
Enyinruiny Frwturr Mec~hunics. IY70. Vol. I, pp, 577-602. Pergamon Preu. Printed in Great Britain 

PLASTIC DEFORMATION IN BRITTLE AND 
DUCTILE FRACTURE? 

D. C. DRUCKERf and J. R. RICE5 
Divisionof Engineering, Brown University, Providence, R.I. 02911, U.S.A. 

Abstract-An effort is made to cover the full elastic-plastic range from the very troublesome fractures which 
initiate and propagate at nominal or net stress well down in the elastic range to the common yet more easily 
understandable and preventable fractures at fully plastic or limit load conditions. Similarities and differences 
of behavior between steels which are highly rate-sensitive and aluminum alloys or other rather insensitive 
materials are examined. The very marked distinctions between the very special extremes of plane stress and 
plane strain are brought out along with their relevance to the failure of complex structures and elements. In 
contrast, the need to consider bending in most shell structures is emphasized. A demonstration is given of the 
likelihood in the laboratory, but even more so in the field, of confusing limit load fractures with low stress 
fractures. 

Crack extension under plane strain conditions is studied in some detail, and the important role of pro- 
gressive blunting is indicated both in limiting maximum achievable stresses and providing a small region of 
intense strain in which ductile fracture mechanisms are operative. Comparison with appropriate micro- 
structural dimensions leads to a rationale for minimum thickness dimensions for plane strain fracture. Plane 
stress yield patterns in cracked sheets are shown to be greatly sensitive to the yield criterion. The line 
plastic zone Dugdale model provides a correct solution for a non-hardening Tresca material, but diffuse zones 
result for a Mises material. The important role of thickness direction anisotropy is indicated. Stable extension 
under increasing load appears as a possible consequence of crack advance into previously deformed material. 
Conditions for stable vs. abrupt growth, the appropriateness of energy balance approaches, and plastic limit 
load calculations are also studied. An attempt is made to place all in perspective, 

INTRODUCTION 

BOTH authors have prepared fairly extensive surveys relating to our present subject 
[l-4] in the past few years. We therefore present here a brief review of plasticity as- 
pects of fracture which focuses on recent developments and viewpoints along with 
suggestions for future study. 

Fracturing with contained plasticity at a crack tip is considered first. The relevance 
of the Irwin-Williams elastic singularity in controlling small scale yielding is discussed, 
and a path independent line integral technique leading to elastic-plastic analyses is out- 
lined. Plane strain is examined in some detail as a fairly complete picture has been 
developed for this case. The hydrostatic stress elevation directly ahead of the tip 
increases rapidly with strain hardening. Perhaps surprisingly, for a perfectly sharp 
crack the most extensive straining appears above and below the tip rather than directly 
ahead when the conventional assumption of small geometry changes is made. Attention 
to the actual large geometry changes in progressive blunting of the sharp tip reveals that 
an intense strain region is created directly ahead over a size scale comparable to the tip 
opening displacement. A more quantitative study of the ductile or brittle fracture 
mechanisms which are operative within this intense strain region requires inclusion of 
progressive blunting. Strain hardening serves to elevate near tip stresses but the loss of 
triaxiality due to blunting effectively limits the maximum stress achievable over any 
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Lehigh University, Bethlehem. Pennsylvania, June 1967. Grateful acknowledgement is made to the Ad- 
vanced Research Projects Agency for support of research leading to results presented here. 
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reasonable microstructural size scale. This suggests an abruptness of transitional 
behavior. 

Little progress has been made with the three-dimensional analysis of cracked plate 
(sheet) materials, but the character of near tip fields in two-dimensional plane stress has 
been clarified. The ptane stress plasticity patterns are strongly dependent on the yield 
surface employed; the line plastic zone Dugdale model is an exact two-dimensional 
non-hardening solution for a Tresca material, whereas diffuse plastic zones appear in a 
Mises material. With physical interpretation of the two-dimensional discontinuity as 
deformation in a band confined to a sheet thickness width, an entirely different depend- 
ence of local strain on thickness rest&s. Anisotropy (thickness vs. in-plane directions) 
is suspected as contributing to the yielding patterns actually observed in metal sheets. 
The biaxial tension plane stress yield surfaces for sheets isotropic in their plane depend 
critically on the properties in the thickness direction. 

The true incremental nature of plastic stress-strain relations leads to a view of crack 
extension quite different from that for a non-linear eIastic material with similar mono- 
tonic loading behavior. Dominant features of fracture in ductile sheet materials are 
stable crack growth under increasing deformation due to advance into previously 
strained material, with final fracture as an instability in the growth process. The 
McClintock anti-plane shear theory is reviewed and cast in a form showing its equiv- 
alence to an alternate analysis of growth in terms of a ‘resistance curve’. 

Attention then is turned to energy balance concepts in more detail. The unstable or 
falling portion of the local nominal stress-strain curve is seen to provide the equivalent 
of a surface energy. However, because the nominal values enter, the magnitude of this 
energy is strongly dependent on the geometry of the structure and its environment as 
well as on the detailed process of fracture. Differences between rate-sensitive and 
insensitive materials show up in the presence or absence of a large ‘barrier’ to the initia- 
tion of fracture as opposed to its propagation. 

Finally, consideration is given to plastic limit load calculations and the likelihood 
that even in simple plate and shell structures, out-of-plane bending will control. Pri- 
marily but not entirely for this reason, many such fractures in the laboratory and in the 
field which have been reported as low stress brittle fractures turn out in fact to be limit 
load failures. Once the plastic limit load is approached, local strains can become 
extremely large and lead to failure of highly ductile materials through void coalescence 
processes. 

ELASTIC-PLASTIC STRESS ANALYSIS OF CRACKED BODIES: 
PRELIMINARIES 

Elastic stress analyses provide a convenient starting point for the discussion of the 
elastic-plastic case. Irwin [5] and Williams [6] have shown two dimensional plane stress 
and plane strain near crack tip elastic stress fields to have a characteristic structure 

ofj = Kfi,( 0) + other terms bounded at the crack tip. 
V/r 

(1) 

Here r is distance from the tip and the set of functions~~(~) of the polar orientation 
angle are the same for all symmetrically loaded configurations, Fig. 1. These are nor- 
malized so that K/d(27~~) is the dominant tension directly ahead of the crack tip. An 
extensive tabulation of stress intensity factors K has been given by Paris and Sih[7]. 
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Fig. 1. Crack in two-dimensional deformation field. 
.I integral has same value for all paths such as r. 

The basic similarity inherent in elastic stress fields is the theoretical basis for the 
organization of fracture behavior through ‘elastic fracture mechanics’ [g-lo]. 

Purely elastic fracture mechanics studies of crack tip stresses are useful but 
limited. For example, the in-plane stresses for plane stress and strain are the same for 
elastic behavior but are very different in the plastic range. Also, the incremental nature 
of plastic stress-strain relations leads to a view of fracture instability not anticipated 
from elastic considerations. Further, rather extensive contained yielding or fully plastic 
conditions often prevail at fracture. This is the case with the tougher ductile metals in 
use and with those which one would hope to develop in the high strength range. Also, 
the necessary compactness of laboratory specimens sometimes may force a correlation 
of real or apparent low stress level service behavior with high stress level specimen 
behavior. It is worth repeating an earlier warning[34,3] that many of the fractures of 
complex metal structures which look brittle and often are reported as brittle are frac- 
tures at fully plastic or limit load conditions. 

A precise statement of our notion that the elastic singularity governs small scale 
contained yielding is embodied in Rice’s boundary layer formulation[2,4,11]. Here a 
crack in a structural member is replaced by a semi-infinite crack in an infinite plane 
sheet. Actual (and generally complicated) boundary conditions for the plastic zone or 
enclave are replaced by the requirement of an asymptotic approach to the surrounding 
singularity: 

(Tjj +d:xj( 0) as r += m. (2) 

An elastic-plastic problem then is solved. Inherent mathematical simplifications permit 
small scale yielding solutions in cases where a complete analysis is unmanageable. 
While mathematically exact only to within a first term Taylor development of complete 
solutions in applied load, small scale yielding solutions are good approximations up to 
substantial fractions (typically, 4) of general yielding loads [2,4]. 

