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Abstract—An incremental and piecewise linear finite element theory is developed for the large displacement,
large strain regime with particular reference to elastic—plastic behavior in metals. The resulting equations, though
more complex, are in a similar form to those previously developed for large displacement, small strain problems,
the only additional term being an initial load stiffness matrix which is dependent on current loads. This similarity
in form means that existing nonlinear general purpose programs may easily be extended to include finite strains.
A large displacement, small strain formulation (as applicable to problems of structural stability) is obtained from
this theory by assuming that changes in length of line elements and relative rotation of orthogonal line elements
are negligible compared to unity. The simplified equations are in essential agreement with previous formulations
in the literature. The only difference which is observed is the persistence of the initial load stiffness matrix, which
may be significant in some cases.

INTRODUCTION AND REVIEW OF LITERATURE

THE direct stiffness method of finite element analysis is by now well established and widely
used for the solution of small displacement, elastic structural problems [1]. Following the
initial paper of Turner et al. [2], various types of element have been developed, and general
purpose computer programs now exist which can be used with any element for the solution
of large-scale problems (for a summary see [3]). Such general purpose programs have
great practical advantages because of the rapidity with which they can be applied to any
particular problem.

Since the establishment of the method, there has been much interest in extensions for
nonlinear analysis. The nonlinearities arise from two distinct sources: constitutive non-
linearities and geometric nonlinearities, the latter being due to large displacements. The
most commonly used nonlinear material is the elastic—plastic material, and for this material
the linearity of the incremental stress—strain law forms the basis of the equations, its most
direct application being in the incremental type solution, where the solution is built up as a
series of linear increments.

Geometric nonlinearities were first included by means of an incremental geometric
stiffness (initial stress stiffness matrix). Such matrices were suggested in [4-7]. The earlier
results were obtained on the basis of equilibrium at nodes. The derivation of the initial
stress stiffness matrix was finally placed on a firm basis by the use of the Lagrangian or
Green’s strain by Martin [8]. More recent analysis has established the importance of addi-
tional terms [9-11] which take the form of an initial displacement matrix [9] in the in-
cremental solution. This large displacement analysis has often been approached through
an updated local coordinate system, which is usually defined for each element in the
structure [12, 13]. Such coordinate systems are of use only when the assumption of small
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strains i1s made. Moreover, because of the possibility of finite rotation within the element,
this is strictly only true for constant strain elements. More direct solutions have been used
which do not employ an explicitly matrix formulation ; for example, the large displacement
small strain work of Bogner et al. [14] in which a Fletcher—Powell minimization was used
and the large displacement and large strain work of Oden [15] and Oden and Kubitza [16]
on nonlinear elastic materials, for which a Newton-Raphson method was employed. In
[16] the authors also solved an elastic—plastic membrane problem with an incremental
approach which accounts for small strains and large displacements.

In addition to the works cited above, there has been an increasing trend by workers
in finite element analysis to adopt the equations of nonlinear continuum mechanics. This
of course has the advantage that it draws on a large background of study of the nonlinear
problem. Wissmann [17] and Besseling [18] discussed the tensor formulation of the finite
element analysis. Oden [15, 16, 19-22] in a series of papers extended the formulation and
outlined its application to nonlinear elastic and viscoelastic problems. Becker [23].
Felippa [13] and Hartz and Nathar [24] also consider the nonlinear elastic problem. The
last work discusses the different terms resulting from the use of either a Lagrangian or an
Eulerian approach. Yaghmai [25] also discusses the last aspect of the problem and alsa
includes a linear incremental Kirchoff stress-Lagrange strain for the elastic plastic
problem. The equations were then applied to shells of revolution using a mixed Lagrangian
Eulerian approach where the equations depend on a fixed coordinate system during au
increment of load and is updated immediately after. Similarly, the incremental equilibrium
equations [25] contain both the incremental Cauchy stress as well as the accumulated
Kirchoff stress quantities.

The advantage of the incremental approach results from the simplicity and generality
of the incremental equations written in matrix form; such equations are readily program-
med in general form for computer solutions [11]. Thus the incremental equations have
formed the basis of general purpose programs for nonlinear analysis [26]. As yet there has
been no development of a large strain, large displacement formulation which may readily
be implemented in such a program. It is the purpose of the present paper to propose such
a formulation. We find that the formulation is quite similar to the current large rotation.
small strain formulation, provided we introduce an additional term into the latter to
account for the initial loads in the increment; having derived the complete formulation
we are able to show the necessity for the inclusion of this term even within the small strain
approximation. The existence of this term has also been pointed out by Oden [22] who
calls it the load correction matrix.

