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Abstract-An incremental and piecewise linear finite element theory is developed for the large displacement, 
large strain regime with particular reference to elastic-plastic behavior in metals. The resulting equations, though 
more complex, are in a similar form to those previously developed for large displacement, small strain problems, 
the only additional term being an initial load stiffness matrix which is dependent on current loads. This similarity 
in form means that existing nonlinear general purpose programs may easily be extended to include finite strains. 
A large displacement, small strain formulation (as applicable to problems of structural stability) is obtained from 
this theory by assuming that changes in length of line elements and relative rotation of orthogonal line elements 
arc negligible compared to unity. The simplified equations are in essential agreement with previous formulations 
in the literature. The only difference which is observed is the persistence of the initial load stiffness matrix, which 
may be significant in some cases. 

INTRODUCTION AND REVIEW OF LITERATURE 

THE direct stiffness method of finite element analysis is by now well established and widely 
used for the solution of small displacement, elastic structural problems [l]. Following the 
initial paper of Turner et al. [2], various types of element have been developed, and general 
purpose computer programs now exist which can be used with any element for the solution 
of large-scale problems (for a summary see [3]). Such general purpose programs have 
great practical advantages because of the rapidity with which they can be applied to any 
particular problem. 

Since the establishment of the method, there has been much interest in extensions for 
nonlinear analysis. The nonlinearities arise from two distinct sources: constitutive non- 
linearities and geometric nonlinearities, the latter being due to large displacements. The 
most commonly used nonlinear material is the elastic-plastic material, and for this material 
the linearity of the incremental stress-strain law forms the basis of the equations, its most 
direct application being in the incremental type solution, where the solution is built up as a 
series of linear increments. 

Geometric nonlinearities were first included by means of an incremental geometric 
stiffness (initial stress stiffness matrix). Such matrices were suggested in [4-71. The earlier 
results were obtained on the basis of equilibrium at nodes. The derivation of the initial 
stress stiffness matrix was finally placed on a firm basis by the use of the Lagrangian or 
Green’s strain by Martin [8]. More recent analysis has established the importance of addi- 
tional terms [9-111 which take the form of an initial displacement matrix [9] in the in- 
cremental solution. This large displacement analysis has often been approached through 
an updated local coordinate system, which is usually defined for each element in the 
structure [12,13]. Such coordinate systems are of use only when the assumption of small 
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strains is made. Moreover, because of the possibility of finite rotation within the element, 
this is strictly only true for constant strain elements. More direct solutions have been used 
which do not employ an explicitly matrix formulation ; for example, the large displacement 

small strain work of Bogner et al. [14] in which a Fletcher-Powell minimization was used 

and the large displacement and large strain work of Oden [ 151 and Oden and Kubitza [ 161 

on nonlinear elastic materials, for which a Newton-Raphson method was employed. In 

[16] the authors also solved an elastic-plastic membrane problem with an incremental 
approach which accounts for small strains and large displacements. 

In addition to the works cited above, there has been an increasing trend by workco 

in finite element analysis to adopt the equations of nonlinear continuum mechanics. ‘Thiq 

of course has the advantage that it draws on a large background of study of the nonlineal 

problem. Wissmann [17] and Besseling [lg] discussed the tensor formulation of the finite 

element analysis. Oden [15, 16, 19-221 in a series of papers extended the formulation and 
outlined its application to nonlinear elastic and viscoelastic problems. Becker [23]. 

Felippa [13] and Hartz and Nathar [24] also consider the nonlinear elastic problem. The 
last work discusses the different terms resulting from the use of either a Lagrangian or an 
Eulerian approach. Yaghmai [25] also discusses the last aspect of the problem and aiso 
includes a linear incremental Kirchoff stress Lagrange strain for the elastic plastic 
problem. The equations were then applied to shells of revolution using a mixed Laprangian 

Eulerian approach where the equations depend on a fixed coordinate system during an 

increment of load and is updated immediately after. Similarly, the incrementai equilibrium 
equations [25] contain both the incremental C’auchy stress as well as the accumulated 

Kirchoff stress quantities. 

The advantage of the incremental approach results from the simplicity and generaiitj 
of the incremental equations written in matrix form ; such equations are readily program- 

med in general form for computer solutions [l I]. Thus the incremental equations have 

formed the basis of general purpose programs for nonlinear analysis [26]. As yet there ha:, 
been no development of a large strain, large displacement formulation which may readit! 

be implemented in such a program. It is the purpose of the present paper to propose such 
a formulation. We find that the formulation is quite similar to the current large rotation. 

small strain formulation. provided we introduce an additional term into the latter tc 
account for the initial loads in the increment; having derived the complete formulation 
we are able to show the necessity for the inclusion of this term even within the small strain 

approximation The existence of this term has also been pointed out by Oden [22] who 

calls it the load correction matrix. 
An important question of large strain analysis is which constitutive equation to use, 

Several authors have suggested particular forms that these equations should take for an 
elastic-plastic material [27 -291. We shall adopt equations which are a direct extension oi 

the Prandtl-Reuss equations. The additional factor taken into account is the use of a frame 
indifferent stress rate. Isotropic strain hardening has been assumed so that it will not br 
generally applicable to truly large strains for most materials, but should nevertheless be 
of value for the wide range of problems in which strains must be treated as finite even 
though anisotropy does not develop extensively. We do not, as yet, deal with large elastic 

strains in the manner of Lee [29]. 
In the present paper we adopt the incremental approach, developing the incrementai 

stiffness equation as a linearization of element equilibrium defined by the virtual velocity 
equations. The development is made in a Lagrangian (initial coordinate) frame of reference. 
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A parallel development in a current frame of reference has been made and will be presented 
separately. This latter development does not introduce an initial displacement matrix. 
The rigorous development of the complete incremental stiffness equation then allows us 
to show the extent to which the small strain approximation may be used to simplify the 
equation. We show the similarity between the complete formulation and the small strain 
approximation written with the same Lagrangian frame of reference so as to suggest 
extensions of the current general purpose program to include finite strains. 

