type. This step has not yet been taken, and 
we report here preliminary results only for the two 
separate directions of study being taken at present. It 
should be remarked that one possibility is that the 
isoparametric elements may be arrayed in polar fash- 
ion about the crack tip. This is accomplished by 
mapping two parallel edges (say A'B' and C'D' in 
fig. 2) into a single line in (x,..v,z) space, giving an 
element with properties similar to those of a cylindri- 
cal polar element having a zero inner radius. 

3. Description of the computer program 

The computer program follows the general scheme 
outlined by Mareal and King [14]. The major effort 
was directed at developing a computer program with 
sufficient capacity to handle the large number of 
degrees of freedom associated with the three-dimen- 
sional crack problems described earlier. 

To describe the program, we define the pertinent 
quantities derived in detail in [20] and write down 
the expression for the incremental stiffness matrix 
[k] of an element, 

[k] = ft ] r is]  T te l  [BI dV,  (3) 
v 

where the integration is carried out over the volume 
V of an element. The [a] matrix is the generalized 
displacement transformation matrix which transforms 
increments of nodal displacements d[u] to incre- 
ments of the undetermined coefficients d[a] which 
describe the displacement function, [B] is the differ- 
ential operator which transforms the increments of 
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undetermined coefficients d [a] to increments of 
strain d [e] and [D] is the incremental stress-strain 
relation for a Prandtl-Reuss material obeying the 
Mises yield criterion. 

The general finite elements which have been used 
are the three-dimensional isoparametric element and 
the three-dimensional polar elements described above. 
In both cases, the stiffness matrix is evaluated by a 
trapezoidal integration procedure using eight repre- 
sentative points. Numerical integration is needed 
because the differential operator [B] is a function of 
position. 

In order to cope with the size of the problem it 
was necessary to use auxiliary storage to store the 
master stiffness matrix (with packed non-zero coeffi- 
cients) and the element data, such as stresses and 
strains. The element data is used in a sequential man- 
ner and so it can be retrieved economically. The dis- 
placement and nodal point coordinate vectors, how- 
ever, are used in a random manner and it was decided 
to keep these quantities in core. This has resulted in 
an upper limit of about 10 000 degrees of freedom 
that can be solved on an IBM 360computer with 
about 125 kwords of core. 

Much effort has been devoted to optimizing the 
input output (I.O.) operations. A certain amount of 
"fine tuning" was necessary in order to balance the 
cost due to either the generation of a quantity or its 
retrieval from the backing store. This "fine tuning" is 
particularly important for the large parallel operation 
machines, such as the IBM 360•90 and CDC 6600. In 
order to compute efficiently on these machines, op- 
tions were provided to avoid computing the quanti- 
ties which could be regenerated more economically. 
It was found that, even for these machines, it was still 
advantageous to store the elastic stiffness of each 
element rather than to regenerate it. 

The computer program is best described by di- 
viding it into three computing stages. The first is that 
of data input storage. Here parameters defining the 
type of elements to be used and the nodal point con- 
nectivity are read in and distributed to the appropri- 
ate storage unit. The program then performs an elas- 
tic solution. The [al ,[B] ,[D] and [k] matrices are 
formed. An element repeat feature is included to 
avoid repetitive generation of element matrices. The 
stiffness matrices are then assembled into a master 
stiffness matrix. Because of the generally large band- 

width of the master stiffness matrix (typically 500 
degrees of freedom), the solution is carried out by a 
Gauss-Seidel iteration scheme, with a pre-determined 
over-relaxation factor (usually between 1.8 to 1.85). 
An option allows for the calculation of an optimized 
over-relaxation factor [22]. The stresses and strains 
are then calculated and the results are scaled elastical- 
ly to cause the most highly stressed element to yield. 
This completes the elastic calculations and an incre- 
mental elastic-plastic analysis is performed next. An 
incremental load of about 0.1 the first yield load is 
applied. Each element is examined in turn to see if 
yielding will occur; where yielding occurs a new stiff- 
ness matrix is generated. The old stiffness matrix for 
the element is retrieved from backing store and it is 
then used for updating the master stiffness matrix. 
The test for yielding of an element is made with the 
aid of an estimate of the strain increment. For pro- 
portional loading the strain estimate is based on the 
results of the last load increment. The master stiffness 
matrix is then used to solve for the increment of dis- 
placement. An option is provided to recalculate the 
master stiffness matrix with an improved estimate of 
the strain increment. When convergence of the dis- 
placement increments is obtained, the ca!culations of 
strains and stresses are performed and the computa- 
tion is returned for another elastic-plastic increment 
of load. It is of interest to note here that, for the size 
of problem solved, it was found necessary to have 
restart capabilities at selected points within the pro- 
gram. The data for restart are stored successively for 
the various increments so that the user can prescribe a 
restart at any increment of the Solution and thus 
minimize any recalculation of data. 