Progress in the understanding of behavior in tension has followed on increasingly 
reliable numerical-computer treatments, based recently on finite element methods 
[ 12,131, and on the application of an energy line integral [ 14- 161 to the analytical study 
of near tip fields employing a deformation or total theory of plasticity. Specialized to the 
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case of a crack the latter technique identifies the integral [ 141 

.I= W(e)d> -T t . *ds ax 1 (3) 

as independent of the path on circuits I‘ surrounding the crack tip, Fig. 1. Here T is the 
traction vector acting on the outer side of I‘, u is displacement. and s is arc length. In the 
deformation plasticity approach employed. an energy density W(E) = J cijdEij ix 
admitted by the stress-strain relations. Keys to usefulness lie both in the ability to 
distort the integration path and in the ease of assigning exact or approximate values to 
J. For example, small scale yielding in plane strain leads to 

J=  (l-v’)K’. 
E 

(4) 

It is not coincidental that this equals Irwin’s linear elastic energy release rate. Indeed, 
it may be shown[4] that J is always the energy release rate for an elastic material 
specified by the energy density W(e). Equation (3). in relating the near tip field to J, 
generalizes Irwin’s relation between linear stress intensities and the energy rate. 

Rice and Rosengren [ 161 chose a small circular path for r and let the radius shrink to 
zero to show that the integrand terms in (3) must, in angular average, exhibit a l/r 
singularity. These terms are of order stress times displacement gradient so that one 
anticipates an asymptotic structure. 

a function of 0 
UijEij ’ as r + 0. (5) 

r 

This presumes no line of displacement discontinuity emanating from the tip. although 
as we shall see, such lines can and do sometimes exist in a non-hardening material. 

PLANE STRAIN DEFORMATION NEAR CRACKS 

Conditions approaching the plane strain idealization result from constraint of sur- 
rounding elastic material when the in-plane dimensions of plastically deforming regions 
are small compared to the thickness dimension of a cracked plate. Such conditions 
generally represent the minimum toughness configuration for structural metals [8, lo]. 

Consider first contained plane strain deformation in a non-hardening material. The 
principal in-plane shear stress in the highly strained regions near the tip equals the yield 
value 70, and a stress distribution depending only on the polar angle 8 is approached as 
r -+ 0. Following [14], the stress distribution in the fully plastic deforming region may 
be obtained through slip line theory [ 171. The resulting Prandt field and associated 
stresses are indicated in Fig. 2, where constant stress regions A and B are joined by a 
centered fan C. Strains are bounded in the constant stress regions, but the shear yre 
exhibits a singularity as the crack tip is approached in the fan. The very near tip vertical 
displacement U, varies with 8 in the fan. so that an opening displacement results at the 
tip. As r + 0 in the fan [ 141 

(6) 
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Fig. 2. Slip line construction of limiting stress state near a 
crack tip, for contained plastic yielding of a non-hardening 

material under plane strain conditions. 

Here y. is the initial yield strain in shear and R (0) is a function undetermined by the slip 
line analysis, but which may be viewed as an approximute indication of the extent of the 
strained region which is deforming in an almost purely plastic manner. Employing a 
deformation plasticity theory and the ./ integral, an averaged value is set by [ 141 

J = 2~,, 
I 
:;;R(O)[ cos8+(1+3~/2-28) sinO]dB. (7) 

For small scale yielding it would appear appropriate from recent etching studies 

[ 18,191 to choose a highly strained region of the form 

R(o) = R,,cos2(+7r/2) (8) 

extending into the fan region but approaching the tip along fan boundaries as in Fig. 
3(a). Thus from (4) and (7), the approximate extent of a small scale yielding plastic zone 
is 

(9) 

Letting 6, = 2u,(3n/4). the total opening displacement between upper and lower crack 
surfaces at the tip is then approximated by 

l-v KZ q__= 
2 + 7-r CT,, 1.9 YOR 0. (IO) 

We note in the next section the important role of the opening displacement for fracture 
micromechanisms. No analysis is presently available for the large scale yielding range 
and this is an important goal of future research. A speculation on the large extension of 
the plastic region at a load still well below the limit load is shown in Fig. 3(b). We 
consider an edge crack in an infinite width body and presume the plastic region to be 
contained but large compared to crack size. Further, consider the material as elastically 
incompressible so that slip lines may be drawn in the plastic region. A state of nearly 
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(a) SMALL SCALE YIELDING (b) SPECULATION ON LARGE SCALE 
YIELDING, BUT PRIOR TO LIMIT 
LOAD 

(cf LIMIT FIELD FOR DEEP (dl LIMIT FIELD FOR INTERNAL 
DOUBLE EDGE NOTCHES NOTCH 

Fig. 3. The progression of plastic yielding in plane strain, from small 
scale contained yielding to fully plastic limit conditions. 

simple tension at 2r0 is anticipated toward the outer extremity of the plastic zone with 
slip lines near 4.5”. Of all the radial slip lines in the near tip fan, only the initially vertical 
slip line will result in this stress state when rotated to 45”. Thus we have drawn a plastic 
region with the initially vertical slip line rotating and extending toward the extremity of 
the plastic region, while other slip lines are extinguished on contact with the elastic- 
plastic boundary. A similar construction for the 9O”V notch would closely duplicate the 
plastic regions observed prior to joining for the double edge notch configuration 
studied numerically by Marcal and King [ 131. 

Important differences in the near crack tip stress and strain distributions in the large 
scale yielding range are illustrated by the limit flow fields for a non-hardening material 
in Figs. 3(c) and (d). A deep double edge notch specimen retains the hydrostatic stress 
elevation to limit load, whereas the internally notched and single edge notch specimens 
do not [34]. For consistency of the latter cases with the large scale yielding pattern prior 
to limit load in Fig. 3(b), the radius of curvature of the initially vertical slip line at the tip 
must decrease toward zero as limit conditions are approached, so as to match the 
discontinuities at 1t4.5” with the crack line in Fig. 3(d). This means that unloading will 
occur. The great differences in both stress and strain fields near the tip in constrained 
vs. unconstrained configurations suggests that a single critical crack opening displace- 
ment fracture criterion [20] will not correlate observed behavior for all configurations. 
Such simple measures of near tip deformations may prove extremely useful for limited 
groups of specimens having similar near tip stress fields. But no one-parameter 
characterization of the near tip fieId, paralleling the stress intensity factor in the small 
scale yielding range, can apply for all possible patterns of large scale yielding. 

Hutchinson [ 1.51 and Rice and Rosengren [ 161 have obtained the structure of near 
tip plane strain singuiarities in materials exhibiting a power law relation 

(1 I) 
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between principal shear stress and strain beyond the initial yield point. It is necessary 
to assume elastic as well as plastic incompressibility in plane strain, and this causes 
some difficulty in the interpretation of solutions. Equation (5) is the starting point so 
that the near tip r dependence is known, and a numerical solution of an ordinary dif- 
ferential equation provides the 8 dependence. The maximum resolved in-plane shear 
stress and strain take the forms 

7 ~ 7. R(B) N’(l+M, y ~ y. 

[ 1 r [ I R(8) l’(l+N) as r ~ (). 
r 

(12) 
R(0) is a known function of J and 8 for each value of the hardening exponent N. The 
curves r = constant x R (/.I) give the shape of constant shear strain lines near the tip, and 
we may view R (0) as an approximate indication of the extent of the plastically deform- 
ing region along a ray from the tip at angle 0. Further the ratio of the mean normal in- 
plane stress, p = ((T,, + ~r~~)/2. to the principal shear, 7, approaches a function of 0 
only, as does the principal shear direction also. Thus the singular deformation field 
involves proportional loading, so that the same form of singularity would result in a 
power law hardening material treated through an incremental theory. Polar plots of 
T,,~,,R(B)/J (dimensionless) and p/r are shown in Fig. 4 for N = 0*005. O-1 and 0.3. 
More detailed numerical results are presented in [15,16]. Results for the smallest value 
of N appear to represent the limit of the solution as N + O+. The corresponding stress 
field then agrees closely with the non-hardening distribution of Fig. 2. Again, the 
largest strains occur above and below the tip, rather than directly ahead; but stress 
triaxiality directly ahead of the crack rises quite rapidly with the hardening exponent. 

