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A B S TR AC T 
This paper presents an incremental elastic-plastic finite element solution to the problem of small scale yieldmg near a 
crack in plane strain for a non-hardening material. Emphasis is placed on the design of finite elements which allow 
accurate reproduction, m a numerical solution, of the detailed structure of the near crack tip stress and strain fields, as 
understood from previous analytical studies of crack tip singularities. Numerical results are presented for: location 
of the elastic-plastic boundary, angular distribution of the strength of the strain singularity, crack tip opening displace- 
meat, stress distribution ahead of the crack, and angular variation of stresses at the tip. The latter results verify Rice's 
prediction of the Prandtl field in provldmg the limiting stress distribution as r ~ 0. 

Introduction 

Recent studies by Cherepanov [1], Hutchinson [2, 31, Rice [4, 5], and Rice and Rosengren [6] 
have elucidated the structure of singularities at crack tips in elastic-plastic materials, particu- 
larly for the plane strain case. Our aim in this paper is to show how these studies naturally 
suggest a design of finite elements which allows accurate reproduction, in numerical solutions, 
of the principal features of the near crack tip stress and strain fields. We are, of course, addres- 
sing the problem of attaining numerical accuracy near singularities and pointing out that chan- 
ces are very much enhanced if one knows (as is now the case for cracks) the functional form of 
the singularity. Rice and Johnson [7] have recently emphasized the importance of accurate 
determinations of the stress and deformation state very near the crack tip, in connecting con- 
tinuum analyses with microstructural separation mechanisms so as to predict fracture tough- 
ness. 

We illustrate the method through the incremental elastic-plastic solution of a problem 
which is of basic importance for fracture mechanics : small scale contained plastic yielding near 
a crack under plane strain conditions. The solution is given for the case of a non-hardening 
Mises material, and Rice's [4, 5-1 boundary layer formulation of the problem is adopted with 
the Irwin-Williams [8-1 inverse square root elastic singularity setting asymptotic boundary 
conditions. 

Many numerical elastic-plastic solutions for cracked or sharply notched bodies have been 
published, employing finite element and finite difference methods. Representative of these 
are the works of Marcal and King [91, Mendelson [101, Swedlow and co-workers I l l ,  121, 
and Tuba [13]. Their work serves to elucidate general features of the growth of the yielded zone 
at a notch tip but, for reasons discussed subsequently, does not provide an accurate description 
of the stress and strain distribution very neaO the tip singularity where fracturing is imminent. 
An exception is in the numerical approach of Hilton and Hutchinson [141 who, in presenting a 
deformation plasticity solution to a plane stress crack problem, employed an analytical repre- 
sentation [2-1 of the dominant singularity inside a small circular region very near the tip, with 
finite elements employed outside. 

* Presently with Generator Department, General Electric Company, Schenectady, New York. 
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Near Crack Tip Singularities in Plane Strain 

For this discussion, let r, 0, z be a cylindrical polar system so that the z axis is perpendicular to 
the plane of straining and coincident with the crack tip, and that 0 = _+ ~r describes the crack 
surfaces. Results to be summarized are based on the conventional infinitesimal displacement 
gradient approximation and assume plane strain conditions as induced by loadings acting 
symmetrically relative to the crack line. Linear elastic solutions for isotropic and homogeneous 
materials then lead to the characteristic Irwin-Williams singularity in stress components : 

~roo + or. = a~,/v - ,  2K (2~)-  ~ cos 0/2 
a0o-ar ,+2ia,o ~ iK (2rcr) -½ sin 0 exp i0/2. (1) 

Here i is the unit imaginary number, and K is Irwin's stress intensity factor. K = ~r (n//2) ~ for the 
Inglis configuration of a crack of length l in an infinite body under the remote tensile stress a. 
Values for many other configurations are given in Ref. [15]. 

Figure 1. Prandtl slip line field representing limiting stress state as r--*0 at the crack tip, from Rice [4]. 

