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ABSTRACT

Inclusion of large geometry change effects in crack tip stress
analysis reveals features quite different from those anticipated
through conventional treatments based on small geometry change
(sgc) assumptions. Further, these features appear central to relating
continuum stress analyses to microstructural failure mechanisms in
the prediction of fracture toughness. Recent progress in the
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642 INELASTIC BEHAVIOR OF SOLIDS

elastic-plastic sgc analysis of cracks in plane strain is first summer-
ized. The paradoxical lack of intense straining directly ahead of a
sharp crack tip, as required for ductile fracture mechanisms,
disappears when actual large geometry changes in progressive crack
tip blunting are included. An application of rigid plastic slip line
theory is justified in the nonhardening case for treatment of the large
but localized deformations, with the sgc solutions setting boundary
conditions. Examples are worked out for small scale contained
yielding and a fully plastic case. Fracture strength predictions based
on a critical strain at a mean inclusion spacing distance from the tip
agree rather favorably with available data, and a more elaborate
ductile fracture model involving void growth and coalescence with
the tip is studied. Enormous stress levels are predicted ahead of a
crack tip in the sgc solutions, with tip stress singularities resulting for
hardening materials. But these occur more through hydrostatic stress
elevation than hardening in the conventional sense. Triaxiality
cannot be maintained locally as the tip blunts. The net conclusion
of the analysis is that maximum achievable stress levels are essentially
limited, even with continuous strain hardening. This is suggestive of
abrupt toughness transitions with temperature and loading rate when
brittle stress controlled mechanisms (cleavage microcracking) lead to
fracture, for the maximum achievable stress associated with a stress-
strain relation for local conditions may be insufficient to the task.

1. INTRODUCTION AND SYNOPSIS

This paper addresses the problem of relating elastic-plastic stress
analyses of cracked structures to microstructural fracture mechan-
isms, so as to predict criteria for crack extension in metals. Attention
is limited to plane strain conditions. As suggested by the title,
proper treatment of finite crack tip geometry changes is necessary
to the task. In fact, we claim that effects which become apparent
only in a full nonlinear treatment, geometric as well as constitu-
tive, are central to the understanding of plane strain fracture.

Substantial progress has been made in recent years in analyzing
stress and deformation fields near cracks in elastic-plastic materials.
Solutions have been based on the conventional small geometry
change assumptions, and will be summarized in the next section.
Two important modifications of the results of these solutions
become apparent when the actual large geometry changes at the
tip are considered. First, no severe strain concentration results
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directly ahead of a sharp crack tip, according to the small
geometry change (sgc) solution for a nonhardening or moderately
hardening material. Nevertheless, an opening displacement at the tip
is predicted. When we include the actual large geometry changes in
progressive blunting of the tip, quite a different picture emerges.
Intense strains do now result directly ahead over a region com-
parable in size to the opening displacement. The relevance becomes
clear upon examination of some fracture data. We see that the
predicted extent of the large strain region at fracture is indeed
comparable to typical microstructural size scales for fracture, such as
mean inclusion spacing, grain size, etc.

The analysis of these large geometry changes is given in some
detail later for a nonhardening material. It is argued that the
rigid-plastic slip line theory may be used, with the sgc solution fora
sharp tip crack employed to set boundary conditions. In addition, an
approximate (and somewhat inadequate) prediction of ductile
fracture strength is made by combining this analysis with some
recent results on the ductile enlargement of cavities in macroscop-
ically homogeneous deformation fields. Also, the possibility of
geometric instabilities in the blunting analysis is discussed.

The second modification due to large crack tip geometry
changes has to do with the stress distribution. The sgc solutions
predict enormous stresses directly ahead of a crack in plane strain.
Three times the simple tension vyield value results for a non-
hardening Mises material. Strain hardening results in even higher
stresses and, as might be expected, the stress acting on the line
directly ahead of the tip becomes infinite in the limit for a
continuously hardening material. But, as implied by our noting
the absence of large strains ahead, these large stresses do not
occur by hardening in the conventional sense, but rather by
alterations in the ratio of hydrostatic to uniaxial flow stress.
Proper imposition of boundary conditions on the deformed crack
tip prohibits such a large hydrostatic stress elevation there and in
the immediate vicinity. The net conclusion is that the maximum
stress achievable over any reasonable size scale is limited, even with
continuous strain hardening. Some estimates of modified stress
distributions are given. This effect is suggestive of an abrupt
toughness transition with temperature or loading rate when stress-
dominated mechanisms (e.g., cleavage microcracking) control frac-
ture, for the stress-strain curve corresponding to local temperature
and strain rate may lead to a maximum achievable stress insuffi-
cient to the task.
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2. SUMMARY OF STRESS ANALYSIS FOR CRACKS
UNDER PLANE STRAIN CONDITIONS

We consider bodies under loads symmetric to the crack line, so
that only the tensile opening mode of relative¢crack surface displace-
ment results. The important feature of all linear elastic analyses of
such problems is that a characteristic inverse square root singularity
results at the tip, so that the stresses in the homogeneous and iso-
tropic case are’

Op + 0, = 1 0, = 2K cosg—’ + terms bounded at the tip
4 2ml/2 2
, iK . g .
Opp = Oy + 2i0,g = sinf exp— + terms bounded at the tip
(271} 12 2

(1)

Here the components are referred to a cylindrical polar system,
¢ = *r being the crack faces, v is the Poisson’s ratio, and i is the
imaginary unit number. K is Irwin’s stress intensity factor. It equals
0o (nl/2Y 2 for the Inglis configuration of a crack of length ! in an
infinite body under remote tension o,. Solutions are also known for
many other cases.? The elastic singularity reflects general features
which persist in the elastic-plastic case. The principal in-plane shear
stress, which essentially governs yielding in plane strain, is half the
magnitude of the latter stress combination. It is seen to vanish
directly ahead of the crack while achieving its greatest values above
and below the tip at = £n/2.