Two factors make interpretation of these results difficult. The first is that only 
the dominant singularity is given, not the complete solution. The second is that actual 
elastic compressibility is certain to be important in view of the high triaxiality. The 
first point may be somewhat clarified by examining the anti-plane strain case in which 
a complete solution for power law hardening materials is known[l 11. Anti-plane 
strain dominant singularities may be found through an analogous procedure. It turns 
out that for the small scale yielding boundary layer type solution, these dominant 
singularities represent the complete solution within the plastic region. The same is 
not true for large scale yielding. Thus it may be the case that the plane strain dominant 
singularities outlined above are also complete small scale yielding solutions for an 
incompressible material. It is certain that they cannot be complete solutions for large 
scale yielding. Further, one finds in large scale yielding anti-plane strain that it is 
meaningless to speak of dominant singularities with light strain hardening. While 
mathematically such singularities dominate as r + 0. strain magnitudes become too 
large for the assumptions of the theory before all other terms of the complete solution 
are negligible in comparison. Indeed, no unique near tip strain field exists in the non- 
hardening limit N = 0. It is clear from the variety of fields in Fig. 3 that the same 
statements apply in plane strain. 

Actual elastic compressibility becomes less important the more the equivalent 
plastic strain exceeds initial yield strains. But compressibility considerably affects 
the behavior in the neighborhood of first yield in plane strain, particularly with high 
triaxiality. For example, one may show for a Mises material that the principal in-plane 
shear strain at first yielding is 

(13) 
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Fig. 4. Plane straining of material hardening according to the 
power law T = -r,,(y/y,,)“. Upper curves: shape of R(B) in near 
tip equivalent strain expression y -+ y,, [R(O)/r]““““. Lower 
curves: ratio of mean normal stress p to equivalent shear stress. 

where p is the mean in-plane normal stress. Choosing p = (1 +vfT(, as the maximum 
mean stress in a non-hardening material, one finds yY = 0.3~~~ for v = 0.3, Returning 
to the curves of Fig. 4, since the triaxiality is large in quadrant 0 < 0 < 90”, the first 
yield strain for v < l/2 will be considerably less than y,, in that region. Thus, presuming 
without any real justification that the lobes represent small scale elastic-plastic boun- 
daries in incompressible materials, one expects a shifting forward of the boundary 
lobes in actual compressible materials. This makes direct comparison with experiment 
difficult, but the general shape predicted for the highly deformed region does corres- 
pond closely to results of etching studies [ 18, 191. 

The limited state of analytical progress in the relatively simple case of plane 
strain suggests that computer based numerical methods must be relied upon to fill 
in the many missing details. Such methods as presently formulated are notably poor 
near singularities and fracture mechanics is, in a sense, the judicious interpretation 
of crack tip singular fields of continuum analyses. Equation (5) and the asymptotic 
treatments of near tip fields in this section are of special pertinence to the computer 
accuracy problem. At an elementary level, they provide an aid for interpreting solutions 
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in regions of otherwise questionable accuracy. More importantly, they provide a guide 
for developing numerical treatments with sufficient freedom in deformation modes so 
as to closely duplicate actual deformation patterns. 

THE VERY NEAR TIP REGION IN PLANE STRAIN FRACTURE AND MINI- 
MUM SHEET THICKNESS REQUIREMENTS 

The ductile fracture mechanism of void formation from inclusions and subsequent 
growth[21,22] sets the mean inclusion spacing as a characteristic length scale over 
which continuum solutions must be examined for a fracture criterion. Pure cleavage or 
partial cleavage facet formation with subsequent ductile or ductile plus cleavage 
joining sets a size scale of one or a few grains. Thus the region of interest is very near 
the tip and in structural metals is very small compared to the plastic zone at fracture. 

Figure 5(a) for a non-hardening material presents the same slip line field as Fig. 2. 
but now the picture has been magnified by a large factor of order l/y,. The crack tip 
no longer appears sharp on this scale, due to the progressive blunting by plastic 
deformation. We have noted that the sharp crack solution leads to no intense strain 
concentration directly ahead. The picture changes drastically near the blunted tip, 
with the fan C becoming non-centered and focusing into a small region D (Fig. 5(a)) 
of intense deformation. This region extends over a distance of approximately 36, 
for a semi-circular tip with associated exponential spiral slip lines. While a detailed 
analysis of blunting has not yet been carried out, Rice [ 141 has noted that procedures 
employed by Wang[23] can be adapted to the contained yielding case with the sharp 
crack solution setting boundary conditions on the blunting analysis. Material points 
would be subjected to a stress well above tensile yield (due to the hydrostatic elevation) 
prior to envelopment by the large strain region, and this could lead to cracking of in- 
clusions so as to provide the void sites for subsequent growth. Stress triaxiality is 
known [22] to exponentially amplify void growth over average strain. 

The influence of strain hardening on tensile stresses directly ahead of the crack 
is shown in Fig. S(b) based on a power law analysis. These curves showing u,~,,(x, 
0)/27,, were plotted from numerical results obtained by Rice and Rosengren [ 161. and 
represent the prediction of the dominant singular term only. Since it is seen in Fig. 4 
that the highly strained region extends primarily above and below the tip and not 
ahead, the considerable elevation above 2~~ occurs by hydrostatic stressing and not 
by strain hardening in the conventional sense. For convenience of illustration, distance 
from the crack tip is measured in terms of a parameter R,, = J/5y,~,,. While predicted 
extents of the plastically strained region vary with hardening exponent, this value of 
R, is in the range of predicted extents for the hardening exponents employed in Fig. 
5(b). Stresses are shown out to a distance of a tenth of R,, at which only minor devia- 
tions occur from the stress in a non-hardening material. This would appear to be an 
appropriate utilization of the dominant singularity solution. We presently have no 
prediction of the fall off of stress magnitudes from the maximum values attained in 
this small region near the tip. One would expect a tension in the neighborhood of ZT,, 
at a distance ahead of the tip of order unity times R,. The stresses are not shown over 
a very near tip region comparable to the opening displacement &, since the reduction 
of triaxiality forced by boundary conditions on the blunted tip is sure to greatly reduce 
predicted values (which neglect large geometry changes) in this region. The stresses 
in a non-hardening material will reduce as shown by the dashed line. and at least a 
leveling off is anticipated in the hardening cases. Thus the maximum stress achiev- 
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(a) 

Fig. 5. Details of the very near tip deformation field in plane strain. 
(a) Large geometry changes in progressive blunting create a small 
region D of intense deformation which is not included in a sharp 
crack analysis based on conventional small strain assumptions. (b) 
Tensile stress acting directly ahead of the crack tip for various 
hardening exponents; dashed line indicates fall off of stress in region 

affected by blunting. 

able over any reasonable size scale is limited by blunting, even with continuous 
hardening under increasing strain. This would suggest an abruptness characteristic 
of toughness temperature transitions for maximum stress dominated fracture mechan- 
isms as in cleavage [24]. 

The curves of Fig. 5(b) indicate the greater stresses with hardening for inclusion 
cracking and/or stable cleavage facet formation prior to the large expansion of cavities 
thus created when final fracture mechanisms are ductile. This is counterbalanced by 
a retarding of cavity growth by strain hardening[22]. One would judge from results 
of Kratft[25] that the latter effect dominates. Fracture studies on the microscale 
should be carried out with an awareness of the stress and deformation environment 



Plastic deformation 587 

characteristic of the near tip field in plane strain. Observations based on simple uni- 
axial stress fields and accompanying strain patterns may not be at all relevant. Also, 
attention would profitably be directed toward developing laboratory specimens dup- 
licating highly triaxial stress fields over sizeable regions, so as to permit careful studies 
of plane strain fracture mechanisms. 