In the case of an isotropic non-hardening elastic-plastic material with yield stress T O in simple 
shear, Rice [4] noted the role of the Prandtl slip line field and associated stress distribution, as 
illustrated in Fig. 1, in providing the limiting stress state as r ~ 0  for cases of contained plastic 
yielding near a crack tip. The displacement components associated with this slip line pattern 
vary with angle 0 as the crack tip is approached through the centered fans above and below the 
tip. Thus, there is no unique set of displacements at the tip, a different set resulting as the tip is 
approached along each different radial line. Writing uk(r, O) for displacements, one has in the 
fan (region C of Fig. 1, n/4< 0< 3n/4) 

u o (0, O)= - f (O) ,  u,(O, O)=fIO). (2) 

On the other hand, as the tip is approached through the constant stress regions A and B, there 
is a unique set of cartesian displacement components for all 0. No strain singularities result in 
A and B, but as the tip is approached in C, the shear strain e,o becomes infinite as 

f"(O) +f(O) (3) 
e~o ~ 2r ' 

while e00 and e,  remain finite. Following Ref. [4], we define a function R(O)=E I f ' ( 0 ) +  
f(O)]/Zzo(1 + v), so that Eq. (3)becomes 

(1 +v)% R(O) 
e.,0 ~ - -  (4) 

E r 
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The factor multiplying R (O)/r is the initial yield strain in pure shear, and hence we may inter- 
pret R (0) as an approximate measure of the extent of the plastically deformed region. The crack 
tip opening displacement f, (total separation distance between upper and lower crack surfaces 
at r = 0) may be expressed as [4] 

fit - 4(1 + v)'c o (3~/4 R (0) sin 0d0.  (5) 
E j ~/4 

In formulating fracture criteria, it is essential to understand the finite geometry change effects 
occurring adjacent to the blunting crack tip, for comparison of metallurgical size scales with 
values of the opening displacement at fracture reveals that processes such as ductile void 
growth from inclusions and cleavage micro-cracking occur in the region where large geometry 
change effects dominate [7, 16]. Rice and Johnson [7] show, however, that the solution based 
on the small geometry change assumption can be employed to set boundary conditions on the 
blunting analysis. For their method, it is essential that the displacement components (2) predict- 
ed in the former solution be known accurately at the crack tip, and this is therefore a require- 
ment to be met in useful numerical formulations of solution methods. While no exact solution 
is now available for the displacements (or equivalently, R (0)), Rice's J integral technique [4] 
can be employed if one adopts the approximation of a deformation rather than incremental 
plasticity theory. In this case,path independence of the J integral is assured, and by evaluating 
the integral on a circuit of zero radius about  the tip, one has 

J _ 4 (1 + v)Z2o - i 3~/4 R (0) [cos 0 + (1 + 3~z/2 - 20) sin 0] dO. (6) 
E : ~/4 

On the other hand, if one considers small scale yielding with approach in the far field to the 
characteristic elastic singularity (1), the integral may be directly evaluated as 

1 - v  z 
S - K 2 . (7) 

E 

This allows some crude approximations to be made for R(O), one [4] of which will be discussed 
subsequently in comparison with numerical results. 

For strain hardening materials exhibiting a power law relation in the plastic range between 
stress and strain in simple shear (z proportional to e N, where N is the hardening exponent), 
Cherepanov [1], Hutchinson [2], and Rice and Rosengren [6] have shown that singular near 
tip fields of the form 

( g )  N/I +N (g )  1/1+N 
S,j (0), e,j --, E,j (0) (8) 

result. The length parameter L is undetermined by their analysis, but within the approximation 
of a deformation theory it may be directly related to the value of the J integral and hence 
(Eq. 7) to the elastic stress intensity factor in the case of small scale yielding. Extensive result 
are presented in Ref. [6] for the plane strain case, with various hardening exponents. When 
N = 0 (perfect plasticity) S,j (0) describes the Prandtl stress field of Fig. 1. The associated angular 
distribution of strain E~1(0 ) is non-unique in that case, but we shah compare subsequent 
numerical results with the predicted strain distribution of the hardening solution in the limit 
N ~ 0  +. 

With these results on crack tip singularities as preliminaries, let us now turn to the formula- 
tion of a finite element numerical solution method for elastic-plastic crack problems. 

Finite Elements 

We have employed a general purpose elastic-plastic finite element program in this study, as 
developed at Brown University by Marcal and co-workers, based on the method of Marcal and 
King [9]. The program is open-ended in the sense that any constitutive law and any element 
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design can be employed. In outlining the approach here, however, we shall limit attention to an 
elastically isotropic non-hardening Mises material, and concentrate on the design of finite 
elements which may allow numerical solutions to reproduce the main features of near tip 
singularities. 