An important question of large strain analysis is which constitutive equation to use.
Several authors have suggested particular forms that these equations should take for an
elastic-plastic material [27-29]. We shall adopt equations which are a direct extension of
the Prandtl-Reuss equations. The additional factor taken into account is the use of a frame
indifferent stress rate. Isotropic strain hardening has been assumed so that it will not be
generally applicable to truly large strains for most materials, but should nevertheless be
of value for the wide range of problems in which strains must be treated as finite even
though anisotropy does not develop extensively. We do not, as yet, deal with large elastic
strains in the manner of Lee [29].

In the present paper we adopt the incremental approach, developing the incrementai
stiffness equation as a linearization of element equilibrium defined by the virtual velocity
equations. The development is made in a Lagrangian (initial coordinate) frame of reference.
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A parallel development in a current frame of reference has been made and will be presented
separately. This latter development does not introduce an initial displacement matrix.
The rigorous development of the complete incremental stiffness equation then allows us
to show the extent to which the small strain approximation may be used to simplify the
equation. We show the similarity between the complete formulation and the small strain
approximation written with the same Lagrangian frame of reference so as to suggest
extensions of the current general purpose program to include finite strains.

STATEMENT OF OBJECTIVE

(@) To develop an incremental finite element formulation for the large displacement,
finite strain problem and to examine the generalization of a general purpose program
developed for nonlinear large displacement, small strain problems.

(b) To obtain a large displacement, small strain formulation as a special case of the
nonlinear large strain formulation and thus evaluate previous large displacement, small
strain incremental finite element theories.

Notation

In the following, rectangular Cartesian coordinates are used throughout. Lower case
subscripts i, j, etc., refer to coordinate directions while superscripts in upper case N, M,
etc., refer to nodal points. Superscripts in Greek script «, f etc., refer to generalized dis-
placement. The summation convention is assumed throughout. In matrix notation all
stresses, stress rates, strains and strain rates are written as vectors. All quantities associated
with nodal points are barred, e.g. XY is the ith material coordinate of the Nth node.

1. REVIEW OF BASIC EQUATIONS, VIRTUAL VELOCITY EQUATIONS

We base the development of the element equilibrium equation on the virtual velocity
equation, written for a single element at some time ¢ during the deformation. The virtual
velocity equation is entirely equivalent to overall element equilibrium and point-by-point
equilibrium equations, so that here we use it as a fundamental equation.

With T, F and ¢ any equilibrium set and v, V any compatible set of velocities and de-
formation rates, we have, referred to the deformed geometry,

fﬂvids+f F,-v,-dV=f a;V,;dV (1.1)
s v v

where T; are the components of surface force per unit of current surface area at time 1,
§ is the current surface of the element at time ¢, F; are the components of body force per unit
of current volume at time #, V'is the current volume of the element, o is a stress field defined
throughout the element, in equilibrium with F and T' and ¥;; = 3(dv;/0x;+ dv;/0x;) is the
rate of deformation derived from the velocity field u(x): here x are current (spatial) co-
ordinates. In the usual small displacement form of (1.1), ¥, ; 1s written directly as ¢, the
strain rate.

The development we wish to follow is Lagrangian (referred to material coordinates),
so that we now transform (1.1) to an equation referring to initial coordinates. The relation-
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ship between current and initial coordinates for any central point is
x; = X;+u; (1.2)

where x; are current coordinates, X; are initial coordinates and thus remain fixed for a
particular material point and u; are the components of the total displacement of the material
point X to this time.

For the Lagrangian formulation the usual strain measure adopted is that of Green
(see, for example, [30] p. 193), defined as

1{dx, 0x, ,
E.=(—2%_"%*_§. 1.3
Y Z(GX,- X, 6”) (3

where J,; is the Kronecker delta.
The material time derivative of (1.3) gives us the strain rate

, ov, 0x, Ox, Ov
= ( K OX k k) (14)

2\ox, ax, T ax, ax

and the appropriate stress whose product with E;; gives the work rate per unit initial volume
is the Kirchoff stress,

Ox
aX

(see [30] p. 200). Here |0x/0X] is the determinant of the matrix [0x;/0X ;.
Thus, the right-hand side of (1.1) is

X, 80X,
fffff (1.5)

ij =

f o;V;dv =f S;E;dve. (1.6)
| 4 Vo

To transform the left-hand side of (1.1) to an equivalent statement referred to the initial
configuration, we introduce equivalent forces T° per unit of initial surface area, and F°
per unit initial volume, where

dv

FY = Fia“—Vo (1.7
and
ds
TP =T (1.8)

where dV/dV°, dS/dS° are ratios of current to initial volume and surface area respectively.
Then the left-hand side of (1.1) is

ds o dv
D, D, dve. 1.9
L Tw; dS + L Fuo,dV = ‘dSOv' ds®+ 'dV‘)U (L.9)

We now substitute (1.6) and (1.9) in (1.1) to obtain

T?u,-dS°+f FO,dV° = f Sy dV°. (1.10)
Vo

SO
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This is now the virtual velocity equation referred to the initial configuration, and is
used as the basis of the stiffness equation for the finite-element formulation.