A stable process of fracture initiation through inclusion cracking or other void 
mechanism, followed by void growth and coalescence, may occur on a large or a small 
scale. It necessarily involves very large local strains in a plastic zone which includes a 
number of initiation sites. Under plane strain conditions and a small scale yielding, the 
coalescence is likely to occur primarily between voids in the thickness direction and 
between the first line of voids and the advancing crack. Therefore it seems reasonable 
to believe that, within a factor of 2 or so, the zone of very large plastic deformation in 
a structural aluminum alloy should extend a minimum of 50 p in from the crack tip. 

Equating 26, of (10) or +,&, to 50~ shows RO, the extent of the plastically deform- 
ing region in the plane, to be 50/4y,) F or approximately 100,000/(+0 mm, where u,) 
is the yield strength of the alloy in psi. Therefore, a 50,000 psi aluminum alloy requires 
a minimum plastic zone extent of 2 mm to envelope a sufficient number of initiation 
sites. 

The sheet or plate thickness to ensure plane strain constraint conditions at and near 
the midplane of the sheet need not be nearly as large in ratio as for the fully plastic 
state[22,35,36]. Elastic constraint at the boundaries of the plastic enclave will be 
more effective because portions of the boundary are much closer than R, to the tip 
of the crack. As a guess, a minimum thickness of 4R, will be chosen. The resulting 
minimum sheet thickness for a 50,000 psi aluminum alloy then is 8 mm or Q in., which 
is quite substantial. Of course, the in-plane geometry and loading also must meet all 
the requirements of small scale yielding. 

Initiation and propagation of fracture in carbon structural steels is very different 
in detail from that in aluminum alloys. Strain-rate sensitivity produces an instability 
in the process. Cleavage of grains becomes more and more dominant the faster the 
crack advances. Temperature sensitivity of the yield strength and the entire flow 
curve also is most important. Nevertheless, the process of initiation in undamaged 
hot-rolled structural steel is extremely ductile. Just as in aluminum alloys, it requires 
a separation process and a ductile joining of the resulting cracks or voids. 

Larger dimensions result from two of the important numerical differences between 
the properties of hot-rolled carbon steel and structural aluminum. A grain size order 
of dimensions, say 200~, seems more appropriate than the 50 for aluminum based on 
void site spacing. Also, the modulus of elasticity is three times larger. Consequently, 
the minimum R,, required is 12 times larger for material of the same yield strength, 
1,200.000/~,, mm, approximately. A steel of 50,000 psi yield strength requires a 24 mm 
or about 1 in. extent of the plastic zone and a 4 in. minimum thickness of plate to ensure 
plane strain initiation conditions on the basis of the assumptions made. 

The minimum thickness required for a high strength steel, (+,) = 250,000 psi, with its 
smaller distances between initiation sites is about the same as for a strong structural 
aluminum alloy. When the fracture process is viewed in terms of deformation rather 
than load, there is more similarity than difference in detail between a structural alumin- 
um and a high strength steel of small grain size. 

There is, however, a third important numerical difference between undamaged hot- 
rolled carbon structural steel and most structural aluminum alloys or high strength 
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steels. Under homogeneous conditions, the strain needed to open cracks or voids at 
moderate temperatures and strain rates is far higher. In general, the dimension of the 

zone of very large plastic deformation required for fracture is not set solely by the 
distance between initiation sites. The actual magnitude of the local strain is significant. 
Crack opening displacements for such very ductile steel must be appreciably greater 
than given by the ratio of the 200-50 F dimensions chosen in the preceding calcula- 

tions. Conversely. of course. an embrittled steel will fracture at a still earlier stage, 
before the full development of the large deformation zone. 

This point about the magnitude of the local strain in the zone of large deformation 
was not brought out in the previous discussion. It is hidden in the expressions for strain 
variation within the large deformation region. and these have not yet been suitably 
analyzed. A guess is that the large deformation region extent might have to exceed the 
200 F figure by a factor of 4 to account for the strain of order unity needed for fracture 
of highly ductile mild steel, as compared to much lower strain requirements in struc- 

tural aluminums. 
Multiplication of the previous value of one inch for R,, by 4 to give the higher 

strain levels needed and by 50,000/30,000 to convert to a 30,000 psi yield strength 
results in R,, = 7 in. (approx.) and a minimum thickness close to 30 in. for plane 
strain. On the other hand. the same steel embrittled by precompression to have a duc- 
tile extension range of only 0.02 strain and a yield strength of nearly 100,000 psi 
[37,38] needs an R,, of less than &in. and a minimum sheet thickness below + in. 

for plane strain brittle fracture. 
The marked influence of local ductility appears even stronger in a very crude 

analysis[3] based solely on the linear elastic stress distribution and the choice of the 

same microstructural dimension (100 ~1 for all metals. The key assumption made is 
that the single number of greatest importance is E,,~, the maximum value of the tensile 
strain averaged over this governing microstructural length. An additional and very 
rough assumption is that E,,, is given closely enough by the average tensile stress of 
the linear elastic solution divided by Young’s modulus. In the accompanying Table I, 
plastic zone extents R ;, = 0.002 t~,,,/(r,,/E )’ are tabulated on this basis for several mater- 

ials: a very mild steel a,,/E = 0.001, a high strength steel or strong aluminum alloy 

a,,/E = 0*007+, and the intermediate example of a steel with 100,000 psi yield or an 
aluminum alloy of 35,000 psi yield strength. 

The R,,' designation is employed to emphasize that this plastic zone extent is based 
upon the linear elastic solution reaching the yield stress (r,, in tension, while the previous 
R,, is the extent of the zone in which small but noticeable plastic deformation occurs 
based upon perfectly plastic analysis. 

R,,’ (in.) for 
t,,, a,,/E = 0.001 cr,,/E = 0.0033 u,,/E = 0.007+ 

0.01 0.20 0.02 0.004 

0.02 0.80 0.08 0.016 

0’05 5.00 0.50 0. IO0 

0.10 70.00 1.00 0.400 

0.20 80.00 X.00 I .600 

0.80 I ?OO~OO 130.00 26~000 
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There are enormous differences between the l/a,, variation of the perfectly plastic 
solution and the ( l/(r,J2 of the linear elastic. The choice of where the truth lies between 
these two extremes is left to the reader. Either of the two sets of figures are quite 
spectacular, even with due allowance for errors of choice, and indicate the small 
likelihood of true plane strain fracture initiation in ductile sheet materials. However 
this is not so significant in practice as might be assumed. The fracture of inclusions or 
the cleavage of grains and the subsequent joining up will be delayed (require more local 
strain or work-hardening) in the absence of an out-of-plane tensile stress and the ac- 
companying raised in-the-plane tension for yield. Local fractures still will be initiated 
as the material strains and hardens. In fact, there would appear to be some compensa- 
tion because local strains at the crack tip should be higher in the absence of the lateral 
constraint of plane strain. In the case of steel, especially when the mechanism of frac- 
ture is the joining up of cleavage cracks through ductile separation of the connected 
region remaining, transverse stress should have little influence. The low ductility 
figure of Table 1 combined with this lack of effect explain why steel embrittled by pre- 
strain, nitriding, extremely low temperature, or high strain-rate does show plane 
strain crack initiation and propagation with small scale yielding. 

The large size requirements for plane strain fracture inherent to highly ductile 
low yield strength metals are a well-known obstacle to laboratory K,, testing[ 101. 
Perhaps our discussion in terms of a plasticity analysis and significant microstruc- 
tural dimensions adds a rationale. Indeed, size requirements are so stringent that a 
critical plane strain stress intensity factor would appear not at all an appropriate 
toughness measure in many circumstances, and a need for study of fracture under 
constraint conditions far from this idealization is indicated for economical design. 