The incremental stress-strain relations are 

1 + v . . v 3s u ~ 
E cr~j = e~j + ~ ~ j ~ -  ~bs~j 2aoZ , (9) 

where sij is the stress deviator, go (= x / ~ o )  is the tensile yield stress, and where 

¢ = 0  if 3s~jso<2~r~ or if sij~ij<O, (10) 
¢ = 1  otherwise. 

A proper solution for surface traction rates ~ on the boundary curve F of a planar region A is 
given by minimizing 

I =  fa½(Tq(e.)~qdA- f r  ~/Ii, ds (11) 

on the class of all compatible strain rate-displacement rate fields [17]. Following Zienkiewicz 
[18], the finite element equations are derived by dividing the region A into a set of finite elements 
within which displacement components are assumed to vary with position in such a way that 
(a) the displacements of any point within an element are determined by the displacements of 
certain "nodal" points on the boundary of that element, and (b) continuity of displacement 
from element to element is assured for arbitrary choices of the nodal displacements. I then may 
be thought of as a function of the nodal displacement rates ~ ,  where P = 1, 2, 3, ... denotes the 
nodes : 

I = ½C~ Q ~ f i y - f e  fir, (12) 

so that the governing discretized equations are 

C,~ efiy = L ' .  (13) 
P Herefi are the prescribed nodal forces, and C~ Q is the incremental master stiffness matrix. It is 

symmetric, depends on the current state of stress within elements in the plastic range, and also 
on the direction of the nodal displacement rates on plastic elements (loading vs. unloading). 

.~NEAR TIP ELEMENT 

Figure 2. Typical finite element, bounded by rays and circles of a polar coordinate system with origin at the crack tip. 

Marcal and King [9] have discussed techniques of assembling the stiffness matrix and iterative 
solution methods for the elastic-plastic range, which are adopted in our present work. Of course, 
the rates in (13) are replaced by small finite increments in each step of the numerical solution. 

A finite element design, capable of reproducing the main features of the crack tip singularity 
in the plastic range, is shown in Fig. 2. Concentric circles (r = const) and rays (0 = const) form 
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the element boundaries. A displacement component u,(r, O) (i= r, 0) within an element is 
assumed in terms of nodal displacements as 

1 
ui(r, O) = (rz-rl)(O2-Oa) [ ( r 2 - r ) (Oz -  0)tAt(r1, 01)~- (r-rl)(O2-O)ui(r2, 01) 

+(rz-r)(O-O1)u,(rl, 02)+ (r-rl)(O-O,)u,(r2, 02)]. (14) 

This guarantees displacement continuity from element to element. When rl is zero, the two 
nodal points (rl, 01) and (rl, Oz) coincide, resulting in an element nearest the crack tip such as 
that shown in the insert of Fig. 2. The nodal points are, however, still considered as separate and 
able to displace independently. Thus the elements permit the singular crack tip displacement 
variation anticipated in the last section. It is clear that the crack tip is the coincident site of as 
many independent nodal points as there are rays emanating from the crack tip. Within the 
angular range of a particular tip element, Eq. (14) leads to the displacement variation 

1 
u,(O, O) (02_01) [(O,-O)u,(O, 01)+(O-Ol)u,(O, 02)] (15) 

at r=0 .  Further it is straightforward to see that the polar coordinate strain components 
e,, er0, z00 within each element take the form 

e,j(r, O) A,j(O) 
- + Bu(O), (16) 

r 

where A,j and B,j are linear functions of 0 and the nodal displacements. Thus the elements allow 
duplication in the numerical solution of the 1/r strain singularity anticipated from studies 
summarized earlier on the non-hardening elastic-plastic near tip field. Of course, the coincident 
nodal points at the crack tip may alternately move as a single point and thus describe a rigid 
body displacement as in the elastic case or in the constant state regions (A and B of Fig. 1) of 
the elastic-plastic case. (A,  is, however, zero in Eq. (16): the radial strain cannot have a 1/r 
singularity, as this would imply a logarithmically divergent radial displacemefft). 

This same freedom of the elements to closely duplicate the near tip elastic-plastic field is 
ruled out from the start in more conventional treatments [11, 12] employing "constant strain" 
elements, which necessarily assign a single set of displacement components to the tip and allow 
no possibility of a strain singularity. 