STATEMENT OF OBJECTIVE 

(a) To develop an incremental finite element formulation for the large displacement, 
finite strain problem and to examine the generalization of a general purpose program 
developed for nonlinear large displacement, small strain problems. 

(b) To obtain a large displacement, small strain formulation as a special case of the 
nonlinear large strain formulation and thus evaluate previous large displacement, small 
strain incremental hnite element theories. 

Notation 

In the following, rectangular Cartesian coordinates are used throughout. Lower case 
subscripts i, j, etc., refer to coordinate directions while superscripts in upper case N, M, 

etc., refer to nodal points. Superscripts in Greek script CI, p etc., refer to generalized dis- 
placement. The summation convention is assumed throughout. In matrix notation all 
stresses, stress rates, strains and strain rates are written as vectors. All quantities associated 
with nodal points are barred, e.g. Xy is the ith material coordinate of the Nth node. 

1. REVIEW OF BASIC EQUATIONS, VIRTUAL VELOCITY EQUATIONS 

We base the development of the element equilibrium equation on the virtual velocity 
equation, written for a single element at some time t during the deformation. The virtual 
velocity equation is entirely equivalent to overall element equilibrium and point-by-point 
equilibrium equations, so that here we use it as a fundamental equation. 

With 7: F and 0 any equilibrium set and P, V any compatible set of velocities and de- 
formation rates, we have, referred to the deformed geometry, 

(1.1) 

where T are the components of surface force per unit of current surface area at time t, 
S is the current surface of the element at time t, Fi are the components of body force per unit 
of current volume at time t, I/is the current volume of the element, Oij is a stress field defined 
throughout the element, in equilibrium with F and T and ~j = 3(aVi/axj + 8vj/dxi) is the 
rate of deformation derived from the velocity field n(x): here x are current (spatial) co- 
ordinates. In the usual small displacement form of (l.l), yj is written directly as Eij, the 
strain rate. 

The development we wish to follow is Lagrangian (referred to material coordinates), 
so that we now transform (1.1) to an equation referring to initial coordinates. The relation- 
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ship between current and initial coordinates for any central point is 

x; = xi+u; (1.3) 

where xi are current coordinates, Xi are initial coordinates and thus remain fixed for a 
particular material point and ui are the components of the total displacement of the material 
point X to this time. 

For the Lagrangian formulation the usual strain measure adopted is that of Green 
(see, for example, [30] p. 193), defined as 

Eij = ;(g e&6ij) 

where hij is the Kronecker delta. 
The material time derivative of (1.3) gives us the strain rate 

Bij = ! 
i 
!!L !3+!3i 2% 

2 8X, ax, iix, ax, I 

(1.3) 

(1.4) 

and the appropriate stress whose product with Bij gives the work rate per unit initial volume 
is the Kirchoff stress, 

(see [30] p. 200). Here l~Yx/axl ,is the determinant of the matrix [dxi/dXj]. 
Thus, the right-hand side of (1.1) is 

s aijyj dV = 
s 

Sijfiij dV”. 
V VO 

(1.5) 

( 1.6) 

To transform the left-hand side of (1 .l) to an equivalent statement referred to the initial 
configuration, we introduce equivalent forces To per unit of initial surface area, and F” 
per unit initial volume, where 

F; = Fi$ 

and 

dS 
Ty = ?;;-” 

(1.7) 

(1.W 

where dV/dV’, dS/dS” are ratios of current to initial volume and surface area respectively. 
Then the left-hand side of (1.1) is 

We now substitute (1.6) and (1.9) in (1.1) to obtain 

s T:ui dS” + 
s 

FyvidVo = 
so VQ s 

Sijkij dVO. 
VO 

(1.9) 

(1.10) 
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This is now the virtual velocity equation referred to the initial configuration, and is 
used as the basis of the stiffness equation for the finite-element formulation. 

2. LAGRANGIAN FORMULATION OF THE STIFFNESS EQUATION 

The finite-element approximation is developed from a displacement assumption within 
each element, which gives the displacement at any point within the element as a linear 
combination of the displacements at a finite number of “nodal points” of the element, the 
coefficients being functions of position within the element. In this section we adopt such 
a displacement assumption in general form, using material (initial) coordinates as the 
position variables, in accord with our Lagrangian development. The equations of non- 
linear continuum mechanics have been recast in finite-element terms by Wissman [17] 
and Oden [15]. We follow similar lines in developing the equations of this section as a 
basis for subsequent developments. Throughout this section, the equations are developed 
in tensor form. An Appendix provides the equivalent matrix form of the important relations 
and provides a link with previous work [26] and also brings out more clearly the implemen- 
tation of the present work in a computer program. 

We write the displacement assumption within any given element in the form 

ui = &(_X)a”, (2.1) 

where a = 1,2. . . up to the number of nodes to be used in the element multiplied by the 
number of displacement directions. 

ua is the generalized displacement and R(X) is the matrix which transforms the general- 
ized displacements to displacements at a point. R:(X) is a known function of the initial 
coordinates _X of a general point within the element, and is chosen so that continuity in 
displacement from element to element can be assured. 

By substituting the coordinates at the nodes and inverting (2.1) we obtain the nodal 
point displacement to generalized displacement transformation matrix ATN. 

aa = JN(ti)i$, (2.2) 

where the sum on N need only extend over all those nodes common to the element. We 
shall, however, think of the sum as extending over all nodes in the body, understanding 
that @(“) is zero for those nodes not common to the element. 