To conclude this brief description of the computer 
program we note the blocking of our over-relaxation 
procedure to reduce the I.O. calls. The program reads 
n rows of the master stiffness matrix and reiterates 
for a prescribed number of times m while the next 
"block" is being prepared for transfer into core (using 
the FIND statement). For the IBM machines, because 
of limitations on data transfer, n and m were taken 
equal to 60 and 20. Further I.O. savingswere effected 
by implementing the various suggestions outlined in 
[23]. The I.O. times are usually of an order of magni- 
tude larger than that of the arithmetical compute 
times (C.P.U.) so that the importance of attention tol 
I.O. details cannot be overemphasized. The experi- 
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ence gained in using the program is passed on to other 
users by encasing it in a program to punch out job 
control cards for users which optimize the specifica- 
tion of the various data sets, record length, block size, 
number of buffers, etc. 

4. Mesh generation procedures 

Automatic mesh generation is mandatory in three- 
dimensional problems. Programs have been written to 
generate the finite element description of a through 
crack using the polar elements and a tensile plate with 
a semi-elliptic crack using a combination of cubic and 
isoparametric elements. Only three input cards are 
required to generate all the data and loads for the 
problem to be solved. 

5. Three-dimensional through crack problem 

The results of an initial elastic analysis for the 
through crack in a plate are discussed here. The anal- 
ysis was done in the interest of studying near tip ele- 
ment design as noted earlier, but the results may also 
be of interest for the light they shed on the actual 
three-dimensional nature of what is frequently treat- 
ed as a two-dimensional problem. In particular, if 
(r,O) are polar coordinates in the (x,y) plane of fig. 3, 
then two-dimensional (plane stress) elastic solutions 
result in near tip singular stress states of the form 

• 1 + sin 2 (½0) 

o08 ~' 1 - sin 2 (½0) / 

where K I is the opening mode stress intensity factor 
and where 0 is measured from zero on the x-axis 
ahead of the crack tip. For a first treatment of actual 
three-dimensional effects, we have analyzed a cut-out 
circular segment as in fig. 3, having a radius which is 
six times the plate thickness. The two-dimensional 
solution may be expected to be valid at this distance 
from the tip, and therefore, as boundary conditions 
we apply stresses Orr and Oro from the above equa- 
tion to the outer radius of the cut-out. 

The cylindrical polar elements are shown in fig. 3. 

These were stacked in six layers of equai height 
through the half thickness. The angular range of each 
element was 15 ° , so that there were 12 wedges of 
elements in the upper half of the cut-out, and there 
were 15 annular tings of elements, including the ring 
immediately adjacent to the crack tip which had a 
zero inner radius and an outer radius o fR  o -- 0.05h 
(where h is the total plate thickness). Thus, in all, 
there were 1080 elements in the quarter segment 
required (by symmetry) for analysis, resulting in 
1456 nodal points and 4048 degrees of freedom (3 
per nodal point, minus the number of nodal displace- 
ment components set to zero on symmetry planes). 
For additional details, see [20,24]. 

While only the elastic analysis is under discussion 
here, it should be remarked that the governing feature 
in selection of the elements was their ability to simu- 
late anticipated near tip behavior in the elastic-plastic 
range. Indeed, analytical studies [6-9]  on two- 
dimensional crack problems have shown the following 
features of the near tip fidd in elastic-plastic materi- 
als which are idealized as non-hardening. The carte- 
sian displacement components at the crack tip vary 
with orientation angle 0. That is, different sets of 
displacements may result for different radial lines 
along which the crack tip is approached, and there is 
a finite opening displacement at the crack tip. Also, 
in any angular range in which the displacements do 
vary with 0, the plastic strains exhibit a 1 [r singular- 
ity at the crack tip. These are features of solutions to 
the conventional equations of elastic-plastic stress 
analysis, in which finite changes in geometry are ne- 
glected. Rice and Johnson [ 13] studied finite geom- 
etry changes at the crack tip in plane strain and found 
that the region of large strain or rotation was highly 
localized, having linear dimensions of the order 
5(oo/E)rp,ma x for contained plastic yielding, where 
o 0 is the yield stress, E is Young's modulus, and 
rp,ma x is the maximum extent of the plastic zone. 
They also showed that the crack tip singularity field, 
from the conventional solution neglecting finite 
geometry changes, could be employed to set bounda- 
ry conditions on a local analysis of large plastic blunt- 
ing at the tip. 