Progress in understanding the elastic-plastic case began with
asymptotic analyses of the near tip field, which have recently guided
and been supplemented by accurate finite-element numerical solu-
tions, whereas the fully plastic cases have been studied for many
years on the basis of the slip line theory. Most of our attention will
be directed to the nonhardening idealization. For contained yielding,
Rice?® noted the relevance of the Prandtl slip line field (Fig. 1) in
providing the stress state near a sharp crack tip as r - 0, in an
isotropic perfectly plastic material (also, see Cherepanov?). As illus-
trated, constant stress regions A and B result over 45° wedges ahead
and behind the tip. The centered fan C joining these regions has
radial lines as principal shear directions, and results in a steady in-
crease in mean normal stress from A to B so that the maximum
tension directly ahead of the tip is
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Fig. 1 Slip line construciion of stress state as r > 0, for
contained plane strain yielding of a nonhardening mate-
rial. 3

o, (region B) = (2 + m7, = 30, (2)

Here 7 is the yield stress in pure shear and, as will be adopted
elsewhere in this paper, the Mises form is employed in converting to
the tensile yield stress o, .

Lack of focusing of slip lines in region B leads to no intense
strain concentration as the tip is approached from directly ahead.
However, one may show that the shear strain component y,y
(only) becomes infinite as 1/r when the tip is approached through
the fan C :

The undetermined function of 6 is written as y R(6), where
Yo (= 7,/shear modulus)is the initial yield strain. R(¢) measures the
strength of the singularity at angle # and may be interpreted as a
distance over which the strain falls to a value comparable to y,.
Hence, it is a very approximate measure of the distance to the
elastic-plastic boundary. We will see that knowledge of this func-
tion from the sgc solution is essential for treating the large tip
geometry change problem.

The sgc solution leads to a variation of displacements with 9 at
r = 0 in the centered fan, so that a discrete opening displacement
is predicted at the tip. Cartesian components, measured from zero
disglacement as the tip is approached from directly ahead, at r = 0
are
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g g
u, (60 = v, f R(¢) sin pde u,(6) =y, I R(¢) cos pde
/4 7w/ 4 (4)

and thus the crack tip opening displacement, defined as the total
separation distance between the upper and lower crack surfaces, is

3/ 4
3, = 2y, f R(¢) sin ¢do (5)

/4

We will later wish to concentrate on the radial velocity component at
r = 0 in the centered fan. The opening displacement will be taken
as the measure of “time” so that v_ = du,/93, and similarly for all
other (dimensionless} velocities. R(8 will, of course, depend on
the applied load and we may convert this to dependence on the
opening displacement, once §, is known in terms of load, writing
R(6) = R(3,,0). In this notation the radial velocity at r =10
according to sgc solutions is

g
3R (5, )
v, = 0,45,,0) = y, Tcos(f) - ¢ dg {6)

/4 t

According to the slip line velocity equations, the radial lines of the
centered fan transmit a radial velocity independent of r, so that this
equation also applies away from the crack tip.

The difficulty is that no exact solutions for R(§,,8) are available
for contained yielding. We shall use a number of approximations for
small scale yielding. This is a boundary layer formulation of the
elastic-plastic problem in which the characteristic elastic singularity
(Eq. (1)} is employed to set asymptotic boundary conditions at large
distances from the tip®+5 and provides a good approximation to com-
plete solutions up to substantial fractions, say 2 to %, of net section
yield load levels. There is only one characteristic length K 2/ 00 ,so that
R(3,,0) and 8, are both proportional to this factor and the radial
velocity (Eq. (6)) is therefore independent of §,. At the other
extreme, we will also employ a fully plastic solution involving the
Prandtl field and here again the velocity is independent of §,.
Unfortunately, no results are available for the missing large-scale
contained yielding range, in which case the velocity distribution will
certainly vary with the opening displacement.
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Guided by some etching studies, Rice® assumed a sinusoidal form
for the amplitude of the singularity

R = R_,, cos2 (6 - z) (7)
e

which is largest directly above the crack and falls to zero at the
fan boundaries, and employed his path independent energy integral
to solve for R_, . The resulting approximation for small scale
yielding is

2 2
R - M(ﬁ) — 0.217 (5)
4v22 + » Vo %

2(1 - 2 K2 K2 %
-2 ZVIR - 0613 - =28 2R,

24+ Ero Eo E

o

(8)

Here, as subsequently, in giving numerical factors we take v = 0.3
and use the Mises shear-tension relation. The resulting radial

velocity is
v o= L_ cos(0-") —cos2[6 -T2 (9)
To2v2 4 4

Another approximation is provided by the nonhardening limit of
the Hutchinson-Rice-Rosengren dominant singularity solution for
a power-law hardening materal.5-7 It is possible to solve for this
limit analytically, although this was not noted in their papers.
We omit all the lengthy details, simply noting that R(8) is not
symmetric about the y axis as assumed above, but rather attains its
maximum at 6 =103.5° while still falling to zero at the fan
boundaries, and that

i 2
K
R, .. = 0.286 (;;)

2 g
o717 K2~ 25 2R
Eo

1l

(10)

7]
o
il

max
E
o

The velocity is
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v = A (1 + 3 _ 2&9 exp5< - ’Z)é 5m ) V2mp (6)
2 N4 4

- V2(cosf + 7 sin®)s (11)

g
where ;L{G):fsquexp [(6—-@( .%'i—@ g{):‘gb

74

and Al - 2\/56}(}) I:(l + Z) i} + 4;7;1( ) \fZﬂ'
2/2 4

Conventional numerical methods of stress analysis (finite ele-
ments, finite differences) have been unsuccessful in providing the
accuracy required near the crack tip singularity. In fact, most
formulations have assigned a single nodal point to the crack tip
so that the displacement variations known to occur there in the
nonhardening case are prohibited. This difficulty was overcome in
a finite element formulation of the small-scale yielding problem
by Ostergren,® as guided by the features of the near tip field
discussed above, and his procedure has recently been applied with a
more refined mesh by Levy.® A system of foursided finite
clements is employed, with each bounded by coordinate lines
of the type r =constant and 6 =constant in a polar system,
and having four nodal points at which displacements are pre-
scribed. Those elements at the crack tip have two of their
nodal points at the same physical point, so that different dis-
placements result as the tip is approached along different radial
lines. Further, a 1/r strain singularity results in the nearest tip
elements whenever the nodal point displacements there are dis-
continuous. The procedure is quite suitable, based upon their
results in the elastic case and from the close agreement with
the Prandtl field stresses in the nearest tip elements in the
perfectly plastic case. The results of their theses will be summar-
ized in a forthcoming publication.
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The values from Levy’s work of R
82.5-90°) and 8, are

2
K

nay = 0.155 (;)
[

K2 o,
L= 0425 D= = 27 TRy,

max (which occurs at § =

=
[

(12)

o2
]

[e]

The radial velocity distribution is shown in Fig. 2 where it is
compared with the previous two results and with a fully plastic
case to be discussed shortly. The computer solution confirms the
expectation that R__.  should be comparable to the extent of the
plastic zone. This solution, based on the Mises yield condition and
v = 0.3, reveals an elastic-plastic boundary extending a maximum
distance 0.175 (K/o, )2 from the tip at 6 = 70° and a distance
0.032 (K/a )2 dlrec’dy ahead of the tip. The latter figure is
expected to depend strongly on Poisson’s ratio, perhaps vanishing
when v =1/2.