The generalized displacements ua are thus linear functions of the nodal displacements 
ii?‘, so that we may write the displacement at a point within the element as 

ui = R;(x)@(_x)$! (2.3) 

Because the first two terms on the right of (2.3) are functions of initial position only, 
the material time derivative of (2.3) is 

vi = R;(_X)A;N(n)$, (2.4) 

and, its rate of change with respect to Lagrangian position is 

&i_ W(X) 
ax' - -a‘ix-A;“(g”:. 

J 
(2.5) 
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Using (2.5) we may obtain the Lagrangian strain rate (1.4) at any point in 1 he ciement ;L- 
a function of position and nodal velocities. 

In (2.6) the term in the bracket is the matrix which transforms the generalized velocity 

b” to the Lagrangian strain rate Eij. This is the tensor form of the so called [B] generalized 

displacement increment to strain increment transformation matrix of [26]. The first term 

is a function of position only [B’] while the second term is also a function of displacement 

expressed in terms of the nodal point displacements [B’]. 

We obtain the overall stifiness equation for the continuum by direct substitution of 

(2.4) and (2.6) into the virtual velocity equation (I. 10). 

The integration on V” extends over all elements within the body, and that on S” over al1 
element surfaces on the loaded surface. Further we recall that the AyN are a set of constants 

within each particular element, and their values within a given element are zero for ali 

nodes N not common to that element. The virtual velocities being arbitrary, we obtain 

the overall equilibrium equation by equating coefficients of each particular nodal velocity 
ii;. Thus, if “equivalent” applied forces rjy at the nodes are defined in terms of surface and 

body forces as 

s 

^ 
p;” = Ty RI ATN dS” + 

J 
FyR;A;” dVO, {2.X! 

S” V” 

then the set of equilibrium equations is 

p;’ = (2.9) 

Two types of non-linearity are apparent : the geometric non-linearity arising through the 
generalized velocity to strain rate transformation matrix of (2.6) and the material non- 
linearity since we cannot in general assume a linear relation between Sij and the Ei,. 

3. INCREMENTAL STIFFNESS MATRICES 

The method of solution proposed here follows the most common approach of taking 
linear increments in the non-linear equation (2.9) [16,26]. Such a method of solution is a 
necessity when the material law includes some form of deformation history dependence. 
As has been shown [26], this technique is also very well adapted to general purpose program- 
ming. 

First, a slight change in point of view is made. Integrations in (2.8) and (2.9) are to be 
extended over all the elements. However, it is convenient to focus attention on operations 
to be performed on a single element, it being a relatively straightforward matter to assemble 
contributions from all elements sharing a nodal point. Thus, we shall henceforth vieu 
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equations (2.8) and (2.9) as involving integrations over a single element. Further, to avoid 
extra notation, we shall maintain the notation Pr for the left hand sidesand keep the “equal” 
signs, it being tacitly understood that the subsequent “equations” for individual elements 
are really valid only when contributions from all elements sharing a particular node are 
added together. 

With this convention, the ,4TN may be taken outside the integrals. For a linear increment 
of (2.9) 

Now, if the surface tractions and body forces are known in the forms TF, FF referring to 
the undeformed geometry, the left hand side is known from (2.8) and whatever changes in 
load parameters are envisioned during the A increment. However, this is not the most 
general case. Rather, TF and Fy will depend both on certain Ioad parameters and on dis- 
placements (and/or displacement gradients), so that increments will take the forms 

AT; = L&,~<,T;+ AgeomT: 

AF; = A,,,,F: + AgeomF?, 
(3.2a) 

where Aload denotes the known increments in T? or Ff due to changing the load parameters, 
with the displacements and gradients held fixed, and Ageom denotes the increments due to 
the unknown changes in displacements and gradients, with the load parameters held fixed. 
Here we give an example to illustrate the behavior we have in mind. Consider an axially 
symmetric body rotating about its symmetry axis, and let us suppose that the angular 
velocity III is increased from zero to its current value at a sufficiently slow rate so that the 
problem may be treated as one of quasi-static deformation due to the increase of the inertial 
body force, F: = p”co2r, from zero to its current value. Here Fp is the radial component of 
body force per initial volume, p” is the initial mass density, and Y is the distance of a material 
point from the axis of rotation. For an increment in angular velocity we have 

AFF = p*r~(~‘)~ pow2 Ar (3.2b) 

and the terms on the right-hand side of this equation may be clearly identified with the 
terms in equation (3.2a). It is noted that the second term requires the increments in Ar 
ofthe radial position ofthe material point and that this may only be computed by a complete 
solution of the incremental problem. 

We return to our discussion of the increment in equivalent force and write 

where from (2.8) 

and 

Qc”Aiif = APN (s A,,,,T:R: dS” + s A 
SO VO 

(3.3) 

j3.4a) 

(3.4b) 
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We discuss the computation of the matrix QI, -NM for particular loading types in the Appendix. 
This matrix is the load correction matrix developed independently by Oden [22]. 

We may now use (3.3) in (3.1) to obtain the incremental element stiffness equation: 

@’ = ATN S( aRa aR;: aR" --'+----A~"~~ 
v. ax,j axiaxj 

+ATN 
s 

aR; aR" 
~~ -- LA$“S,j d1/O, &j; 

y. ?xi ax, 

- QEl’,“Aiif;’ (3.5) 

Equation (3.5) now expresses the (known) AF as linear combinations of ASij and AU 
with known coefficients. To complete the formulation, we now express an incrementof 
stress ASij as linear combinations of the increment of displacement Aii. This is done by - 
introducing the constitutive relation in the form 

A.sij = DijklAEk, (3.6) 

where we assume that Dijkr is a known function of the current state. 
In this constitutive relation we assume that a unique stress increment is defined by a 

given strain increment : it is therefore suitable at least to large non-linear elastic materials 
and to time-independent elastic-plastic materials under isothermal deformation. An 
example of the particular form of (3.6) which is appropriate for finite strain elastic-plastic 
deformation as long as the material is isotropic is discussed in the next section. 