Two modifications of the element design, not employed in the present study, can be noted 
here. First, when strain singularities of the form r-  1/~1 +m are appropriate (N > 0), as for power 
law hardening in Eq. (8), one may choose forms for displacements in the nearest tip elements 
which include terms varying as r u/~l +N). Displacements at r = 0 then no longer vary with 0, and 
coefficients of such terms become "generalized displacements" replacing actual nodal displace- 
ments in the finite element Eqs. (18). Also, the polar coordinate elements will not in general 
allow simple descriptions of external specimen boundaries. It is, however, apparent from Eq. 
(14) that these are simply a type of isoparametric [18] element. Any general set of four-sided 
isoparametric elements can accomplish the same displacement variation at r = 0, provided a 
complete side of elements at the crack tip is mapped into a single point so that separate nodal 
points coincide at the tip. Such a mapping leads to a 1/r strain singularity when different displa- 
cements are taken for the coincident nodal points, and hence should also be suitable for the 
non-hardening ease. 

Small Scale Yielding Numerical Formulation 

Following Rice [4, 5], the small scale yielding elastic-plastic problem is formulated as that of a 
semi-infinite crack in an infinite body, with boundary conditions that the stress field of the 
characteristic elastic singularity (Eqs. 1) is approached as r ~  oo. Such solutions represent com- 
plete elastic-plastic solutions in the limiting case when the yield zone size is small in comparison 
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to characteristic dimensions, and the elastic stress intensity factor governs local yielding. 
Comparison with available complete solutions (antiplane strain, Barenblatt-Dugdale model, 
etc.) suggests that such small scale yielding solutions are accurate approximations up to a range 
0.5 to 0.7 of net section yield loads [5]. 

The solution for monotonic loading is then self-similar, for by dimensional considerations the 
stresses may depend on r only through the combination a2r/K2 where ao is the tensile yield 
stress and K the stress intensity factor. This self-similarity cannot be exploited in the solution, 
as no suitable numerical procedure is available for the resulting equations. We therefore 
follow the conventional technique of building up the solution in linearized increments, but take 
advantage of the known self-similarity in presenting numerical results. 

The semi-infinite crack in an infinite body is replaced by a cut-out cylinder of finite radius r:, 
containing the crack tip as its origin, o-,, and a~0 from Eqs. (1) are taken as the normal and tan- 
gential boundary tractions on the outer radius. The cylindrical cross-section is covered by ele- 
ments of the type shown in Fig. 2. Only the region y > 0 need be considered by symmetry, and 
25 rays at equal angular intervals of 7.5 ° are placed there. 20 concentric circles are drawn which, 
together with the crack tip, form radial boundaries of the elements. Letting ro be the radius of 
the innermost circle, the first 19 are placed at to, (1.5) 2 to, (2.0) 2 r0, ..., (9.5) 2 r0, (10.0) 2 ro, and the 
last at r:= 120 r 0. The progression in squares is chosen so that equal increments in K will 
newly yield approximately equal numbers of elements. In all, 480 elements and 525 nodal 
points or 1050 degreesof freedom are used. Results are obtained only up to a maximum plastic 
zone extent of approximately 9ro, so the outer radius is effectively always at oo. 

In addition to the stress boundary conditions on the outer radius, the normal displacement 
and shear traction on the ray 0 = 0 are taken as zero by symmetry. Also, the radial displacement 
ur(r:, 0) is taken as zero to remove indeterminate rigid body motions. A suggested by the 
transition from Eqn. (11) to (12), nodal forces are defined in the sence of equivalent virtual work 
of the actual boundary tractions on the assumed displacement functional form of Eq. (14). 
Since strains are not constant within elements, the master stiffness matrix is formed by integrat- 
ing a quadratic expression in strain increments over each element. This is done by dividing 
each element into 9 (i.e., 3 by 3) polar rectangles, of equal r and 0 spacings, evaluating the inte- 
grand at the midpoint of each rectangle, and approximating the integral by a sum. One essential 
simplification is that whenever the current stress state enters the relation between &ij and ~zj, as 
for elements in the plastic range, that state is taken as the stresses associated with the area 
average strain history of the element. It is easy to see from averaging Eq. (16) for ~ij that the area 
average values are given by the same expression evaluated at the mid-radius and angle of an 
element. All subsequently reported stresses within elements are those based on the area average 
strains. 