PLANE STRESS AND VARYING TRANSVERSE CONSTRAINT 

The problem of fracture in plate materials is essentially three-dimensional when 
the in-plane dimensions of the plastic regions are comparable to the thickness dimen- 
sion. Little analytic progress has been made, and methods of analysis will have to be 
computer based. Important features are the rise of triaxiality through the thickness and 
deviations of strain patterns from the plane strain and two-dimensional plane stress 
idealizations. The latter theory becomes appropriate as dimensions of the plastic region 
approach sizes comparable to and larger than the thickness. Still, great accuracy in 
prediction cannot be expected within a thickness sized neighborhood of the crack 
tip. 

Swedlow et al. [ 121 have presented computer solutions for two-dimensional plane 
stress. While the usual problems occur in the immediate vicinity of the tip, Hutchinson 
[ 151 has studied the structure of singularities in this case through techniques identical 
to those noted above for plane strain. The r,8 dependence of equivalent stress and strain 
is identical to that of (12). There the similarities end. No triaxiality is permitted and 
the region of intense strain spreads over a broad field in front of the crack as in Fig. 6(a), 
rather than above and below. It turns out to be rather important that these authors 
employed a Mises definition of first and subsequent yield surfaces, as illustrated by 
the elliptical curve shown in a principal stress plane. A very different non-hardening 
model was proposed by Dugdale [26]. He presumed yielding to be confined to a narrow 
slit-like region in front of the crack (Fig. 6(b)), with finite separations of surfaces in 
the plastic region opposed by the yield stress co. Hahn and Rosenfield [27] verified 
the model experimentally, showing in etching studies on silicon iron that fully de- 
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(a) MISES Ibf DUGDALE OR TRESCA 

Fig. 6. Dependence of plane stress yielding patterns on the 
yield criterion. Dugdale model is an exact two-dimensional 
plane stress solution for a Tresca material, but diffise yield 
zones result for a Mises material. D marks stress states 

permitting a neck extending ahead of the crack. 

veloped plane stress yielding consisted of slip on broad intersecting bands at 45” through 
the thickness. Separation displacements in the Dugdale model correspond approxi- 
mately to average extensional strains in the narrow plastic zone multiplied by specimen 
thickness. The two plane stress analyses lead to drastically different predictions of the 
near tip field. For a given applied stress, Dugdale model strains vary inversely with 
thickness while Mises model strains have no dependence on thickness. Both patterns 
have been observed in experimental studies, the diffuse Mises type by Gerberich 
[28] for aluminum alloys. 

We have made a careful study of the stress field in elastic regions of the Dugdale 
model, with computational assistance by Mr. G. F. Rosengren. Limiting attention to 
the small scale yielding field[2] for simplicity, it was found that the stress state of the 
Dugdale model violates neither the Tresca nor Mises criterion. If plastic fIow rules 
are also satisfied, the Dugdale model presents an exact solution. Note that a normal 
displacement discontinuity is permissible within the framework of a two-dimensional 
plane stress perfect plasticity theory. The physical interpretation is in terms of through- 
the-thickness slip. Normality of plastic strain increments to the yield surface[29] 
requires that the stress state be at the uppermost point D on a Mises ellipse (Fig. 6(a)) 
to permit a normal discontinuity. Any stress state along the heavy line upper segment 
of the Tresca hexagon (Fig. 6(b)) will permit the discontinuity. Now the stress state 
of the Dugdale model along the discontinuity turns out to be equal biaxial tension at 
cr,) for small scale yielding, with progressive decrease of the stress parallel to the 
discontinuity from (+0 with large scale yielding. This stress state always permits the 
discontinuity in a Tresca material, but not in a Mises material. Thus the Dugdale 
model presents an exact two-Dimensions plane stress solution for a Tresca material, 
for small scale yielding as well as at the limit load. 

We do not suggest that all apparent ambiguities in plane stress yielding are explained 
by classifying materials as Tresca or Mises or any other isotropic type. The important 
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point is that plane stress plasticity patterns are very sensitive to the yield surface. 
This sensitivity does not show in plane strain, but might have been expected from the 
longitudinal shear case[2]. Anisotropy of properties when the thickness direction 
of rolled sheet materials is compared with in-plane directions would be a major factor 
in altering the shape of plane stress yield surfaces. Since the dependence of strains on 
thickness is totally different for diffuse as opposed to line plastic zones, a careful 
examination of the effect of the rolling process on yield patterns might provide a key 
to producing tough sheet materials. Conclusions on fracture instability as discussed 
in the next section will also vary with the yield pattern. 

Plastic zone size and opening displacement for a large sheet of Tresca material 
containing a crack of length 2a subjected to a remote tension urn, are [2] from the Dug- 
dale model solution 

Ro=u[secE)-l]=is+.... 

* =&,a 
I xlog[secrz)]=-&+... 

(14) 

First terms of the Taylor expansions give the small scale yielding result. Comparing 
these with the approximations of (9, 10) suggests a plane strain zone extent and open- 
ing displacement which are respectively 73 and 70 per cent of the plane stress values 
for Y = O-3 and for the same K. Rice has noted[ 141 that hardening and necking are 
readily included in the Dugdale model through the J integral. If (r(6) represents the 
restraining stress as a function of separation distance, as obtained by averaging stress- 
strain relations over the approximately thickness size plastic zone, the opening dis- 
placement is given by 

J = I,“’ u(S)d& (15) 

STABLE CRACK EXTENSION AND FRACTURE INSTABILITY 

The true incremental nature of plastic stress-strain relations has a profound effect 
on fracture instability. McClintock first pointed this out in elastic-plastic studies of 
longitudinal shear (mode III, or anti-plane strain) crack extension [30,3 I], where the 
first increment of growth is found to be stable with continued growth requiring increas- 
ing load, until an instability is reached at which subsequent load drops would be re- 
quired to maintain quasi static crack extension. The physical basis for this perhaps 
surprising behavior is made clear through the following example. Consider two mate- 
rials having identical stress-strain curves for monotonic simple tension, One is non- 
linear elastic; the other is elastic-plastic, recovering far less strain upon unloading. 
Suppose both are made into identical cracked specimens loaded by clamping portions 
of the boundary and imposing displacements. The deformation patterns around the 
crack tip will be similar in both. Now suppose the crack is cut ahead by a saw under 
fixed boundary displacements. The non-linear elastic material will readjust its strain 
pattern to that resulting had the displacements been imposed on a body with the now 
longer crack, so that a severe strain concentration remains at the tip. Cutting ahead 
in the elastic-plastic material produces little additional straining at the new crack tip. 
In the limit of a plastic-rigid material there will be no additional strain. This is easy 
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to see by noting that we could loosen boundary clamps and no strain recovery would 
result. Then cut the crack ahead in the unloaded specimen. The specimen fits perfectly 
well into the tightened clamps again. The general feature leading to the rising deforma- 
tion requirement for continued growth in a plastic material is the very stiff elastic 
response upon unloading (infinitely stiff for plastic-rigid) as contrasted with the soft 
tangent modulus response for both unloading and loading of a non-linear elastic 
material. 

We follow Rice’s[4] treatment in generalizing the McClintock longitudinal shear 
theory. First consider the monotonic anti-plane loading of a stationary crack in an 
isotropic non-hardening material. The shear strain at distance x directly ahead of the 
tip is 

(16) 

where Z?(, is the monotonically increasing extent of the plastic zone directly ahead 
of the tip. Now consider the opposite extreme for which the crack is quasi statically 
cut through the material with loads adjusted however appropriate to maintain a con- 
stant extent R, of the plastic zone directly ahead of the tip. The resulting steady 
state strain at distance x from the moving tip is 

(17) 

To see the great differences in these strain distributions, we follow McClintock and 
Irwin [3 11 in choosing as an approximate fracture criterion that a critical plastic strain 
yP need be attained at a certain microstructural distance p ahead of the crack. The 
resulting plastic zone sizes required to initiate fracture from a stationary crack and to 
maintain quasi static steady state extension are respectively 

(RO)initiation = P (I +YPIYO) 
(18) 

(&Lady state = P em (41 +;?rP/Y,,- 1). 