In contrast to the elastic case, no unique form for the crack tip
singularity results in the fully plastic (limit load) case.!® The deep

V{84
SMALL SCALE YIELDING:

RICE APPROX. (3], EQ. {9
/ [ ] {9}

-~ LIMIT OF HRR [6,7] HARDENING
SINGULARITY, £Q. {11) ~o.a

LEVY FINITE-ELEMENT
RESULT [3]

FULLY PLASTIC:

DEEP DOUBLE
_EDGE CRACKS, FIG. (3] {02

8 | ]
 37/4 e /4

Fig. 2 Velocity distribution (i.e., radial displacement rate
with respect to crack opening displacement) in centered fan
at crack tip, for various small scale yielding approximations
and fully plastic case.
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Fig. 3 Slp line field at limit
ko — conditions for deep double
+ A edge cracks in plane strain.

—

double edge notches of Fig. 3 maintain the Prandtl field and
accompanying hydrostatic stress elevation at limit load, whereas the
single edge notch or internal notch configurations do not. We shall
examine the double edge notch case only, its similarity in stress state
providing a basis for comparison with small scale yielding. The
Prandtl field of Fig. 3 is the limiting sgc solution for an elastic-plastic
material. However, in reporting results below, we neglect strains and
displacements prior to limit conditions, which is the same as
considering the material rigid-plastic. Although the initial yield strain
¥, then has no particular relevance, we continue to write the
singularity in the form of Eq. (3) for comparison with the
elastic-plastic results, Then it turns out that R(6) = constant = R
in the fan, where

V2 A %
R, = and 5, = 4A = 4.2 ERMX (18)

Yo

max

Here A is the displacement of the rigid portion of the specimen as in
the figure. The radial velocity in the fan is

v, = 2—\/-_: sm( - -—) (14)

Incidently, these results are unique, in spite of the well-known
lack of uniqueness for the entire velocity field in the deforming
region.

Now, returning to the small scale yielding case, let us consider
the stress acting directly ahead of the crack. Figure 4e¢ was
prepared from the computer solution for a nonhardening material. It
is seen that o, does attain the 30, value at the tip predicted above,

but the fall off in stress is very rapid, with approximately 20, resulting
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X
0.05 0.0 015 0.20 (K /0p)°
2 -
I -
X
0005 000 0015 0020 (K/G)?
1 | 1 >

(b)

Fig. 4 Stress acting directly ahead of crack under small
scale yielding conditions: (a) from finite-element com-
puter solution for a nonhardening material,® and (b)
from singularity solution for materials hardening accord-
ing t0%7 7=1,(v/7, )" (note factor of 10 change in
scale.

at the point where the elastic-plastic boundary resides in front of
the crack (first tick on x axis) and approximately o, resulting at a
distance ahead equal to the maximum extent of the plastic zone
(second tick).

Strain hardening may be brought into the description through
the work of Hutchinson® and Rice and Rosengren.” They consid-
ered materials exhibiting a power-law relation
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y N
To= T, (;;) (15)

between stress and strain in the hardening range y > y, and noted that
the sgc solution for a sharp crack led to tip singularities of the form

oy > VNS0 e - T VINE () (16)

In analogy to Eq. {8), the principal in-plane shear strain may be
written in the form
1/1+N
R(6)
Y Y, l: ] . (17)

The form of R(#) in the nonhardening limit N » 0 has already been
discussed in connection with Eqgs. (10) and (11). In that case %;;(6)
describes the Prandtl field. Similarly, for the practical range of hard-
ening, 0 < N < 0.3, the singularity amplitude is greatest above and
below the tip but negligible ahead; R{0) being typically of the order
1072 R_ .. andzerowhen N = 0. The stress acting directly ahead of the
crack, according to the dominant singularity solution, is shown in Fig.
4b for small-scale yielding conditions with various hardening expo-
nents. Note that the scale on the x axishas been changed, so that we are
now looking at a region having one-tenth the linear dimension of that
examined in Fig. 4a. The complete computer solution shows a fall-
off in stress not reflected in the dominant singularity solution; hence
the horizontal line at 30, representing the nonhardening case of
N = 0, should be given a slight negative slope for agreement with
Fig. 4a. Presumably, the as yet unavailable complete solutions with
strain hardening would reveal a similar fall-off, so the other curves in
Fig. 4b should be corrected in the same way.

3. PROGRESSIVE CRACK TIP BLUNTING

We have seen that the sgc solutions predict no intense strain con-
centration directly ahead of the tip. How does fracture occur there,
particularly when ductile mechanisms operate and high stress alone is
insufficient? We suggest that the prediction of an opening displace-
ment, with consequent effects in modifying the strain distribution, is
the key to the answer. Figure ba shows a blunted crack tip and the
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w/2

-m/2
{b)

Fig. 5 (a) Modification of slip line field in near tip region
due to progressive blunting of crack tip with deformation
(compare Figs. 1 and 3). (b) Map of region D into char-
acteristic plane. 12

resulting change in the slip line field of Figs. 1 or 3. The constant stress
regions A and B remain, and they continue to be joined by a fan C of
straight slip lines. However, the fan is now noncentered and focuses
intense strains into a region D directly ahead of the blunted tip. To
appreciate the size scale involved, if the tip blunted into a semicircle of
diameter §,, region D would have exponential spiral slip lines and
would extend a distance (e™'2 — 1)5,/2 ~ 1.95, ahead of the tip.