2. LAGRANGIAN FORMULATION OF THE STIFFNESS EQUATION

The finite-element approximation is developed from a displacement assumption within
each element, which gives the displacement at any point within the element as a linear
combination of the displacements at a finite number of “‘nodal points” of the element, the
coefficients being functions of position within the element. In this section we adopt such
a displacement assumption in general form, using material (initial) coordinates as the
position variables, in accord with our Lagrangian development. The equations of non-
linear continuum mechanics have been recast in finite-element terms by Wissman [17]
and Oden [15]. We follow similar lines in developing the equations of this section as a
basis for subsequent developments. Throughout this section, the equations are developed
in tensor form. An Appendix provides the equivalent matrix form of the important relations
and provides a link with previous work [26] and also brings out more clearly the implemen-
tation of the present work in a computer program.

We write the displacement assumption within any given element in the form

u; = R{(X)a*, (2.1)

where o = 1,2... up to the number of nodes to be used in the element multiplied by the
number of displacement directions.

a* is the generalized displacement and Ri(X) is the matrix which transforms the general-
ized displacements to displacements at a point. R{(X) is a known function of the initial
coordinates X of a general point within the element, and is chosen so that continuity in
displacement from element to element can be assured.

By substituting the coordinates at the nodes and inverting (2.1) we obtain the nodal
point displacement to generalized displacement transformation matrix A~

a = AN X, (2.2)

where the sum on N need only extend over all those nodes common to the element. We
shall, however, think of the sum as extending over all nodes in the body, understanding
that AV(X) is zero for those nodes not common to the element.

The generalized displacements a* are thus linear functions of the nodal displacements
it?, so that we may write the displacement at a point within the element as

u; = RYX)A Xy (2.3)

Because the first two terms on the right of (2.3) are functions of initial position only,
the material time derivative of (2.3) is

v; = RHX)ANX)}, 24
and, its rate of change with respect to Lagrangian position is
v, ORHX) o
= AN X)L, (2.5)

X7~ 0X,
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Using (2.5) we may obtain the Lagrangian strain rate ({.4) at any point in the clement as
a function of position and nodal velocities.

. ORT ORI ORY
Eij = Sym[([j)(}“—a)(' ({)}*, A’;Muf)”)A,“vf’ .

{2.61

In (2.6) the term in the bracket is the matrix which transforms the generalized velocity
d* to the Lagrangian strain rate E,;. This is the tensor form of the so called [B] generalized
displacement increment to strain increment transformation matrix of [26]. The first term
is a function of position only [B®] while the second term is also a function of displacement
expressed in terms of the nodal point displacements [B'].
We obtain the overall stiffness equation for the continuum by direct substitution of
(2.4) and (2.6) into the virtual velocity equation (1.10).
- v [ . [{0R* ORORP . L
{LO TYRZ AN dS° + JVO FYR AN dV"? u) = {LO Si'i(é‘}(‘;ﬁé}({ gy';/lg“uff’ AN dV"jL Y.
(2.7}

The integration on V' extends over all elements within the body, and that on S® over all
element surfaces on the loaded surface. Further we recall that the A7 are a set of constants
within each particular element, and their values within a given element are zero for all
nodes N not common to that element. The virtual velocities being arbitrary, we obtain
the overall equilibrium equation by equating coefficients of each particular nodal velocity
Y. Thus, if “‘equivalent” applied forces PY at the nodes are defined in terms of surface and
body forces as

PY :J TYRIATN dS° + J FIRIATN 4V, (2.8
50

vo

then the set of equilibrium equations is

- s,
yo

Two types of non-linearity are apparent : the geometric non-linearity arising through the
generalized velocity to strain rate transformation matrix of (2.6), and the material non-
linearity since we cannot in general assume a linear relation between S;; and the E;;.

OR: OR: ORY Vo
LS b ___VAﬁM—I\rI Aal\ dVO 29
0X, X, 0x,"" U, ) ] (2.9)

'

3. INCREMENTAL STIFFNESS MATRICES

The method of solution proposed here follows the most common approach of taking
linear increments in the non-linear equation (2.9) [16, 26]. Such a method of solution is a
necessity when the material law includes some form of deformation history dependence.
As has been shown [26], this technique is also very well adapted tc general purpose program-
ming.

First, a slight change in point of view is made. Integrations in (2.8) and (2.9) are to be
extended over all the elements. However, it is convenient to focus attention on operations
to be performed on a single element, it being a relatively straightforward matter to assemble
contributions from all elements sharing a nodal point. Thus, we shall henceforth view
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equations (2.8) and (2.9) as involving integrations over a single element. Further, to avoid
extra notation, we shall maintain the notation P for the left hand sides and keep the “‘equal”
signs, it being tacitly understood that the subsequent “‘equations” for individual elements
are really valid only when contributions from all elements sharing a particular node are
added together.