The elastic solution corresponding to the load which brings area average stresses within a 
single element to incipient yielding is calculated first` Then the load (i.e., stress intensity factor 
K) is successively incremented by 10 ~ of this value, the linearized elastic-plastic equations 
being solved in each increment. In all 30 such increments are added. Poisson's ratio is taken as 
0.3. 

The computer program has several time-saving features. For example, many elements have 
identical stiffness matrices in the elastic range, and only one needs to be generated. Thus 20 
elastic stiffness matrices are generated (corresponding to the 20 concentric circles) for all the 480 
elements used. Moreover, the element stiffness matrices are stored on disk, once they are formed 
and at each load increment only the stiffness matrices for the elements which are yielding or 
have previously yielded are reformed. Typically, in the early stage of loading history, less than 
10 element stiffness matrices need be reformed at each load increment. On the IBM 360/50, 
the elastic solution took 6 minutes in C.P.U. time, while each subsequent increment was 
completed in 3 minutes in C.P.U. time. 

The governing Eqs. (13) were solved in each increment through the Gauss-Seidel iterative 
scheme, employing an over-relaxation factor. Since the choice of the over-relaxation factor is 
criticaJ in determining the rate of convergence, the program calculates an approximate value of 
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the optimal factor from numerical results in the first few in terations, as suggested in Ref. [ 193. The 
calculations were done on the IBM $360/50 at Brown University. Additional details are given 
in the thesis by Levy [20]. 

Results 

Initial elastic solution 

The elements were chosen to closely duplicate the singularity in the elastic-plastic rather than 
the elastic case. Nevertheless, creditable results are obtained in the finite element solution for 
initial elastic loading, which is required to start the elastic-plastic computation. Area average 
stresses from this solution first meet the yield condition in one of the innermost elements at a 
stress intensity factor 

K o = 2.08 o- 0 r~, (17) 

where ro is the radius of the innermost elements. Computing area average stresses from the 
exact elastic solution of Eqs. (1), one finds Ko =2.06 o-0 r~o • However, the exact solution shows 
that yield first occurs in the element between 82.5 ° and 90 °, whereas the finite element solution 
first yields the element between 67.5° and 75 °. This is not so significant a discrepancy as it may 
seem at first sight~ For  example, in the numerical solution, the 82.5°-90 ° element is within 2 % of 
yield when the 67.5o-75 ° element yields. Also, from area average stresses computed from the 
exact solution, the 67.5-75 ° element is within 3.5 % of yield when the 82.5 ° 90 ° element yields. 

o-eo ( r , O ) / o -  o 

1.5 

~.o 
U 
| THE ELEMENTS 

o I I t I I 
0 8 16 

0.5 

]_] COMPUTER RESULT FOR AREA AVERAGE 
STRESSES INELEMENTS DIRECTLY AHEAD 
OF CRACK IN IN IT IAL  ELASTIC SOLUTION 

- - - - - -  EXACT ELASTIC STRESS DISTRIBUTION,  

cyeo ( r , o ) .  K o (aT/" r )  - I / 2  

x x x  EXACT AREA AVERAGE STRESSES WITHIN 

r / r  o 

2-4 32 

Figure 3. Comparison of numen~d results for initial elastic loading with exact elastic stress distribution. 

Figure 3 shows, in bar graph form, area average numerical results for aa00 in the elements 
forming the 7.5° wedge ahead of the crack tip. These may be compared with the dashed line 
plot of the exact solution, aa00 = Ko (2~zr)- ~ for the stress acting across the line ahead of the crack. 
The more appropriate comparison is with area averages of the exact solution, and these are 
shown by the crosses placed at the center of each element range. There is a significant discre- 
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Y/to 

~ ~ ~ - , o  INCREMENTS 

~ /  i I i I i ~  x / r  0 2 4 6 

I y / ( K / O - o ) z  

0.15 

rp,max 

0.05 

~-rp, o ~ XI(KIO- O)z 
I I - 

0 . 0 5  0. I0 

Figure 4. Growth of the plastic zone. (a) Outlines of yielded finite elements after 10, 20, and 30 elastic-plastic load in- 
crements, with coordinates made dimensionless by radius r 0 of the innermost elements. (b) Smoothed estimate of elastic- 
plastic boundary, plotted in terms of similarity parameter (K/%) a for small scale yielding. 

pancy in the element immediately adjacent to the crack tip, with the exact area average about 
15 ~ less than the numerical area average. 