This suggests that some care is necessary in the 
design of near tip finite elements if these important 
near crack tip features are to be revealed and charac- 
terized quantitatively in the numerical solution. Thus, 
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Levy et al. [17] employed two-dimensional polar 
elements for which the three-dimensional generaliza- 
tion is shown in fig. 3, those members of the polar set 
immediately adjacent to the crack were still regarded 
as having four independent nodal points, even though 
two of the nodes initially occupied coincidental 
spatial positions at the crack tip. This resulted in 
making possible displacement fields having near tip 
behavior of the proper form, and the displacement 
assumption within the element necessarily led to the 
1/r strain singularity whenever different displace- 
ments were assigned to the coincidental nodes. The 
three-dimensional elements of fig. 3 have similar fea- 
tures, but the costly elastic-plastic analysis has not 
yet been carried to completion, pending further pre- 
liminary studies on mesh refinement near the inter- 
section of the crack with the free surface. 

Fig. 4 shows the variation of stresses with distance 
from the crack tip according to mid-element stresses 
in the wedge of elements between 0 ° and 15 ° in the 
layer immediately adjacent to the middle surface of 
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Fig. 4. The mid-element values of ozz and 000 , calculated 
elastically as functions of the distance from the crack in the 
elements ahead of the crack, immediately adjacent to the 
mid-plane. Solid lines represent results of the numerical cal- 
culations, wheras the dashed line is o00 from the two-dimen- 
sional elastic plane-stress solution. The stresses are made 
dimensionless through division by Kl/X~, and the distance r 
from the crack is made dimensionless through division by h. 
K I is the stress intensity factor in plane stress, h is the total 
thickness of the plate. 

the plate. A Poisson ratio ~4).3 is taken in the calcu- 
lations. The scaling of stress distance in the figure 
represents a proper non-dimensional form for the 
results, at  least when the radius of the cut-out is large 
compared to its thickness. The results fcr oee may be 
compared with predictions of the above two-dimen- 
sional plane stress solution as shown by the dashed 
line. Both coincide beyond a distance of 2h from the 
crack tip. However, as we approach the tip, the 
three-dimensional numerical values are somewhat 
lower than those predicted by the two-dimensional 
solution. An examination of the slopes suggests, on 
the other hand, that oee could attain a higher value 
than the two-dimensional prediction at very small 
distances from the tip. The stress component Ozz (in 
the thickness direction) is also shown. This is, of 
course, taken as zero in the two-dimensional plane 
stress treatment, tt is seen that this stress falls off 
very rapidly, being negligible beyond a distance of 
0.5h from the crack tip. Thus, the region of signifi- 
cant departure from plane stress conditions is highly 
localized. 

Fig. 5 shows mid-element stresses as a function of 
distance from the middle surface of the plate, for the 
column of elements immediately adjacent to the 
crack tip within the 0 ° to 15 ° wedge. The midpoints 
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Fig. 5. The mid-element values of oee,Orr,Ozz, calculated 
elastically as functions of the distance Z from the mid-plane, 
in the elements nearest to and ahead of the crack. Stresses 
and the distance are made non-dimensional as in fig. 4. 
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of these elements are at a radius of  0.025h from the 
tip. It is seen that the in-plane stresses err and o 00 are 
very nearly constant through the thickness, except 
for a rapid variation near the free surface. Also, Ozz 
varies only slightly before taking a steep plunge to the 
values of  zero required at the surface. The shear Orz, 
which must vanish at the middle surface and at the 
free surface, is found to be negligible throughout the 
thickness. 