We now use the displacement assumption to write AEij in terms of A$‘, and similar to 
the derivation of (2.6) obtain 

so that the incremental equation (3.5) reduces to 

AFT = (k’“‘EY,Q + k (~);Q+~;Q--Q;Q)A~? 

where 

is the usual small displacement stiffness matrix ; 

k”‘NQ = &‘N 
Ir 

is the initial stress stiffness matrix ; 

(3.7) 

is the initial displacement stiffness matrix introduced by Marcal [9]; and QEQ, defined in 
genera1 terms in (3.2), may be similarly described as an initial load stiffness matrix, 
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4. CONSTITUTIVE RELATION FOR AN ELASTIC-PLASTIC MATERIAL 

In the previous section we derived the general incremental stiffness equation using a 
constitutive relation in the form (3.7). We now suggest appropriate forms for Dijkl in (3.7) 
for particular material properties. 

The classical elastic material may be readily treated, for then we can write an appropriate 
strain energy function so that 

s..=w 
” dEij 

where W = W(Eij). Thus ASij = (a” W/iJEijaEJAE,, defines Dijkl = (d2W/aEijdE,,). Be- 
cause of the work of Oden [15] it was thought unnecessary to pursue the nonlinear elastic 
problem further, it being sufficient to note that the incremental approach here could be 
followed by additionally imposing constraints of incompressibility. This constraint may 
be expressed as a linear relation between displacements at the nodes of an element and the 
interested reader is referred to [31]. 

The elastic-plastic behavior of metal structures is of great interest, and here the in- 
cremental solution is most useful in following the strain history throughout the structure. 
In the following we shall assume that the material is isotropic and, with the description of 
elastic-plastic materials in mind, we adopt a linear relation between stress and strain in- 
crements. We also recognize that for metal behavior, the constitutive relation is commonly 
expressed in terms of true stress and true strain (e.g. the Prandtl-Reuss equations) rather 
than as a relation between S, and Eij. We therefore introduce our constitutive relations 
in these terms and using appropriate relations between the increments of true stress and the 
Kirchoff stress we transform our equation into the desired form of (3.6). 

Small strain elastic-plastic rate independent material behavior according to the 
Prandtl-Reuss relations and the von Mises yield criterion has been discussed at length 
[32-341. Its use as the tangent modulus method in finite element analysis is also well estab- 
lished [35-371. The incremental equation takes the form 

A~ij = CijklAekl (4.1) 

where A~ij, Be,, are increments of stress and strain, and the Cijkl are either the appropriate 
elastic constants for a purely elastic increment, or are derived from the elastic constants 
and the current position of the yield surface (and the work-hardening coefficient) for an 
elastic-plastic increment. As in Hill’s [32] discussion, we assume that the equation describes 
the true stress vs. logarithmic strain relation in simple tension. 

For finite strains, the usual development of elastic-plastic constitutive relations may 
be followed, provided we may still assume a linear decomposition of strain increments into 
elastic and plastic parts. This is not the case in general [29,38], but for static deformation 
of most metals we can assume the recoverable elastic strains are small so that the decom- 
position is still valid. If the Cijkl’s are assumed to depend only on the current stress state, 
then material isotropy and isotropic hardening are necessarily implied in the large strain 
range. It is clear that non-isotropic hardening could be included in the formalism. However, 
this would lead to severe complications in that measures of at least the current orientation 
of material line elements would have to be included. Thus, with the restriction to isotropic 
hardening and small recoverable strains, Cijkl is formed exactly as in the small strain 
analysis. 
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The additional factor to be considered now is that the measure of stress and strain 
increments must clearly be of a form that is independent of the current rate of rigid body 
motion. That is to say, we adopt frame independent stress and deformation rates. As the 
point of departure we use a linear relation between the Jaumann stress increment and the 
increment of deformation tensors since these are the appropriate “true” stress and strain 
increments which are invariant with respect to rigid-body rotations. The incremental 
relations are now 

iAg,,tJ = GnkliAe)~i 

where (Ac,,)~ is the Jaumann stress increment, defined by 

(4.2) 

(Aa,,)J = (4.3) 

where AD,,,,, is the material increment ofcurrent stress [30, p. 15.51. Also (be),, is the increment 
of deformation tensor : 

As discussed above, the Cmnk, take on the same values as in the small strain analysis 
and are assumed to be known functions of current stress. 

In order to convert P Jaumann stress increment to an increment of Kirchoff stress we 
make use of the relation between the increment of Kirchoff stress and the Truesdell stress 
increment [30, p. 2011 given by 

(4.4) 

where (da,,,) is the Truesdell stress increment, and the relation between an increment of 
Jaumann stress to an increment of Truesdell stress is given by 

(AG,,)~ = (AG)~‘+ G-,&A&~ + a,,(Ar),,,,, - g,,,,(A&, (4.51 

By using (4.3) and (4.4) in (4.1) we have 

But, from (1.4). 

c?x 3x 
--’ ---sAE,, = (be),,. 
as, ?.A-,> 

So that (4.5) is 

(4.7) 

and we have the necessary Ii,,,, for use in (3.6). 
For a constitutive relation of the form (4.2) it is possible that a “‘current configuration” 

development of the incremental stiffness equation may be more appropriate, since it would 
avoid the inclusion of the transformations 8X,/8x i. Such a development has been followed 
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and is found to give a more complicated initial stress stiffness matrix which is less easy to 
generate, but does not have an initial displacement stiffness matrix. This Eulerian develop- 
ment will be the subject of a separate report. 