The ratio of steady state to initiation zone sizes at fracture rises rapidly with ductility, 
being 3 when y+’ = 10 y,,, 170 when y,J = 50 yn, and when y/ = 100 yO. 

One may show through a more detailed analysis [4] that the plastic zone dimension 
required to quasi-statically increase the crack length by distance I is a universal mono- 
tonically increasing function Rd(l) of I (for a given fracture ductility and microstruc- 
tural dimension). The initiation extent above is Rof(O+) and the steady state extent is the 
asymptotic limit Rd(m). This type of function is shown by the heavy curve in Fig. 7, 
where we measure 1 from an initial crack length ~1~. Now for any specific cracked con- 
figuration with loads proportional to a parameter Q, we can obtain the plastic zone 
extent from the monotonic load analysis as some function R,( Q,a) increasing with both 
Q and crack length a. While it was an untested approximation in previous studies that 
this same function would give a good estimate of the zone size after some growth, recent 
and as yet unpublished computer results by A. Chitaley of M.I.T. verify the appro- 
priateness of this approximation. Hence, the variation of load with crack length for 
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Fig. 7. Elastic-plastic stable crack extension and final instability. from anti-plane shear theory. 

quasi-static extension is determined implicitly by solving Z?,(Q, a,,+ I) = R<(f). 
Differentiating with respect to I, one finds the load drop instability to occur at a load Q 
and growth I simultaneously satisfying this equation and a!?,,( Q, a, + I) /al = dRJ( I) /df. 
The geometric solution is shown in Fig. 7. Light lines represent the family of curves 
R,,(Q, a) as functions of crack length for fixed values of the load. The member of this 
family in tangential contact with the heavy line simultaneously satisfies both equations. 
and thus marks the point of instability. 

One reason for our presentation differing somewhat from McClintock’s original 
papers is now evident. Figure 7 shows that the elastic-plastic theory of shear instability 
is in fact identical to the alternate ‘resistance curve’ analysis of instability by Krafft, 
Boyle, and Sullivan[32]. These authors employed Irwin’s energy release rate where we 
have employed the plastic zone extent, and postulated a universal relation between the 
release rate and growth length. There is no distinction in the small scale yielding range 
for which the release rate is an appropriate measure of local conditions, for then it is 
proportional to the zone extent. 

Stable growth under increasing tensile loads is most prominent in fully developed 
plane stress as shown, for example, by Broek’s[33] recent studies on aluminum alloys. 
Here it is interesting to note that even when the elastic singularity appropriately sets 
boundary conditions on a small yielded zone, final fracture criteria obtained through the 
instability construction of Fig. 7 may differ significantly from a critical stress intensity 
factor criterion. Fractures involving contained plasticity in situations close to idealized 
plane strain appear to be abrupt without prior growth. Somewhat less constrained 
fractures in plate materials do show stable growth[lO], but this differs significantly 
from the picture envisioned above as gradual developments of shear lips accompany 
growth. 

EFMVOI. 1.No.4-B 
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No analysis of instability is presently available for the plane stress case. This would 
be a profitable research direction. Full incremental plasticity treatments are required as 
deformation formulations will not distinguish between crack advance and load elevation. 
Monotonic load plasticity patterns for the Mises material (Fig. 6(a)) are somewhat 
similar to the anti-plane case. Large plastic strains are focused into the tip from a diffuse 
yielded region directly ahead. with the crack advancing into material which is already 
permanently deformed, so that equally significant growth effects might be expected. 
The line plastic zone of the two-dimensional plane stress solution for a Tresca material 
will not lead to stable growth, but the actual three dimensional pattern modelled is 
diffuse on the scale of a thickness dimension. Analyses similar to the steady state 
computation leading to (17) would appear appropriate for describing the mechanical 
environment in stress corrosion crack advance. 

ENERGY BALANCE CALCULATIONS 

The great virtue of the Griffith approach to fracture, including the Irwin and Orowan 
modification for plastic deformation, lies in the possibility of obtaining a useful result 
without considering the detailed history of the fracture process. It can be predictive, 
therefore, only when comparing two situations in which the material which fails is in 
the same initial state and is subjected to essentially the same history. This limitation of 
scope is a consequence of the strong dependence of the local stresses and strains, of 
void growth and coalescence, and of cleavage and other means of separation on the 
entire path of loading and other environmental conditions as well as on the geometry of 
the specimen or structure. 

When a linear elastic solution for a crack is used as a basis of a GritIith calculation, 
the apparent surface energy must include all energy dissipated in plastic deformation 
and is enormously greater than the true surface energy for ductile metals. An energy 
balance of this type is properly predictive of fracture only if the work of plastic de- 
formation per unit extension of the crack remains constant or decreases as the crack 
progresses. This balance is useful in analysis and design, although such a constant 
cannot be a material property, whenever it can be found from the test of suitable speci- 
mens in the laboratory. 

If an elastic-plastic solution is chosen as the basis for calculation, the plastic de- 
formation throughout the main volume of material is taken into account. Therefore it 
cancels out in the energy balance which applies up until the point of instability or 
decrease of nominal stress associated with necking through the thickness in plane 
stress, or in the ligaments between coalescing voids, or the combination of cleavage and 
the rapid joining up of cracks. In the real problem. consequently, it is the energy 
dissipation associated with the unstable stage which should appear as surface energy. 
Were there no unstable plastic stage in the joining up of voids and cracks, the elastic or 
atomic force instability would remain and give the true surface energy term when the 
kinetic energy released is ignored. Except, perhaps, in the presence of a strongly 
corrosive atmosphere at the crack tip, the plastic term still overwhelms the true surface 
energy. 

The distinction between the energy of unstable separation and the bulk dissipation 
is extremely important because the two can be quite different. In the small scale 
yielding problem when cracks are long and nominal stresses and strains are low, a metal 
with high yield strength and excellent elongation in 2 in. in the standard tension test may 
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be markedly inferior to a weaker metal with much smaller elongation in 2 in. but 
which opens up many voids at low stress and locally pulls out like taffy. 

Irreversibility of plastic deformation has an unfortunate and rather peculiar effect on 
the prediction of stability or instability of crack growth through an energy balance 
calculation. Its significance is made clearer when a general point of view is adopted 
which includes linear elastic, nonlinear elastic, elastic-perfectly plastic, and elastic- 
work-hardening materials as special cases. Figure 8 compares a loaded body in an initial 
state (a) and a final state (b). One or more cracks have extended in going from (a) to (b). 

(b) 

Fig. 8. Loaded body before (a) and after (b) crack ex- 
tension, for energy balance considerations. 

The result (Rice and Drucker[39]) is that the total release of mechanical (potential) 
energy, over and above the change in stored energy of the body and any plastic dissi- 
pation is 

/,. [Jr (oij--rr&)&ij]dl’. 

The path of integration is from (b) to (a), and the integrand would be positive for all 
stable elastic and elastic-plastic materials (Drucker[29]) which followed that path. 
Unfortunately, the material is taken from (a) to (b), not the other way around. The 
only immediate, direct, and genera1 statement that follows is the inverse one that crack 
healing absorbs potential energy. Of course this can be turned around for linear or 
nonlinear elastic materials because they are reversible. Crack extension does release 
energy in elastic bodies. If the energy release rate exceeds the amount needed for the 
creation of new surface, growth occurs at fixed loads. If the energy released is insuffi- 
cient, the crack will not grow. 

However, for elastic-plastic materials, crack extension may increase or decrease the 
potential energy of the system. Stable growth of small transverse cracks in a tension 
sheet under increasing load is permissible, therefore, although not necessary in an 
elastic-plastic body. It is never permissible in a linear or nonlinear elastic material. 

The barrier to the static initiation of fracture also is hidden in the backward proof. A 
crack can propagate in mild steel at far lower nominal stress than the limit value needed 
for initiation of fracture. The release of energy given by the integral at working stress 
levels is very large if (a) represents a stationary crack and (b) is a running crack just 
infinitesimally longer. However, the ductility under static loading at working stresses is 
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so high in undamaged steel that cleavage cannot be produced in a sufficient number of 
grains to permit the path from (a) to (b). Advantage cannot be taken of the apparent 
availability of energy. Cracks will not propagate unless the initiation barrier is over- 
come by such means as exceeding the limit load, or producing high local stress through 
dynamic loading, or embrittling the material at the root of the crack. 