Growth of the plastic zone. 

Successive linearized elastic-plastic finite element solutions are computed for increments in 
K of 10 ~ ofK o. Figure 4a shows the outer boundaries of the yielded elements after 10, 20, and 
30 of these increments. In Fig 4b we have shown a smoothed estimate of the elastic-plastic 
boundary, obtained from interpolation and extrapolation of numerical results in the neighbor- 
hood of the 30th increment. Here, advantage has been taken of the known serf similarity of the 
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solution and x, y distances in the plot are measured in terms of the characteristic length para- 
meter K 2 / ~ .  It is seen that the maximum radius to the elastic-plastic boundary occurs at 
0 = 70 °, the maximum radius and the radius where the elastic-plastic boundary crosses the line 
ahead of the crack being 

rp,ma x = 0.157 K2/~g, rp, o = 0.036 KZ/ag. (18) 

Near crack tip elastic-plastic stress state. 

Figures 5a, b, and c illustrate the success of our finite element design in elucidating the fine 
details of the near crack tip elastic-plastic field. Taken from numerical results after 30 load 
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1.0 

0 .5  

croo (o,O ) / O-o 

"q_ 
\ 

L_ COMPUTER RESULT 

.... PRANDTL FIELD [4] 

0 ° 4.5 ° 9 0 "  1:55 ° 180  ° 
Fig. 5a 

2 . 5  

2 . 0  

1.5 

1.0 

0 . 5  

o'-,.r ( 0 , 0 )  / o" o 
- A ~ C O M P U T E R  R E S U L T  

\ ", P R A N D T L  F I E L D  [4-] 

I I I I I I I I I I I I o 
0 o 4 5  ° 9 0  ° 135 ° 1 8 0  ° Fig. 5"o 
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o.6 f- err°(°'0)/°-° 
_ r 

7___ COMPUTER RESULT 

/ . . . .  P R A N D T L  F I E L D  

o . z  / - \ 

0 i i I i i I i I I I I 1 O 
0 4 5  ° 9 0  ° 1 5 5 "  1 8 0  o Fig. 5c 

Figure 5. Comparison of numerical results for stresses in innermost elements with exact Prandt] field elastic-plastic 
stress distr ibution as in Fig, 1. (a) For a0~(0, 0). (b) For a,,(0, 0). (c) For cr,~(0, 0). 

L (r,°)/°-° 

2 

0 I [ I 
0 0 . 0 5  0 .10  O. 15 0 . 2 0  

r / ¢  K/CTo )2 
I = 

0 . 2 5  

Figure 6. Elastic-plastic stress distribution ahead of the crack tip, with distahce from tip made dimensionless by simi- 
larity parameter (K/ao) 2. Extent rv. o of plastic zone ahead of crack and distance rv.mu equal to mm~imum radius of 
plastic zone (occurring at 0 ~ 70 °) are marked. 

increments,  these figures show the stresses aoo, a,~, and at0 in the 24 innermost  finite elements, 
adjacent  to the crack tip. The  essentially coincident  dashed lines represent  the Prandt l  stress 
dis t r ibut ion of Fig. 1, which Rice [4] predicted as the limiting elastic-plastic stress var ia t ion 
with 0 as r--* 0. 

The  stress dis t r ibut ion directly ahead  of the crack tip is shown in Fig. 6, as based on numer ica l  
results in the 30th increment.  Advan tage  has again  been taken  of the sell 'similarity, with distance 
f rom the crack tip measured  in terms of the dimensionless  pa rame te r  r/(K/oo) 2. F o r  apprecia-  
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tion of the size scales, the plastic zone dimensions of Eqs. (18) and Fig. 4b are marked on the 
abscissa. Note that while the theoretical value of aoo = 3% is indeed achieved at the tip, the 
fall-off in stress is very rapid with approximately 2a o resulting where the elastic-plastic bound- 
ary cuts the line ahead of the tip, and approximately ao resulting at a distance from the tip 
equal to the maximum extent of the plastic zone. 

Strength of the strain singularity. 