5. SMALL STRAIN, LARGE ROTATION APPROXIMATION 

In previous derivations for higher order elements, assumptions of small strain were 
implemented on an intuitive basis. In order to better understand the order of magnitude 
of the errors introduced, we shall here obtain the small strain large rotation formulation 
explicitly as a special case of the large strain large displacement formulation (3.7). 

The small strain approximation in large displacement finite element formulation has 
usually been introduced implicitly through the adoption of a local coordinate system in 
each element, which rotates with the element [49]. However, such local coordinate 
systems may not be adequate in higher order elements because the possibility of large 
rotations within the element remains: Rigorously, such local coordinate systems are 
only adequate for constant strain elements. This difficulty may be overcome by introducing 
a local coordinate system at each material point (in practice this means at each integration 
point of the numerical integration scheme) but even such a local coordinate system need 
not be used explicitly. Here we imply such a system although it does not enter any of the 
equations in their final form, and we achieve a simpli~cation of equation (3.7) which 
corresponds to the current general purpose program being used at Brown University [26]. 

We can characterize the motion of any material line element as a rigid body rotation 
and a pure deformation, 

~ = (6ij+ h3T,j, 

.I 

(5.1) 

where hi, = hji << I in the present case, and where Tkj is an orthogonal rotation, possibly 
finite. Tiius, to within terms of order hij compared to unity, 

dV 8x ..____-_’ 
I I dV” - 8X 

1 and $ 
- 

The transformation of vectorial surface area is [30, p. 

where dS, = n,dS, dfy = $’ dS”. Again, neglecting terms of order hi,, 

=: 1. (5.2) 

1991 

(5.3) 

(5.4) 

The incremental constitutive law ofthe previous section, equation (4.6), may be written as 

(5.5) 
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Thus, neglecting hij in comparison to unity, (5.5) becomes 

ASij z GJj&Ts,Gn~,A~rs 

or 

ASij 2 C;,,,A&, (5.7) 

where drZi = ~jdXj defines a coordinate transformation. This is, of course simply the 
form of the stress-strain relation employed in previous updated local coordinate system 
formulations [26]. 

However, one difference from previous work remains, in that we have the constitutive 
matrix C$,, as defined by (5.6) rather than Cijkl as employed, for example, in conventional 
small strain small displacement formulations. In the elastic range, Cijkl is an elastic modulus 
and hence the additional stress terms in (5.6) are of the order hij in comparison and thus 
negligible. But in the plastic range, since the slope of a stress-strain curve is often of the 
same order of magnitude as the stress itself, the additional terms are not always negligible. 
In other words, no matter how small the strains (or rotations) are, if the material is in the 
plastic range, the conventional small strain formulation is not necessarily recovered as a 
limiting case of the geometrically nonlinear formulation. This is not as unfamiliar a fact as it 
might seem at first thought. “True” stress-strain curves and nominal curves, from tension 
or compression tests, are frequently plotted on the same diagram. We might think of adding 
a curve representing Kirchoff stress and Lagrangian strain. All three curves agree closely 
in the small strain range. However, the slopes of the three stress-strain curves are very 
different in the small (but plastic) strain range for the light work hardening rates typical 
of high strength structural metals. The slope differences are of the order of stress itself, 
which is in turn typically comparable to any individual slope. Hence, the approximation 
of replacing C& by Cijkl is a familiar one, and while the actual relation between stress and 
strain increments may be poorly represented in the plastic range, it is expected that total 
stresses and strains will be accurately predicted. While we propose to adopt this last 
viewpoint here, we note that some problems, particularly those of structural stability, may 
be poorly treated as a result of the approximation. This point deserves further study. 

The transformations aXi/axj appear frequently in the formulation, and in the appendix 
we show how these may be obtained by inversion in the general case. For this small strain 
approximation they are available directly as follows. We have 

from (5.1). Then 
jTj_ ax/’ 

i I -_ 
ax, - dXj 

= T,,(S,i- h,i) + djhi;). 

Since all 

hij << 1, 
3 ax, 
ax,' iix-, 

and so using the displacement mode assumption (2.3), 

ax- aRq 
-! ‘” sij+aXjA;N”:. 
dxj 

(5.8) 
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This expression may be used in (5.5) and in the load vector and initial load matrix. 
These latter are simplified appropriately in the appendix. 

We may summarize the small strain approximation by saying that while none of the 
stiffness matrices can in general be omitted, some simplification of these stiffnesses can be 
achieved. These are, in fact, simplifications in details of the formulation. Indeed it is because 
of this that it should be straightforward to incorporate the complete formulation into the 
current small strain formulation. 

6. CONCLUSION AND DISCUSSION OF FUTURE WORK 

We have derived the incremental stiffness equation of the finite-element method in a 
Lagrangian frame of reference, without making any assumptions about the magnitude of 
strains or displacements. Such an exact derivation has many advantages for the subsequent 
development of a small strain, large rotation theory because explicit introduction of the 
small strain approximation shows how much simplification can be achieved within the 
approximation. Thus it is not, in the general case, legitimate to ignore the initial load 
stiffness matrix, which has not yet appeared in any previous developments of the incremental 
equations for use in a general purpose program. However, the more important conclusion 
is that the formulation for finite strain is not seriously more complicated than that ofcurrent 
general purpose small strain, large rotation programs, so that there is no practical barrier 
to the removal of the small strain restriction. 

We have not introduced a local coordinate system, and it should be again pointed out 
that the conventionally adopted whole-element local coordinate systems may not be 
sufficient for the higher order elements, because finite rotations within the element may 
take place. 