Similarly. if a comparison is made between plane stress and plane strain crack 
propagation in small scale yielding of thin sheets, the energy ‘preference’ for transition 
to plane strain is enormous. Such a transition may occur but energy balance alone does 
not provide the answer. 

The removal of material from a loaded body, either mechanically or by chemical 
attack has the same effect on energy release as the extension of a crack just discussed. 
Interaction between chemical attack and the state of stress is one aspect of the stress 
corrosion problem. However, it seems likely that intergranular attack will lead to frac- 
ture more easily than bulk removal of material. Stress corrosion can be especially 
effective in lowering fracture strengths because it works directly on the local ductility 
and the energy needed to produce new surface. For example, if with time the tensile 
strength across grain boundaries is reduced to near zero, the fracture strength also goes 
to near zero no matter how much prior plastic deformation of the grains may have 
occurred. Similarly, any chemical embrittlement of the bulk material by gaseous 
diffusion either before voids have begun to grow and coalesce, or during the process of 
void growth when diffusion rates should increase, will decrease the critical local strain 
or equivalently the effective surface energy. Hydrogen embrittlement of steel might be 
a case in point but another explanation has been offered based upon the pressure 
produced by the hydrogen which causes cracking in the absence of externally applied 
stress[40]. Some rethinking of these and similar problems may be in order now that the 
relevant surface energy term has a somewhat clearer meaning. Westwood[41] has 
similarly emphasized the relevance of an appropriately defined surface energy term in 
environment sensitive behavior, even though its magnitude is generally negligible 
compared to overall plastic dissipation. 

LIMIT LOAD FRACTURES 

The real problem of (quasi-) brittle fracture in metal structures lies in the domain of 
contained plastic deformation discussed in the preceding sections. Such fractures still 
come as a surprise to the designer who knows his material to be amply ductile in the 
usual sense, able to take appreciable strain without rupture. He does in fact find it so, 
after the catastrophe, when he performs a standard tension test on a specimen cut from 
the failed structure. The same designer would expect (or at least not be surprised by) 
trouble at strain concentration points in the range of uncontained or fully plastic 
deformation. He recognizes that local strains then can be extremely large and exceed 
the ductility of the material. 

Computation of the loads at which the deformation no longer is contained strongly 
by the elastic behavior of surrounding metal does not require elastic-plastic calculations 
with the actual stress-strain behavior of the metal. This complexity can be avoided 
because a very satisfactory answer is given by the plastic limit load computed on the 
basis of an elastic-perfectly plastic idealization of the metal. Until the limit load is 
approached, strains everywhere are contained by elastic strains. Concentration factors 
may be high but the maximum strains remain moderate over regions visible to the 
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unaided eye. The high strains on the microscopic level at the roots of sharp cracks 
have already been discussed, but they too are limited by the elastic constraint. 

Once the limit load is reached, plastic strains are unconstrained. Infinite strain is 
possible with the perfectly plastic idealization. This must be interpreted as meaning 
that the maximum strains in a work-hardening material are of the order of plastic strains 
multiplied by a strain concentration factor which tends to be higher than the elastic 
factor. Clearly, if a material is at all prone to brittle fracture, it has a high likelihood of 
fracturing once the calculated limit load for the structure is reached or slightly 
exceeded. 

Conceptually, the plastic limit theorems [42] which enable bracketing of the plastic 
limit load closely enough for practical purposes, play the same role in plasticity as the 
complementary energy and the potential energy theorems do in elasticity. Instead of 
dealing with equilibrium, compatibility, and stress-strain relations simultaneously. 
information is obtained from the use of an equilibrium stress field by itself and from a 
displacement (velocity) and an associated strain (velocity strain or strain rate) field by 
itself. The theorems are remarkably simple and in accord with intuition. When, as is 
customarily assumed for elastic solutions, changes in geometry are not taken into ac- 
count in the equations of equilibrium and in the stress-strain relation, collapse (con- 
tinuing plastic deformation) occurs under constant load and at constant stress. During 
collapse, strains are purely plastic. 

Theorem I (lower bound) 

The body will not collapse or will just be at the point of collapse if an equilibrium 
distribution of stress can be found which balances the applied load and is everywhere 
below yield or at yield. 

Theorem 2 (upper bound) 

The body will collapse if there is any compatible pattern of plastic deformation for 
which the rate at which the external forces do work equals or exceeds the rate of internal 
dissipation. 

Theorem 1 expresses the ability of the material of the body to adjust itself to carry 
the applied load if there is any way of doing so. It gives lower bounds on, or safe values 
of. the plastic limit loading. The maximum lower bound is the plastic limit load. 
Theorem 2 states the fact that the body will not stand up if a permissible failure path 
exists. It gives upper bounds on, or unsafe values of, the plastic limit loading. The 
minimum upper bound is the plastic limit load. 

A direct corollary of the lower bound Theorem 1 is that residual, thermal, or initial 
stresses or displacements do not affect the limit load. This corollary depends as do the 
limit theorems themselves, on an assumption of unlimited ductility of the material. If 
the local ductility and geometry combine to require limit load conditions for fracture in 
the absence of initial stress, the presence of such stress can suppress or enhance the 
danger at any load only very little. Small plastic deformations are sufficient to wipe out 
the residual pattern. 

Computation of limit loads for symmetric thin notched sheets in tension, Fig. 9 is 
trivial when the Tresca yield criterion, Fig. 6(b), is employed. The limit force P,, in 
tension is given almost exactly by the yield stress v,, in simple tension multiplied by the 
net cross-sectional area (b - 2a)t, where b is the gross width, N is the depth of each side 
notch or half the width of the internal crack, and t is the thickness of the sheet. A small 
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Fig. 9. Failure at or above limit load for a notched plate. 

increase in the limit value is shown dashed in Fig. 9. This is to take into account the 
three-dimensional situation at the side notch roots and the small increase possible with 
the use of a Mises or intermediate criterion in lieu of the Tresca. 

Test data on aluminum sheets of ample (but of course limited) ductility, and small to 
moderate width b, do confirm that failure follows such a curve. Yet errors in inter- 
pretation can and on occasion do arise even in this simplest of examples. If the nominal 
or gross stress at failure, upmss =pJbt, is plotted instead of the net stress, the data 
follow the falling line of Fig. 9. This is as predicted and well understood despite the 
temptation to associate such a drop with a quasi-brittle fracture below limit load. 

It is easy to see how in more complex structures assembled from beam, plate, and 
shell elements the co~usion between a nominal stress and a proper measure of plastic 
limit load could arise. This might well lead to an erroneous conclusion that a quasi- 
brittle fracture had occurred when in fact, the plastic limit load had been reached or 
exceeded. Design procedures or analysis calculations of a nominal stress often allow 
for appreciable local changes in geometry from the actual fabricated configuration to a 
much smoother and more desirable structural shape. Such cold-forming under load will 
be satisfactory in an other wise well-fabricated mild steel structure at a sufficiently high 
temperature. It does, however, mean that limit loads are exceeded and that local strains 
are extremely high. The same smoothing of geometric shape at lower temperature or 
with a less ductile metal in the critical regions of the structure will produce a brittle 
appearing fracture at the plastic limit load for the structure as fabricated. 

The fractures which occurred in low pressure storage vessels under hydrostatic test 
at 40°F are excellent if not happy examples [43]. Although designed in accordance with 
the code for ASME standard torispherical heads the limit load as calculated later by 
Shield and Druckerl441 was exceeded by the test pressure. A practical, yet not 
entirely satisfactory, solution is to use warm water in the hydrostatic test and so cold- 
deform the vessel into a smoother shape of less curvature in the knuckle region. 