The equation for the strain in the thickness direc- 
tion is 

1 
ezz =FIozz - v(% + %0)1 (5) 

and one expects that ezz will be bounded along the 
crack tip (except possibly at its intersection with the 
plate surface). On the other hand, the in-plane 
stresses are unbounded at the tip, and hence at least 
the in-plane strains are singular. This observation 
suggests that the elastic singul~irity at a crack tip in a 
three-dimensional problem must always be of the 
form of the two-dimensional plane strain singularity 
as noted by Irwin [25]. The ratio 

0 g g  

v(% + %0) 
(6) 

may be defined as the degree of plane strain, it being 
unity when ezz is either zero or bounded at the site 
of a stress singularity, and zero under plane stress 
conditions when Ozz=O. One expects a degree of 
plane strain of unity along the crack tip, but this 
must decrease very rapidly to zero at the surface of 
the plate, suggesting a fan-like corner singularity at 
the intersection of the crack and the free surface. 
Presumably, the rapid variations near z=Yzh in fig. 5 
result from passing through this fan on a straight line 
in the z-direction. The results of fig. 4 suggest a 
degree of plane strain of essentially zero at distances 
from the tip greater than a half thickness, even in the 
middle plane of the plate. From the data of fig. 5, the 
degree of plane strain averages about 0.8 for the three 
element closest to the middle surface. However, ex- 
amination of mid-element stresses for those at greater 
distances from the tip shows that the numerical re- 
sults extrapolate approximately to unity at the tip. 

6. Elastic-plastic analysis of  tensile specimen 
with semi4Uiptic crack 

As a first step towards the understanding of the 
part-through surface crack, a tensile specimen with a 
semi-elliptic crack was chosen for experimental study 
under the HSST project. The crack line configuration 
and the cross section of  the specimen are shown in 
fig. 1. The same specimen is treated here by the finite 
elemellt method, the objective being to better inter- 
pret experimental results in view of the numerical 
solution. In this section we report on a preliminary 
analysis of such a specimen. 

Because of symmetry, only one quadrant of the 
actual specimen was considered. The quadrant is 
divided into 1152 elements distributed evenly in 9 
layers varying in thickness from 0.25" adjacent to the 
crack plane to 5.0" adjacent to the plane of loading. 
Fig. 6 shows the distribution of the nodal points and 
elements in the plane of the crack, which is identical 
for all 9 slices. For the most part, the nodal points are 
defined by the intersection of rays emanating from 
the center of  the coordinates system with curves de- 
fined by 

(x/a) p + O,/b) 2 = 1 . (7) 

Note that with p = 2, a = 3.45" and b-- 2.0", the 
curve matches exactly the semi-elliptic crack contour. 
On the other hand, when a -- 9.0" and b = 6.0", the 
curve can match the outer boundary of the specimen 
as close as we wish by increasing the value ofp. 

In all 1152 elements and 1500 nodal points are 
used, resulting in 4111 degrees of freedom (3 per 
nodal point minus the number of nodal displacement 
components set to zero on symmetry planes). 

An elastic-perfectly-plastic Misses material was 
assumed with a Poisson's ratio of 0.3 in the elastic 
range. The specimen is loaded in tension by imposing 
a uniformly distributed tensile stress on a plane paral- 
lel to the plane of the crack at a distance equal to 2.5 
times the width of the specimen. 

7. Elastic solution 

The elastic solution is first obtained and scaled so 
that the element with the highest equivalent stress (as 
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based on the mid-element values) is at yield. This 
corresponds to an applied stress ofO.61700, where o 0 
is the tensile yield, for the element size employed. Six 
load increments, each equal to 0.1 of the elastic load, 
are added to study the elastic-plastic range. At the 
sixth increment, the plastic limit load is reached in 
the sense that no solution can be found for an addi- 
tional increment, even when the increment size is 
reduced by a half. The resulting applied stress at limit 
load is therefore approximately 0.98700, correspond. 
ing to an average stress of approximately 1.0900 on 
the net section of the plane containing the crack. It is 
not expected that the computed value for the limit 
will be sensitive to the average size of the elements 
used. The value obtained numerically is therefore a 
reasonably accurate estimate o f  the actual ideally 
plastic limit load in spite of the coarse mesh used. 

The elastic solution indicates that element 51 in 
fig. 6 is the first one to yield. The element lies in 
front of the crack line along the minor axis. 