The function R (0) is introduced in Eq. (4) for describing the strength of the singularity in shear 
strain within the centered fan directly above the crack tip. This may be computed from the 
displacements of the coincident nodal points at the crack tip by writing 

N ~  E N ~  E F CqUr (0, 0 ) /AO (0, O) ~ 
R(O) - ( l + v ) a o  ,-~olim re,o - 2( l+v)ao  [ O0 (19) 

l 

Thus, we report average numerical values for an element lying between 0x and 02 by the 
formula 

0.2 

B E  ~ Ur(0 , 0 2 ) -  Ur(0 , 01) ~0(0, 02) "Jr- ~0(0, 01! ] (20) 
R (0x to Oz) - 2 ~  ° / 02 - 0, - 2 ' 

Figure 7 shows the numerical results for R (0) over an angular range corresponding to the fan. 
Here, advantage has been taken of the self similarity and effects of inaccuracies in the initial 
elastic-plastic transition of the innermost elements has been filtered out (see below) by taking 
differences between numerical results in the 30th and 15th increments. The maximum value 
of R (0) is 

Rm~ = 0.155 (K/ao) 2 , (21) 

and it occurs in the element between 82.5 ° and 90 °. Also, the function falls offessentially to zero 
at the 450 and 1350 boundaries of the centered fan. The two additional plots in Fig. 7 are from 
deformation plasticity analyses based on the path independent J integral, and we discuss the 
discrepancies later. One curve is from Rice's approximation [4], in which the functional form 
of R(0) was assumed apart from a multiplicative constant determined by the integral. The other 
curve is from the non-hardening limit N-~0 of the Cherepanov-Hutchinson-Rice-Rosengren 
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Figure 7. Dimensionless plot of the strength R(O) of the inverse with distance strain singularity in the centered fan 
region darectly above the crack tip. Numerical results based on incremental plasticity theory differ significantly from 
two earlier approximations based on deformation theory. 
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power law hardening singularity which was, however, not given in their original papers, but 
rather later in Ref. [-7]. 

Crack opening displacement. 

The total separation distance between upper and lower crack surfaces at the tip is given by 
5t = - 2Uo (0, ~). The increase of this quantity with stress intensity factor is shown in Fig. 8, and 
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Figure 8. Points show numerical results for crack tip opening displacement in the suoaessive elastic-plastic increments. 
The linear variation with K 2, as required theoretically from self-similarity of exact solution, results after sufficient 
number of finite elements have yielded. 

this variation is typical of all crack tip displacements in the numerical results. We interpret the 
deviation at low K from the essentially linear variation with K 2, as required by dimensional 
analysis, to be due to extraneous effects in the initial yielding of elements before the plastic 
region is fully developed. Based on a straight line difference between results in the 15th and 30th 
increments, the crack tip opening displacement is 

K 2 
- - .  (22) at = 0.425 Eoo 

For comparison, determination of 5, through Eq. (5), involving integration of numerical results 
for R (0), leads to a factor of approximately 0.414).42. Also, the two deformation plasticity analy- 
ses based on the J integral lead to a factor of 0.613 in Rice's [-4] approximation, and 0.717 in the 
non-hardening limit of the power law hardening singularity E7]. 

Discussion 

One surprising result, ilIustrated in Fig. 7, is the sLmaificant difference in the strength R(O) of the 
strain singularity for the present incremental plasticity solution, as compared to the two approx- 
imations based on deformation plasticity analyses. Since both deformation theory approxi- 
mations for R (0) lead, through the integral of Eq. (6), to the value of J given in Eq. (7), it is 
clear that R (0) from the incremental solution must lead to a smaller value for the integral. In 
fact, integration of numerical results reads to a value of the integral in Eq. (6) which is approxi- 
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mately ¼ of the value in Eq. (7). If the present results are indeed an accurate representation of the 
incremental solution, this would suggest that, in an averaged sense, the strength of the strain 
singularity in the incremental solution is about ~ of that in the deformation solution. 

These results are not entirely unexpected when it is recalled that proof of path independence 
of the J integral, which implies equality between the integral of Eq. (6) and the value for J in Eq. 
(7), relies strongly on path independence of the stress-strain relation [-4]. This latter path inde- 
pendence is not a feature of a proper incremental formulation of plastic stress-strain relations, 
and thus the J integral theory is rigorously applicable in an incremental material only if propor- 
tional plastic straining results. It is easy to see that proportional plastic straining does not result 
in the present problem. For if Poisson's ratio is less than ½ and if the sum of in-plane normal 
stresses is non-zero, the flow rule for a Mises material results in a non-zero plastic strain 
increment in the z direction at initial yield. However, as plastic strains become large compared 
to elastic strains, as near the crack tip singularity, the constraint e~z = 0 forces further plastic 
strain increments to be essentially in the plane of straining with near zero components in the z 
direction. In particular, the 1/r singular term reflects only in-plane plastic strain increments, 
with zero increments in the z direction. 