With this convention, the 43 may be taken outside the integrals. For a linear increment
of (2.9)

ORE ORE 1 e 0
5%, 5x AR dVe. G.)

APY = g f

Vo

OR} aRi 5R£ BM =M 0 aN
(&Xj+6Xi 3, ALY )AS,-jdV + A}
Now, if the surface tractions and body forces are known in the forms T?, F? referring to
the undeformed geometry, the left hand side is known from (2.8) and whatever changes in
load parameters are envisioned during the A increment. However, this is not the most
general case. Rather, T? and F? will depend both on certain load parameters and on dis-
placements (and/or displacement gradients), so that increments will take the forms

AT? = Aloa(lT?+A
AF? = AloadF?+A

TP
F?

geom

(3.2a)

geom

where A,,,4 denotes the known increments in 77 or F{ due to changing the load parameters,
with the displacements and gradients held fixed, and A, denotes the increments due to
the unknown changes in displacements and gradients, with the load parameters held fixed.
Here we give an example to illustrate the behavior we have in mind. Consider an axially
symmetric body rotating about its symmetry axis, and let us suppose that the angular
velocity w is increased from zero to its current value at a sufficiently slow rate so that the
problem may be treated as one of quasi-static deformation due to the increase of the inertial
body force, F? = p®w?r, from zero to its current value. Here F? is the radial component of
body force per initial volume, p° is the initial mass density, and r is the distance of a material
point from the axis of rotation. For an increment in angular velocity we have

AF? = p%A(w?)+ pw® Ar (3.2b)

and the terms on the right-hand side of this equation may be clearly identified with the
terms in equation (3.2a). It is noted that the second term requires the increments in Ar
of the radial position of the material point and that this may only be computed by a complete
solution of the incremental problem.

We return to our discussion of the increment in equivalent force and write

APY = APY + ONMAGY, (3.3)
where from (2.8)

By = | [ MR 0%+ [ uartriare] (40
50 o

and

DIMAGM ::Af”{j. Ageon TORZ dS° + f Ang?R‘;dVO}. (3.4b)
s° yo
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We discuss the computation of the matrix Qf,’,’” for particular loading types in the Appendix.
This matrix is the load correction matrix developed independently by Oden [22].
We may now use (3.3) in (3.1) to obtain the incremental element stiffness equation:

- OR* ORZ GRS
PN — aN b AﬁM—M I/O
A Al L(ax*ax X, AS;d

00X, 0X;
—QNMAGM. (3.5)

Equation (3.5) now expresses the (known) AP as linear combinations of AS;; and Au
with known coefficients. To complete the formulation, we now express an mcrement of
stress AS;; as linear combinations of the increment of displacement A#. This is done by
introducing the constitutive relation in the form

ASU = DijklAEkl (36)

R: ORY
+A7N j 6,,__ —‘kAﬂMS,‘j dVO . Aailw
Vv

where we assume that D;;, is a known function of the current state.

In this constitutive relation we assume that a unique stress increment is defined by a
given strain increment : it is therefore suitable at least to large non-linear elastic materials
and to time-independent elastic-plastic materials under isothermal deformation. An
example of the particular form of (3.6) which is appropriate for finite strain elastic—plastic
deformation as long as the material is isotropic is discussed in the next section.

We now use the displacement assumption to write AE;; in terms of A&z}, and similar to
the derivation of (2.6) obtain

dR; OR% ORS
= D.. AﬁM-M AaNA
AS;=D ”"’(ax X, ax, )
so that the incremental equation (3.5) reduces to
APY = (KO)2 4 k(DNC 4 2INC _ ONO)A0 (3.7)
where
ORY OR;
(I)NQ BN 2ip. K dV A€
k A {J“,Q 6X ijkp - 6 } r
is the usual small displacement stiffness matrix;
ORE OR;
(ONQ — 4BN kqrol 420
S ’{ S‘Jaxax }

is the initial stress stiffness matrix ;

dR? OR: OR! OR% OR? OR?
(2INQ _ BN y MM
KPNQ = Af {LODqkp[A (axk 0X, X, +5X X (3X)

a 3
PAyMAaP?B_Y dR? RS OR? avol g0
73X, 0Xp 0X, 0X,

+uu

is the initial displacement stiffness matrix introduced by Marcal [9]; and @2, defined in
general terms in (3.2), may be similarly described as an initial load stiffness matrix.
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4. CONSTITUTIVE RELATION FOR AN ELASTIC-PLASTIC MATERIAL

In the previous section we derived the general incremental stiffness equation using a
constitutive relation in the form (3.7). We now suggest appropriate forms for D, in (3.7)
for particular material properties.

The classical elastic material may be readily treated, for then we can write an appropriate
strain energy function so that

W
T

where W = W(E,). Thus AS;; = (0*W/0E;0E))AE,, defines Dy, = (6°W /OE,,0E,,). Be-
cause of the work of Oden [15] it was thought unnecessary to pursue the nonlinear elastic
problem further, it being sufficient to note that the incremental approach here could be
followed by additionally imposing constraints of incompressibility. This constraint may
be expressed as a linear relation between displacements at the nodes of an element and the
interested reader is referred to [31].