The complete formulation of the incremental stiffness equation for arbitrary large 
strains terms, incorporated into the current general purpose program, will extend the 
possible range of problems into such fields as metal forming, provided suitable constitutive 
data are available. 

The development has used a Lagrangian frame of reference, and this may prove of 
further practical use in the extension to large strain dynamic problems, because the mass 
matrix would then be constant throughout the calculations, and would be solved once 

only. This may result in considerable time saving in the overall solution of these problems, 
where the time needed for numerical solution is usually very long. 

~~~~Q~~e~ge~e~r-This research was supported by the O&e of Naval Research under contracts N~l~67-A- 
0191~~7 (P.V.M.) and N~l~67-A-O19~-~3 (J.R.R.) with Brown University. 

REFERENCES 

[ 11 0. C. ZIENKIEWICZ, The Finite EIement Method in Si~~c~ra~a~d C~ntin~~~ Mechanics. McGraw-Hill (1967). 
[2] J. L. TURNER, R. W. CLOUGH, H. C. MARTIN and L. J. TOPP, Stiffness and deflection analysis of complex 

structures. .I. aero. Sci. 23, 805-825 (1956). 
[3] R. MELOSH, T. LONG, L. SCHMELE and R. BAMFORD, Computer analysis of large structural systems. PTOC. 

AIAA 4th Annual Meeting, Paper 67-955 (1967). 
[4] M. J. TURNER, E. H. DILL, H. C. MARTIN and R. J. MELOSH, Large deflection analysis ofcomplex structures 

subjected to heating and external loads. J. aero. Space Sci. 27, 97-106 (1960). 



1082 H. D. HIBBI~~. P. V MARCAL and J. K. RICE 

[51 

[61 

[71 

Y 

L9j 

[lOI 

[I 11 

[]'I 

1131 

[I41 

[I51 

[I61 

[I71 

11X1 

1191 
of/ Problems of Lurgr Spun Sheik. Leningrad ( 1966). 

J. H. AR~;YRIS, S. KELSEY and H. KAMEL. Mrrtris Mcrhotis of’Struc/uru/ Anulysis, pp. IO5 IX Pergam<ln 
Press (1964). 
R. H. GAI.LAGHER, R. A. GELL.AII.~, J. PADI o(i and R H. M&I LCTI, Discrete element procedure for thlil- 
shell instability analysis. AIAA Jnl5, I38 144 (1967). 
K. K. KAPUR and B. J. HARTZ, Stability of plates using the finite element method .i l.Iz~r/q Wt,c,/r I);! 
Am. Sot. cw. Engrs 92, 177 195 (1966) 
H. C. MARTIN. Derivation of stiffness matrices for the analysis of large deflection and \tabliit) problem< 
Proc. I.</ Cor$ O/I Mnrri.~ Methodr in Strw/. Mrch. pp. 607 715 (1966) 
P. V. MARC‘AI . The effect of initial displacements on problems of large detlectlon and stablIlt\ Brown 
University, Division of Engineering, ARPA E54 (1967). 
D. M. PURDY and I. S. PR~~MIENIECKI. Influence of higher-order terms m the large dellection ~maly~~~ (I! 
frameworks. Proc. ASCE Join/ Spcc. Cot!/. Opfimixrron und Nonlinrur Problems, pp. I41 152 ( 196X) 

R. H. M~LLE’IT and P. V. MAR(‘AI_, Fincte element analysis of nonlinear structures .I. \‘rr~,i,! iI//, ,1/i! 
So<. cit.. En~rs 94. 2081-2105 (1968) 
D. W. MURRAY and E. L. WILSON. Finite element post buckhng analysis ofthin elastic plate> P,-~,I~. _‘//d C’;,;I~ 
Muiris Me/hod.> in Swuct. Mech. (1968). 

C. A. FCLIPPA. Refined finite element analysis of linear and nonlinear two-dimensronal \tructures. Ph.D 
Thesis. University of California (1966). 
F. K. BOC;NER. R. H. MALLE.IJ. M. D. MINXH and L. A. SCHMIT, Development and evaluatton of cnergq 
search methods of nonlinear structural analysis. AFFDL-TR-65-I I3 (1965). 
J. T. OIXX, Numerical formulation of non-linear elasticity problems. J. St/w/. D/r. .4n1 S,I~ c/t /;npr.\ 

93, 235 255 (1967). 
J. 7’. OUEN and W. K. KIJHI.I.IA. Numerical analysis ofnonlincar pneumatic structure\. I’rrlc :!I I>// i‘olloq 
Pneumcrrk S/ruc./ures. Stuttgart (1967). 
J. W. WISSMANN, Nonlinear structural analysis; Tensor formulation. Proc. /st Corrf. tm .Mo/i I 4 .M~~ihork in 
Strwr. Mech. pp. 679-696. AFFDL-TR-66-80 (1966) 
J. F. BESSELIN(;. Matrix analysis of creep and plasticity problems. P/w. Iv/ Con/. oil M~/r;t ~M~~/hr~ti~ /!t 

S//w,/. Mwb. pp. 655 677. AFFDL-TR-66-80 (1966). 
J. T. <kXN. Analysis of large deformations of elastic membranes by the finite element method Prric .i‘t~r~;? 

PO1 

PIi 

[22] 

P31 

[241 

c251 

[261 

[27j 

[_28] 

[291 
[301 
c311 

[32j 

[331 

[341 

[351 

[361 

I. T. OWCN, On a generalization of the finite element concept and its applications to a clabs ot problems m 
nonlinear viscoelasticity. Derelopmenfs in Thcorcficul und AppIied Mrchunics. Vol. IV. Pergamon Pros\ 
(1968). (Pro< Fourth Sou/h fksrwn Con/. on Thwrr/icul and Applied Mechunks, March I968 1. 
J. r. @IEN, f-mite plane strain of incompressible elastic solids by the finite element method dcbror/nl</ &J 
19. 254~m264 (1968). 

I. T OIX~ and J. E. Kr.v, Numerical analyhls of finite axlsymmetric deformations ofmcompressihlc elastic 
,olids of revolution. ln/. J. Solidc S//xc/. 5. 497 518 I 1970). 