Fig. 7 shows the variation with the angle measured 
from the x-axis, of the degree of plane strain at the 
crack tip defined by the ratio, 

%0 (8) 
v(O,r + ozz) 

where o 0 0, °rr are the stresses tangential and normal 
to the crack line respectively, and ozz is the stress 
perpendicular to the plane of the crack. 
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Fig. 7. Variation of the degree of plane strain at the crack 
line with the angle measured from the x-axis (see fig. 6). 

Clearly, this ratio attains a value of 1.0 at the 
crack tip along the minor axis indicating a state of 
plane strain in this region, dropping rapidly towards 
the value zero corresponding to a state of plane stress 
m the region where the crack line meets the free sur- 
face. 

Figs. 8 and 9 show the variation Of Ozz/o 0 with 
distance from the crack tip, in the elements along the 
major and minor axes of the semi.elliptic crack re- 
spectively at the elastic and the limit loads. The value 

0 1.0 2 .0  3 .0  4 . 0  5 .0  6 .0  7.0 8 .0  X 9 .0  
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Fig. 6. The elements adjacent to the plane of the crack in the part-through surface flawed tension specimen. 



72 N . L e v y  et ai., Three~dimensionai elastic-plastic stress analysis 

2.0 

b: 
1.0 

" AT L I M I T  LOAD 
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0 1.0 2.0 3.0 4,0 5.0" 

Fig. 8. Variation of the ratio Ozz [a 0 in the elements along the 
major axis of the semi-elliptic crack with the distance r from 
the crack, at the elastic and the limit loads, azz is the stress 
perpendicular to the plane of the crack a 0 is the yield stress 
of the material. 

of the ratio Ozz/O 0 = 1.15 in the element nearest to 
the crack tip along the major axis beyond the elastic 
load suggests that the mode of  yielding in this ele- 
ment is that of  an in-plane shear. Along the minor 

axis, the value Ozz/O 0 = 1.45 at the elastic load in the 
element nearest to the crack tip exhibits the degree of  
tri-axiality attained in this region. 

8. The stress intensity factor along the minor axis of  
the crack 

Estimation of  the stress intensity factor at the 
mid-point of  a part-through crack is of  considerable 
practical importance, since it is in the central section 
that the breaking through to the far plate surface is 
imminent. To calculate its value from the numerical 
results, we use three methods. 

1. In the first method, we use the expression from 
the singular analytic solution for the near crack tip 
stress state and write 

Ozz 2x/~-~--, K as r -~ 0 ,  (9) 

where K is the stress intensity factor and r is the dis- 
tance from the crack tip 

The value o fozz  2V~-~ may be calculated from the 
numerical results as a function err  and extrapolated 
to r = 0 to give an estimate e l K  at the crack tip. 
Fig. 10 shows the variation ofOzz~/21rr/o** withr; o** 
being the imposed average tensile stress. The extra- 
polated value at r = 0 is found to be equal to 1.64 - 
1.80 in 1/2. 
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bNNI. 0 

• AT L I M I T  LOAD 

"- AT E L A S T I C  LOAD 

0 I I I ! 
0 1.0 2.0 3.0 4.0 ~ 

r 

Fig. 9. Same as for fig. 8, for the elements along the minor 
axis. 
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Fig. 10. Variation of the ratioK/ao. = OzzX/2nr/aoo with the 
distance r from the crack in the elements along the minor 
axis. K is the stress intensity factor, aoo the loading stress. 
azz the stress perpendicular to the plane of the crack. 
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2. The second method consists in computing the 
tensile stress averaged over the thickness of the plate 
- o a, for the elements along the minor axis, and the 
averaged moment of  the forces in these elements with 
respect to an axis parallel to the x-axis (see fig. 6) and 
passing through the middle of the specimen thickness 
- m  a (when converted to a nominal bending stress). 
The stress intensity factor is then computed from the 
following expression suggested by Rice and Levy [4] : 

g = h 112 [Oag t + magbl , (10) 

where gt(~) and gb(~) are dimensionless functions of 
the ratio ~ of the crack depth to the plate thickness. 
The functions are taken from the boundary colloca- 
tion solution by Gross and Srawley [26] : 

gt(~) = ~1/2[1.99 - 0.41~ + 18.70/j 2 

- 38.40~j 3 + 53.85~ 4] 

(11) 
gb(~)  -- ,~]/2 [1 .99 - 2.4"/~ + 12.9"7,~ 2 

- 23.17~ 3 + 24.80~ 4] . 