As already hinted by the discussion of slip lines, we propose to treat
the material as rigid-plastic for analysis of the large tip geometry
changes. Also, an important approximation is suggested by the fact
that the pertinent size scale is §,. This is of the order o,/E times the
maximum extent of the plastic zone, and thus typically two orders
of magnitude smaller. Since the straight slip lines of the fan transmit
a uniform velocity parallel to themselves, velocities on the boundary
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of region D are known in terms of velocities in the fan far away from
the near tip perturbation. But when viewed on the larger size scale of
plastic zone size, the tip still appears as a point, and hence velocities
in the centered fan of the sgc solution should provide a good approx-
imation to those in the noncentered fan of the finite geometry
change solution. Thus the radial velocity v_(6, §,) of the sgc solution
provides boundary conditions for the blunting analysis, in that this
may be taken as the normal velocity on the boundary of region D at
the point of intersection by a straight slip line of the noncentered fan
having an inclination angle equal to 8.

Following Hill’s!! treatment of slip line theory, and Wang’s!?
carlier study of notch root deformation in a rigid-plastic case, we
introduce a set of characteristic a, 8 coordinates in region D so that
lines of B = const and & = const are, respectively, first and second
principal shear directions. These are defined so that a = 0 and
B = ¢ - n/4 (where ¢ is the first principal shear angle, Fig. ba) on
the upper boundary of region D, and that 8 = 0 anda = ¢ - #/4on
the lower boundary. As illustrated in Fig, 5b, region D maps into a
fixe.d‘ tr.iangular rf:gion in the o, 8 plane. Letting o = (ax.x +0,,)/2,
equilibrium conditions of constancy of ¢ - 2r, ¢ on a lines and of
o + 27,¢ on B lines, together with boundary conditions, require that

AABARF AR, WU’%W (18)
T=[1+T+2(x-)]T, P-=ox+B+W/u

Letting y, , v 5 be velocity components in the a, 8 directions, the zero
rate of extension condition for principal shear directions leads to

v du
;a_uﬁ:() ‘B+Ua=0 (19)

O aB

Boundary conditions on the velocity problem are given, within the
approximation discussed above, by

v, (0,8 = v.(f) from sgc solution, with § = B + =
(20)

vﬁ(a,()) = —v,(0) from sgc solution, with 6 = - a + T

These equations determine the velocity field throughout region D as
functions of o, 8 although we have yet to determine the physical
coordinates of material points corresponding to a given g, 8 set. A
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Riemann function method of solution may be employed for the
velocity problem,!!:12 but direct finite difference integration of Eq.
{19) along the characteristics is simpler and has been adopted in this
study. One may write the velocity vector on the notch tip as a
function of its tangent angle ¢ (Fig. ba) from this solution, since a
and B as well as the direction of « and B lines on the tip are
expressible in terms of .

We will show shortly how the shape of the deformed notch tip
may be determined directly from this velocity vector. Once the
physical coordinates of points on the notch tip are known, we
determine physical coordinates throughout region D as functions of
a, B8 by solving the equations

/e /B _ o fyg T (21)
Ix/de  Iy/oB 4

subject to the known values of x,y on the map of the notch tip into
the a, 8 plane. Again, finite difference integration along character-
istics is employed.

To locate the position of the deformed notch tip, let us write n ()
and s(y) as unit vectors at points on the tip, with the first in the
normal direction and positive when pointing into the material, and
with the second in the tangential direction and positive in the sense
of increasing . Then the velocity vector on the tip may be written
in corresponding.components as v

v(,8) = v, 8) () + v, (i, 8,) s (W) (22)

Now we write the unknown position vector of points on the tip as
functions of ¢ and §,:1 = (i, 8,). From the defintion of velocity

o a

95, ay 98, (29)

3

where /8, is a derivative following a fixed material point. But
dr/dyr has a direction tangent to the notch tip, and, after dotting with
n we have

Ar(ip, 8,) 3
ny) ———— = — )1, 8)1 = v, 8) (24)

3, 95,

If we differentiate this equation with respect to ¥, noting that
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dn/d¢ = s and again that dr/dy is tangential to the notch tip, we have

3 Ju, (¢, 3))
s oy, 81 = ——X 25
el R P (25)

t

Strictly speaking, the treatment thus far applies only to an initially
sharp crack. However, the same analysis applies also as an ap-
proximation to the case of an initially blunt notch with tip
position vector 1(y,0) before deformation, provided we are in-
terested in states for which the plastic zone is large compared to
the notch root size. The solution upon integration of the last two
equations is

H
6, 8,) = (4,0 + [ {nwf} + s(g) (%J v, (y,8,)ds, (26)

For the specific cases which we consider here, the velocity vector
does not depend on §, and therefore

du,, (1)

f,8) = r(h,0) + 1 n) v, () + s(y) 5, (27)

Numerical results, summarized in graphical form in Fig. 6, are
based on calculations with input velocity fields from the sgc
analyses summarized in the last section. The shape of the blunted
tip is shown as computed from Eq. (27} with the initial root

b y/84 (a) FOR SMALL SCALE YIELDING

R (6} (b) FOR FULLY PLASTIC

{a}

OUTER SLIP LINE
OF REGION D

BLUNTED SHAPE
OF CRACK TiP

0.5

L {a)
O 1 i

[ .
0.5 1.0 1.5 2.0 2.5

Fig. 6 Predicted deformed shape of crack tip and outer skip line of region D
for (a) small scale yielding as approximated in Eqs. (8) and (9), and (b) fully
plastic.
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position vector r(y,0) = 0 (that is, for an initially sharp crack), as
is also the shape of the shear lines forming the boundaries of
region D. Figure 62 is for the input velocity field of Rice’s® approxi-
mation for small scale yielding (summarized in Egs. (8) and (9)).
We shall henceforth take this field as representative of small scale
yielding, although we must caution that an exact solution is not
known and the two other analyses discussed in the last section lead
to somewhat different results. Figure 65 is for the input velocity field
from the fully plastic limit solution for deep double edge notches
Eqgs. (13) and (14).