E. B. BIXXEK. A numerical solution of a class of problems of tintte elastic deformations. Ph.[) Dlsaertatmn. 
University of California (1966). 
B. J. HARI-L and N. D. NATHAR, Finite element formulation ofgeometrically nonlinear problem5 ofelastlclt> 
Proc Jupun--L.S. Stwinur on Matrix Me/hod.s ofS/ruc/urul Anulysis and Design. Tokyo (1969) 
S. YA(;HMAI, Incremental analysis of large deformations in mechanics of solids with apphcations to ah,- 
symmetric shells of revolution. Ph.D. Dissertation. University of Cahfornia (1968). 
P. V. MARCAL. Finite element analysis of combined problems of nonlinear material and gcometrtc behavior 
Proc .4SME Joint Compurcr Conf: OFI Compurutional Approuch to Applied Mech. Chicago ( 1969). 
E. H LEF and D. T. LIU, Finite strain elastic- plastic theory with application to plane-wave analysis. ./ crpj’i. 
P/1\,.\. 38. 19~27 (1967). 
A. E. &EEN and P. M. NA(;Ht)I. A general theory 01 an elastic plastic continuum 11.,/i ‘,!~Io,! v<‘c !I 

AncdF.kc 18. 251~2XI (1965). 
E. H. L~L. Elastic plastic deformation at fimte strams. ./. uppi. r)/c,ch. 36, I 6 ( 19691. 
W. PRAC;I;R, /n/roduc/inn to Mrchanic~s of C’on/inuu. Ginn (1961). 
H. D. HIBBITT and P. V. MAKTAL, Hybrid finite element analysis with particular refcrcnce to axlsymmetrlc’ 
structures. Pwc. AIAA 8/h Aevspuce Sciences Meeting (1970) 
R. Hn.t., Mothemtrriccd Thcorv o/’ Plrrs/ici/~. Oxford (I 950). 
D. (‘. DRUCKER. Plasticity. In Structural Mechanics. Proc. Is/ S~,nzp. O)I VNXI/ S/rw/. .2fwh cdlted h!, 
GoooreR and HOFF. Pergamon Press (1960). 
P. M. NAGHD~, Stress-strain relations in plasticity and thermoplasticity. In Plasticity. froc, %~onti S!m/J. 

on Nuwl S/rw/. Mech. edited by LEE and SYMONDS. Pergamon Press (1960). 

G. POPE, A discrete element method for analysis of plane elastic-plastic stress problems. Royal Aeronautical 
Establishment TR 65028 (1965). 
J, L. Swsu~ow and W. H. YANC;, Stiffness analysis of elastic--plastic plates. Graduate Aeronautical Lab.. 
California Institute of Technology SM 65-10 (1965). 



A finite element formulation for probiems of large strain and large displacement 1083 

[371 P. V. MARCAL and I. P. KING, Elastic-plastic analysis of two-dimensional stress systems by the finite element 
method. In?. 1. h4ech. Sci. 9. 143.--I55 (1967). 

[38] L. B. FRBUND, Constitutive equations for elastic-plastic materials at finite strain. Brown University, Division 
of Engineering, ARPA E64 (1969). 

APPENDIX A 

Matr~x~orm ofthe incremental equations 

In this Appendix we give the matrix form of the incremental stiffness equations (3.7) 
and discuss how this may be implemented in a general purpose program. 

With the definition of [A], [R] and [B] given in (2. l), (2.2) and (2.6) respectively we have 
the incremental element stiffness equation : 

{AF} = ([k(O)] + [k”‘] + [K”‘] - [Q])(Aii} (A.1) 

where 

[k”‘] = [A]( 1 [~“]TID][~o] dV” 
P 

and [?I] is derived from (3.2). 
Equation (A.l) as obtained above applies to each element and its corresponding nodal 

points. The master stiffness equations for the whole structure may be obtained from this 
equation by the usual assembly used for the direct stiffness method. 

The implementation of equation (A.l) in a genera1 purpose program is fairly straight- 
forward and would follow along the lines of [26]. 

The only difficulty may arise from computing the initial stress stiffness matrix [k”‘]. 
We therefore describe how it may be formed. 

From equation (2.6), we see 

(j.p,)’ _ a& dypf-M 
0 axi ax, g ‘q (A.3 

We assemble the matrix form of [B’] following the technique outlined by Marcal [9]. In 
this method we take the individual rows of [B’] corresponding to components of Sij written 
as a vector. One such row is formed as 

64.3) 

by direct comparison with (A.2) above. In (A.3) the sum over k is first assembled, and then 
this matrix is pre-multiplied by l(l~~~~]~)~. It is emphasized that subroutines have only to 
be written to form the coefbcients in jaR,@X,]. 
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Having formed the individual rows of [B’], the whole matrix may now be completely 
assembled (e.g. for use in [KY(*)]), or these rows may be taken in turn and multiplied by the 
appropriate Sij for the assembly of [K(‘)]. 

Finally, we note that we have used the relation aX,/dx, frequently in the stiffness for- 
mulation. These transformations may readily be obtained by inversion, since 

and so substituting from equation (2.41, 

The matrix ax&Xi in (A.51 can be inverted to obtain the ax,/&,. In the case of small 
strains, we have given in explicit formula (5.8). 

APPENDlX 3 

In Section 3 we derived the incremental stiffness equation using the genera1 form of 