The elastic—plastic behavior of metal structures is of great interest, and here the in-
cremental solution is most useful in following the strain history throughout the structure.
In the following we shall assume that the material is isotropic and, with the description of
elastic—plastic materials in mind, we adopt a linear relation between stress and strain in-
crements. We also recognize that for metal behavior, the constitutive relation is commonly
expressed in terms of true stress and true strain (e.g. the Prandtl-Reuss equations) rather
than as a relation between S;; and E;;. We therefore introduce our constitutive relations
in these terms and using appropriate relations between the increments of true stress and the
Kirchoff stress we transform our equation into the desired form of (3.6).

Small strain elastic—plastic rate independent material behavior according to the
Prandtl-Reuss relations and the von Mises yield criterion has been discussed at length
[32-34]. Its use as the tangent modulus method in finite element analysis is also well estab-
lished [35-37]. The incremental equation takes the form

AO'ij = CijklAekl (4.1)
where Ag;;, Aey, are increments of stress and strain, and the C,j, are either the appropriate
elastic constants for a purely elastic increment, or are derived from the elastic constants
and the current position of the yield surface (and the work-hardening coefficient) for an
elastic-plastic increment. As in Hill’s [32] discussion, we assume that the equation describes
the true stress vs. logarithmic strain relation in simple tension.

For finite strains, the usual development of elastic—plastic constitutive relations may
be followed, provided we may still assume a linear decomposition of strain increments into
elastic and plastic parts. This is not the case in general [29, 38], but for static deformation
of most metals we can assume the recoverable elastic strains are small so that the decom-
position is still valid. If the C;;,’s are assumed to depend only on the current stress state,
then material isotropy and isotropic hardening are necessarily implied in the large strain
range. It is clear that non-isotropic hardening could be included in the formalism. However,
this would lead to severe complications in that measures of at least the current orientation
of material line elements would have to be included. Thus, with the restriction to isotropic
hardening and small recoverable strains, Ciju 1s formed exactly as in the small strain
analysis.
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The additional factor to be considered now is that the measure of stress and strain
increments must clearly be of a form that is independent of the current rate of rigid body
motion. That is to say, we adopt frame independent stress and deformation rates. As the
point of departure we use a linear relation between the Jaumanna stress increment and the
increment of deformation tensors since these are the appropriate ““true’ stress and strain
increments which are invariant with respect to rigid-body rotations. The incremental
relations are now

(AGmH)J = Cmnkl{Ag)H (423
where (Ac,,,)’ is the Jaumann stress increment, defined by

(Ao, Y = Ao, —c, - a(Du,) E(Au,,)) . 2(‘ (Au,) 8(Au, ))

ox, 0X,,

(4.3)

where Ag,,, is the material increment of current stress [ 30, p. 155]. Also {Ae),, is the increment
of deformation tensor:

As discussed above, the C,,,, take on the same values as in the small strain analysis
and are assumed to be known functions of current stress.

In order to convert a Jaumann stress increment to an increment of Kirchoff stress we
make use of the relation between the increment of Kirchoff stress and the Truesdell stress
increment [30, p. 201] given by

é-)-{- fff’ (80" (4.4)

!’!

0x

A5 =5x)a

i =

where (Ac,,,)" is the Truesdell stress increment, and the relation between an increment of
Jaumann stress to an increment of Truesdell stress is given by

(AC ) = (AT )" + O fA€),+ 0, (AC) y — Tl Ae) . {4.5)
By using (4.3) and (4.4) in (4.1) we have
Ox 10X, 6X o
ASij a; a J{Cmnkl(Ae}kI + Gmn(Ae)pp p(A?)pn - an(Ae)pnz : (46)
But, from (1.4),
X O g = (Ah.
ix,, Ox,

So that (4.9) is

0x
X

and we have the necessary D, for use in (3.6).

For a constitutive relation of the form (4.2) it is possible that a ““current configuration™
development of the incremental stiffness equation may be more appropriate, since it would
avoid the inclusion of the transformations 0X ;/8x ;. Such a development has been followed

AS +o ""(’) }Ab 4.7

- - T s g T
ki n mk ~
i~ 0x,, 0x, 0x, | ™ ax, ™ax, Ox,

2X, 0X, ax{ X, X,  0X,
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and is found to give a more complicated initial stress stiffness matrix which is less easy to
generate, but does not have an initial displacement stiffness matrix. This Eulerian develop-~
ment will be the subject of a separate report.

5. SMALL STRAIN, LARGE ROTATION APPROXIMATION

In previous derivations for higher order elements, assumptions of small strain were
implemented on an intuitive basis. In order to better understand the order of magnitude
of the errors introduced, we shall here obtain the small strain large rotation formulation
explicitly as a special case of the large strain large displacement formulation (3.7).