Let us now concentrate on the deformation along the x axis
directly ahead of the crack tip. Referring to Fig. 5, we represent
all quantities such as position, velocity, etc., parametrically in
terms of the tangent angle ¢ of the point on the notch tip
intersected by the B slip line drawn from the point of interest on
the x axis. Hence ¢ = #/2 describes the point on the x axis at the
outer extremity of region D and ¢ = 0 describes the point at the
deformed notch tip. From the velocity solution we know (numer-
ically) the x direction velocity component along the x axis in the
form

v, (%, 9) ‘ = V{p (28)

where V(¢ is dimensionless and vanishes at ¢ = #/2. Similarly the
x coordinate of a point corresponding to angle ¥ may be written as
(assuming an initially sharp crack)

= 5,F() (29)

where F(y) is also dimensionless. Let X denote the position of a
material point before deformation. Then x = x(X, 8, represents the
deformed position, and we have

9x(X, 8, P - 5 P (X, 8,) e
N LR+ 8P — 30
98 Vo 35 v (80)

4 4

This equation may be integrated by setting (X,8,) = n/2 when
8, = X/F(a/2), which is the opening displacement when a point
initially a distance X from the tip first enters region D {we neglect
the small distortions occurring ahead of region D, setting x = X

there). The result may be expressed in the form



658 INELASTIC BEHAVIOR OF SOLIDS

/2
() d
X = 8,H(p) where H@) = F(g)exp ..f _Fdy

Fiy)y - V)
(31)
The deformation gradient is
Ix(X, 8) (X, 5) 2
aX X H'(yn

If we let extr, ¢} be “true” strains in the x and y directions on the
line ahead of "the tip, then 5;’ is log dx/9X and eytr - -extr by
incompressibility. Thus

7w/ 2
- log B __ [ Vipdy (33)
FGh) p F{y - Vi)

By cross-plotting from numerical results, this can be expressed as a
function of the initial coordinate of a material point through Eq.
(31). The resulting true strain distributions as a function of X/3, are
shown in Fig. 7 for the small scale yielding and fully plastic cases.

We see that large strains are indeed predicted directly ahead of a
crack tip when the actual finite geometry changes are considered, but

A oelr
207
.5
L
1.0+
r SMALL SCALE YIELDING
C FULLY PLASTIC
0.5
o-llrlF|ltlt|II! liillezc‘!g?

0.5 Lo 1.5 2.0 2.5

Fig. T True strain on line ahead of crack, as a function of dis-
tance X of a material point from tip before deformation.
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only in the region adjacent to the blunting tip. This means that in
situations for which large strains are required for fracture, as with
ductile micromechanisms of void growth from inclusions,!3 71 ¢ the
opening displacement at fracture must be such that the large strain
region D envelops characteristic microstructural dimensions in the
separation process. We shall analyze a rather detailed model for
void growth and coalescence in the next section. For the moment,
we adopt the simpler idea that some critical fracture strain must be
achieved at a material point initially at distance X from the crack
tip, where X  might be identified as grain size or, better, a mean
spacing of the larger second-phase inclusions responsible for ductile
fracture. :

It would seem plausible to assume that most structural metals
would fracture at a true strain on this size scale between 0.2 and
1.0. Reading the corresponding values of X/§, from Fig. 7 and
inverting the numbers, we therefore conclude that the crack
opening displacement at fracture will be in the range

8, ~ 1.0t02.7X, (34)

If we adopt a wider range of true strain at fracture, say 0.1 to 2.0,
to include cases of both unusually small and large ductility, the
range spreads to 9, = 0.8 to 7.2X . Since §, varies as K? in the
small scale yielding case, the range of K is smaller. Drucker and
Rice!7 have discussed trends which might be expected in different
metals as based on the blunting affected region setting a size scale
for large strains, with special reference to specimen size require-
ments for low nominal fractures in the plane strain mode, although
their work preceded the detailed analysis of blunting given here.
Let us now examine some data. Pellissier and coworkers!3:1?
report plane strain fracture toughness values for four alloy steels of
essentially identical composition and yield stress level (~ 240 ksi),
except for differences in sulfur content. Ample manganese was
present to form rod-shaped manganese-sulfide particles, and it is
reported that the steels were otherwise exceptionally free of
nonmetallic inclusions. The fracture surface topography suggested
ductile fracture by void growth from these inclusions. Table 1 lists
in the first three columns the weight by percent of sulfur,
measured stress intensity factor at fracture, and mean particle
spacing (measured from a metallographic section) which we here
identify as X . Using Eq. (8), the crack tip opening displacement as
calculated from the K values appears in the next column, and the
ratio §,/X, in the last. These ratios are indeed in the anticipated
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TABLE 1. 3, at Fracture and Inclusion Spacing X N for a High
Strength Steel18.19

wt.%S  K(ksiv/in.) X (microns) 3, (microns) 38/X_

0.008 65 6.1 9.1 1.5
0.016 56 5.4 6.8 1.3
0.025 51 4.4 5.6 1.3
0.049 43 3.7 4.0 1.1

range, with the average ratio corresponding to a true strain at
fracture of 0.3 at a distance equal to the particle spacing. Now let
us turn to the aluminum alloy 7075-T6. Irwin! reports a value of
(1 - v2K2/E at the fracture equal to 115 Ibfin., with a 67 ksi
yield stress, from which we compute §, = 26 microns. Professor
F. A. McClintock (private communication) reported a spacing
of “larger” inclusions, with diameters 1-2 microns, in the
range of 10-20 microns from his metallographic studies on this
alloy. Taking the midvalue for X, we have §,/X, = 1.7 which is
again in the expected range and corresponds to a true strain of
about 0.5. r

These two cases involve very high strength materials in their
respective classes, both conforming about as closely as can be
expected for real materials to the nonhardening idealization on
which the theory is based. More generally, in view of the trend of
increasing toughness with decreasing strength level and accompany-
ing hardening®® it would appear certain that values of §,/X would
usually be closer to the upper end of the scale in Eq. (34). Both
greater tenacity of inclusions to the matrix in lower stress fields
and greater strains to void coalescence with hardening!® may be
factors. These, as well as hardening modifications of the strain
distribution, cannot yet be treated. Indeed, McClintock reports
that the smooth stretch zone preceding a ductile dimple fracture
surface may extend a distance as great as 5 to 10 dimple diameters,
and this would argue for higher values of §,/X, if we interpret the
stretch zone as a surface record of the blunting process.