In the earlier studies of the brittle fracture of ships[34] the opinion was expressed 
that the breaking of ships in two. most often represented a true very low stress fracture, 
a fracture far below limit load. The possibility, especially in the Liberty ships with 
insufficient attention to design details and to fabrication technique, that many of these 
fractures may have been much closer to a shell structure plastic limit load than first 
thought is worth investigation. If true, designs of mammoth ships can proceed with far 
greater confidence in survival under the most adverse sea conditions. 

Questions of interpretation of laboratory as well as of field data also arise in simple 
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spherical and cylindrical pressure vessels[3]. Suppose, as presented in [3], that a flat 
circular test plate of diameter d and thickness t is inserted in a spherical shell of 
diameter D, Fig. 10. The test plate is subjected to membrane stretching and to trans- 
verse bending. No matter how small a crack is introduced into the test plate, the limit 
pressure is necessarily appreciably below the limit pressure for an untracked fixed edge 
plate of diameter d (Hopkins and Drucker [45]) 

(rd2/4)plimit < ( 1.88) 6rrMo = ( 1.88) 6rr (oOf2/4) 

Plimit < 11 .3aot2/d2. 
(19) 

The limit pressure for a spherical shell of diameter D and thickness t is given by 
(7rD2/4)~$,ere = u,,x-Dt or ps*phere = 4u,,t/D. Therefore 

Rimit < ( 11*3/4) ( tDld2 )Ps*phere. (20) 

When the test plate thickness is small and its diameter is moderate, Plimit is well below 

P &,,,_. For example, if D = 9 ft, d = 2 ft, and t = $ in., the limit pressure for the test 
plate is considerably less than 40 per cent of the limit pressure for a sphere of the same 
thickness and diameter D. The larger the crack in the test plate the smaller the limit 
pressure will be (see Fig. 12 of [46]). 

c3 d 

Fig. 10. Flat circular test plate inserted into a spherical 
shell. 
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If the test plate remains ductile as the limit pressure is exceeded, it will bulge to 
assume an almost spherical form and so be able to carry the pressure as an almost 
perfect sphere. Similarly, if the pressure vessel with a torispherical head is deformed 
under interior pressure at a high enough temperature to avoid fracture, it too will be 
very much stronger under subsequent loading. The point remains, however, that when 
the limit loading is exceeded, local deformations do become very large and brittle 
fracture is all too likely. 

A similar possible confusion between reaching limit pressure and reaching a 
pressure sufficient to cause a membrane tension equal to the yield strength or perhaps 
80 per cent of the yield strength appears in the testing of cylindrical pressure vessels 
with a longitudinal crack or slit. Again. out-of-surface bending will give low limit loads 
when the slit is long enough. 

Both the designer and the laboratory experimenter should become more aware of 
the distinction between limit load and net section stress concepts as they move away 
from the simple tension of thin flat sheets for which the distinction disappears. Plastic 
limit loads are always failure loads in the structural sense because deformations 
become excessive unless geometry change strengthening takes over strongly at an 
early stage. The factor of safety to be used must be greater if brittle fracture is likely 
than when the result is just a large change in shape and dimension. 
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R&me-Un effort particulier est fait pour couvrir la gamme complbte plastique-elastique, depuis les 
fractures t&s importantes qui naissent et se propagent 5 une tension nominale ou nette, bien en bas de 
I’&helle elastique, jusqu’aux fractures communes, qui sont pourtant plus faciles & comprendre et & prkvenir, 
dans des conditions de charge limite ou totalement plastique. On examine les similarit& et les diffirences de 
comportement entre des aciers qui ont un taux de sensibilitC tr& tleve, et des alliages d’aluminium ou d’au- 
tres mCtaux plus insensibles. Les distinctions tri’s marquCes qui apparaissent entre les extr@mes bien par- 
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ticuliers de tension plane et &effort plan sent mises en evidence ainsi que leur relation avec I’echec concer- 
ndnt des structures et iiements complexes. 

On Ptudie en detail I’extension de la fracture dans les conditions d’effort plan. et le ritfe important de 
I’emoussage progressif est indique a la fois en limitant tes tensions maximales possibles et en prevoyant une 
petite zone d’effort intense dans laquelle optrent les micanismes de fracture par la traction. La comparaison 
avec les dimensions microstructurelles appropriees conduit i une rationalisation des dimensions minimales 
d’epdisseur pour une fracture due a I’effort plan. On montre que les modeles limites de tension plane dans 
des tales fissurees sont extr&mement sensibles au critere de limite. Le modele Dugdale de ligne en zone 
plastique fournit une solution correcte pour un materiau Tresca non-durcissant. mais on obtient des zones 
diffuses pour un materiau Mises. Le role important de I’anisotropie est indique. Une extension stable sous 
une charge croissante apparah comme une consequence possible de I’avance de la fracture dans un m&al 
prtalablement deform& Les conditions pour une croissance stable a I’encontre d’une croissance brutale. 
I’opportunite des approches d’Cnergie compensie et les calculs de charge limite plastique sont aussi Ctudiis. 
Une tentative est effectuie pour donner une bonne perspective getterale. 

Z~menf~ng-Ein Versuch wird unternommen den gesamten elastischplastischen Bereich von den 
8usserst problematis~hen Briichen, die bei Nenn- oder NettOS~dnnUUgen weitab im elastischen Bereich 
auftreten und fortschreiten, bis zu den haufigen. wenn such leichter verst9ndlichen. und verhinderbar~n 
Briichen unter vollkommen ptastischen oder Grenzlast-bedingungen zu erfassen. Ahnlichkeiten und Unter- 
schiede in Verhalten zwischen Stahlen. deren Verhalten in starkem Masse von der Belastungsgeschwindig- 
keit abhangt und Aluminium-legierungen bzw. anderen eher unempfindlichen Werkstoffen, werden unter- 
sucht. Die sehr deutlichen Unterschiede zwischen den speziellen Extremfallen des ebenen Spannungs- und 
des ebenen Dehnungszustandes. sowie ihre Bedeutung fiir das Versagen komplexer Konstruktionen und 
einzelner Bauteile werden aufgezeigt. Im Gegensatz dazu wird die Notwendigkeit betont in den meisten 
Schalenkonstruktionen die Biegungsbeanspruchung zu beriicksichtigen. Es wird gezeigt, dass es miiglich ist. 
im Laboratorium. jedoch noch mehr auf der Baustelle, Grenzlastbriiche mit Niedrigspannungsbtichen zu 

verwechseln. 
Die Risserweiterung in ebenen Dehnungszustand wird ziemlich detailliert untersucht, und die wichtige 

Rolle einer fortschrietenden Abstumpfung &r Rissespitze sowohl im Hinblick auf eine Begrenzung der 
maximal erzielbaren Spannungen, als such auf die Bildung eines kleinen Bereiches intensiver Dehnung, WV 
duktile Bruchmechan~smen wirksam werden, wird angedeutet. Ein Vergleich mit geeigneten mikrostrukturel- 
len Abmessungen fdhrt zu einer log&hen Grundlage fiir kindest-Dickenmasse fiir Briiche im ebenen 
Dehnungszustand. Es wird gezeigt, dass Fliesslinien fiir den ebenen Dehnungszustand in Bfechen mit Rissen 
ausserst empfindlich gegeniiber dem Fhesskriterium sind. Das Model1 nach Dugdale liefert eine korrekte 
Losung fiir ein nichtverfestigendes Tresca Material, wahrend fir ein Mises Material diffuse Zonen erhalten 
werden. Die wichtige Rolle der Anisotropie der Dickenrichtung wird angedeutet. Eine stetige Risserweiter- 

ung unter zunehmender Belastung kann als mogliche Folge eines Fortschreitens eines Risses in vorher ver- 
formtes Material angesehen werden. Die Bedingungen fir stetes im Gegensatz zu plotzlichem Rissewach- 
stum. die Anwendbarkeit von Energiebilanz-Methoden, sowie Verfuhren ;ur Berechnungen der plastischen 
Grenzlast werden ebenfalls untersucht. Es wird versucht all diese Aspekte im richtigen Verhaltnis z~~einttndcr 

zu sehen. 