The small strain approximation in large displacement finite element formulation has
usually been introduced implicitly through the adoption of a local coordinate system in
each element, which rotates with the element [4-9]. However, such local coordinate
systems may not be adequate in higher order elements because the possibility of large
rotations within the element remains: Rigorously, such local coordinate systems are
only adequate for constant strain elements. This difficulty may be overcome by introducing
a local coordinate system at each material point (in practice this means at each integration
point of the numerical integration scheme) but even such a local coordinate system need
not be used explicitly. Here we imply such a system although it does not enter any of the
equations in their final form, and we achieve a simplification of equation (3.7) which
corresponds to the current general purpose program being used at Brown University [26].

We can characterize the motion of any material line element as a rigid body rotation
and a pure deformation,

oX

E; = (0;+h) Ty (5.1)

where h;; = h; «< 1 in the present case, and where T;; is an orthogonal rotation, possibly
finite. Tnus, to within terms of order k;; compared to unity,

dv
dave

ox

X 1. (5.2)

4

~ 1 and

ds°®
The transformation of vectorial surface area is [30, p. 199]

ox

0X

0X;
ox,

ds, = dse, (5.3)

where dS, = 1,dS, dS? = n] dS°. Again, neglecting terms of order k;;,
ds, ~ T, dS? or N, ~ T,N?. (5.4
The incremental constitutive law of the previous section, equation (4.6), may be written as

0x

(7). 4

09X, 0X, 0X, 0X
2 ChulE, (5.5)

AS;; =
¥ 0x,, 0x, 0x;, ox'

where
Chikt = Counki 0 mn0is — 50 i O 1+ O piOien + OO + G niOm) (5.6)
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Thus, neglecting h;; in comparison to unity, (5.5) becomes

AS;; ~ T, T, 1, Ty CruiAE,

i
or

AS; ~ C¥ . AE, (5.7

ij
where dX, = T;dX; defines a coordinate transformation. This is, of course simply the
form of the stress—strain relation employed in previous updated local coordinate system
formulations [26].

However, one difference from previous work remains, in that we have the constitutive
matrix C¥,, as defined by (5.6), rather than C,;, as employed, for example, in conventional
small strain small displacement formulations. In the elastic range, C;;, is an elastic modulus
and hence the additional stress terms in (5.6) are of the order k;; in comparison and thus
negligible. But in the plastic range, since the slope of a stress—strain curve is often of the
same order of magnitude as the stress itself, the additional terms are not always negligible.
In other words, no matter how small the strains (or rotations) are, if the material is in the
plastic range, the conventional small strain formulation is not necessarily recovered as a
limiting case of the geometrically nonlinear formulation. This is not as unfamiliar a fact as it
might seem at first thought. ““True” stress—strain curves and nominal curves, from tension
or compression tests, are frequently plotted on the same diagram. We might think of adding
a curve representing Kirchoff stress and Lagrangian strain. All three curves agree closely
in the small strain range. However, the slopes of the three stress—strain curves are very
different in the small (but plastic) strain range for the light work hardening rates typical
of high strength structural metals. The slope differences are of the order of stress itself,
which is in turn typically comparable to any individual slope. Hence, the approximation
of replacing Cf; by C,j, is a familiar one, and while the actual relation between stress and
strain increments may be poorly represented in the plastic range, it is expected that total
stresses and strains will be accurately predicted. While we propose to adopt this last
viewpoint here, we note that some problems, particularly those of structural stability, may
be poorly treated as a resuit of the approximation. This point deserves further study.

The transformations 0X ;/0x; appear frequently in the formulation, and in the appendix
we show how these may be obtained by inversion in the general case. For this small strain
approximation they are available directly as follows. We have

(gx' = (5ip+hip)TpJ
from {5.1). Then
0x; ox\ ! _ . V12
%= () = Tt 08
Since all
ox;, 0X;
h-- I J ~ 4
iy « ) aX‘ axi

and so using the displacement mode assumption (2.3),

0X, OR?
5;1} ~ 5ij+5(§,47”ar. (5.8)
J
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This expression may be used in (5.5) and in the load vector and initial load matrix.
These latter are simplified appropriately in the appendix.

We may summarize the small strain approximation by saying that while none of the
stiffness matrices can in general be omitted, some simplification of these stiffnesses can be
achieved. These are, in fact, simplifications in details of the formulation. Indeed it is because
of this that it should be straightforward to incorporate the complete formulation into the
current small strain formulation.