resistance, its compliance coefficients being chosen to 
match those of an edge cracked strip in plane strain, 
and the problem is treated as one in two-dimensional 
plane stress and plate bending. The mathematical 
formulation reduces to two coupled integral equa- 
tions for the thickness averaged force and moment 
per unit length along the cracked section. These have 
been solved numerically using the crack configuration 
of the specimen studied, where the crack depth to 
plate thickness ratio ~ = 1/3 and the crack length to 
plate thickness ratio is equal to 1.15. The value of  
K/K** is found to be equal to 0.386 which is within 4% 
and 10% of the values obtained by methods (1) and 
(2) respectively. This agreement suggests that the 
model used in [4] is a good approximation even for 
not very shallow cracks as the one used in the ana- 
lyzed specimen. 

15.0" 

From the numerical solution and equations (10) and 
(11), the value of K/o** turns out to be equal to 
1.59 in 1/2, which agrees with the results of the first 
method within approximately 12%. 

The reduction of the stress intensity factor due to 
the moment induced by the uncracked region may be 
estimated by comparing the computed stress intensity 
factor K, to the stress intensity factor K** for a 
notched plate in plane strain loaded in pure tension 
and with the same ratio of crack depth to plate thick- 
ness i.e. ~ = 1/3. From [4], we have: 

goo[oo. = h 1/2 gt( l /3)  = 4.485 in 1/2. (12) 

Thus K/K** = 0.355 for method (2), and 0.365 to 
0.401 for method (1). 

It is clear, therefore, that the influence of the in- 
duced moment is quite significant. 

3. The third method follows the approximate 
treatment presented by Rice and Levy in [4], for the 
tensile stretching and bending of a plate containing a 
surface crack penetrating part through the thickness. 
The part through crack is represented as a continuous 
line spring which has both stretching and bending 
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INC. (LIMIT LOAD) 

BACK 
, SURFACE 
OF PLATe 

4th INC. 

0 1.0" 2.0" 3.0" 4.0" 
OISTANC£ FROM CRACK TIP 

Fig. 11. Plastic zone fronts in the mid-plane at various load 
increments. 
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9. Plastic solution 10. Crack opening 

Figs. 11 and 12 show the extents of the plastic 
zones at the various load increments at the mid-plane 
and the free surface respectively. It can be seen that 
at the free surface the plastic zone is tilted towards 
the plane of the crack, while in the mid-plane an elas- 
tic wedge at the far off surface of the plate persists 
even at the limit load. 

In figs. 8 and 9 the variations of Ozz/OO with dis- 
tance from the crack tip are shown for the elements 
along the major and minor axes respectively at the 
limit load. It is seen that along the major axis, the 
yielding mode for the first two elements nearest to 
the crack tip is that of a through the thickness shear. 
Farther away from the crack, the elements deform in 
pure uniaxial tensile mode of yielding. Along the 
minor axis this ratio tends to the value of 2.0 at the 
crack tip as compared to 3.0 in the plane strain crack 
problem as shown by Levy et al. in [17]. 

15.0" 

I0 .0 "  
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1.0" 2.0" 3.0" 4.0" 510" 

DISTANCE FROM CRACK TIP 

Fig. 12. Plastic zone fronts in the free surface at various load 
increments. 

The elements used do not allow a discontinuous 
field of displacements at the crack tip and hence the 
crack tip opening displacement could not be obtained 
in the manner of Levy et al. in [17]. However, a mea- 
sure of  crack opening near the tip is obtained from 
the separation of the crack surface measured at point 
along the minor axis at a distance of 0.3" from the 
crack tip. Fig. 13 shows the variation of the crack 
surface separation properly non-dimensionalized, as a 
function of the ratio (K/Ko) 2 where K is the current 
stress intensity factor and K 0 is the stress intensity 
factor at first yielding. It is clear that a linear relation- 
ship between the two variables is obtained up to 95% 
of the limit load and, while the straight line does not 
extrapolate to zero at zero load, it is of interest that a 
similar linear relation results for small scale yielding. 
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Fig. 13. Variation of the crack surface opening with the load. 
6 is the crack opening. E the Young's modulus, o 0 the yield 
stress, h the thickness of the plate. K the current stress in- 
tensity factor. K 0 the stress intensity factor corresponding to 
the elastic load. 
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