loading defined by (3.2). We now consider two particular cases, point loads with constant 
direction and pressure loads, to illustrate how readily these may be incorporated into the 
incremental formulation. For simplicity in both examples we consider that particular 
loading alone; direct linear superposition of the loadings is apparent from Section 3. 

1. Point loads. That part of the surface loads resulting from point loadings may be 
written as 

where EN is one of the point loads. It is not assumed here that _WN is necessarily applied 
at a node, but we make the assumption that it is applied at the same material point X* 
throughout the motion. 

Then that part of the equivalent nodal loads in (2.8) resulting from the 4_WN is 

iB.2) 

Note that from (B.2) if theEN are indeed applied directly at the nodes, we have py = WY 
since R4 is then the inverse of AT’. 

To define the increment of (B.2) we must write A44_‘” in the form (3.2). The simplest case 
occurs when the point loads remain in a constant direction (e.g. gravitational in an ap- 
propriate frame of reference) : then we write 

_WN = IWN(JI 

where n is a constant unit vector. 
So in the increment 

A_llrl” = Al WNl~ 
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and hence the incremental form of (B.2) is 

APy = c A WfR;(XK)A;N. (B.3) 
K 

Here the A WF = A] WKIni are assumed known. 
Comparing (B.3) with (3.2), we see that in (3.4b) there is no 0;” term arising from such 

point loads with fixed direction, so if the structure is loaded with such point loads alone, 
there will be initial load matrix. If, however, the direction of the point loads varies, we 
must write 

Ay” = A] WNI~+I WN(Ar_r 

and the second term [the A,_,, term in (3.2)] will give rise to the initial load stiffness matrix. 
2. Pressure loading. This form of loading is one of the most important for practical 

problems, and is very simply included in the general formulation of Section 3. The pressure 
on a point of the surface of an element may be written in the form 

T= -pry (J3.4) 

where p is the (scalar) value of the pressure and2 is the unit outward normal to the surface 
at this point. Then 

TdS = -pndS = -pdS (B.5) 

writing the surface element as a vector directed along the outward normal. With this 
notation, we have the result (see [30], p. 199) 

so that we may substitute in (B.2) to get 

03.6) 

03.7) 

where no is the unit outward normal to the same material point of the element surface, but 
in its initial configuration. 

Thus by comparison with (1.8) we have the expression for _T” as 

Writing this in incremental form, we have 

03.8) 

(B.9) 

The first term is A,,,,Toof (3.2). 
To obtain the form of the second term in (3.3) corresponding to AgeomTP, we need to 

evaluate the incremental part of the second term in (B.9). This is readily done using the 
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two basic results quoted below (for derivation see, for example, Prager [30], p, 1921: 

(B.10) 

and 

So we have for ABeomT~ 

and 

These expressions allow us to substitute directly in (3.4a,b) for AP” and &znf : 

(B.12) 

(B.13) 

so that we have the increment of nodal loads for the left-hand side of (3.7) and the initial 
load stiffness matrix. 

When small strains are assumed (see Section 5) (B.13) and (B.14) may be simplified. We 
have $k:i’i?~l = 1, and dS v dS”. Thus we may write 

where the ~Xi/T”xj are available directly from (5.8). 

A6crpalcT-06cymnaerc5L TeOpM% Nlfl KyCO'LHOI-0 nPfHefiHOrO KOHeYHOrO 3fleMetiTa C LLpMpaMerMeM llpri 

6onbLLLuilx nepeMeLwwuIx, pewiMe 6onbwix fiei#opMauwfi M rqw 0~060~ OTHOLuewiM K ynpyro-nnaclkf- 
recfxmiy nOBeAe-HWO B Me-rannax. nony3eHHbie ypaBHeHWL, LiecMoTpn tra MX Boilb~uy10 cnw+wOcib 

rLono6Hbl LlO @OpMe K 'TaKMMXCe, Ebl6eQeHHbLM sapawee JlJIR 3aflay 6onbu.LuMx nepeMeuletfL&, ManblX 

Ae~Op.~a~~~, npMYeM ~06aBOqHbL~ WLeH, Koropb& OKa3bwaeTcP MaTpMueR K03fP@fiwseHToB MecTKocw 

Harianb HOil Harpy3KM,3aBHCMT OT rLo'rOKa Harpy3KM. 3TO non06we o6o%fauaer, YTO HenLIlle~HbIe 06une 

npOrpaMMb1 MOWCHO nerK0 PaClllMPMTb )UW ILpMCOe~MMeHMR KOHe'lHbLX ,W$OpMaLLWR. M.1 7TOfi reOpMM 

nonyuawcn +opMynMpoBKa 6onbLLwx nepeb+euieiid H Manbfx ~e~opMa~~~~ /IS ~p~~ie~jelj~f~~ K 3aaaqah4 

yCTOiiYltBOCTMKOHCTpyK~MM/~pe~~On~r~lt.~TO~3M~~ieH~eAJlMHbl~~H~~Lib~X'tfleM~HTOB~ OTHOCMTeJlbHOe 

Bpawewe op~oro~a~~~bjx nweihblx 3AeMefiLTOB HewawTenbH0 no cpa3HeewO C eilrwiue8. Ynpo- 

~e~~b~eypasHe~r~~,~oc~oe~o~,cornac~bicrLpe~bLnyute~~0pMy~~~p0~~0it ~n~TepaType. tia6nKwieTc+4 

IIOnbKOOAHapa3Hmqa,cOcrOnluaR BTOM,YTO MaTpHLla K03+$MUMeHTOB HaWnbHOil Harpy3KM flOCTORHll:i. 

3~0 wMeeT 3HaSetiue~ HeaoTopbLxcnysanx. 