6. CONCLUSION AND DISCUSSION OF FUTURE WORK

We have derived the incremental stiffness equation of the finite-element method in a
Lagrangian frame of reference, without making any assumptions about the magnitude of
strains or displacements. Such an exact derivation has many advantages for the subsequent
development of a small strain, large rotation theory because explicit introduction of the
small strain approximation shows how much simplification can be achieved within the
approximation. Thus it is not, in the general case, legitimate to ignore the initial load
stiffness matrix, which has not yet appeared in any previous developments of the incremental
equations for use in a general purpose program. However, the more important conclusion
is that the formulation for finite strain is not seriously more complicated than that of current
general purpose small strain, large rotation programs, so that there is no practical barrier
to the removal of the small strain restriction.

We have not introduced a local coordinate system, and it should be again pointed out
that the conventionally adopted whole-element local coordinate systems may not be
sufficient for the higher order elements, because finite rotations within the element may
take place.

The complete formulation of the incremental stiffness equation for arbitrary large
strains terms, incorporated into the current general purpose program, will extend the
possible range of problems into such fields as metal forming, provided suitable constitutive
data are available.

The development has used a Lagrangian frame of reference, and this may prove of
further practical use in the extension to large strain dynamic problems, because the mass
matrix would then be constant throughout the calculations, and would be solved once
only. This may result in considerable time saving in the overall solution of these problems,
where the time needed for numerical solution is usually very long.
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APPENDIX A

Mairix form of the incremental equations

In this Appendix we give the matrix form of the incremental stiffness equations (3.7)
and discuss how this may be implemented in a general purpose program.

With the definition of [4], [R] and [B] given in (2.1), (2.2) and (2.6) respectively we have
the incremental element stiffness equation:

(AP} = (K +[kV]+ [K®) - [Q]){Aa} (A1)

where

[K©) = [A]T( f [B*"[D](B°] dV")m

(k] = [A]TUVG(Z Sy {g?} Lg%j) dVU) -

[K2] = [A]T( [ (oI + BV DYB") + (BY[DIBY dV°)[A]

and [Q] is derived from (3.2).

Equation (A.1) as obtained above applies to each element and its corresponding nodal
points. The master stiffness equations for the whole structure may be obtained from this
equation by the usual assembly used for the direct stiffness method.

The implementation of equation (A.1) in a general purpose program is fairly straight-
forward and would follow along the lines of [26].

The only difficulty may arise from computing the initial stress stiffness matrix [k‘"].
We therefore describe how it may be formed.

From equation (2.6), we see

@ @ABM-M

oy
B = ox, ox, %

(A.2)
We assemble the matrix form of [B'] following the technique outlined by Marcal [9]. In

this method we take the individual rows of [ B'] corresponding to components of S;; written
as a vector. One such row is formed as

e JOR | R,
[Bi;| = lal[A] ;{5}—]} [’5}7J (A3)

by direct comparison with (A.2) above. In (A.3) the sum over k is first assembled, and then
this matrix is pre-multiplied by |({#][A]T)]. It is emphasized that subroutines have only to
be written to form the coefficients in |R,/2X;].
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Having formed the individual rows of [B'], the whole matrix may now be completely
assembled (e.g. for use in [K@Y), or these rows may be taken in turn and multiplied by the
appropriate S;; for the assembly of [K"].

Finally, we note that we have used the relation X ,;/0x, frequently in the stiffness for-
mulation. These transformations may readily be obtained by inversion, since

ox, "ty (A4

and so substituting from equation (2.4),
ox, oR, . -
o 5,~,+8X:A§’Nu?’. (A.5)

The matrix 0x,/0X; in (A.5) can be inverted to obtain the X /dx,. In the case of small
strains, we have given an explicit formula (5.8).

APPENDIX B

Particular forms of external loading

In Section 3 we derived the incremental stiffness equation using the general form of
loading defined by (3.2). We now consider two particular cases, point loads with constant
direction and pressure loads, to illustrate how readily these may be incorporated into the
incremental formulation. For simplicity in both examples we consider that particular
loading alone; direct linear superposition of the loadings is apparent from Section 3.

1. Point loads. That part of the surface loads resulting from point loadings may be
written as

f’gdszzwy (B.1)
S N

where WV is one of the point loads. It is not assumed here that W" is necessarily applied
at a node, but we make the assumption that it is applied at the same material point X"

throughout the motion.
Then that part of the equivalent nodal loads in (2.8) resulting from the W" is

PY =Y WERHXM) AN, {B.2)
K
Note that from (B.2) if the WY are indeed applied directly at the nodes, we have P} = W
since R? is then the inverse of 42",
To define the increment of (B.2) we must write AW? in the form (3.2). The simplest case
occurs when the point loads remain in a constant direction (e.g. gravitational in an ap-
propriate frame of reference): then we write

wV = |Whn
where n is a constant unit vector.
So in the increment
AWY = AW
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and hence the incremental form of (B.2) is

APY = Z AWERNX®) A", (B.3)

Here the AWX = A|WX|n, are assumed known.