We shall continue with the blunting solution given here as a basis
for the discussion in following sections. However, we must caution
that an important uniqueness question remains unresolved. As noted
by Lee and Wang,?! solutions of two types can be found for
deformation at sharp-tipped notches in plane strain. One involves
blunting of the tip into a smooth arc as derived here and shown in
Figs. b and 6. It is also possible to find solutions in which the notch
tip retains sharp comers with attached centered fans of singular
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strain rates. In fact, the smooth tip solution may be viewed as the
limit of solutions with a large number of comers, Even after the tip
has begun to deform according to a solution of one type, it cannot
be assured that this type of solution will persist. For example, a nick
on a smoothly blunting tip may destabilize the- solution, with
subsequent growth exhibiting flow localization at a sharp comer. On
the other hand, any solution with a sharp corner may be continued
subsequently by a solution in which the corner blunts into a smooth
arc. The distinction in a continuum description is that material
points initially in the interior of the body may be brought to the
surface in the sharp comer solutions, but not in the smooth tip
solution. That is, localized deformation at sharp corners may be
thought of as progressive ‘‘sliding off’ of material to form fresh
surfaces. Macroscopically flat plane strain fractures sometimes
exhibit a zigzag appearance on a small size scale.?? This might be a
reflection of comer formation on a blunting crack tip, but might also
be a consequence of the also large strains which occur at points off
the symmetry line ahead of the tip.

4. MODEL FOR FRACTURE BY DUCTILE
VOID GROWTH AT A CRACK TIP

We shall now dispense with the critical strain at a characteristic
distance criterion, and attempt to directly calculate the crack
opening displacement at fracture from a simple and highly approxi-
mate model for ductile fracture by void growth. Figure 8 shows an
initially spherical cavity of radius R, at a distance X, from the tip of
a sharp crack. We are going to employ the results of Rice and
Tracey?? for growth of an isolated cavity in a remotely uniform
deformation field in a rigid-plastic material. The remote field of their
analysis will be identified with the local stress and deformation field of
the blunting analysis at the current void site, but computed as in the
last section asif no void were present. Thus the calculations of growth,
as the void site becomes enveloped by the large strain region (Fig. 8),
are completely uncoupled. The strong interactions between neighbor-
ing free surfaces'? are neglected, except for a very crude approxima-
tion adopted to describe final coalescence of the void with the crack,
which we identify as “fracture.”

For a sphere of radius R, the results for increments of radius
Measure in the x, y, and z directions, when adapted to the special case
of a plane strain remote field duplicating that along the x axis ahead
of the crack, are?!
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Fig. 8 Model for ductile fracture by the growth and
coalescence of an initially spherical void with the
crack tip.

dR
2 - 0.322 dey“ exp(\/i?c/ra)
(85)
dR, dR,  dR dR
T o —2del + — 2 = 2delr 4
R Y R Y

The equations are based on a Rayleigh-Ritz approximate solution
from a variational formulation of the problem, and employ a further
approximation appropriate for the moderate to high mean normal
stress ¢ encountered in the present case. McClintock!® noted a
similar exponential amplification of void growth by the mean stress,
and this is especially significant with the high triaxiality present in
plane strain. We employ these equations even after the shape deviates
from spherical, identifying R as the mean radius which is seen to
equal R,. In terms of the angle parameter ¢ indicating position along

the x axis ahead of the tip, o = (1 + 2¢)r, and ¢" is given by Eq.

«
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(33), so that

"
R K ,
* oo 0‘322-[ exp[V3(1 + 26)/21 V(g d (36)

R, ) Fy) - V)

Similarly, R,/R, and Ry/Ro may be expressed in terms of i, and

since X, = §,H(y) from Eq. (31), the radius ratios may be expressed
in terms of §,/X,,.

We adopt these equations up to the point where the distance
between the void boundary and blunted crack tip is equal to the
vertical radius R, of the void, or from Eq. (29)

8,[F(y) - F(O] - R, = R, (87)
with the first term representing distance from the crack tip to
current void center location. Then it is assumed that final fracture
occurs by a localized necking of the remaining ligament, requiring an
additional opening displacement to fracture equal to the ligament
size. It is necessary to invoke this localized flow, since the uncoupled
equations would lead to an unrealistic stringing out of the void in the
y direction with contraction in R_prior to coalescence. The opening
displacement at onset of flow localization is given in terms of X /R,
by rearranging Eq. (87) as

8t RG RO
LR -FO) —2— = 2 (38)
X R, +R, X,

o x ¥

since the terms on the left are all known in terms of ¢ and hence
implicitly in terms of §,/X_. The additional opening displacement
assumed for the localized necking does not turn out to be a major
contributor to the final opening displacement at fracture for X /R,
greater than 5 or so. Numerical results for §,/X, at fracture are
shown in Fig. 9 as a function of X /R, based on calculations for the
small scale yielding and fully plastic input velocity fields.

The degree of accord of experimental results (Table 1) with this
prediction will depend strongly on the choice of X, and R from the
given data. For example, if we continue to interpret X  as the mean
nearest neighbor spacing in a planar section and assume all particles
are identical spheres, then X,/R, = 0.72 f'l/ 2 where f is the volume
fraction and statistical results quoted by Ashby and Ebeling?# are
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Fig. 9 Predicted crack opening displacement at fracture, based on
model in Fig. 8.

used. The volume fraction can be computed from the percentage of
sulfur by weight, assuming all sulfur present reacts with the more
than ample manganese. From atomic weight ratios, wt %MnS = 2.7
(wt %S), and from specific gravity ratios of MnS and steel, vol %MnS
=2 (wt %MnS), so that f = 0.054 (wt %S). Thus, as we descend Table
1, X /R, = 34, 24, 19, and 14. The general trend of §,/X  ratios
at fracture is therefore in accord with Fig. 9, but the relevant
curve {marked “small scale yielding”) is high by a factor of
nearly two. On the other hand, if we choose R, in the model to
match the ratio of three-dimensional nearest neighbor distance to
particle size with X /R , we have?4 X, /R, =0.89 fr1/8 =117,
9.9, 8.0, and 6.5 as we descend Table 1, and a better agreement.
Much further work is clearly needed, not only on the statistics,
but also on interactions between neighboring free surfaces, on
the effects of hardening, and on the tenacity of particles to the
matrix (here assumed negligible for MnS particles is the triaxially
elevated stress field ahead of the crack).