It is also of interest to note that the distribution of R (0) from the non-hardening limit of the 
power law hardening singularity does not, according to our present results, give the correct 
distribution in the complete elastic-plastic solution. Indeed, there is no real reason that it should, 
although one might have expected this result from comparison with the anti-plane strain 
case [-6], for which corresponding function is correct with small scale, but not large scale, 
yielding. 

Rice and Johnson [-7] have shown the elastic-plastic plane strain solution, based on the small 
geometry change assumption for a sharp crack, can be used to set boundary conditions for an 
approximate analysis of the large but highly localized deformations associated with crack tip 
blunting. Consideration of such large geometry change effects appears to be essential for 
understanding the physical mechanisms of plane strain fracture. Unfortunately, the bulk of 
their study was completed before the present solution became available, and they based their 
treatment of fracture under small scale yielding conditions on Rice's [4] approximate analysis 
for R(O) and the associated crack tip velocity field. Their paper does, however, present a 
comparison of that velocity field with the results of the computer solution, and the relative 
closeness of the two suggests that their results would be little modified, except that the present 
Eq. (22), for relating fit to the stress intensity factor, should be adopted in lieu of the equation 
they employed. 
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RI~SUMt~ 

L'article prrsente une solution par 616ments frets en conditions 61astoptastiques, au problbme de l'rcoulement plasUque 
de faible 6tendue qui se produit au voisinage d'une fissure clans un matrriau non vaetllissant en conditions d'rtat  
plan de drformation. 

On met l'accent stir le mode de tragage des 616ments finis le mleux susceptible de reproduire avec exactitude, en 
solution numrrique, la configuration drtaillbe des champs de contrainte et de drformation fi l'extrrmit6 de la fissure; 
rrfrrence est faite, ~t cet 6gard, ~t des ~tudes analytiques prrcCedentes sur les singularitrs de l'extrrmit~ d'une fissure. 

Des rrsultats numrriques ont 6t~ obtenus pour: le lieu de la frontibre 61astoplastique, la distribution angulaire de 
l'intensit6 de la singularitk des drformations, le drplacement d'ouverture de l'extrrmit6 de la fissure, la distribution 
des contraintes en avant de la fissure, et la variation angulaire des contraintes ~t l'extrrmit6 de la fissure. 

Ces derniers rrsultats, qui fournissent la distribution limite des contraintes lorsque r tend vers ~ro,  confirment 
l'existence d'un champ de Prandtl, ainsi que Rice l'avait prrdit. 

Z U S A M M E N F A S S U N G  
Der Bericht gibt eine Lrsung durch endliche Elemente unter elastoplastischen Bedingungen, ffir das Problem des 
plastischen Fliessens fiber kurze Strecken, welches in der Umgebung eines einem planen Spannungszustand unter- 
worfenen Risses in nichtalterndem Material anftritt. 

Die Auslegung der endlichen Elemente, welche es am besten ermrglicht eine genaue Reproduzierbarkeit (bei 
numerischer Lrsung) der detaillierten Struktur der Spannungs- and Verformungsfelder in der Umgebung der RiB- 
spitze zu erreicben, tinter Bezug auf frfthere analytische Untersuchungen fiber die Singularitat einer RiBspitze, wird 
besonders herausgestrichen. 

Numerische Ergebnisse werden gegeben ffir: 

die Lage der elastoplastischen Grenze, die angul~ire Verteilung der Intensit~t der Verformungssingularitat, die Ver- 
schiebung der RiBspitzenrJfnung, die Spannungsvertellung vor dem Rasse, sowie f~r die angul~tre Ver~nderung der 
Spannungen an der Spitze. 

Letztere Ergebnisse liefern die Grenzvertedung der Spannungen wenn r---*0 und bestgtigen die Voraussagen von 

Rice iiber die Existenz eines Prandtl-Feldes. 
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