Comparing (B.3) with (3.2), we see that in (3.4b) there is no Q¥ term arising from such
point loads with fixed direction, so if the structure is loaded with such point loads alone,
there will be initial load matrix. If, however, the direction of the point loads varies, we
must write

AWN = AWM n+|W" An

and the second term [the A, term in (3.2)] will give rise to the initial load stiffness matrix.

2. Pressure loading. This form of loading is one of the most important for practical
problems, and is very simply included in the general formulation of Section 3. The pressure
on a point of the surface of an element may be written in the form

T = —pn (B4)

where p is the (scalar) value of the pressure and n is the unit outward normal to the surface
at this point. Then

TdS = —pndS = —pdS (B.5)

writing the surface element as a vector directed along the outward normal. With this
notation, we have the result (see [30], p. 199)

0x(0X;

ds, = 3X|ox., ds? (B.6)
so that we may substitute in (B.2) to get
6x 0X;
T,dS =
- dS 6X 6 T, 95
6x 0X;
= 0X 6 ——dS§%n? (B.7)

where n® is the unit outward normal to the same material point of the element surface, but
in its initial configuration.
Thus by comparison with (1.8) we have the expression for T° as

o 6x ox? BS
Writing this in incremental form, we have
0x (?X 0x|0X,;
AT = —Ap
’ 6X ox, A( 0X|ox" (B9)

The first term is A, 477 of (3.2).
To obtain the form of the second term in (3.3) corresponding to A, T?, we need to
evaluate the incremental part of the second term in (B.9). This is readily done using the
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two basic results quoted below (for derivation see, for example, Prager [30], p. 192):

A(_‘_”‘,}) - 0K dAwy)

x, ox, (B.10

and
et (B.11}

So we have for A

geom
0x ¢ X’ 0 X, dAuy) X,
—~pnPA = 0" Nl ey
o ( 0X|ox ) " p ‘1»\”::
3X, d(Au,) 20X,
Fka ox,
B 0X; 0X,)\ 8w
X, 0x, 0x,) (X (B.12)
These expressions allow us to substitute directly in (3.4a,b) for AP¥ and QNM -
{B.13)
and ,
ox|[0X,¢X; 0X;0X,|0R
’:’1‘! = 42N R* = e T k 3¢0 48M :
! el pn? X ﬁxk ax, " ox, ax, 5X —dS A4l (B.14)

so that we have the increment of nodal ioads for the left-hand side of (3.7) and the initial
load stiffness matrix.

When small strains are assumed (see Section 5) (B.13) and (B.14) may be simplitied. We
have [0x/0X| ~ 1, and dS ~ dS° Thus we may write

where the ¢X;/0x; are available directly from (5.8).

(Received 3 July 1969 revised 9 December 1969}

AbcrpakT—OBCy XK 1aeTCs TeOPHs I KYCOYHOIO JIMHEHHOIY KOHEHHOTO IIEMEHTa ¢ NpUpaMermMemM mnpu
GOnbLIMX HEepeMEIEHUAX, DexuMe Bonbumx nedopmanuit v npu ocobOM OTHOWEHUM K YNPYro-IUIACTH~
YECKOMY [OBENE-HUIO B MeTanaax. [1ofyveHHble YPABHEHMs, HECMOTPS HA uX OOABLIVIO C/IOKHOCTH
noao6Hb 1o GopMe K TaKMMKE, BBIBEAEHHBIM 3apadee M8 3afad CombUIMX MEpeMELEHHH, MaTbix
nedopmaiii, npuuem A06aBOYHBIR UNIEH, KOTOPBIE OKA3BLIBAETCA MATPHUCH KOYPDHUUEHTOB KECTKOCTH
HAYa/b HOW HArpY3KM, 3aBHCHMT OT MOTOKA HArPy3kH. 7o nonobue obosxavaer, 4To HenmMHeHHbIE 0biine
TIPOTPaMMbl MOXKHO IErKO PaClWiupuTb ANs NPHCOCIMHCHMA KOHe4HbiX aeopmaumit. M3 »Toit reopuu
nonyyaeTcA popMyuposka Gonbiliux mepeMeiieHuit u maneix gedopmannit /B npumedennio x 3agadam
YCTOHYKBOCTH KOHCTPYKLMM/ NPEATONATAN, YTO HIMEHEHHE IJIHHBL JIMHERHbIX WIEMEHTOB H OTHOCUTENbLHOE
BPALICHNE OPTOFOHAABHLIX JMHEHHBIX 3/IEMEHTOB HEIHAUMTEIBHO MO CPAaBHEHMIO C €auuuued. Ynpo-
LLICHHBIE YPABHECHUA, B OCHOBHOM, COTNIACHLI C f1peabiayLiei dopMynuposkoit B nutepatype. Habnrogaercs
TOABLKO ONHA PABHULA, COCTOSIAA B TOM, YTO MAaTpULa KOIDGHLUHEHTOB HAYANLHON HArPY3KHM MOCTOAHHA,
DTO NMEET IHAYCHHES B HEKOTOPBIX Clydasx.