McClintock?? has studied a similar ductile fracture model,
combining his void growth predictions'® with Wang’s'? results
on notch tip deformation in the fully plastic case. He considers a
row of uniformly spaced circular cylindrical cavities along the x axis
ahead of the tip. His emphasis is on establishing the geometry of
an advancing crack in a rigid plastic specimen under deformation
boundary conditions, through relating the macroscopic angle of
separation between advancing crack surfaces to the X /R, ratio.
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In comparison, our model is more precisely for the mitiation of
crack extension, with coalescence of the void in the model with
the tip being taken to represent the many coalescence processes
actually occurring along the crack front in the beginning stages
of a fracture. Undoubtedly, the advancing crack is the more
realistic fracture model, but only when analyzed with the elastic
terms included so as to allow an instability. Crack advance in
rigid-plastic models is necessarily stable.!” We are unaware of
observations of stable crack advance with plane strain small scale
yielding conditions. Further, the data discussed earlier suggests
that any crack advance under these conditions will be limited to
that due to the blunting process itself, so that initiation of
separation then appears to be the key event. Nevertheless,
substantial stable crack advance is known to occur under
nominally plane stress conditions and McClintock?? reports cases
of fully plastic plane strain specimens in which stable growth is also
observed.

5. LARGE GEOMETRY CHANGE EFFECTS AND
THE NEAR TIP STRESS STATE

We have seen that large geometry change effects are central to
understanding ductile fracture through their modifications of the
near tip strain distribution. Now we turmn to their modifications of
the stress state. Figure 4b suggests that hardening stress-strain
relations lead to tensile stresses very near the tip which are
substantially in excess of the already high 3o, value for perfect
plasticity. However, it has been noted that at that point strains are
small in the sgc solutions, and that the large stresses result from an
enhanced ratio of hydrostatic to equivalent uniaxial components.
Clearly, this enormous stress triaxility cannot be maintained at and
near the blunted crack tip.

To examine the modified stress distribution, consider the x
direction equilibrium equation

do. do

xx xy
+

dx dy

_ 0 (39)

If we write this equation on the x axis directly ahead of the tip,

noting that ¢_ = 0 there and following an approach similar to
: 3,25 0 . :

Bridgman’s®® tensile neck analysis, we have
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aaxx d¢

™ + o, — oyy) %

-0 (40)

where ¢ is the angle of the first shear direction and hence d¢/dy is
the curvature of principal stress trajectories as they cross the x
axis. Not having a solution for large geometry changes in a
hardening material, we shall make the following approximations:
the deviatoric part of the stress state will be computed from the
strain distribution in the nonhardening case, and the remaining part
will be determined by integrating Eq. (40) subject to o, =0 on
the blunted tip, with the curvature of principal stress trajectories in
the nonhardening case substituted for d¢/dy. The results will be
exact in the nonhardening case, but certainly in substantial exror for
other than moderate strain hardening.

By Eq. (18), 9¢/dy = da/dy + dB/dy, and the latter two deriva-
tives can be computed by standard means in terms of the set
d(x,¥)/3(a,B8). Since shear angles cross at 45° on the x axis, we
have dy/da = dx/da and dy/dB = - 9x/38 there. Now, by symmetry
considerations we may show dx/de = —~ dx/dB8 on the axis and
finally, using the representation of Eq. (29) for the x coordinate
and expressing « and 8 in terms of the parameter angle

évzzgtmhw_m%éé:z(_u) (1)
o da df B A 2\da B

Omitting the algebraic details, the final result for the curvature
is

I 1

dy y=0 8, F'(n

(42)

But d/9x in the equilibrium equation may be written as
(8, F(y)"13/3y , and thus

do

a;x ¥ Oy = Oyy = 0 with o, = Oatgy =0 (43)

Let o = f(d") describe the true stress-strain relation in simple
tension. Then adopting the Mises equivalent stress and strain forms,
in the present plane strain case we have
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g, -0 ~2—f 26“
yy T Twx T g\ Y (44)

The resulting prediction for tensile stress o, acting on the x axis
is therefore

o
2 2 i 2 2w
» Jgf[\fo ¢]+V3[ [\/33’ ¢]¢ o

where e;r () is given by Eq. (33).

Numerical results were obtained as based on the input velocity
field from the sgc approximation for small scale yielding in Egs. (8)
and (9). These employ a power-law stress-strain relation

N
Eetr
g = f(étr) = 0, (——) (46)
o

o

which we regard as a continuation of the linear elastic form as
earlier. From Eq. (45), we can obtain (G’O/E)NO' »/0, as a dimen-
sionless function of ¢ for each N. This can be converted through
Eq. (81) to a function of X/8,, X being the coordinate of a
material point before deformation. From Eq. (8), X/, equals
1.63 (E/o,) X/(K/0)2. Thus, by selecting specific values of o /E
we can obtain the maximum stress to yield stress ratio o,,/0, as a
function of the conventional distance parameter X/(K/o)? in
the region affected by blunting. These results are shown by the
nonsolid lines in Fig. 10 for hardening exponents of N = 0.0, 0.1,
0.2 and for initial yield strains o, /E = 0.0025, 0.0050, 0.0075.
The results are plotted out to a distance equal to the maximum
extent of the blunting affected region. The solid lines shown are
simply a replot of the Hutchinson-Rice-Rosengren hardening singu-
larity solution in Fig. 4b. The match-up of the approximate modified
stress distributions in the blunting affected region and the sgc
distribution outside is surprisingly good.

There is actually a stress singularity predicted in the hardening
cases at X = 0, but the singularity is so weak and dominates over
such a small distance that the upturn in stress barely shows in the
figure. The net conclusion is that with consideration of actual
geometry changes at the crack tip, the maximum stress achievable
over any reasonable size scale in the material is limited, contrary to
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Fig. 10 Nonsolid lines show approximate modified siress distribution due to
large tip geometry changes, as dependent on initial yield strain 0,[E and
hardening exponent N. Conclusion is that maximum stress achievable over any
reasonable size scale in the material is limited, contrary to sgc analysis.

the conclusions which might be drawn from Fig. 456 of the sgc
analysis. Maximum achievable stress levels can be estimated from Fig.
10 as a function of hardening exponent and initial yield strain, al-
though the approximations probably.give a progressive overestimate
of stress in the blunting affected region with increasing hardening.
The concept of a maximum achievable stress is, of course, sug-
gestive of abrupt toughness transitions with temperature or loading
rate in materials capable of cleavage. For if we adopt the conven-
tional model of a critical tensile stress for initiation of microcrack-
ing,2% then clearly cleavage will be possible only if the maximum
achievable stress associated with the yield and hardening character-
istics of the material (as dependent on temperature and local strain
rate} is sufficient to the task. Otherwise, ductile mechanisms must
initiate the fracture, although these may serve as a precursor to cleav-
age due to enhanced local strain rates. Given that the maximum

o o~ R % 2 P hamfre T

hie o ey
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o
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achieved at least over a region comparable to one or a few grain diam-
eters. Figure 10, when extended out to larger distances and corrected
according to the much larger size scale plot of the stress fall-off in Fig.
4b, suggests that stress near the maximum achievable values can oc-
cur only over quite minute fractions of the length parameter (K/o)2.

dchievable stress s eufficiedt feow eleavage | size scale
wust 3lso be considered n determining toughness,
in that the critceal stress “mist be
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Locations of stress maxima in Fig. 10 suggest that a material point
experiences the largest stresses before it becomes enveloped by the
region of intense straining. Thus, for ductile fracture, it would appear
that the particle failures creating void sites occur either in the precursor
stress field or in the coalescence stages of other voids created in the
precursor field. Probably the void spacing set by failures in the pre-
cursor field is the important size parameter for ductile fracture, al-
though postmortem examination of fracture surfaces will not allow a
distinction between the two.

6. CLOSURE

We have seen that consideration of the actual large geometry
changes at a crack tip provides a view of fracture quite different from
that afforded by the conventional sgc treatment. In particular, the
intense strain region created ahead of the tip in blunting allows
ductile fracture processes to operate there, and the analysis provides
a reasonably coherent quantitative understanding. At the same time,
the immense hydrostatic stress elevation is prohibited directly ahead,
and maximum achievable stress levels are essentially limited. Many
problems remain; some are basic and others call for refinement of the
present analysis.

These problems include: clarification of smooth versus sharp-
corered notch tip deformation solutions, a more precise assessment
of hardening effects, modeling of stable crack advance and instabil-
ity, development of failure criteria for second phase particles, and in-
clusion of hardening and interaction effects in ductile void growth
and coalescence models.
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DISCUSSION on Paper Presented by J. R. Rice

7.

E. SRAWLEY: In relation to the values of 8, for plane strain
fracture cited by Professor Rice, and the ratios of these to the
mean inclusion spacing, I want to call his attention to some values
for maraging steel from my laboratory. By varying the maraging
temperature andfor time, the yield strength can be raised over a
range, for example, from 150 to 260 ksi for a so-called 250-grade
composition. The K;, toughness varies inversely with the yield
strength, and the values of §,(= 0.6K; 2/Eoyg) range from 15
microns to at least 75 microns. Because the inclusion distribution
is not affected by the maraging treatment, 8, is independent of the
mean inclusion spacing. Moreover, the hardening precipitate
particles are extremely small and closely spaced (much less than
one micron). So far no one has been able to establish the identity
of the void-nucleating particles in these materials.

R. RICE: 1t is, of course, necessary that the microstructural
dimension to which §, is compared be relevant to the fracture
mechanism. As Dr. Srawley notes in his last sentence, it is not
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clear that the spacing of hardening precipitate particles in
maraging steels is a relevant dimension. Similarly, the steel on
which Table 1 is based contained cementite particles as well as the
larger MnS particles, but evidently only the latter were important
in nucleating the fractures.'*? This emphasizes the importance of
better understanding particle separations and other possible void
nucleation mechanisms.

We have commented in the text on the sort of variation of §, at
fracture with yield stress and hardening, for an essentially fixed
microstructure, reported by Dr. Srawley. Both stress dependence
of the density of void nucleation sites and inhibition of growth by
hardening are in accord with observed trends, although no detailed
theory is available. It is also possible that the instability point,in a
process of quasi-static crack advance by void coalescence, will
depend sensitively on the yield stress, as suggested by the
antiplane shear analysis of elastic-plastic crack instability.?

A. R. ROSENFIELD: Metallographic studies of the ductile fracture
process provide two useful observations which should be included
in further development of the large crack tip radius model
presented in this paper:

1. In unnotched tensile bars the true strain to fracture depends
principally on the volume fraction of second phase particles and
not only on their spacing as assumed by the authors. However, if
the particle size is “too small” (e.g., £ 0.1 #) reductions-in-area on
the order of 100 per cent are observed. b

2. Particles most often begin to crack and/or separate from the
matrix at very low plastic strains.

The model suggested by these observations is one in which holes
exist throughout the plastic zone. The size of these holes is the
particle diameter and their spacing is the particle spacing. In
essence the large strain region is a “Swiss cheese” whose
characteristic dimensions are those of the microstructure.

J. R. RICE: The first point is not at all at variance with our ductile
void growth model. The difference is that in the tensile test one is
concerned with macroscopic strain fields that vary little over a
mean particle spacing, whereas there is a very steep gradient over
the same distance when the particle is directly ahead of the crack
tip. In fact, since continuum plasticity contains no characteristic
length, it is clear that an analysis paralleling ours for void growth
and coalescence in a macroscopically homogeneous deformation
field will lead to a fracture strain dependent on particle spacing
and size solely through dimensionless ratios such as volume
fraction. This distinction between stress and deformation fields

"
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2.
3.

that are uniform and those that are nonuniform over typical
microstructural dimensions seems basic for clarification of size
effects in fracture. , ’

In response to the second point, it certainly must be agreed that
some particles fail early in the plastic stage. It seems important,
however, to clarify just what fraction fails as a function of the
stress and strain history achieved at points ahead of the crack, as
this may be related to understanding toughness variations with
yield and hardening behavior.
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